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Abstract 

Spatial analyses can reveal important interactions between and among cells and their 
microenvironment. However, most existing staining methods are limited to a handful of 
markers per slice, thereby limiting the number of interactions that can be studied. This 
limitation is frequently overcome by registering multiple images to create a single 
composite image containing many markers. While there are several existing image 
registration methods for whole slide images (WSI), most have specific use cases. Here, we 
present the Virtual Alignment of pathoLogy Image Series (VALIS), a fully automated 
pipeline that opens, registers (rigid and/or non-rigid), and saves aligned slides in the 
ome.tiff format. VALIS has been tested with 273 immunohistochemistry (IHC) samples and 
340 immunofluorescence (IF) samples, each of which contained between 2-69 images per 
sample. The registered WSI tend to have low error and are completed within a matter of 
minutes. In addition to registering slides, VALIS can also using the registration parameters 
to warp point data, such as cell centroids previously determined via cell segmentation and 
phenotyping. VALIS is written in Python and requires only few lines of code for execution. 
VALIS therefore provides a free, opensource, flexible, and simple pipeline for rigid and non-
rigid registration of IF and/or IHC that can facilitate spatial analyses of WSI from novel and 
existing datasets. 

Introduction 
 

 

Figure 1. Example of a challenging dataset successfully registered by VALIS. VALIS handles potential 

batch effects from IHC images that would otherwise make image registration challenging. Such batch 

effects include large displacements (rotation, translation, etc.); deformations (stretches, tears); and 

spatial variation in color and luminosity due to differing spatial distributions of markers and/or different 

staining protocols. Large file sizes also present challenges to registering whole slide images (WSI). A) Six 

serial slices of a colorectal adenoma were stained by three different individuals, with each marker stained 
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with Fast Red or DAB. Note the substantial spatial variation in color and brightness, due to the 

heterogeneous spatial distribution of different cell types (each type stained with a different marker), and 

different staining protocols where some images are heavily stained and others lightly stained. The 

rightmost image shows the result of stacking the un-registered images, where each color shows the 

normalized inverted luminosity of each image. Each slide is also too large to open in memory, with each 

being ~32GB when uncompressed. B) Left: Alignment of the same slides using VALIS. Right: Image stack 

after image registration using VALIS. The transformations found by VALIS can subsequently be used 

warp each of the 32Gb slides, which can be saved as ome.tiff images for downstream analyses. 

 

Cellular interactions and the structure of the tumor microenvironment can affect tumor 
growth dynamics and response to treatment (Gallaher, Enriquez-Navas, Luddy, Gatenby, & 
Anderson, 2018; Heindl et al., 2018; Lewis et al., 2021). Interactions and the effect of tissue 
structure can be elucidated via spatial analyses of tumor biopsies, although there are many 
challenges. Among these is the limited number of markers that can be detected on a single 
tissue section. This can be overcome by repeated cycles of staining on the same tissue 
section, or by staining serial slices for different subsets of markers. However, the captured 
images will likely not align spatially, due to variance in tissue placement on the slide, tissue 
stretching/tearing/folding, and changes in physical structure from one slice to the next.  
Without accurate alignment, spatial analyses remain limited to the number of markers that 
can be detected on a single section. While there are methods that can stain for a large 
number of markers on a single slide, they are often highly expensive, destructive, and 
require considerable technical expertise (Angelo et al., 2014; Gerdes et al., 2013; Giesen et 
al., 2014; Goltsev et al., 2018; Hennig, Adams, & Hansen, 2009). Furthermore, much 
archival tissue is available that has limited stains per slice. 

Image registration is the process of aligning one image to another such that they share the 
same coordinate system, and therefore offers the potential to align histology images. 
However, a pre-requisite for successful image registration is that the images look similar, 
but this requirement is rarely satisfied in histological images. The reasons for this may 
include: spatial variation in color intensity due to markers binding in different regions of 
the slide; lack of a common marker across images (in the case of IHC); inter-user or inter-
platform variation in staining intensity; tissue deformations (e.g. stretching, folds, tears); 
unknown order of serial sections; large numbers of images; and massive file sizes, often 
several GB when uncompressed (Figure 1). 

There are several existing methods to register histological images, many of which have 
been reviewed in (Jiří Borovec, Muñoz-Barrutia, & Kybic, 2018; Paknezhad et al., 2020) . 
Some are limited to hematoxylin and eosin (H&E) staining  (Arganda-Carreras et al., 2006; 
du Bois d'Aische et al., 2005; Kiemen et al., 2020; Wang, Ka, & Chen, 2014), while others are 
designed to work with slides stained for different markers (J. Borovec, Kybic, Bušta, Ortiz-
de-Solórzano, & Muñoz-Barrutia, 2013; Deniz, Toomey, Conway, & Bueno, 2015; Kybic & 
Borovec, 2014; Kybic, Dolejší, & Borovec, 2015; Obando et al., 2017; Song, Treanor, Bulpitt, 
& Magee, 2013). Some are designed to align only 2 slides (Levy, Jackson, Haudenschild, 
Christensen, & Vaickus, 2020), while others can align multiple slides (Kiemen et al., 2020; 
Paknezhad et al., 2020). There also exist several methods to register immunofluorescence 
(IF) images, which can be an easier task as each image usually contains a DAPI channel that 
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stains for nuclei (Muhlich, Chen, Russell, & Sorger, 2021). Most seem to require the user be 
able open the slides, apply the transformation, and then save the registered image. All these 
methods also focus exclusively on IHC or IF images. Thus, while each method has many 
benefits, they also have limitations that can reduce their use cases. 

Here, we present the Virtual Alignment of pathoLogy Image Series (VALIS), which aims to 
combine the best of current approaches while remaining easy to use. VALIS provides the 
following 7 advantages: 1) The tool is flexible and unique, as it is able to align both 
immunohistochemistry (IHC) and immunofluorescence (IF) images, whole slide images 
(WSIs) or regions of interest (ROIs), H&E images or collections of different markers, serial 
slices and/or cyclically stained images (tested using 11-20 rounds of staining); 2) It can 
register any number of images, find rigid and/or non-rigid transformations, and apply 
them to slides saved using a wide variety of slide formats (via Bio-Formats or OpenSlide), 
and then save the registered slides in the ome.tiff format (Gohlke, 2021; Goldberg et al., 
2005; Goode, Gilbert, Harkes, Jukic, & Satyanarayanan, 2013; Linkert et al., 2010; Martinez 
& Cupitt, 2005); 3) VALIS is designed to be extendable, giving the user the ability to provide 
additional rigid and/or non-rigid registration methods; 4) The user may also provide 
transformations found using other methods but still use VALIS to warp and save the slides; 
5) The transformations found by (or provided to) VALIS can be applied not only to the 
original slide, but also processed versions of the slide (e.g. ones that have undergone stain 
segmentation) which could be merged; 6) The transformations found by VALIS can also be 
used to warp point data, such as cell positions (Figure 5); 7) VALIS is designed to be easy to 
use, requiring only a few lines of code in Python, or a few clicks of a mouse in a user-
friendly graphical user interface (GUI). Thus, VALIS provides a simple and fully automated 
registration pipeline to open, register, and save a series of pathological images.  
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Results 

 

Figure 2 Example of images used to test VALIS. A) Squamous cell carcinoma of the head and neck (HNSCC)

This sample set included 4 marker panels, each of which included between 13-20 markers stained using IHC

A single slice underwent the corresponding number of stain wash cycles, but all 69 images collected from the

4 panels have also been co-registered. B) Human colorectal carcinoma or adenoma IHC serial slices, each with

1-2 markers per slide, and 6 slides per sample. C) DCIS and invasive breast cancer serial slices, 1-2 markers

per slide (stained using IHC), 7 slides per sample. D)  Human colorectal carcinomas and adenomas, stained

using RNAscope, 1-2 markers per slide, 5 slides per sample. E) Human colorectal carcinomas and adenomas

stained using cyclic immunofluorescence (CyCIF), 11-12 images per sample. F) Human colorectal carcinomas

and adenomas stained using immunofluorescence, 2 slides per sample. G) In addition to registering WSI

VALIS can also be used to register images with cellular resolution, such as cores from an immunofluorescent

tumor microarray (TMA) taken from human ovarian cancers (2 slides per sample), or H) 40x regions of

interest from HNSCC samples, taken from images in the same dataset in panel A. 

 

 

Method Overview 
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Figure 3 Overview of the VALIS alignment pipeline. VALIS uses Bio-Formats to read the slides and convert

them to images for use in the pipeline. Once converted from slides, images are processed and normalized to

look as similar as possible.  Features are detected in each image and then matched between all possible

pairwise combinations. Feature distances are used to construct a distance matrix, which is then clustered and

sorted, ordering the images such that each image should be adjacent to its most similar image. Once ordered

the images are registered serially, first using rigid transformations, and then (optionally) with non-rigid

transformations. The results of the registration can be viewed by overlaying the processed images. Once

registration is complete, the slides can be warped and saved as ome.tiff images. 

 

Reading the slides 

Whole slide images (WSI) can be challenging to work with because they are saved using a

wide variety of formats. They are often very large in size (greater than 70,000 pixels in

width and height) and have multiple channels. The resulting uncompressed file is

frequently on the order of 20GB in size, which precludes opening the entire image directly

To address the issues of working with WSI, VALIS uses Bio-Formats and OpenSlide (Goode

et al., 2013; Linkert et al., 2010) to read each slide in small tiles, covert those tiles to libvips

images, and then combine the tiles to rebuild the entire image as single whole-slide libvips

image (Linkert et al., 2010; Martinez & Cupitt, 2005). As libvips uses “lazy evaluation”, the

WSI can then be warped without having to load it into memory, making it ideal for large

images. Using this approach, VALIS is thus able to read and warp any slide that Bio-Formats

can open.  

Preprocessing 

VALIS uses tissue features to find the transformation parameters, and therefore a lower

resolution version of the image is used for feature detection and finding the displacement

fields used in non-rigid registration. The lower resolution image is usually acquired by

accessing an upper level of an image pyramid. However, if such a pyramid is unavailable

VALIS can use libvips to rescale the WSI to a smaller size. The images used for feature

detection are usually between 500-2000 pixels in width and height. Prior to feature

detection, all processed images are re-sized such that all have the same largest dimension

(i.e. width or height). 

For image registration to be successful, images need to look as similar as possible. In the

case of IF, the DAPI channel is often the best option to use for registration. However, unless

one is only working with H&E, a preprocessing method to make IHC images look similar

must be used. The default method in VALIS is to first to re-color each image to have the

same hue and colorfulness. This is accomplished by converting the RGB image to the polar
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CAM16-UCS colorspace (C. Li et al., 2017), setting C=100 and H=0 (other values can be 
used), and then converting back to RGB. The transformed RGB image is then converted to 
greyscale and inverted, such that the background is black, and the tissue bright. After all 
images have been processed (IHC and/or IF), they are then normalized such that they have 
similar distributions of pixel values. The normalization method is inspired by (Khan, 
Rajpoot, Treanor, & Magee, 2014), where first the 5th percentile, average, and 95th 
percentile of all pixel values is determined. These target values are then used as knots in 
cubic interpolation, and then the pixel values of each image are fit to the target values. 

 

Rigid Registration 

VALIS provides a novel pipeline to rigidly align a large number of unsorted images, using 
feature detecting and matching. A major benefit of using feature-based registration is that it 
can cope with large displacements, and thus does not require the images to already be 
somewhat aligned. The default feature detector and descriptor are BRISK and VGG, 
respectively (L. Li, Huang, Gu, & Tian, 2003; Simonyan, Vedaldi, & Zisserman, 2014). 
Features can then be matched using brute force, with outliers removed using the RANSAC 
method (Fischler & Bolles, 1981). The remaining “good” matches can then be used to find 
the rigid transformation parameters.  

Ordering images: If the order of images is unknown, the following steps are used to 
determine the order in which images will be sequentially aligned. First, feature matching 
and filtering is performed for each pair of images. Next, the feature matches are used to 
construct a similarity matrix S, where the default similarity metric is simply the number of 
good matches between each pair of images. S is then standardized such the maximum 
similarity is 1, creating the matrix ��, and then converted to the distance matrix, D=1 � ��. 
Hierarchical clustering is then performed on �, generating a dendrogram �. The order of 
images can then be inferred by optimally ordering the leaves of �, such that most similar 
images are adjacent to one another in the series (Bar-Joseph, Gifford, & Jaakkola, 2001). 
This step can be skipped if the order of images is known. 

Warping images: Once the order of images has been determined, VALIS finds the 
transformation matrices that will rigidly warp each image to the previous image in the 
series. That is, each image ��  will have an associated transformation matrix ��  that rigidly 
aligns it to image ����, where 	 is the position of the image in the series. While RANSAC does 
an excellent job of removing poor matches, those mismatched features are sometimes 
considered inliers and thus potentially used to estimate transformation matrices. Including 
the coordinates of such mismatched features will produce poor estimates of the 
transformation matrices that will align feature coordinates. To avoid this, only features that 
are found in the image and its neighbors are used. That is, the features used to align image 
��  and ���� are the features that  ��  also has in common with ����, and thus consequently that 
���� also has in common with ����. The assumption here is that features which are found in 
��  and its neighborhood are shared because they are strong tissue landmarks, and thus 
ideal for alignment. This approach may be thought of as using a sliding window to filter out 
poor matches by using only features shared within an image’s neighborhood/community. 
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The coordinates of the filtered matches are then used to find the transformation matrix 
(��) that rigidly aligns ��  to ����. 

Final optional alignment optimization: After warping all images using their respective rigid 
transformation matrices, the series of images has been registered. However, one can 
optionally use an intensity-based method to improve the alignment between ��  and ����. 
The default in VALIS is to maximize Mattes mutual information between the images, while 
also minimizing the distance between matched features (Lowekamp, Chen, Ibanez, & 
Blezek, 2013). Once optimization is complete, ��  will be updated to be the matrix found in 
this optional step. This step is optional because the improvement (if any) may be marginal 
(distance between features improving by fractions of a pixel), and it is time consuming.  

 

Non-Rigid Registration 

Non-rigid registration involves finding 2D displacement fields, � and �,  that warp a 
“moving” image to align with a “fixed” image by optimizing a metric. As the displacement 
fields are non-uniform, they can warp the image such that local features align better than 
they would with non-rigid transformations (Crum, Hartkens, & Hill, 2004). However, these 
methods require that the images provided are already somewhat aligned. Therefore, once 
VALIS has rigidly registered the images, they can be passed on to one of these non-rigid 
methods. VALIS can conduct this non-rigid registration using one of three methods:  Deep 
Flow, SimpleElastix, or Groupwise SimpleElastix (Klein, Staring, Murphy, Viergever, & 
Pluim, 2010; Marstal, Berendsen, Staring, & Klein, 2016; Shamonin et al., 2013; 
Weinzaepfel, Revaud, Harchaoui, & Schmid, 2013). In the case of the first two methods, 
images are aligned towards the image at the center of the series. For example, given N 
images, the center image is ���

�
�. Therefore, ���

�
��� is aligned to ���

�
�,  then  ���

�
��� is aligned 

to the non-rigid warped version of ���
�
���, and so on. Each image’s displacement fields, ��  

and �� , are built through composition. For the third method (Groupwise SimpleElastix), this 
process of aligning pairs of images and composing displacement fields is not necessary, as 
it uses a 3D free-form B-spline deformation model to simultaneously register all the 
images. 

Warping and Saving 

Once the transformation parameters �� , �� , and ��  have been found, they can be scaled and 
used to warp the full resolution image, which is accomplished using libvips. The warped full 
resolution image can then be saved as an ome.tiff image, with the ome-xml metadata being 
generated by tifffile and saving done using libvips (Gohlke, 2021; Goldberg et al., 2005; 
Linkert et al., 2010). Once saved as an ome.tiff, the registered images can be opened and 
analyzed using open-source software such as QuPath (Bankhead et al., 2017) or 
commercially available software, such as Indica Labs HALO® (Albuquerque, NM, USA) 
image analysis software. As the ome.tiff slides can be opened using libvips or Bio-Formats, 
one can also use the aligned slide in a more tailored analysis using custom code. 

 Registration Validation 
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 Figure 4 Results of registering images from the datasets shown in Figure 2, which were captured from a

variety of tissues, protocols, imaging modalities, and resolutions. A) Boxplots showing the distance (μm)

between matched features in the full resolution slides, before registration (yellow), after rigid registration

(red), and then non-rigid registration (blue). B) Median amount of time (minutes) taken to complete

registration, as a function of processed image’s size (by largest dimension, on the x-axis) and the number of

images being registered. These timings include opening/converting slides, pre-processing, and intensity

normalization. C) Empirical cumulative distribution plots of registration error for each image dataset.  

 

To test the robustness of VALIS, we performed image registration on 613 samples, with

images capture under a wide variety of conditions (Figures 2). Each sample had between 2

to 69 images; 273 were stained using immunohistochemistry (IHC), and 340 using

immunofluorescence (IF); 333 were regions of interest (ROI) or cores from tumor
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microarrays (TMA), while 280 were whole slide images (WSI); the original image 
dimensions ranged from 2656 x 2656, to 104568 x 234042 pixels in width and height; 162 
underwent stain/wash cycles,  451 were serial slices; 49 came from breast tumors, 109 
from colorectal tumors, 156 from squamous cell carcinoma of the head and neck (HNSCC), 
and 299 from ovarian tumors.  

For each image, registration error was calculated as the median distance (μm) between the 
features in the image and the corresponding matched features in the previous image (see 
Methods section for more details) (Figure 4). The registration error of the sample was then 
calculated as the average of the images’ registration errors, weighted by the number of 
matched features per pair of images. The registrations provided by VALIS substantially 
improved the alignments between images, particularly in the case of serial IHC (Figure 4). 

Applications 
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Figure 5 Potential applications of VALIS. A) Merging registered CyCIF slides, in this case creating a 32-

channel image. B) Merging registered and processed IHC slides. Here, VALIS found the transformation 

parameters using the original images, but applied the transformations to 18 stain segmented versions slides 

(see Table S3 for list of markers). C) Registering an H&E slide with the DAPI channel of an IF slide, which may 

useful in cases where annotations H&E images would like to be used with IF images. Here, to visualize the 

alignment, the registered H&E image is overlaid on the DAPI channel. D) Applying transformations to cell 

segmentation data. 
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Alignment error was low for samples that underwent cyclic immunofluorescence (CyCIF), 
with an average distance between matched features (in the full resolution slide) being 2-6 
μm apart. In these cases, the quality of the image registration was high enough that cell 
segmentation and phenotyping could be performed, as shown in Figure 5A. Alternatively, 
one could also prepare the data for a spatial analysis by having VALIS warp the cell 
positions from an existing dataset (Figure 5D). Figure 5C shows that VALIS can be used co-
register H&E and IF images, which could be used to find ROI in the IF images, based on 
annotated H&E images. 

Registration performed on CyCIF images was highly accurate, with an alignment error less 
than 10μm, which is about 1 cell diameter (Figure 4 and 5A). In these cases, the registration 
is accurate enough that cell segmentation and phenotyping could be performed. An 
example of such an analysis can be found in Figure 6A-C. HALO was used for cell 
segmentation and marker thresholding using the 32-channel image created by merging 11 
rounds of registered CyCIF images (Figure 5A and 6A). For a full description of the 
channels, refer to Supplementary Table S1. A spatial analysis of the distribution of immune 
cells within the carcinoma region was conducted using 13 of the 32 markers, which were 
used to classify cells into one of nine cell types: helper T cells, cytotoxic T cells, regulatory T 
cells (Treg), natural killer (NK) T cells, active cytotoxic T cells (active CTL), memory T cells, 
M1 macrophages, M2 macrophages, B-cells, and tumor cells (Figure 6B, Table S2). 

 

 

Figure 6 Example analyses using registered CyCIF WSI. A) A 32-channel image was created by registering 

and merging several rounds of CyCIF. The HALO platform was then used to perform cell segmentation and 

marker thresholding. B) Within the carcinoma region, a spatial analysis was conducted to determine the 

spatial relationship between 10 cell types, defined by different combinations of 13 markers. The pattern was 

determined using the DCLF test, where cell types could be found closer than expected (clustered), randomly 

distributed, or further apart than expected (dispersed). C) The observed patterns were used to construct a 
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weighted network (1=clustered, 0=random, -1=dispersed), which subsequently underwent community 

detection. These results indicate the carcinoma (Epithelial) is largely isolated from the immune system. 

D) A composite IHC image of HNSCC using 18 markers of the tumor microenvironment. Alignment of IHC may 

not be cell-cell perfect, but using ecological methods, a spatial analysis can be conducted using quadrat 

counts. Each aligned slide underwent stain segmentation, the results of which were merged into a single 

composite image that was divided into regular quadrats. E) The number of positive pixels of each marker was 

calculated for each quadrat. F) A species distribution model was fit to the data to determine the role of each 

marker in creating a pro-tumor environment. Here, CA12 and EGFR were found to play the largest roles in 

creating a tumor supporting habitat.  

 

 

A spatial analysis of the immune composition was conducted by first determining the 
spatial pattern observed between each pair of cell types (e.g. clustered, complete spatial 
randomness (CSR), or dispersion). Significance of departure from CSR was determined 
using the Diggle-Cressie-Loosmore-Ford (DCLF) test on the cross-type L-function for 
homogeneous point patterns (i.e. Besag’s transformation of Ripley’s K function) (Besag, 
1977; Diggle, 1986; B. D. Ripley, 1977; B.D Ripley, 1981). These tests were conducted using 
the spatstat package for R (Baddeley, Rubak, & Turner, 2015; R Core Team, 2019). 
Clustering was considered significant when  � 0.05 for the alternative hypothesis of 
“greater”, i.e. there were more cells within a radius r than expected under CSR. The spatial 
pattern was classified as dispersion when  � 0.05 for alternative hypothesis of “lesser”. 
These patterns were then used to construct a weighted adjacency matrix, where 
1=clustered, 0=CSR, and -1=dispersed (Figure 6C). The matrix was then divided into 
communities using the Leiden community detection algorithm (Traag, Waltman, & van Eck, 
2019). This analysis revealed that the tumor (in community 1) is largely isolated from 
immune system (community 2). 

Spatial analyses can also be conducted when alignments are not close enough for cell 
segmentation. One approach is to first divide the image into quadrats, and then count cells 
and/or quantify the markers in each quadrat. One can then can select from a wide variety 
of methods to conduct a spatial analysis of the quadrat counts. For example, one can create 
spatial association networks, species distribution models, and test for complete spatial 
randomness (Baddeley et al., 2015; Hijmans, Phillips, Leathwick, & Elith, 2017; Popovic, 
Warton, Thomson, Hui, & Moles, 2019). 

Examples of spatial analyses of histological data with ecological methods based on quadrat 
counts or multiple subregions can be found in (C. Gatenbee et al., 2021; Chandler D. 
Gatenbee et al., 2019; C. D. Gatenbee, Minor, Slebos, Chung, & Anderson, 2020; Hunter, 
Moncada, Weiss, Yanai, & White, 2021; Maley, Koelble, Natrajan, Aktipis, & Yuan, 2015). 
Here, we provide a brief example using a sample that went through 18 stain/wash cycles, 
each time being stained for one of 18 tumor microenvironment (TME) markers (Figure 5B, 
6D-F) (EGFR, H&E, FAP, α-SMA , TGFBR2, p16, FGFR1, TGFBR3, PCK, VGFR2, MTAP, CD34, 
CA9, p53, SMAD4, ITGA5, CA12, CD31). Each image underwent stain segmentation, the 
results of which were merged to create a single 18-channel composite slide (Figures 5B and 
6D). This slide was then divided into 100μm x 100μm quadrats, and the number of positive 
pixels per quadrat for each marker was recorded (Figure 6A&B). A species distribution 
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model was then fit to the quadrat counts, which allowed us to quantify the importance of 
each marker in creating a hospitable tumor microenvironment (Figure 6C). The results 
from this analysis indicate that EGFR and CA12 play the largest role in creating a pro-tumor 
microenvironment. 

 

Discussion 

 

Here, we have provided a robust method to register IHC and/or IF WSI. Using this method, 
we have been able to increase the number of markers that can be included in spatial 
analyses. In the case of IHC, the maximum increase was from 1 marker to 69, and from 4 
markers to 32 in CyCIF. Using the registered slides, we then provided examples of spatial 
analyses using the results yielded by VALIS, both when registration is close to cell-cell 
perfect, and when it is not.  

VALIS can be used with existing datasets and protocols, as it works under a wide variety 
image resolutions and staining modalities, does not require H&E or DAPI stains, is non-
destructive, does not require knowledge about the order slices were cut, and can be applied 
to both images and cell segmentation data. VALIS can therefore be used on tumor samples 
stored in archives that could not previously be analyzed by existing techniques. In addition 
to being applied to existing datasets, VALIS can also be used on datasets collected with 
spatial analysis in mind, such as CyCIF images. VALIS therefore provides a simple, fast, free, 
and opensource end-to-end solution to open, register, and save a wide variety of histology 
images that can subsequently undergo spatial analysis using a large number of cellular 
markers. 

Data availability 

Images will be made available upon publication of the paper for which they were acquired. 

Code availability 

Code will be made available on GitHub following publication. 
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Supplemental 

 

CyCIF Round Non-DAPI Channels 

Round 1 

pHH3 

iNOS 

CD45 

Round 2 

CD163 

CK 

CD8 

Round 3 CD44 
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HLA-DR 

PD-1 

Round 4 

Ecad 

CD3 

CD20 

Round 5 

CD4 

γ-H2AX 

PD-L1 

Round 6 

CD45RO 

FoxP3 

α-SMA 

Round 7 

p53 

CD68 

CD31 

Round 8 

CD11b 

IDO1 

Vista 

Round 9 

β-catenin 

HLAABC 

Myelo 

Round 10 

CD45RB 

Ki67 

CD57 

Round 11 

CD163 

CK 

Vimentin 
Table S1 Markers per registered CyCIF round. In addition to the markers lists, each round also had DAPI 
channel, which was used to register the rounds. 

 

Phenotype Marker(s) 

helper T cells CD3, CD4 

cytotoxic T cells CD3, CD8 

regulatory T cells (Treg) CD3, FOXP3 

natural killer (NK) T cells CD3, DD57 

active cytotoxic T cells (active CTL) CD3, CD8, HLA-DR 

memory T cells CD3, CD8, CD45RO 

M1 macrophages CD68, iNOS 

M2 macrophages   CD68, CD163 

B-cells CD20 

tumor cells CK and/or E-cadherin 
Table S2 Cell phenotypes, and the makers used to define those phenotypes, used in the example spatial 
analysis using registered CyCIF rounds (Figures 5B, 6B-C). 
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Marker 

MTAP    

CD34 

ITGA5 

p53 

p16 

FAP 

EGFR 

TGFBR2 

TGFBR3 

SMAD4 

FGFR1 

PanCK  

CA9 

aSMA 

VGFR2     

CD31      

CA12 

Table S3 Markers used in example spatial analysis of registered IHC images (Figures 5B, 6D-F). 
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