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ABSTRACT

Hypertensive pregnancy disorders, such as preeclampsia, are leading sources of both maternal and fetal

morbidity in pregnancy. Non-invasive imaging, such as ultrasound and magnetic resonance imaging

(MRI), is an important tool in predicting and monitoring these high risk pregnancies. While imaging

can measure hemodynamic parameters, such as uterine artery pulsatility and resistivity indices,

the interpretation of such metrics for disease assessment rely on ad-hoc standards, which provide

limited insight to the physical mechanisms underlying the emergence of hypertensive pregnancy

disorders. To provide meaningful interpretation of measured hemodynamic data in patients, advances
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in computational fluid dynamics can be brought to bear. In this work, we develop a patient-specific

computational framework that combines Bayesian inference with a reduced-order fluid dynamics

model to infer remodeling parameters, such as vascular resistance, compliance and vessel cross-

sectional area, known to be related to the development of hypertension. The proposed framework

enables the prediction of hemodynamic quantities of interest, such as pressure and velocity, directly

from sparse and noisy MRI measurements. We illustrate the effectiveness of this approach in two

systemic arterial network geometries: an aorta with carotid and a maternal pelvic arterial network.

For both cases, the model can reconstruct the provided measurements and infer parameters of interest.

In the case of the maternal pelvic arteries, the model can make a distinction between the pregnancies

destined to develop hypertension and those that remain normotensive, expressed through the value

range of the predicted absolute pressure.

Keywords Bayesian inference · 4D Flow MRI · Reduced order modeling · Hypertension · Pregnancy

1 Introduction

Hypertensive pregnancy disorders (HPDs) increase risk to health in mothers and infants. It is estimated that 5% of

pregnancies in the United States are complicated by preeclampsia, the most common form of HPD, and rates have been

steadily increasing per year1. However, the pathophysiology of HPD is poorly understood, leaving clinicians without a

screening test to reliably assess risk of adverse pregnancy outcomes2. While several studies have investigated the utility

of biochemical markers and/or ultrasound (US) in early prediction of HPD, their positive predictive value has not been

high enough for standard clinical practice3. Even if HPD could be accurately predicted, there are still limited treatment

options for HPD due to under-investigation of the nature of the disorder4.

It has been suggested that insufficient spiral artery remodeling during placental development may be the cause of

high blood pressure and other hemodynamic disturbances in HPD5. Since the latest non-invasive in vivo imaging

technologies have not been able to resolve the small spiral arteries (diameters on the order of ∼ 102 µm, which is

currently smaller than the resolution of MRI for body imaging), a popular alternative research tool has been Doppler US

velocimetry of the uterine arteries (UtAs), which are upstream from the spiral arteries and easier to visualize because of

their larger diameter6. More recently, 4D flow MRI velocimetry of the UtAs has been investigated7,8. Compared to

US, 4D flow MRI has lower temporal resolution and longer scan time but larger spatial coverage, improved spatial

resolution, and measures velocity in three dimensions rather than only one.

In normal pregnancy, the UtAs remodel outwardly, with larger vessel lumen area and little to no change in wall

thickness9,10. This is mediated by a combination of local wall shear stress, nitric oxide release, and local/systemic

endocrine signaling. Animal studies on tissue reorganization within the UtA wall have observed hyperplasia and

hypertrophy of the smooth muscle cells to maintain wall thickness during vasodilation10,11. Changes in elastin and

collagen content in the UtA wall have been found to be variable in different animal species10. One study reported

evidence of increased myogenic tone in human pregnancy, which is surprising given the amount of vasodilator molecules
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released12. Nevertheless, this appears to signify that the uteroplacental arteries play a critical role in regulating the

distribution of blood flow during pregnancy.

Doppler US velocimetry has shown that UtA flow increases with gestational age while pulsatility and resistivity

indices (PI and RI) decrease with gestational age in normal pregnancy6,13. The PI corresponds to the difference

between the maximum and minimum blood velocity, normalized by the mean velocity and the RI corresponds to the

difference between the maximum and the minimum blood velocity normalized by the maximum blood velocity. In early

pregnancy, the velocity waveform may contain a diastolic notch, representing the reflected blood flow of uteroplacental

circulation14, which is expected to diminish by third trimester as the uteroplacental vasculature continues to remodel13.

These features suggest that persistently high pulsatility and the presence of the diastolic notch would be associated with

adverse pregnancy outcomes. However, despite numerous investigations, US measurement of UtA velocity still has low

positive predictive value, which has precluded it from entering routine clinical practice3.

Computational fluid dynamics (CFD) has been a useful research tool to help identify sources of UtA velocity waveform

changes and perhaps shed light on any biases that may weaken its diagnostic and screening utility. The earliest models

were 0D lumped parameter models based on Frank’s Windkessel model, which allowed mathematical descriptions of

hemodynamic parameters using physical principles adopted from electrical circuits15. Fundamentally, the Windkessel

model relates pressure (P ) to flow (Q) as P = QR, where R denotes resistance. 1D models have also been found to be

computationally efficient and validated for accuracy in various arterial networks and flow conditions16,17. More recently,

advances in computing have enabled 3D fluid-structure simulations of blood flow in localized organs and tissues18,19,20.

Simulations of UtA flow reported that high resistance and small UtA radius recapitulated the abnormal waveform

shapes (high PI with diastolic notch) that closely matched measurements acquired from a preeclamptic mother21,22.

CFD methods were also leveraged to investigate spiral artery remodeling as a potential source of the abnormal

waveform shapes detected in UtA US. While insights were gained in the interaction between trophoblast invasion and

hemodynamic changes of spiral arteries during pregnancy5,23, evidence suggests that PI and the diastolic notch may

be a moderate proxy for trophoblast invasion but other factors such as radial artery and arteriovenous anastomoses

remodeling may also contribute to the waveform shape24. This suggests the need for more investigation into the complex

remodeling-hemodynamic interactions underlying HPD that would lead to more effective clinical biomarkers than

PI/RI. Previous uterine artery computational modeling has sought to understand the physical mechanisms underpinning

measured ultrasound velocity wave-forms25, but without considering a patient specific large vessel structure in the

female pelvis.

In this study, we leverage a hybrid 0D-1D model first proposed by Sherwin et. al.26 to derive remodeling parameters,

such as arterial resistance, compliance, and cross-sectional area, from non-invasive imaging flow measurements of

the proximal uterine arteries for patient specific pelvic geometries. To achieve this, we developed a computational

framework that combines a reduced order Navier-Stokes model as a forward evaluation model and a Markov Chain

Monte Carlo (MCMC) algorithm for predicting these biological indices that could be later used to assess the progression

of HPD. We first demonstrate feasibility in the aorta with synthetic and measured MRI flow data, followed by a similar
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analysis of the maternal pelvic arterial network of a normal and a pregnant subject that went on to develop hypertension

later in pregnancy after MRI. We also compare the corresponding PI and RI from MRI and US in these subjects.

In a Bayesian estimation setting, reduced order models are commonly coupled with MCMC algorithms for inferring

posterior distributions over the unknown parameters given noisy measurements. For example, Larson et. al.27 introduced

a Bayesian model selection algorithm for identifying the position of wall abnormalities in a complex arterial network.

Their algorithm employed a transition MCMC strategy coupled with a reduced order flow model in order to examine

different flow model setups, chose the one that best described the underlining phenomena, and matched the target

waveform. Thus, the objective of this work was to solve a classification problem, where the boundary conditions of the

problem were assumed and the geometrical and structural properties of the vessel were varying. Moreover, Colebank et.

al.28 proposed a strategy that employed a Delayed Rejection Adaptive Metropolis (DRAM) algorithm in order to infer

the boundary conditions for a three-element Windkessel model in pulmonary hypertension and performed a sensitivity

analysis to identify the model parameter influence on the predicted pressure. In this case, a parameter reduction strategy

was employed and nominal parameter values for R and C were assumed, which then reformed the inverse problem

to identifying scaling multipliers for the nominal parameters at each outlet. The authors employed pressure data for

the main pulmonary artery (MPA) in order to infer the arterial resistance and compliance for the outflow vessels and

performed model sensitivity analysis to assess the parameters’ importance to the model output. In another approach,

Puaun et. al.29 proposed an MCMC method for inferring flow parameters in a pulmonary circulation vascular network

in mice. The strategy was based on DRAM, with an additional parameter scaling technique. Moreover, they proposed

starting the algorithm using a Maximum Likelihood approach in order to speed up the convergence of the algorithm

and presented convergence tests in order to assess the effectiveness of the algorithm. In this work, we perform direct

inference of the model parameters only via sparse, cross-sectional averages of 4D flow MRI measurements. This

increases the complexity of the inference, as there is an inherent uncertainty caused by the discrepancy between the

chosen model and the real flow conditions. Because of this discrepancy, different combinations of inputs and their

corresponding model discrepancy might provide results that are in close agreement and thus provide high values of the

likelihood function during the Monte Carlo sampling.

In summary, the main contribution of this work is a patient specific methodology for directly inferring the values of

arterial resistance, compliance and equilibrium cross-sectional area, as well as estimating of the absolute pressure in

maternal pelvic arteries. This is a first step towards investigating the relationship between vascular remodeling and

pregnancy outcomes for early prediction of HPD.

2 Methods

2.1 MRI data acquisition and processing

MRI of aorta and carotid in non-pregnant volunteer. For this study, we use the same aorta data-set reported in

Kissas et al.30. The MRI data was acquired from a 27-year-old healthy female volunteer using a 1.5T MRI scanner

(Avanto, Siemens Healthineers, Erlangen, Germany). The protocol included a balanced steady-state free precession
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(bSSFP) localizer, prospectively electrocardiogram (ECG)-gated 2D cine and 2D phase contrast images prescribed

at four locations in the aorta and one location in the left common carotid artery. The temporal resolution was 29.4-

34.8 ms and 20.7 ms for the 2D cine and 2D phase contrast MRI, respectively. The time-resolved cross-sectional

areas were extracted from the 2D cine images and time-resolved velocity wave-forms were extracted by processing

the 2D phase contrast phase difference images (ImageJ v1.48; imagej.nih.gov/ij). The arc lengths between

points were computed after segmentation and center-line extraction of the bSSFP localizer images using Seg3D

2.3.0 (http://sci.utah.edu/cibc-software/seg3d.html)31 and VMTK (http://www.vmtk.org/)32. Figure 1

shows the resulting geometry. Additional details about the MRI acquisition and post-processing have been reported

previously30.

MRI of uterine artery in human pregnancy. Using the same scanner, MRI data was acquired from a healthy

pregnant volunteer, denoted as the Normal subject (maternal age=24 years, gestational age (GA)=18.7 weeks) and a

pregnant volunteer that developed hypertension in late pregnancy, denoted as the pre-HPD subject (maternal age=25

years, GA=19.1 weeks). The pre-HPD subject was not diagnosed with chronic hypertension nor was on any related

medication and was diagnosed with preeclampsia four months after the MRI data were collected. Each subject was

positioned in feet-first supine with a 12-channel spine array coil and two 4-channel body matrix coils. Both patients

were imaged in supine position with no tilt. An ECG monitor was attached to the subject for synchronization of the MRI

to heart rate. The protocol consisted of a half-Fourier acquisition stimulated echo (HASTE) localizer of the abdomen

and pelvis, a time-of-flight (TOF) angiogram of the abdomen and pelvis, a 2D prospectively-gated phase contrast scan

of the descending aorta, and prospectively-gated 4D flow MRI of the uterine arteries (UtAs) and external iliac arteries

(ExtIls). The details of the MRI acquisition parameters are listed in Table 1.

During post-processing of the MRI data, the TOF angiograms were segmented (Seg3D31) and center-lines were

extracted (VMTK32) to compute path length from the descending aorta to the UtAs and ExtIls (Figure 1). The

equilibrium areas of each vascular segment were estimated from multi-planar re-formats of the TOF images. Velocity

and area wave-forms were extracted from 2D phase contrast images using ImageJ. The 4D flow images were processed

with custom software (MATLAB,Natick,Massachusetts)33, followed by velocity-based thresholding of the volumetric

iso-surface (Ensight, CEI; Apex, NC). Velocity wave-forms were extracted from the left/right UtAs and left/right ExtIls.

Since both the 2D phase contrast MRI and 4D flow MRI were prospectively-gated, a few end-diastolic cardiac phases

were not acquired from each cardiac cycle. These end-diastolic velocity values were extrapolated by averaging the

velocities of the first and last cardiac phase (Table 1).

Each subject was positioned in semi-recumbent supine during ultrasound (US) scanning by a clinician (N.S.) with

extensive experience in prenatal US. The UtAs were scanned using the C4-8 transabdominal probe of a GE Voluson

E10 (GE Healthcare, Wisconsin, United States) US machine. Measurements of UtA Doppler velocity wave-forms were

recorded bilaterally, and PI and RI were calculated for comparison with the MCMC estimation.
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2.2 A hybrid 0D-1D pulsatile flow model

A reduced order Navier-Stokes flow model is employed to simulate pulsatile flow in a network of compliant vessels.

In order to perform such reduction, a series of assumptions are made. Blood is approximated as a Newtonian,

incompressible fluid, with constant viscosity and density. The vessels are approximated as thin, impermeable, elastic,

axi-symmetric compliant cylinders with much larger length than the radius (L/r � 1), which is restricted to radial

displacement. The pressure and structural properties of the vessel do not vary across its cross-section34,26. By averaging

the conservation of mass and momentum over the cross-sections, a system of hyperbolic conservation laws is derived26.

Considering the vessel to be a thin-walled cylinder, Laplace’s law is used to derive an equation that relates the pressure

with the structural properties of the vessel34. This equation is used to calculate the absolute pressure value. The resulting

system of equations takes the form

∂A

∂t
+
∂q

∂x
= 0,

∂q

∂t
+
∂α(q2/A)

∂x
+
A

ρ

∂p

∂x
−KR

q

A
= 0,

p = β(
√
A−

√
A0),

(1)

where p(x, t) , q(x, t) and A(x, t) represents the pressure, the flow and cross-sectional area, respectively. Moreover,

β =

√
πh0E

(1− ν2)A0
and A0 denotes the vessel’s cross-sectional area at equilibrium, E the Young’s modulus, h0 the wall

thickness, ν the Poisson ratio and ρ the blood density. Values for h0, E and ν can be found in the literature, while A0 is

measured via MRI. Moreover, KR is a friction parameter which depended on the chosen velocity profile and α is a

momentum flux correction parameter which accounts for the non-linearity of the sectional integration in terms of the

local velocity35. In this study, KR = −22µπ, where µ is the dynamic blood viscosity and α = 1.1. For all experiments,

β is computed based on the empirical relation reported by Olufsen et. al.36. The tortuosity of the geometry is assumed

to be small enough such that the system (1) is valid, but in reality there was some uncertainty induced by neglecting the

complex topology, particularly of the uterine arteries.

In a network of arterial vessels, a series of domain conditions regarding the relationship between vessel segments need

to be satisfied. A pulsatile flow wave coming from the heart is set as the inflow boundary condition. In this study, the

pulsatile inflow wave is defined by MRI data, which then smoothed using Gaussian Process regression with a periodic

kernel37, and subsequently approximated using a Fourier series expansion. At locations of vessel bifurcation, it is

assumed that there existed no mass leakage so the conservation of mass between the parent (i.e. vessel # 1) and the

daughter vessels (i.e. vessels #2, #3) has to be satisfied. The mass conservation equation is defined as:

q1 = q2 + q3 (2)

where q1 and q2, q3 are the flow in the parent and daughter vessels, respectively. The bifurcation is considered to occur

at a point and by assuming laminar flow, no energy loss, and no gravity effects, Bernoulli’s law is employed for the inlet

and outlets of the arterial network. It is shown that the pressure continuity p1 = p2 = p3 is a sufficient condition to

produce accurate results for geometries consisting of large vessels34, so by combining this assumption with Bernoulli’s
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law, the following relation is obtained:

p1 +
ρ

2
(ûx)2

1 = p2 +
ρ

2
(ûx)2

2

p1 +
ρ

2
(ûx)2

1 = p3 +
ρ

3
(ûx)2

3

(3)

where p1, p2,3, (ûx)1, and (ûx)2,3 are the pressure and velocity values of the parent and daughter vessels, respectively.

This constitutes the full forward model for predicting the target quantities (flow, wall displacement, and absolute

pressure). We employ an in-house Discontinuous Galerkin (DG) solver26,38 to compute the solution of this model. We

extract the vessel centerlines from the three-dimensional arterial geometry of each patient and created a graph as the

input geometry of the DG simulator.

For the DG simulation, detailed boundary conditions are necessary to accurately describe the underlying physical

phenomena. In this study, a three-element Windkessel model39 is employed having a governing equation:

pj +Rj
vC

j dp
j

dt
− (Rj

v + Zj)Qj − pinf −Rj
vC

jZj dQ
j

dt
= 0, j = 1, . . . Do, (4)

where Do represents the total number of outlets, Qj = Ajuj is the flow rate at the outlet, and pinf = 666.5 Pa denotes

the constant downstream pressure. Zj represents the characteristic impedance40 that is defined as Zj =
ρcj0
Aj

0

, where Cj

is the total arterial compliance and Rj
v is the systemic vascular resistance of vessel #j. The characteristic impedance

is chosen in such a way that allows the incoming wave to reach Rj
v and Cj without being reflected40. For modeling

the circulation of an arterial network the most important challenge is related to correctly prescribing the Rj
v and

Cj parameters, such that the resulting predictions are within a physiologically accurate range. In this study, we are

estimating the total arterial resistance (Rj), defined as:

Rj = Zj +Rj
v (5)

for each vessel j.

2.3 Bayesian Inference

The proposed pipeline for statistically estimating unknown parameters for each outlet using MRI measured velocity

data consists of two building blocks, the forward model and the sampling method. The forward model is the hybrid

0D-1D blood flow solver discussed in section (2.2). Its input is a set of parameters θj determined by the sampling

method and the output is a prediction of the quantities of interest to be compared with the observed clinical data (in our

case the velocity). In this work, we employ slice sampling41, because it is a technique that can be used as a “black-box"

sampler, meaning that requires little tuning, compared to Metropolis based methods, can effectively adjust the step size

to match the local shape of the density function and can be as efficient as a Gibbs sampler without having to derive the

conditional distributions. A comprehensive overview of the method, as well as, a comparison with existing popular

sampling methods can be found in the original work of Neal et. al.41. The model parameters are defined as a triplet

θj = {Rj , Cj , Aj
0} for each outlet #j. Under this setting, the target posterior distribution is expressed as:

p(τ, θ|Q̂(X, t)) ∝ p(Q̂(X, t)|θ, τ)p(θ)p(τ), (6)
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where p(Q̂(x, t)|θ, τ) denotes the likelihood function and τ the measurement noise variance. p(θ) and p(τ) denote

the prior distributions over the unknown parameters and the measurement noise variance, respectively. Assuming

independence across the No observed measurements and a Gaussian noise model, the likelihood is factorized as:

p(Q̂(X, t)|θ, τ) =

No∏
j=1

N (q̂j(xj , t)|qj(xj , t; θj), τ−2
j ), (7)

where No is the number of outlets, q̂j represents the target measurements, qj represents the forward model prediction

for parameter set θj , and τj represents the noise variance of the measurements for vessel #j. The use of the Gaussian

likelihood is based on the assumption that the measurements may be corrupted by Gaussian noise with zero mean and

variance τ−2
j .

In the Bayesian inference algorithm, we chose the prior parameter distributions based on our prior knowledge of how

the parameters are distributed. The prior distributions for the model parameters were defined as:

p(θj) = U(ζj , ηj) j = 1, ..., No

p(τ j) = U(γj , δj) j = 1, ..., No,
(8)

where ζj , ηj are user-defined lower and upper bounds, respectively, of the considered parameter range of the considered

outlet. Furthermore, γj is the lower and δj the upper bounds for the noise parameter for each outlet. The uniform

distribution is chosen for the priors42 to limiting the chance in which the distribution mass may be concentrated to a

particular region. In the case that information over the prior distribution form and range is known, informative priors

can be employed in order to accelerate the sampling convergence.

The Bayesian inference algorithm discovers sets of parameters lying in regions of high probability under the posterior

distribution p(τ, θ|Q̂). By approximating this distribution we are able to make predictions about the quantities of

interest and at the same time quantify the predictive uncertainty of our parameter estimates. In order to produce

realizations of the system outputs we define:

Q̄(X, t) = Q(X, t; θ) + ε, τ, θ ∼ p(τ, θ|Q̂) (9)

where ε ∼ N (0, τ−2) the inferred noise distribution. We can, also, define the maximum-a-posteriori (MAP) probability

estimate and quantify the corresponding uncertainty of the model by sampling parameters out of the posterior distribution.

By sampling the posterior distribution we can then estimate the mean and the variance of the prediction in order to

assess its uncertainty. The mean is defined as

µQ̄(X, t) =
1

N

N∑
k=1

Q̄(X, t; θk), (10)

while the variance is defined as

σ2
Q̄(X, t) =

1

N

N∑
k=1

[Q̄(X, t; θk)− µQ̄(X, t)]2, (11)

where N denotes the number of posterior samples. The above algorithm provides a statistical description of the

predictions, which later is used to assess the quality of our conclusions.

Flow rates are computed by multiplying the predicted velocity wave-forms with the predicted cross-sectional area for

each vessel. Then, they are compared to the target flow rates, which are computed by multiplying the cross-sectional

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.10.468132doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.10.468132
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - NOVEMBER 10, 2021

area measured from TOF MRI with the velocity measured from 4D flow MRI. The algorithm is schematically presented

in figure 2.

2.4 Experimental Setup

The Bayesian inference algorithm was tested on three MRI volunteer data-sets, one collected in the aorta and two in the

maternal pelvic arteries (Section 2.1). For all experiments, predefined parameters were KR = −22µπ and α = 1.1 to

account for viscous losses, blood density ρ = 1060 Kg/m3, and viscosity µ = 3.5 mPa s. The code for all the methods

is created by combining the python library for Bayesian statistical modeling PyMC343 with a custom C language code

including a custom loss function in the python library Theano44.

2.4.1 Aorta Experiments

The arterial network geometry consists of four vessel segments with one inlet (ascending aorta), a bifurcation, and two

outlets (left common carotid artery (LCC) and descending aorta (dAo)), as shown in Figure (1). Given this data-set we

perform two computational experiments, one using synthetic velocity data and one using MRI measured velocity data.

This aorta data-set was originally reported in a previous study30.

In the first aorta experiment, the geometry was coupled with synthetic velocity data at the outlets to formulate a

simplified problem as a proof-of-concept of the proposed Bayesian inference framework. To construct the synthetic

data, the Discontinuous Galerkin (DG) simulator was provided with an arbitrary set of Windkessel parameters (R,

C). The generated velocity data was then corrupted with 2% Gaussian noise to simulate MRI measurement error.

Despite neither the noise level being that small nor the noise model Gaussian in real cases, we consider this case as a

sanity check, thus we define it in a simple manner. Moreover, we consider the model discrepancy45, the difference in

approximation quality between the employed and the real physical models that describe the flow, as the main factor

contributing to the prediction uncertainty. The period of the volunteer’s cardiac cycle T = 0.78 s was preserved in the

simulation but Np = 50 points were arbitrarily chosen to represent the waveform. Further details of the simulation

setup have been previously discussed in30.

The Bayesian inference algorithm is set up to take the geometry and synthetic data and estimate the Windkessel

parameters and pressure wave-forms. The search space is defined by uniform prior distributions for the unknown

parameters (see Table 2) chosen based on the intuition described in Section 2. The area wave-forms provided by

MRI are not taken into consideration for simplicity of this proof-of-concept experiment, but MRI measurements

of equilibrium cross-sectional area are used to determine the wall stiffness parameter β in the one-dimensional

blood flow model. To assess accuracy after convergence, the estimated parameters are compared with the target

parameters RdAo = 1.667× 108 Pa s m−3, CdAo = 9.002× 10−9 Pa−1 m3 , RLCC = 2.102× 109 Pa s m−3, and

CLCC = 2.538× 10−10 Pa−1 m3 , which are taken based on the findings reported in30.

In the second aorta experiment, the same geometry is coupled with the measured MRI velocity data at the outlets in

order to estimate the set of Windkessel parameters that provide the best match for the given target measurements. Prior

to starting the Bayesian inference algorithm, a Gaussian process regression37 with a periodic kernel is performed on the
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MRI wave-forms to ensure periodicity, to augment the Np = 38 points to Np = 100 to improve precision and to align

the predicted velocity and MRI velocity wave-forms which have different temporal resolutions and starting times. More

details about the pre-processing of the MRI data are described in30. The Bayesian inference algorithm is set up with a

search space defined by the uniform prior distributions reported in Table 2.

2.4.2 Maternal pelvic arterial experiments

The Bayesian inference methodology is performed on two data-sets comprised of MRI measurements of velocity from

the female pelvic region of two human volunteers. The first data-set corresponds to the Normal subject and second to

the pre-HPD subject, see Section 2. The maternal pelvic arterial network geometry consists of seven vessels extending

from the descending aorta (dAo) to the right and left common iliac arteries (RCI, LCI), to the right and left uterine

arteries (RUtA, LUtA) and external iliac arteries (RExtIl, LExtIl). Each network contained one inlet, four outlets, and

two bifurcations, as shown in Figure (1).

For each network, the Bayesian inference algorithm is provided with MRI measured velocities at each outlet and then

executed to estimate the Windkessel parameters R and C as well as the equilibrium cross-sectional area (A0), similar to

the aorta experiments. Unlike the aorta experiments, cross-sectional area measurements are included in the inference.

In contrast to the descending aorta region where the cross-sectional area magnitude of the vessels is large enough to be

accurately captured by the MRI resolution, in the pelvic region the arteries are very narrow and thus inaccuracies are

introduced in the measurements. In the maternal pelvic experiments, the structural MRI measured cross-sectional area

of the vessels that do not correspond to outlets (i.e. descending aorta, left and right common iliac arteries) is inserted to

the model and kept constant throughout the entire inference procedure, because we do not have enough data to infer

them. Therefore, we consider the cross-sectional area as a free parameter for the outlets to potentially correct for the

induced inaccuracies in the geometry of their parent vessels.

Since 4D flow MRI consists of velocity measurements from planes along the vessel cross section at different locations,

we can construct time series for both the maximum and the mean velocity. In standard practice, the mean velocity

wave-forms are used to compute the mean flow rate. However, the mean velocity wave-forms have low pulsatility

therefore the maximum velocity is used in practice for calculating Pulsatility Index (PI) and Resistivity Index (RI). The

reduced order model employed in this work is a cross-sectionally averaged version of the Navier-Stokes equation, so

we will use the mean MRI velocity for estimating the pressure wave-forms, R, C, and A0. Moreover, we will run a

separate Bayesian inference experiment for the sole purpose of calculating Pulsatility Index (PI) and Resistivity Index

(RI) to compare with US measurements. This computation constitutes another sanity check for assessing the quality of

the approximation that the framework can achieve for the case of predicting biomarkers. The biomarkers are computed

using the mean, the minimum and the maximum of the velocity waveform, therefore we can assess how well the model

can approximate these waveform characteristics.

For both volunteers, the measured 4D flow MRI velocity wave-forms have a low temporal resolution, they consist of

only Np = 14 points over a cardiac cycle of T = 0.612 s. To this end, the MRI velocity wave-forms are augmented by

a Gaussian process with a periodic kernel regression to create a set of Np = 55 points. This additional step is beneficial
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to the procedure because by creating a larger baseline periodic data-set we can have stronger comparison with the

prediction which results to a more accurate algorithm. Moreover, this step is used to align the velocity time-series

produced by the model and the MRI measurements, so that the predictions and the measurements are on the same

times. Table 3 contains the bounds of the uniform prior distributions predefined for the Bayesian inference framework

employed for the Normal subject and the pre-HPD subject.

3 Results

3.1 Aorta results

We present the velocity and the pressure wave-forms for the case of the synthetic data in Figure 3 and the resulting

discovered parameters in Table 4. In the aorta model with synthetic velocity data, the predicted outlet velocity wave-

forms closely matched the target synthetic wave-forms, see Figure 3a,b. We draw 200 samples of the posterior parameter

distribution and calculated the flow rate using the predicted velocity and area. For this case, the flow rate resulting from

the parameters with the maximum probability closely matched the target. For the descending aorta the model prediction

is 4577.9 ± 8.1 and the target 4578.8 mL/min which results to -0.02% error. For the left common carotid artery, the

predicted flow is equal to 462.8 ± 6.8 and the target 466.6 mL/min which results to -0.82% error. The predicted

Windkessel parameters also closely match the target values for the left common carotid (resistance R = 2.08E+09 vs.

2.10E+09 Pa s m−3, -1.09% error; compliance C=2.54E-10 vs. 2.54E-10 Pa−1 m3, 0.12% error) and descending

aorta (R = 1.67E+08 vs. 1.67E+08 Pa s m−3, 0.24% error; compliance C=8.98E-09 vs. 9.00E-09 Pa−1 m3, -0.28%

error) (Table 4). In addition, the aorta model provided absolute pressure wave-forms for both outlets (see Figure 3c,d).

Although validation wave-forms are not available from the measured MRI data, the predicted pressure time-series are

within physiological range. The absolute systolic/diastolic pressure is 115.2± 1.4 / 59.7± 1.5 mmHg in the descending

aorta and 108.0 ± 1.4/61.8 ± 1.5 mmHg for the left common carotid artery.

When the MRI measured velocity data is used in place of synthetic data, the aorta model still achieved close agreement

with the target MRI measurements. The predicted flow rate in the descending aorta is 4803.9 ± 17.5 vs. 4519.1

mL/min, 6.3 % error and in the left common carotid artery it is 353.3 ± 6.8 vs. 343.7 mL/min, 2.8% error (Figure 4a,b).

Although ground truth the resistance and compliance values are not known for this particular data set, the inferred

parameters can be determined the descending aorta resistance is 1.45E+09 Pa s m−3 and compliance is 1.88E-10

Pa−1 m3. The predicted resistance and compliance in the left common carotid artery are 1.15E+08 Pa s m−3 and

1.29E-08 Pa−1 m3, respectively, see Table 4. The predicted pressure wave-forms are also within physiological range46.

The systolic/diastolic pressures in the descending aorta are 102.5 ± 1.0 / 55.1 ± 1.0 mmHg and in the left common

carotid artery pressure are 95.4 ± 0.7 / 55.1 ± 0.8 mmHg (see Figure 4c,d).

3.2 Maternal pelvic arterial results

We employ the computational model proposed in Section 2 for estimating the remodeling parameters in both the

Normal subject and the pre-HPD subject cases. The predicted flow rate in the left and right external iliac arteries
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across 200 samples of the posterior distribution in the normal subject, are 950.18 ± 14.04 and 919.64 ± 38.92 mL/min,

respectively. The predicted flow rate in the left and right uterine arteries are 323.02 ± 3.84 and 65.57 ± 0.98 mL/min,

respectively (Figure 5). The pre-HPD subject has left and right external iliac artery flow rates 472.2 ± 16.5 and 711.02

± 27.8 mL/min, respectively, and left and right uterine artery flow rate of 62.75 ± 4.5 and 134.22 ± 4.1 mL/min,

respectively (Figure 7). When comparing between predicted and MRI-measured flow rates, the errors are highly

variable (5.29-92.4% error). This discrepancy occurred because the model cannot provide an accurate prediction of

the cross-sectional area of the right and left external iliac arteries. One reason for this lack of predictability is high

errors are accumulated for the case of the cross-sectional area, as it is present in the denominator of the β parameter

in the pressure equation of the model. Another reason is that we assume that the area measurement provided by the

structural MRI is the equilibrium cross sectional area for the non-outlet vessels, left and right common iliac arteries and

the descending aorta, which can contribute to inaccuracies. We present the predictions for the biomarkers computed

from MRI, Bayesian inference and, also, include the Doppler Ultrasound derived biomarkers on Table 6. The predicted

PI and RI values of the Normal subject are collectively lower than that of the pre-HPD subject. This trend agrees with

the corresponding MRI and ultrasound-based PI and RI comparisons.

The predicted R and C values are reported in Table 5. The predicted R values for the pre-HPD subject are higher than

the R values of the Normal subject in the left external iliac artery, left uterine artery and right external iliac artery. The

predicted compliance for bilateral external iliac arteries is lower in the pre-HPD subject compared to that of the Normal

subject. However the opposite is true for bilateral uterine arteries, where the compliance is higher in the pre-HPD

subject. Table 5 also reports the estimated cross-sectional area values. Both subjects have similar external iliac artery

areas with the pre-HPD subject having a slightly narrower left external iliac artery. For the pre-HPD subject, both

uterine artery cross-sectional areas are close to 25% of the external iliac artery areas. For the Normal subject we see a

higher variability in the uterine cross-sectional areas with the left uterine artery to be higher. In terms of the predicted

pressure wave-forms for both cases, they are (in general) higher for the pre-HPD subject case for systolic and diastolic

pressures compared to the Normal subject case. In the left uterine artery, the predicted pressure is 152.4 ± 7.8/ 65.1 ±
7.3 mmHg vs. 107.78 ± 1.83/32.99 ± 1.49 mmHg, and in the right uterine artery, the predicted pressure is 148.2 ± 8.3

/ 64.7 ± 7.14 mmHg vs. 85.78 ± 3.33 /31.0 ± 1.84 mmHg (see Figures 6 and 8). Moreover, we present comparative

figures for the velocities and the pressures for all vessels for both the Normal and the pre-HPD subjects in figures 9

and 10 respectively. We observe that the velocities are collectively higher in the case of the Normal subject while the

pressures are collectively higher in the case of the pre-HPD subject.

4 Discussion

This study demonstrates the feasibility of inferring remodeling parameters of the maternal pelvic arterial network from

MRI geometry and velocity data within a computational blood flow modeling framework. By adopting a Bayesian

inference approach, we are able to iteratively match the predicted velocity wave-forms with the measured velocity

wave-forms in a favorable manner. By doing so, we are able to recover parameters such as resistance, compliance,

and pressure, which are not measured but inferred from physical principles. We initially perform proof-of-concept
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experiments in an aorta and carotid data set of a healthy volunteer and show that the Bayesian inference algorithm

matched the target synthetic flow wave-forms and the target MRI flow wave-forms. There is greater uncertainty in

the predicted velocity wave-forms for the aorta model with MRI flow data potentially because of the measurement

noise present in the dataset. In the synthetic data case, the target resistance and compliance are chosen to be the same

as the ones computed by a different estimation technique proposed by Kissas et. al.30, when applied to the real MRI

descending aorta case. We choose these values because we are already aware that the results are in physiological

ranges. Both the target and the predicted parameters are similarly matched in both outlets. In both aorta models, the left

common carotid artery had lower predicted resistance and higher compliance than the descending aorta. The predicted

pressure wave-forms of the descending aorta and left common carotid artery are also within physiological range based

on cardiac catheterization measurements in a human46.

In the maternal pelvic arterial models, the Bayesian inference algorithm successfully recovered the remodeling

parameters despite greater complexity in the network. Traditional measures of PI and RI show that the subject who

went on to develop preeclampsia (pre-HPD subject) has elevated second trimester uterine artery pulsatility compared to

the normal case (Normal subject), a trend which is often interpreted as higher resistance. When comparing the predicted

resistance values between the models for the Normal subject and the pre-HPD subject, the pre-HPD subject has higher

resistance than the Normal subject in the left uterine, the right and the left external iliac arteries, which indicates

potential incomplete remodeling of these vessels in this case. On the other hand, the right uterine artery has higher

resistance in the Normal subject potentially because it has not remodeled yet. Previous studies have described reduced

vascular tone as part of the general pattern of arterial remodeling in pregnancy10. Since preeclampsia has been described

to involve insufficient conversion of the spiral arteries from pre-pregnant vasoactive vessels to flaccid conduits5, we

postulated that HPD results from failure to also completely lower the compliance of the uterine arteries. However, our

results showed the pre-HPD subject case had higher compliance than the Normal subject case for the uterine arteries.

Although the discrepancy between our results and this theory can be attributed to patient variability and the pilot nature

of this initial study, animal studies have indeed found higher myogenic tone in healthy pregnant sheep and guinea pigs

compared to healthy non-pregnant animals10, which seems to show that there may be a complex relationship between

resistance and compliance and clinical outcomes that need to be further investigated. Moreover, the uterine artery is

potentially exposed to more local vascular mediators from the placenta/pregnancy, possibly explaining why we may see

remodeling/compliance changes there that are different from what is seen in systemic circulation47.

Unlike the aorta, the outlet cross-sectional areas for the maternal pelvic arterial network were also considered as inferred

parameters because the 4D flow MRI did not have sufficient spatial resolution to precisely measure the areas of the

small uterine arteries. The pre-HPD subject has lower cross-sectional area in the left uterine artery compared to the

Normal subject, while higher in the the right uterine artery. Given the hypothesis that smaller luminal areas correlated

with poorly remodeled uterine arteries in preeclampsia10,21, it made sense that the pre-HPD subject would have low

cross-sectional areas of the uterine arteries, whereas the Normal subject would have at least one dilated uterine artery.

For the right uterine artery, the predicted cross-sectional area of the Normal subject is smaller than the pre-HPD subject,
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which might be an indication that the particular artery has yet to start remodeling. The pre-HPD subject had consistently

higher predicted pressure in all four outlets compared to the Normal subject.

There are several potential reasons for the discrepancies observed between the predicted and target velocity wave-forms.

First, the measured velocities from MRI have a significant amount of noise, so they do not necessarily obey the

underlying physics of the Navier-Stokes equations. Second, we performed simulations on a single subject using a single

measurement and therefore did not have the advantage of averaging velocities over a population which would have

improved robustness. Third, we assumed that the curvature of the vasculature is small enough to be considered one

dimensional. We also, assumed that the velocity magnitude in the direction of the flow is much larger than in any other

directions. These assumptions were made in order to reduce the model from three-dimensional to one-dimensional.

Due to the complexity of real flows, these assumptions do not hold completely, therefore we have lost accuracy

and introduced model discrepancy in the process. Finally, the low spatio-temporal 4D flow MRI resolution in the

region of the maternal pelvic arterial network introduced uncertainties due to the inaccuracies in structural parameter

measurements, such as the vessel cross-sectional area, and the small number of velocity measurements comprising a

cardiac cycle. These modeling assumptions and measurement errors might result to phenomena where the uncertainty

provided for the model might be high for some parameter of interest, i.e. see the right external iliac artery prediction in

figure 7. These shortcomings of the method, which are related with the imaging techniques and technology, could be

potentially alleviated by the advances in medical imaging technologies, paving the way for more accurate parameter

estimation and potentially the successful enhancement of the proposed methodology in higher dimensions (i.e. 3D flow

data). Parameter inference with higher dimensional data is possible but not efficient at this point, one reason being that

the lack of measurement accuracy lessens the convergence speed of the inference methods.

A limitation of this study was that the geometry of the maternal pelvic arterial models did not include all the branches of

the internal iliac arteries aside from the uterine arteries. While it is known that a key feature of maternal physiological

adaptation to pregnancy is diverting more blood flow to the uterine arteries6, this simplification may have caused

inaccuracies without including the other branches. A more comprehensive model would require improvements in the

spatial resolution of the 4D flow MRI technique to measure velocities in the other branches or at least inclusion of their

structures so that the additional outlet velocities can be inferred. Another limitation is that this study reported total

peripheral resistance, rather than separating between characteristic impedance and the systemic peripheral resistance.

This separation can be useful in future studies to determine the source of the resistance, whether in the larger arteries of

the pelvis or the small uteroplacental vessels (e.g. arcuate, radial, spiral arteries), which can affect interpretation of the

remodeling changes based on computational results. It should also be noted that two large vessels, the brachiocephalic

trunk and left subclavian artery, are missing from the aorta geometry, which might affect the results of this study.

However, the fact that our estimated pressures were within physiologic range is reassuring regarding the validity and

applicability of our chosen methods.

This study demonstrated the use of Bayesian inference to predict parameters that are not routinely measured clinically

but can be helpful in identifying high risk pregnancies in early gestation with the aid of MR imaging and computational

fluid dynamics. In future work, more patients are needed to investigate the relationship between pressure, resistance,
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compliance, cross-sectional area, and disease characteristics. This will aid in determining the most influential parameters

that can be correlated with clinical outcomes. These parameters are promising biomarkers because they may be more

physiologically relevant compared to PI and RI.

5 Conclusions
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Figure 1: Schematic representation of the MRI geometry and velocity data of human volunteers. a) Center-line geometry
with velocity measurements at points xA (ascending aorta), xB (aortic arch), xC , xdAo (descending aorta outlet), and
xLCC (left common carotid artery outlet). Vascular segments are labeled from 1 to 4, each connecting a pair of points
as shown. All lengths are reported relative to xA. b) Aorta velocity wave-forms corresponding to orange points in
panel (a) measured from 2D phase contrast MRI. In c) the geometry of the Normal subject maternal pelvic arteries is
presented and in d) the corresponding inlet and the outlet (simulation target) waveform for the orange points in panel
(c) are presented. In e) the geometry of the pre-HPD maternal pelvic arteries is presented and in f) the inlet and the
outlet (simulation target) wave-forms corresponding to the orange points in panel (e) are presented. For both cases of
maternal pelvic geometries vessel 3 corresponds to the aorta, vessel 6 to the right common iliac artery, vessel 2 to the
left common iliac artery, vessel 7 to the right uterine artery, vessel 4 to the left uterine artery, vessel 1 to the left external
iliac artery and vessel 5 to the right external iliac artery.
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Figure 2: Schematic representation of the process proposed in the manuscript. The procedure starts by considering
MRI velocity measurements and information about the geometry of a patient, then samples remodeling parameters
based on a sampling algorithm, which it uses to make velocity predictions followed by comparison with the input
measurements. Upon convergence to a stationary distribution the parameters are used in order to make velocity and
pressure predictions.
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Figure 3: Resulting velocity and pressure wave-forms from aorta experiment using synthetic flow data: In this figure
the estimated wave-forms of the aorta geometry with synthetic data is compared with the synthetic data with 2%
noise corruption. The synthetic data are denoted by blue dots. The red line represents the waveform that results from
using the parameters that provide the maximum likelihood and the yellow area represents the model uncertainty of the
solution.The abbreviation dAo correspond to the Descending Aorta and LCC to the Left Common Carotid arteries.
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Figure 4: Resulting velocity and pressure wave-forms from aorta experiment using MRI flow data: In this figure the
estimated wave-forms of the aorta geometry with MRI data is compared with the MRI data measurements. The MRI
data are denoted by blue dots. The red line represents the waveform resulting from using the parameters that provide the
maximum likelihood and the yellow area represents the model solution uncertainty.The abbreviation dAo correspond to
the Descending Aorta and LCC to the Left Common Carotid arteries.
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Figure 5: Resulting velocity wave-forms from maternal pelvic arterial experiment of Normal pregnant subject: In this
figure the estimated wave-forms of the maternal pelvic arteries for Normal subject are compared with the interpolated
mean velocity measurements from 4D flow MRI. The MRI measurements are denoted by blue dots. The red dashed lines
represent the wave-forms resulting from using the parameters that provide the maximum likelihood. The abbreviation
LExtIl correspond to the Left External Iliac, RExtIl correspond to the Right External Iliac, LUtA correspond to the Left
Uterine and RUtA to the Right Uterine arteries.
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Figure 6: Resulting pressure wave-forms from maternal pelvic arterial experiment of Normal pregnant subject: In this
figure the estimated pressure wave-forms of the maternal pelvic arteries for Normal subject are presented. The red
dashed lines represent the wave-forms that result from using the parameters that provide the maximum likelihood and
the yellow shaded areas are the model uncertainty. The abbreviation LExtIl correspond to the Left External Iliac, RExtIl
correspond to the Right External Iliac, LUtA correspond to the Left Uterine and RUtA to the Right Uterine arteries.
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Figure 7: Resulting velocity wave-forms from maternal pelvic arterial experiment of pre-HPD subject: In this figure the
estimated wave-forms of the maternal pelvic arteries for pre-HPD subject are compared with the interpolated mean
velocity measurements from 4D flow MRI. The MRI measurements are denoted by blue dots and the red dashed lines
represent the velocity wave-forms resulting from the parameters that provide the maximum likelihood and the yellow
shaded areas are the model uncertainty. The abbreviation LExtIl correspond to the Left External Iliac, RExtIl correspond
to the Right External Iliac, LUtA correspond to the Left Uterine and RUtA to the Right Uterine arteries.
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Figure 8: Resulting pressure wave-forms from maternal pelvic arterial experiment of pre-HPD subject: In this figure
the estimated pressure wave-forms of the maternal pelvic arteries for pre-HPD subject are presented. The red dashed
lines represent the wave-forms that result from using the parameters that provide the maximum likelihood value and the
yellow shaded areas are the model uncertainty. The abbreviation LExtIl correspond to the Left External Iliac, RExtIl
correspond to the Right External Iliac, LUtA correspond to the Left Uterine and RUtA to the Right Uterine arteries.
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Figure 9: Comparison between predicted velocity wave-forms from maternal pelvic arterial experiment of Normal
and pre-HPD pregnant subjects: In this figure the estimated wave-forms of the maternal pelvic arteries for both the
Normal and the pre-HPD subjects are compared. The red and blue dashed lines represent the wave-forms resulting
from using the parameters that provide the maximum likelihood for the pre-HPD and Normal subjects respectively.
The abbreviation LExtIl correspond to the Left External Iliac, RExtIl correspond to the Right External Iliac, LUtA
correspond to the Left Uterine and RUtA to the Right Uterine arteries.
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Figure 10: Comparison between predicted pressure wave-forms from maternal pelvic arterial experiment of Normal
and pre-HPD pregnant subjects: In this figure the estimated wave-forms of the maternal pelvic arteries for both the
Normal and the pre-HPD subjects are compared. The red and blue dashed lines represent the wave-forms resulting
from using the parameters that provide the maximum likelihood for the pre-HPD and Normal subjects respectively.
The abbreviation LExtIl correspond to the Left External Iliac, RExtIl correspond to the Right External Iliac, LUtA
correspond to the Left Uterine and RUtA to the Right Uterine arteries.
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Time of Flight (TOF) angiogram 2D Phase Contrast 4D flow

Flip angle (degrees) 50 15 8
Repetition time/echo time (ms) 394/4.4 9.3/5.57 5.3/2.67
Bandwidth (Hz/pixel) 200 310 445
Voxel size (mm3) 1.1×1.1×2.8 0.94×0.94×5.0 1.25×1.25×1.25
Temporal resolution (ms) N/A 55.6 42.4
# Cardiac phases N/A 11∗ 14∗∗

Velocity Encoding (VENC) (cm/s) N/A 200 120
∗extrapolated to 12 phases
∗∗extrapolated to 17 phases (Normal subject) and 16 phases (pre-HPD subject)

Table 1: MRI parameters used to acquire geometry and velocity data for the two pregnant subjects, Normal and
pre-HPD.
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Vessel Name
Parameter Bounds R(synthetic) C(synthetic) τ (synthetic) R(MRI data) C(MRI data) τ (MRI data)

Descending Aorta (dAo) [0.5*108, 2 ∗ 108]Pa s m−3 [5*10−9, 11 ∗ 10−9]Pa−1 m3 [1, 7] [0.5*108, 2 ∗ 108]Pa s m−3 [10*10−9, 30 ∗ 10−9]Pa−1 m3 (1, 7)
Left Common Carotid (LCC) [1*109, 6 ∗ 109]Pa s m−3 [1*10−10, 6 ∗ 10−10]Pa−1 m3 [1, 7] [1*109, 5 ∗ 109]Pa s m−3 [1*10−10, 6 ∗ 10−10]Pa−1 m3 (1, 7)

Table 2: Chosen bounds for prior distributions of the model parameters for the aorta case: The bounds are chosen as
described in section 2, for the total arterial resistance (R) and compliance (C). Initial knowledge from30 was incorporated
into the setup of these ranges.
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Vessel Name
Parameter Bounds R C A

LExtIl (Normal subject) [1*108, 65 ∗ 108]Pa s m−3 [1*10−11, 255 ∗ 10−11]Pa−1 m3 [1*10−6, 70 ∗ 10−6]m2

LUtA (Normal subject) [1*108, 65 ∗ 108]Pa s m−3 [1*10−12, 255 ∗ 10−12]Pa−1 m3 [1*10−6, 70 ∗ 10−6]m2

RExtIl (Normal subject) [1*108, 65 ∗ 108]Pa s m−3 [1*10−11, 255 ∗ 10−11]Pa−1 m3 [1*10−6, 70 ∗ 10−6]m2

RUtA (Normal subject) [1*108, 65 ∗ 108]Pa s m−3 [1*10−12, 255 ∗ 10−12]Pa−1 m3 [1*10−6, 70 ∗ 10−6]m2

LExtIl (pre-HPD subject) [1*108, 115 ∗ 108]Pa s m−3 [1*10−11, 45 ∗ 10−11]Pa−1 m3 [1*10−6, 70 ∗ 10−6]m2

LUtA (pre-HPD subject) [1*108, 135 ∗ 108]Pa s m−3 [1*10−12, 45 ∗ 10−12]Pa−1 m3 [1*10−6, 70 ∗ 10−6]m2

RExtIl (pre-HPD subject) [1*108, 115 ∗ 108]Pa s m−3 [1*10−11, 45 ∗ 10−11]Pa−1 m3 [1*10−6, 70 ∗ 10−6]m2

RUtA (pre-HPD subject) [1*108, 115 ∗ 108]Pa s m−3 [1*10−12, 45 ∗ 10−12]Pa−1 m3 [1*10−6, 70 ∗ 10−6]m2

Table 3: Chosen bounds for the prior distributions of the model parameters used for the two maternal pelvic arterial
experiments: In this table, we present the parameter bounds for the total arterial resistance (R), total arterial compliance
(C) and equilibrium cross-sectional area (A). The orders of magnitude of the total arterial resistances and compliances
are chosen based on the results from30 and the ranges based on our experience with simulations, the ranges of the
equilibrium cross-sectional areas are chosen based on the literature. The abbreviation LExtIl correspond to the Left
External Iliac, RExtIl correspond to the Right External Iliac, LUtA correspond to the Left Uterine and RUtA to the
Right Uterine arteries.
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Vessel Name
Param Rtarget Ctarget Rpredicted Cpredicted Error

dAo(synthetic) 1.667e+08 Pa s m−3 9.002e-09Pa−1 m3 1.671e+08 Pa s m−3 8.977e-09 Pa−1 m3 -1.09 %
LCC (synthetic) 2.102e+09 Pa s m−3 2.538e-10Pa−1 m3 2.079e+09Pa s m−3 2.541e-10Pa−1 m3 0.24 %
dAo (MRI data) - - 1.150e+08 Pa s m−3 12.887e-09Pa−1 m3

LCC (MRI data) - - 1.452 e+09Pa s m−3 1.877 e-10Pa−1 m3 -
Table 4: Windkessel parameter identification for the Aorta geometry: This table reports the total arterial resistance
(R) and compliance (C) discovered by the algorithm for both aorta experiment using synthetic and MRI data.The
abbreviation dAo correspond to the Descending Aorta and LCC to the Left Common Carotid arteries.
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Vessel Name
Subject Normal subject pre-HPD subject

R× 108Pa s m−3 C × 10−11Pa−1 m3 A× 10−6m2 R× 108Pa s m−3 C × 10−11Pa−1 m3 A× 10−6m2

LExtIl 4.64 ±0.02 97.20 ±11.95 68.11 ±1.18 16.32 ±3.39 35.79 ±5.50 59.98 ±7.15
LUtA 14.23 ±3.71 0.30 ±0.17 22.68±3.58 112.52 ±14.72 3.2 ±0.44 12.18 ±1.41
RExtIl 4.70 ±0.19 96.26 ±6.14 69.21 ±0.70 7.38 ±0.66 42.16 ±2.71 68.87 ±1.13
RUtA 62.22 ±2.38 2.76 ±0.347 5.60 ±0.32 43.76 ±10.20 3.67 ±0.53 16.97 ±2.70

Table 5: Discovered resistance, compliance, and cross-sectional area values for both Normal and pre-HPD subjects:
The estimated total arterial resistances (R), total arterial compliances (C) and equilibrium cross-sectional areas (A)
from the Bayesian inference algorithm performed on the maternal pelvic arteries using mean velocities from 4D flow
MRI are reported as mean ± standard deviation. The abbreviation LExtIl correspond to the Left External Iliac, RExtIl
correspond to the Right External Iliac, LUtA correspond to the Left Uterine and RUtA to the Right Uterine arteries.
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Vessel name
Index PI RI

Prediction MRI Doppler Prediction MRI Doppler
LUtA (Normal) 0.74 ±0.04 0.56 0.81 0.53 ±0.02 0.40 0.52
RUtA (Normal) 1.12 ±0.05 0.99 1.25 0.65 ±0.02 0.60 0.65
LUtA (pre-HPD) 1.63 ±0.09 1.85 2.88 0.76 ±0.02 0.79 0.94
RUtA (pre-HPD) 1.46 ±0.04 1.75 1.37 0.71 ±0.01 0.77 0.72

Table 6: Comparison of the Pulsatility and Resistivity indices in Normal and pre-HPD pregnancies acquired from three
different sources: In this table, we present the Pulsatility and Resistivity indices (PI, RI) of the left and right uterine
arteries (LUtA, RUtA) acquired from MRI, model prediction, and Doppler ultrasound for both subjects. For the model
predictions we present the mean values together with the standard deviations computed from 200 sampled velocity
wave-forms from the posterior distribution. The abbreviation LExtIl correspond to the Left External Iliac, RExtIl
correspond to the Right External Iliac, LUtA correspond to the Left Uterine and RUtA to the Right Uterine arteries.
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