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Abstract 84 

Cotton is one of the most economically important crops in the world. The fertility of 85 

male reproductive organs is a key determinant of cotton yield. The anther dehiscence 86 

or indehiscence directly determine the probability of fertilization in cotton. Thus, the 87 

rapid and accurate identification of cotton anther dehiscence status is important for 88 

judging anther growth status and promoting genetic breeding research. The 89 

development of computer vision technology and the advent of big data have prompted 90 

the application of deep learning techniques to agricultural phenotype research. 91 

Therefore, two deep learning models (Faster R-CNN and YOLOv5) were proposed to 92 

detect the number and dehiscence status of anthers. The single-stage model based on 93 

YOLOv5 has higher recognition efficiency and the ability to deploy to the mobile end. 94 

Breeding researchers can apply this model to terminals to achieve a more intuitive 95 

understanding of cotton anther dehiscence status. Moreover, three improvement 96 

strategies of Faster R-CNN model were proposed, the improved model has higher 97 

detection accuracy than YOLOv5 model. In addition, the percentage of dehiscent 98 

anther of randomly selected 30 cotton varieties were observed from cotton population 99 

under normal temperature and high temperature (HT) conditions through the 100 

integrated Faster R-CNN model and manual observation. The result showed HT 101 

varying decreased the percentage of dehiscent anther in different cotton lines, 102 

consistent with the manual method. Thus, this system can help us to rapid and 103 

accurate identification of HT-tolerant cotton. 104 

 105 

Introduction 106 

Cotton is an economically important crop, and its reproductive development is 107 

susceptible to a variety of adverse stresses that affect its yield and quality. The 108 

reproductive organs of cotton include stamens and pistils, and stamens are more 109 

sensitive to heat stress than female organs (Peet et al., 1998). In many summer crops, 110 

reproductive organ abortion caused by high temperatures is manifested by normal 111 

development of the female reproductive system and abnormal development of the 112 

male reproductive system, failure to produce functional pollen or failure of the anthers 113 
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to achieve dehiscence properly to release pollen. Anther development is a complex 114 

process, going from sporogenic cells to anther dehiscence, and has been divided into 115 

14 periods by studying a variety of male sterile mutants (Sanders et al., 1999). Anther 116 

dehiscence, the final step in anther development, includes three processes: secondary 117 

thickening of the inner wall of the anther chamber, degradation of the septum cells, 118 

and dehiscence of the cleft which ultimately allow the release of pollen (Kim et al., 119 

2010). Therefore, anther dehiscence is directly related to the probability of 120 

fertilization in cotton. If we can obtain phenotypic data on anther dehiscence quickly 121 

and accurately and conduct genome-wide association analysis, we can easily obtain 122 

the functional genes related to the anther dehiscence. It is also important to analysis 123 

the molecular mechanism of cotton male reproductive organ respond to stresses. 124 

In the past, the acquisition of cotton dehiscent or indehiscent anther number data 125 

from the pictures relied mainly on visual observation and manual counting, it is 126 

difficult to guarantee the accuracy of visual readings because anther growth is 127 

intermingled, resulting in unclear definition of individual anthers, and the background 128 

and foreground of anthers are easily confused. Moreover, a larger amount of anther 129 

data is needed to judge the anther growth and dehiscence status of individual plants in 130 

population under different conditions. However, it is obviously difficult to achieve 131 

this accurately and quickly with manual methods. 132 

With the development of computer vision technology and plant phenome platforms, 133 

machine learning-based image processing techniques are widely used. However, in 134 

the training process of machine learning, there is a need to manually extract image 135 

features and feed the obtained classification features into the classifier for learning 136 

after a weighting process. Due to the poor generalization ability of classifiers and the 137 

need for large amounts of supporting data, the shortcomings of machine learning 138 

methods have gradually been exposed in the process of agricultural intelligence 139 

development. 140 

In 2012, the concept of deep learning was proposed, and deep learning techniques 141 

have evolved rapidly in the past few years. Image recognition techniques based on 142 

deep learning and convolutional neural networks are gradually replacing machine 143 
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learning-based image processing techniques in a wide range of fields. Through 144 

classification and extraction of image features and end-to-end training of deep 145 

learning models, computers can accurately detect specific content in images. Through 146 

the building of different datasets and the replacement of deep learning network 147 

architectures, researchers can obtain network models that are more suitable for 148 

research purposes than previous approaches. 149 

In this study, using YOLOv5 (Redmon et al., 2016; Redmon and Farhadi, 2017; 150 

Redmon and Farhadi, 2018; Pang et al., 2020; Xu et al., 2020) and Faster R-CNN 151 

(Ren et al., 2017) models, combined with a variety of data augmentation methods, a 152 

cotton anther recognition model based on deep learning was obtained. This model can 153 

quickly batch collected cotton anther images for recognition, detect the dehiscent and 154 

indehiscent anthers, and obtain their phenotypic data. 155 

Before the advent of deep learning, the usual machine target recognition process 156 

required human preprocessing of images before target detection and included 157 

cropping, augmentation, and segmentation. Various features of the image were 158 

extracted and handed over to a support vector machine (SVM) classifier (Piccialli and 159 

Sciandrone, 2018) for learning and detection. However, manual preprocessing is 160 

time-consuming and labor-intensive, and after the features are extracted, feature 161 

screening and evaluation must be performed according to the actual situation, and the 162 

weights of various features in the learning model must be artificially adjusted to 163 

achieve the best recognition effect. Against the background of the current state of 164 

machine intelligence, the disadvantages of traditional machine learning are obvious; 165 

the preliminary work requires considerable manual labour, the recognition accuracy is 166 

not ideal, and the technique is difficult to use in actual production. 167 

After 2012, image recognition techniques based on deep learning and convolutional 168 

neural networks gradually replaced machine learning-based image processing 169 

techniques in a wide range of fields. The YOLO series, Faster-RCNN and single shot 170 

multibox detector (SSD) (Liu et al., 2016) are three important deep learning neural 171 

network models. Faster-RCNN mainly crawls preselected boxes and then performs 172 

deep learning classification. The image detection process of Faster-RCNN includes 173 
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crawling region proposal, candidate feature frame extraction, and candidate feature 174 

frame classification. First, the convolution data of whole image is obtained. Then, the 175 

data is automatically fed into a region proposal network (RPN) (Zhu et al., 2021) to 176 

obtain the features of candidate regions. Finally, the features are classified by a 177 

softmax classifier and then adjusting for some special classes using a regressor. 178 

Faster-RCNN is a big improvement over its previous two generations: Fast-RCNN 179 

and RCNN (Girshick et al., 2014) in terms of recognition accuracy and speed. The 180 

CNN family of deep learning models is one of the mainstream models and has 181 

demonstrated powerful functionality in many fields, such as image detection and 182 

semantic segmentation. However, the YOLO model more cleverly uses the idea of 183 

regression by taking the whole image as input, dividing it into several boxed regions, 184 

removing individual boxes with very low relevance by setting specific thresholds, and 185 

finally selecting the highest scoring region with a nonmaximum suppression 186 

algorithm. The model removes the boxes that overlap with it until all alternative boxes 187 

are traversed, yielding the final output. In addition, many scholars are studying 188 

lightweight network structures. For example, MobileNet (Howard et al., 2017) and 189 

SqueezeNet are applied to YOLO networks to further improve their speed of detection 190 

and create the possibility of transplanting YOLO models to portable devices to ensure 191 

the accuracy of recognition as much as possible. 192 

To date, no reports of machine learning-based anther identification systems in 193 

academia, but the application of target detection technology to agriculture using 194 

machine learning has been very extensive (Barre et al., 2017; Fuentes et al., 2017; 195 

Ubbens and Stavness, 2017; Gutierrez et al., 2019) , which gives us great incentive to 196 

build a deep learning-based anther identification system for cotton. In maize, a 197 

parabolic model has been used to mine the diversity of stem-end meristematic tissues 198 

and to find candidate genes that correlate with the transport of phytohormones, cell 199 

division, and cell size by GWAS (Yang et al., 2007). In rice, the ratio of spikes to 200 

leaves, a new trait of rice, has been extracted using a feature pyramid network mask  201 

model that has achieved leaf and spike recognition accuracies of 0.98 and 0.99, 202 

respectively (Yang et al., 2020). Ferentinos KP has designed a convolutional neural 203 
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network model to solve the problem of early plant disease detection. Through the 204 

deep learning method, several model structures have been trained with plant leaf 205 

images and have identified the corresponding plant leaf lesions with 99.53% accuracy. 206 

The model has become a powerful tool for the early diagnosis and early warning of 207 

plant leaf diseases and can be further improved. Therefore, the system can be used in 208 

real time in a real cultivation environment (Ferentinos, 2018). Ubbens JR et al. have 209 

designed an open source deep learning tool called Deep Plant Phenomics for plant 210 

phenotypic deep learning. This tool provides pretrained neural networks for several 211 

common plant phenotypic tasks including leaf counting, image classification and age 212 

regression. Botanists can use the neural networks provided and trained by this 213 

platform to train their plant phenotypes (Ubbens and Stavness, 2017). Nikita Genze et 214 

al. have proposed a convolutional neural network-based seed germination status 215 

recognition system that can automatically identify seed categories (including maize, 216 

rye, and pearl millet) in petri dishes and automatically determine whether the seeds 217 

are germinating. The system achieves an average accuracy of 94% on test data and 218 

can help seed researchers to better determine seed quality and performance (Genze et 219 

al., 2020). Scientists use hyperspectral imaging technology to collect spectral and 220 

image information from maize seeds and combine convolutional neural networks and 221 

support vector machines to model and train spectral data sets and image data sets. 222 

This model can quickly detect the vigor state of seeds and simultaneously predict their 223 

germination status, providing a framework to advance research on seed germination 224 

(Pang et al., 2020). A MobileNetv2-YOLOv3-based model that combines pretraining 225 

methods such as hybrid training and migration learning to improve its generalization 226 

for the early identification of tomato leaf spot disease has been proposed (Liu and 227 

Wang, 2021). Image processing and machine learning techniques have been used to 228 

accurately classify the three stages of plant growth and soil for different germplasms 229 

of two species of red clover and alfalfa. The accuracy on test data was shown to be 230 

more than 90% (Samiei et al., 2020).  231 

In addition to their applications in computer vision, deep convolutional neural 232 

networks can be used in agricultural production, and they have broad application 233 
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prospects in the combination of natural language processing (NLP) and agriculture 234 

(Schmidhuber, 2015). Protein ubiquitylation is an essential posttranslational 235 

modification process that plays a critical role in a wide range of biological functions. 236 

Siraj et al. proposed a method of predicting plant ubiquitin sites by using a hybrid 237 

deep learning model with a deep learning neural network and long-term and 238 

short-term memory. This method uses protein sequences and physical and chemical 239 

properties as the input to the model and approximate ubiquitin sites as its output. In 240 

ten cross-validations, the highest accuracies were shown to be 81% and 82%. This 241 

method improves the current situation of wasted time and person power when using 242 

traditional experimental methods to predict plant ubiquitin sites (Siraj et al., 2021). J 243 

Wekesa et al. propose a multi-feature fusion prediction model based on deep learning 244 

that combines categorical boosting and extra trees into a single meta-learner. The 245 

model is used to predict the function of plant long noncoding RNAs (lncRNAs). 246 

Experiments on Zea mays and Arabidopsis thaliana have yielded 0.9820 and 0.9652 247 

areas under precision/recall curves (AUPRCs), respectively (Wekesa et al., 2020). OA 248 

Montesinos-López have implemented a multi-trait deep learning model with a 249 

feed-forward network topology and a rectified linear unit activation function with a 250 

grid search approach for the selection of hyperparameters. This model covers the 251 

multi-trait prediction of grain yield, days to heading and plant height. The results 252 

indicate that the deep learning method is a practical approach for predicting univariate 253 

and multivariate traits in the context of genomic selection (Montesinos-López et al., 254 

2019). 255 

 256 

  257 
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Results  258 

YOLOv5 model design 259 

YOLOv5 is a typical one-stage detection model, which increases the detection speed 260 

by 50% compared with the previous generation YOLOv4, and its model size is only 261 

1/10 of that of the previous generation model. The adaptive anchor frame calculation 262 

and the use of Focus structure enhance the accuracy of the model for small target 263 

recognition. At the same time, the model has four network models with different 264 

depths, and the best balance between detection accuracy and recognition speed can be 265 

found. It is very common for cotton anthers to block each other in the image, and the 266 

obscured anthers are easily ignored in the final output of the prediction box. YOLOv5 267 

uses the soft-NMS (Bodla et al., 2017) method when screening the prediction box. 268 

Since cotton anthers overlap and obscure each other, the use of the NMS algorithm 269 

results in an inability to accurately identify adjacent anthers, and only the anther 270 

images with the highest confidence are retained. Therefore, we use the soft-NMS 271 

algorithm. The idea of the NMS algorithm is that for a certain category X having N 272 

candidate boxes, the candidate boxes are sorted by their confidence, and the highest 273 

confidence box A is selected. The other candidate boxes Bi (i=1, 2, 3…) are compared 274 

with the highest confidence box A, and an IoU threshold is set. If its IoU is higher 275 

than this threshold, the candidate box B1 is discarded. Then the candidate box B2’s 276 

IoU is compared with that of the highest confidence box A. After several iterations, 277 

only prediction boxes that have an IoU lower than the set IoU value are retained. 278 

Although this method can prevent the same target from being repeatedly selected by 279 

multiple prediction boxes, it cannot prevent overlapping or occluded targets from 280 

being ignored. 281 

The idea of Soft-NMS is that M is the current highest scoring box and Bi is the 282 

pending box. The larger the IoU of Bi and M, the more the score Si of Bi drops, rather 283 

than having the score go directly to zero as in NMS. This method can effectively 284 

retain anther images that overlap and ensure the accuracy of identification results. The 285 

linear weighting formula for Soft-NMS can be expressed as: 286 
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 288 

Faster R-CNN model design 289 

Faster R-CNN is a classical two-stage object detection network. The network 290 

model structure is mainly composed of four parts: feature extraction, region proposal, 291 

classification, roi pooling and its comprehensive performance has been greatly 292 

improved, especially for the detection accuracy of small targets. The cotton anther 293 

belongs to the range of small target detection in the whole image, so we trained the 294 

Faster R-CNN model to identify the anther dehiscence state has a better detection 295 

effect. 296 

Conv layers is a classical CNN network target detection method, mainly includes 297 

three layers of conv, pooling, relu, usually uses to extract the feature maps of the input 298 

image. The extracted feature maps will be called by subsequent region proposal 299 

networks and classification networks. In the convlayers structure, contains 13 conv 300 

layers, 13 relu layers, 4 pooling layers. The Faster R-CNN has a very ingenious detail 301 

in the convlayers, it does augmentation treatment on all convolutional layers, fills a 302 

layer in the outer layer of the input matrix, so that the matrix is larger than it was, and 303 

the images that have been treated in this way are deconvoluted again, and after the 304 

convolution operation, the image is kept consistent with the size of the input image. 305 

The matrix size is unchanged when the image goes through the conv layer and relu 306 

layer, and will change to 1/2 of the original size after going through the pooling layer, 307 

so that when going through the convlayers structure, the size of the input matrix 308 

changes to 1/16 of the original size, so that the resulting feature maps can all 309 

correspond one-to-one with the original graph. 310 

Conventional detection methods usually use a sliding window or the selective 311 

search method to acquire detection frames, whereas Faster R-CNN discards 312 

traditional methods and directly generates detection frames using region proposal 313 

networks, which greatly enhances the detection frame generation speed. The region 314 

proposal network structure is actually divided into two processes, the first process by 315 
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softmax classification anchors, to obtain foreground and background (detection target 316 

is foreground), the second process is used to calculate the bounding box regression 317 

offset for anchors to obtain the exact proposal. Finally, the proposal layer is 318 

responsible for integrating foreground anchors and bounding box regression offset to 319 

obtain proposals, while simultaneously removing proposals too small and beyond the 320 

boundary. The entire Faster R-CNN network arrives to proposal layer, completing 321 

detection targets, the next two structures are mainly image recognition. 322 

For the traditional CNN network, the input image of the model must be fixed size, 323 

and the output of the model must be a fixed vector or matrix. In practical applications, 324 

there are two solutions for images of different sizes: cut the picture to a fixed size or 325 

warp the image to a fixed size. However, these solutions will either cause the loss of 326 

image information, or lead to changes in the shape information of the image. 327 

Therefore, the structure roi pooling is proposed in Faster R-CNN to solve the problem 328 

of different image size. Roi pooling is mainly responsible for collecting feature maps 329 

and proposal boxes, calculating proposal feature maps, and sending it to the 330 

subsequent identification layer. First of all, proposal is mapped to the same scale as 331 

feature maps, and then the vertical and horizontal directions of each proposal are 332 

divided into seven parts, so that the output of different sizes of proposal is 7*7, 333 

realizing fixed-length output. 334 

Classification using the obtained proposal feature maps, the structure calculates 335 

which category each proposal belongs to through full connect layers and softmax, and 336 

outputs the probability vector; at the same time, the position offset of each proposal is 337 

obtained again by bounding box regression, which is used to return a more accurate 338 

target detection box. 339 

  The loss function of the object detection network of Faster R-CNN is shown in 340 

Formula: 341 
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In the above-mentioned formula, i represents anchors index; t represents predict 344 

bounding box; t* represents ground true box corresponding to positive anchor; x, y, w, 345 

h represents center point coordinates of box, width, height. 346 

 347 

Data augmentation 348 

Auto augment 349 

This approach creates a search space for data-enhanced policies in which a policy 350 

contains many sub-policies and randomly selects one sub-policy for each image in a 351 

small batch data set. Each sub strategy consists of two operations, each of which is an 352 

image processing function similar to flatting, rotation, or shearing, and the probability 353 

and magnitude of applying those functions, using a search algorithm directly on the 354 

data set to find the best data augmentation strategy.  355 

Random Resize  356 

Random Resize scales the new image to the same pixel size as the original image 357 

by randomly clipping the original image in the data set according to the random 358 

aspect ratio. 359 

Random Flip 360 

Random Flip is a common way of data augmentation, which generates new data set 361 

samples by randomly flipping the original image of the data set up and down or left 362 

and right. 363 

Mixup 364 

Mixup is a data augmentation method for mixing two samples and label data at 365 

their corresponding ratios and then generating new sample and label data. Suppose x1 366 

is a sample of batch one, y1 is the label corresponding to the sample of batch one; x2 is 367 

the sample of bach two, y2 is the sample corresponding label of bach tow, xmix and ymix 368 

is the newly generated sample and corresponding label, respectively. λ is the mixing 369 

coefficient resulting from the hyperparametric α and β conducted beta distributions. 370 

The principal formula of the mixup method can be expressed as: 371 

21 )1( xxxmix λλ −+=  372 
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21 )1( yyymix λλ −+=  373 

),(~ βαλ Beta       ],0[, +∞∈βα  374 

According to the study, we know that as the hyperparameters α and β increase, the 375 

error and generalization ability of the network training will increase. When the beta 376 

distribution of the mixing coefficient λ is α=β=0, the network recovers to the ERM 377 

(Empirical Risk Minimization) principle to minimize the training data average error; 378 

the beta distribution of the mixing coefficient λ has the best generalization ability and 379 

robustness. This method can make full use of all the pixel information, but at the same 380 

time also introduces some unnecessary pseudo-pixel information. 381 

Cutmix 382 

Cutmix (Yun et al., 2019) is by cut some regions in the sample and randomly fill in 383 

the pixel values of other samples in the data set, and at the same time distribute the 384 

final classification results according to a certain proportion. Compared with mixup, 385 

cutmix can prevent the occurrence of non-pixel information in the training process. 386 

Filling the pixel information of other regions with the missing area of cut can further 387 

enhance the positioning ability of the model. At the same time, this method will not 388 

increase the training and reasoning burden of the model. 389 

GridMask 390 

By generating a mask with the same resolution as the original image, GridMask 391 

multiplies the mask with the original image to get a new image. The pixel value of the 392 

new image in the fixed area is 0, which is essentially a regularization method. 393 

Compared with directly changing the network structure, GridMask only needs to be 394 

augmented when the image is input. 395 

Normalized 396 

We usually use this method after data augmentation, normalizing the pixel value of 397 

the image and scaling the pixel value to [0,1] can prevent the attributes of the large 398 

value interval from excessively dominating the attributes of the decimal value interval, 399 

and at the same time avoid the numerical complexity in the process of calculation. 400 

In this study, the data augmentation process was shown in the Figure 1. 401 
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 402 

Model training  403 

In this study, comparative experiments and control variables were used, YOLOv5 and 404 

Faster-RCNN models were used, and various data demonstration methods such as 405 

mixing and mixed cutting were used to train for sample imbalance, so as to verify the 406 

performance of different models and training methods on the same evaluation index 407 

validation set. Firstly, the self-made data set was segmented and analyzed, and VOC 408 

format was used to store training set, test set and verification set. Secondly, the model 409 

was trained according to whether the data demonstration algorithm was added. Finally, 410 

cosine strategy was used to periodically attenuate the learning rate. The training ends 411 

when the average loss remains stable. In this study, the training process of Faster 412 

R-CNN model was shown in the Figure 2. 413 

The models obtained by different training strategies were tested on the test set and 414 
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the prediction results of multiple models were obtained. The results of the four groups 415 

of comparison experiments indicated that the proposed Faster R-CNN neural network 416 

with data augmentation and FPN structure and Multi-Scale could effectively detect 417 

the dehiscence and indehiscence in cotton anther images. Compared with other 418 

methods, this method has significant advantages in recognition accuracy.  The 419 

recognition effect was shown in the Figure 3. The final result was obtained by the 420 

prediction results ensembles of multiple models. 421 

 422 

Model comparison  423 

Comparison of detection results of Faster R-CNN and YOLOv5 424 

Faster R-CNN and YOLOv5 are used to train the same training set, the test results 425 

are compared on the same test set, and the correlation between the test results and the 426 

accurate value of manual labeling is analyzed. YOLOv5 using Darknet53 as the 427 

backbone network is a typical single-stage model, while Faster R-CNN using Res101 428 

as the backbone network is a standard two-stage model. Obviously, YOLOv5 is more 429 

advantageous in detection speed. A comparison of the two models was shown in 430 
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Figure 4a. Through training and validation, we found that mAP@0.5:0.95 of 431 

YOLOv5 was 0.485, while mAP@0.5:0.95 of Faster R-CNN was 0.478. In 432 

mAP@0.5:0.95, YOLOv5 was 0.007 higher than Faster R-CNN. In terms of the 433 

evaluation index of R2 in the validation set, the Faster R-CNN was 0.8712 in the 434 

category of "open" and 0.8373 in the category of "close", and 0.82 in the category of 435 

"all", which were 0.2523, 0.2619, and 0.3104 higher than YOLOv5, respectively. This 436 

may be due to the interference of location information. Although YOLOv5 has a 437 

slightly higher mAP@0.5:0.95, R2 is far lower than Faster R-CNN (Table S1). Since 438 

quantitative accuracy is our primary research goal, we decided to further optimize the 439 

two-stage model Faster R-CNN. 440 

Comparison of detection results with or without FPN (Feature Pyramid 441 

Networks)  442 

To further improve the detection effect of the Faster R-CNN model, the FPN 443 

structure was added into the Faster R-CNN model. A comparison of the two models is 444 

shown in Figure 4b. The mAP@0.5:0.95 of Faster R-CNN with data augmentation 445 

was 0.48. For the R2 of the correlation of test value with the real value, Faster R-CNN 446 

with FPN structure have 0.8676, 0.8403 and 0.812 in the category of "open", "close", 447 
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and “all”. Compared with that without FPN structure, mAP@0.5:0.95 of the improved 448 

model increased by 0.002 (Figure 5, model 1 and 3), R2 of "close" class increased by 449 

0.003, and R2 of "open" class and "all" decreased slightly (Table S2). 450 

Comparison of detection results with or without data augmentation  451 

The traditional Faster R-CNN model was taken without data augmentation. To 452 

avoid the effect of the sample imbalance, many kinds of data augmentation methods 453 

were added to the basic model, such as mixup, cutmix. The model with and without 454 

data augmentation were trained and tested on the same data set, and these detection 455 

results and correlations with the real value of manual labeling were compared. A 456 

comparison of the two models is shown in Figure 4c. We found that the 457 

mAP@0.5:0.95 of Faster R-CNN with data augmentation was 0.494, which was 0.016 458 

higher than that of Faster R-CNN without data augmentation (Figure 5, model 1 and 459 

2). For the R2 of the correlation of test value with the real value, Faster R-CNN with 460 

data augmentation were 0.8579, 0.8401 and 0.8235 in the category of "open", "close", 461 

and “all”, respectively. The R2 in the category of "close" and “all” of Faster R-CNN 462 

with data augmentation were 0.0028 and 0.0035 higher than that of Faster R-CNN 463 

without augmentation. While R2 in the "open" category of Faster R-CNN with data 464 

augmentation was 0.0133 lower than that of Faster R-CNN without data augmentation. 465 

Overall, the evaluation showed that the performance of Faster R-CNN with data 466 

augmentation is higher than that of Faster R-CNN without data augmentation (Table 467 
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S3). 468 

Comparison of detection results with or without Multi-Scale 469 

To test whether the multi-scale training can improve the accuracy of the quantity of 470 

dehiscent anther, we added Multi-Scale on the basis of the traditional Faster R-CNN 471 

model. The specific content is to obtain the image pyramid at different scales, and 472 

then extract the features of different scales for each layer of images to obtain the 473 

feature map. Finally, the features of each scale are individually predicted. A 474 

comparison of the two models was shown in Figure 4d. The result showed the 475 

mAP@0.5:0.95 of model was improved by 0.003 after Multi-Scale training (Figure 5, 476 

model 4 and 2). R2 in the "open" and "close" categories fell by 0.0092 and 0.0007, 477 

respectively. R2 in the "all" category went up 0.0086. Thus, Multi-Scale training has a 478 

certain effect on our research goal of cotton anther identification (Table S4). 479 

In this study, the change curves of each model in mAP@0.5:0.95 during the 480 

training process were shown in Figure 5. The peak value of traditional Faster-CNN 481 

mAP@0.5:0.95 curve was the lowest, while the peak value of Faster R-CNN model 482 

with data augmentation, Multi-Scale training and FPN structure was the highest. The 483 

loss curve of each model during the training process was shown in Figure 5. At the 484 

end of the training, the loss curve of the four models has tended to be stable. 485 

Screening of HT tolerant cotton germplasms based on cotton anther phenotype 486 
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data obtained using integrated Faster R-CNN model 487 

In order to select high temperature (HT) tolerant cotton germplasms, the anther 488 

pictures of different cotton lines were obtained under normal temperature (NT) and 489 

HT. Then we counted the dehiscence status of anthers from 30 different cotton lines 490 

by manual observation and machine recognition, and the statistical results were shown 491 

in Table 1. The results of manual observation showed that the average dehiscence rate 492 

of cotton anthers treated with NT and HT were 84.35% and 35.46% respectively, and 493 

the results of machine recognition showed that the average dehiscent rates of cotton 494 

anthers treated with NT and HT were 83.81% and 35.08% respectively. First of all, 495 

we can believe that for the acquisition of the phenotypic data of cotton anther 496 

dehiscence rate, the result of machine recognition has been extremely accurate, and 497 

the recognition speed is fast, which is not affected by artificial subjective factors, save 498 

manpower and material resources, there are obvious advantages compared with 499 

manual observation. Secondly, there is a great difference in the anther dehiscent rate 500 

of the same cotton variety between HT and NT conditions. The result showed that HT 501 

greatly reduced the cotton anther dehiscent rate (Table 1), and then affected the 502 

pollination process, resulting in a reduction in cotton yield. Finally, by observing 30 503 

cotton lines, we found that the anther dehiscent rate of S003 and S004 was still more 504 

than 85% under HT stress, which was significantly improved compared with other 505 

lines (Table 1).  In addition, we screened cotton lines with HT tolerance in large 506 

quantities through machine recognition, and obtained more than 35 HT tolerant cotton 507 

lines. These HT tolerant germplasms will be used in cotton HT tolerance breeding. 508 
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 509 

  510 
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Discussion 511 

Through analysis, we found that the mAP@0.5:0.95 value of the model increased 512 

significantly after adding data augmentation and FPN structure and Mulit-Scale, but 513 

the change of R2 was not significantly positively correlated with mAP@0.5:0.95. In 514 

order to obtain the most accurate data in the application, four models were trained, as 515 

shown in Figure 5 and tested them on the same batch of test sets. The recognition 516 

results obtained were integrated by the following formula: 517 

4
result

4

1i

open
i

open

model
==  518 

4
result

4

1i

close
i

close

model
==  519 

Among those, i represents the number of the model in Figure 5. Modeliopen 520 

represents the number of dehiscent cotton anthers identified by model୧  in the 521 

verification set. Modeli
close represents the number of indehiscent cotton anthers 522 

identified by modeli in the verification set. 523 

After the comparison with the real value, it is found that when the model is 524 

integrated, the detection result after ensemble effectively compensates for the error, 525 

and the correlation between the detection result and the real value will increase. After 526 

the ensemble of the four models, R2 of “open” reaches 0.8765, R2 of “close” reaches 527 

0.8539, R2 of “all” reaches 0.8481, higher than the prediction result of either model 528 

alone. Therefore, when accurate data is needed, we can choose to integrate the 529 

detection results of the four models, so that the detection data obtained is the most 530 

reliable. Of course, directly using Faster R-CNN model with FPN structure and data 531 

augmentation and multi-scale has higher robustness and higher accuracy. 532 

It is well known that anther is the male organ of plant, anther abortion will directly 533 

lead to male sterility and reduce yield. Our previous studies could be preliminarily 534 

concluded that HT stress can reduce cotton yield by inhibiting cotton male fertility. 535 

HT mainly decreased pollen viability, the anther growth number, and the percentage 536 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.11.09.467902doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.09.467902
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23

of dehiscent anther, caused the decreases of male fertility in cotton (Min et al., 2014; 537 

Ma et al., 2018). So far, no genes involved in HT affecting cotton male fertility have 538 

been cloned. Thus, further molecular biological methods can respond to this 539 

mechanism from the perspective of genes and improve cotton crop yield. Through the 540 

trained augmentation Faster R-CNN rapid identification system of cotton anther 541 

phenotype, can quickly investigate the anther phenotype and used to location of the 542 

genes affecting cotton anther dehiscence under HT. This will effectively promote HT 543 

resistance breeding of cotton and ensure cotton safe production under the trend of 544 

global warming. 545 

 546 

Conclusions and future directions 547 

Conclusions 548 

1. A cotton anther phenotype recognition system based on deep learning is 549 

proposed for the first time, which can help researchers to quickly investigate the 550 

anther phenotype of cotton and locate the genes that respond to the influence of stress 551 

on cotton anther for breeding improvement. 552 

2. A lightweight cotton anther dehiscence detection model based on YOLOv5 is 553 

proposed, which can be easily implanted into embedded devices or mobile devices. 554 

3. Through the change of the accuracy and correlation of Faster R-CNN after the 555 

improvement of the data augmentation method, the feasibility and superiority of the 556 

improved method were verified. Model enhanced by data. 557 

4. After the ensemble of the four models, R2 of “open” reaches 0.8765, R2 of “close” 558 

reaches 0.8539, R2 of “all” reaches 0.8481, higher than the prediction result of either 559 

model alone, and can completely replace the manual counting method. It provides 560 

new technical support for cotton reproductive development and HT tolerance 561 

breeding.  562 

 563 

Future directions 564 

In this study, YOLOv5 and Faster R-CNN were applied to identify the dehiscence 565 

state of cotton anther, and achieved fast and accurate identification. But there are still 566 
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some areas where there is room for improvement: 567 

1. We only examined the dehiscence of cotton anthers, but other phenotypes such 568 

as the growth position of anthers and the distance between anthers and stigmas are 569 

also important for the reproductive development of cotton. Other phenotypic 570 

characteristics of cotton anther can be collected by using a comprehensive platform 571 

that integrates multiple data points to analyze cotton reproductive development. 572 

2. The cotton anther dehiscence recognition model trained in this study should be 573 

further developed and applied to other computer platforms or servers to facilitate 574 

cotton reproductive development researchers to use the model to quickly obtain anther 575 

dehiscence data. 576 

3. In this study, the experience of deep learning model training for cotton anther 577 

dehiscence can be applied to other plant anther state detection. It is one of the 578 

directions to further enrich the research content to further construct cotton anther state 579 

recognition models of various crops based on deep learning. 580 

 581 

Materials and methods 582 

Material growing and dataset acquisition 583 

In total, 510 cotton lines from natural populations were planted in 2016-2019 in 584 

experimental cotton fields at Huazhong Agricultural University, Wuhan, Hubei 585 

(113.41E, 29.58N), Turpan, Xinjiang (89.19E, 42.91N), and Alar, Xinjiang (81.29E, 586 

40.54N). At Wuhan, the field was planted at a density of 27,000 plants per hectare 587 

with each row including more than 12 individuals. At Alar and Turpan, Xinjiang, the 588 

fields were set up with two streets and planted at a density of 195,000 plants per 589 

hectare. More than 30 individuals of each line were arranged in rows. Cotton anther 590 

images were collected each year at each location three days after the onset of normal 591 

temperatures and after high temperatures during bloom. 592 

A Canon 70 d HD digital camera was used throughout the acquisition of a research 593 

image set. To prevent the negative interference of background with the subsequent 594 

machine recognition effort, a black curtain was used as the photo background for this 595 

experiment. In the actual image collection process, it was found that the cotton 596 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.11.09.467902doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.09.467902
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25

anthers were surrounded by cotton petals, and the anthers growing at the root of the 597 

style were not easily captured by the camera, so it was not conducive to the accurate 598 

collection of data to take the pictures directly. Thus, it was necessary to preprocess the 599 

cotton flowers before acquiring the pictures by stripping the cotton petals and fixing 600 

the anther sides. To prevent overfitting, the model due to insufficient training data, the 601 

same anthers were included in multiple distant near-field images (Figure 6). Finally, a 602 

total of 2,845 high-definition RGB anther images were acquired.  603 

Morphologically, dehiscent anthers are rough and grainy because pollen is 604 

released and adheres to anther edges, while indehiscent anthers have smooth edges, 605 

because no pollen is released. Therefore, the obtained cotton anther images were 606 

annotated using Labeling image annotation software, as shown in Figure S1. The 607 

image boundary of each visible cotton anther is within an annotation box that reduces 608 

the influence of background on model training and is labeled “open” and “close” to 609 

distinguish dehiscent and indehiscent anthers, respectively. A total of 2,845 images 610 

were annotated one by one. The images were used as the data set and were randomly 611 

divided into a training set and validation set in the ratio of 7:3 (Table S5). 612 

Experimental operation environment 613 

The hardware environment used in this study is in Table S6, and on this basis, the 614 
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training environment is python, open-cv, cuda, etc., and the frameworks used in this 615 

study are paddle and pytorch. 616 

Metrics used to evaluate the proposed method 617 

In this study, we use mAP@0.5:0.95, as well as MAD (Mean Absolute Deviation) 618 

and R2 as the evaluation indicators of the model. The indicators are explained as 619 

follows： 620 

  mAP@0.5:0.95 is the process of increasing IoU from 0.5 to 0.95 according to the 621 

span of 0.05. The mAP corresponding to each IoU is added to obtain the average 622 

value of mAP in this process. The formula is expressed as follows: 623 

N

P

P
TP =  624 

N

P

T
TR =  625 

=
1

0

)( dRRPAP  626 

In the above formula, TP is the correct number of a category identified by the 627 

model, PN is the total number of categories identified by the model, and TN is the true 628 

number of a category. Averaging the AP values of all categories is called mAP. 629 

We took the absolute value of the absolute error between the measured value and 630 

the real value and then calculate the average value, and called it the MAD. Due to the 631 

deviation is absolute value, the positive and negative will not be offset, thus the mean 632 

absolute error can reflect the actual situation of predicted value deviation. The smaller 633 

the value, the closer the prediction of model is to reality. 634 

The main purpose of this study is to develop a deep learning model that can quickly 635 

and accurately identify anther dehiscence and explore the influence of high 636 

temperature stress on cotton anther dehiscence. In the model identification phase, we 637 

identify the location of the cotton anther without strict requirements, but we demand 638 

model to recognize the number with the result of artificial observation is the most 639 

close to, so the number by artificial observation to anther as accurate value of 640 

validation set was used, with correlation coefficient between predicted values and the 641 
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accurate value as the main evaluation index of the model. 642 

 643 

Supplemental Materials 644 

Figure S1: Image labeling 645 

The obtained cotton anther images were annotated using “Labeling” image annotation 646 

software. Green boxes represent indehiscent anthers and red boxes represent dehiscent 647 

anthers. When the image labeling was finished, we corresponded the location 648 

information of the image with the name of the image one by one and saved it in VOC 649 

format. 650 

Table S1: Comparison of YOLOv5 and Faster R-CNN 651 

Table S2: Comparison of FPN 652 

Table S3: Comparison of data augmentation 653 

Table S4: Comparison of Multi-Scale 654 

Table S5: Dataset 655 

Table S6: Experimental configuration 656 

 657 

Acknowledgements 658 
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 660 

Figure Legends 661 

Figure 1: Data augmentation 662 

The images above showeds the effect of the same cotton anther image processed with 663 

different data augmentation methods. 664 

Figure 2：Model ensembles  665 

Integrated flow chart of cotton anther recognition model ensembles. 666 

Figure 3：Cotton anther identification effect graph 667 

a, The purple box marks an indehiscent cotton anther, and the pink box marks a 668 

dehiscent cotton anther. b, The blue box marks an indehiscent cotton anther, and the 669 

gray box marks a dehiscent cotton anther. c, The pink box marks an indehiscent cotton 670 
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anther, and the green box marks a dehiscent cotton anther. d, The gray box marks an 671 

indehiscent cotton anther, and the red box marks a dehiscent cotton anther. In each 672 

test, the colors of the prediction boxes with different labels were randomly generated. 673 

Figure 4: Comparison of different models  674 

a, Comparison of YOLOv5 and Faster R-CNN. YOLOv5 model has higher 675 

recognition speed, Faster R-CNN model has higher detection accuracy. 676 

b, Comparison of with or without FPN (Feature Pyramid Networks)  677 

The mAP@0.5:0.95 of the improved model increased by 0.002, R2 of "close" class 678 

increased by 0.003, and R2 of "open" class and "all" decreased slightly. 679 

c, Comparison of with or without data augmentation. The improved model has a slight 680 

decline in the number of R2 in the open category and an improvement in other 681 

evaluation indicators. 682 

d, Comparison of with or without data Multi-Scale  683 

The result showed the mAP@0.5:0.95 of model was improved by 0.003 after 684 

Multi-Scale training. R2 in the "open" and "close" categories fell by 0.0092 and 685 

0.0007, respectively. R2 in the "all" category went up 0.0086. "open" and "close" 686 

represent dehiscent and indehiscent anther, respectively. 687 

Figure 5: mAP@0.5:0.95 curves and LOSS curves 688 

Model 1 is the Faster R-CNN with FPN structure. Model 2 is the Faster R-CNN with 689 

data augmentation and FPN structure. Model 3 is the traditional Faster R-CNN. 690 

Model 4 is the Faster R-CNN with Multi-Scale and data augmentation and FPN 691 

structure. Epoch: All the data were sent into the network to complete a process of 692 

forward calculation and back propagation. mAP@0.5:0.95 is the process of 693 

increasing IoU from 0.5 to 0.95 according to the span of 0.05. The mAP 694 

corresponding to each IoU was added to obtain the average value of mAP in this 695 

process. 696 

Figure 6: Data acquisition 697 

a, The image dataset captures the platform scene. b, Image of cotton anther. c, The 698 

surface of dehiscent cotton anther (open) is rough from the image. d, The surface of 699 

indehiscent cotton anther (close) is smooth from the image. 700 
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 701 

Table 1: Screening of HT tolerant cotton germplasms using integrated Faster 702 

R-CNN model 703 

Open: the average number of dehiscent anthers from different flowers, n>4; Close: the 704 

average number of indehiscent anthers from different flowers, n>4; Dehiscent rate: 705 

the number of dehiscent anthers of each flower/ (the number of dehiscent anthers of 706 

each flower + the number of indehiscent anthers of each flower), n>4. 707 
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