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Abstract 

Children of women with pre-eclampsia have increased risk of cardiovascular (CV) and 

metabolic disease in adult life. Furthermore, the risk of pregnancy complications is 

higher in daughters born to women affected by pre-eclampsia than in daughters born 

after uncomplicated pregnancies. While aberrant inflammation contributes to the 5 

pathophysiology of pregnancy complications, including pre-eclampsia, the contribution 

of maternal inflammation to subsequent risk of CV and metabolic disease as well as 

pregnancy complications in the offspring remains unclear. Here we demonstrate that 

24-week-old female rats (F1) born to dams (F0) exposed to lipopolysaccharide (LPS) 

during pregnancy (to induce inflammation) exhibited mild systolic dysfunction, 10 

increased cardiac growth-related gene expression, abnormal glucose tolerance and 

coagulopathy; whereas male F1 offspring exhibited abnormal glucose tolerance and 

increased visceral fat accumulation compared with F1 sex-matched offspring born to 

saline-treated dams. Both male and female F1 offspring born to LPS-treated dams had 

evidence of anemia. Fetuses (F2) from F1 females born to LPS-treated dams were 15 

growth restricted, and this reduction in fetal growth was associated with increased 

CD68 positivity and decreased expression of glucose transporter-1 in their utero-

placental units. These results indicate that abnormal maternal inflammation can 

contribute to increased risk of CV and metabolic disease in offspring, and that the 
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effects of inflammation may be transgenerational. This study provides evidence in 20 

support of early screening for CV and metabolic disease, as well as pregnancy 

complications in offspring affected by pre-eclampsia or other pregnancy complications 

associated with aberrant inflammation. 

 

Key words: maternal inflammation, pre-eclampsia, fetal growth restriction, 25 

cardiovascular disease, metabolic disease, transgenerational, fetal programming  
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Introduction 

Pre-eclampsia is a serious condition that affects 3-5% of all pregnancies and is 30 

characterized by the development of maternal hypertension and end-organ 

dysfunction, often accompanied by fetal growth restriction (FGR) after 20 weeks of 

gestation (1). Moreover, pre-eclampsia is linked to an increased risk of cardiovascular 

(CV) and metabolic disease in later life for both the affected mothers and their offspring 

(2-5). There is also evidence that daughters born to women with pre-eclampsia are at 35 

increased risk of experiencing pregnancy complications, such as pre-eclampsia, 

during their reproductive life (6). 

 

According to the Developmental Origins of Health and Disease hypothesis, the fetus 

undergoes adaptive responses to the hostile in utero environment in order to improve 40 

survival during complicated pregnancies such as pre-eclampsia and FGR (7-9). While 

these responses may be beneficial in the in utero environment of a complicated 

pregnancy, they may result in negative consequences following birth, including 

susceptibility to non-communicable diseases such as hyperlipidemia, hypertension, 

left ventricular hypertrophy and diabetes later in life (9-11).  45 

 

There is growing evidence that excessive maternal inflammation during pregnancy is 
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often linked to the etiology of pre-eclampsia (12-14). Many women with pre-eclampsia 

have a heightened inflammatory state (15-17) and pre-eclampsia is linked to abnormal 

activation of uterine leukocytes such as macrophages (18, 19), which were also shown 50 

to mediate fetal demise in a mouse model (20). Using a model in which pregnant 

Wistar rats are administered low-dose lipopolysaccharide (LPS) to induce maternal 

inflammation, we demonstrated that increased levels of tumor necrosis factor alpha 

are causally linked to the development of features of pre-eclampsia, such as elevated 

blood pressure, proteinuria, renal abnormalities, impaired spiral artery remodelling, 55 

placental hemodynamic alterations, and fetal growth restriction (21). These rats also 

exhibit long-lasting alterations associated with CV and metabolic disease (22, 23). In 

the present study, we used the same rat model involving LPS treatment to determine 

whether aberrant inflammation associated with a pre-eclampsia-like condition also 

leads to a persistence of CV and metabolic alterations in the offspring. A second 60 

objective of our study was to examine whether the effect of aberrant inflammation in 

pregnancy has transgenerational effects, with negative outcomes in pregnancies from 

offspring born to LPS-exposed mothers. 
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Materials and Methods 65 

Animal model: F0 and F1 generations 

All experiments were conducted in accordance with the guidelines of the Canadian 

Council on Animal Care. Procedures and protocols were approved by the University 

Animal Care Committee at Queen’s University. Virgin female and male Wistar rats 

were purchased from Charles River Laboratories (Montreal, QC, Canada). All animals 70 

were provided standard laboratory rat chow and tap water ad libitum and were housed 

at a constant temperature under a 12-h light-dark cycle. Virgin female rats (12-16 

weeks of age) were housed with a male rat overnight at a 2:1 ratio, and the presence 

of spermatozoa in the vaginal smear indicated gestational day (GD) 0.5 for the F0 

generation. 75 

 

Rats were treated as described previously (21, 22). Briefly, F0 pregnant Wistar rats 

were randomly divided in two groups (N = 6 per group). One group was injected 

intraperitoneally (i.p.) with LPS (Escherichia coli serotype 0111:B4; Sigma-Aldrich 

Canada, Oakville, ON, Canada) on GD13.5 (10 µg/kg) and daily on GDs 14.5-16.5 (40 80 

µg/kg/day); control rats were injected with saline (1 mL/kg/day) on GDs 13.5-16.5. 

Rats were allowed to deliver normally, and pups (F1 generation) were culled to eight 

(four males and four females per litter) on postnatal day (PND) one to control for the 
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potential impact of litter size on final outcomes. Male and female F1 offspring were 

placed in separate cages at the time of weaning (PND 21). Beginning at 4 weeks of 85 

age, weight of male and female F1 offspring was measured weekly ± 1 day. All 

assessments in F1 offspring were performed at 24 weeks of age unless stated 

otherwise. The following sections describe procedures performed on the F1 

generation, unless specified. 

 90 

Mean arterial pressure (MAP) and pulse-wave velocity (PWV) determination 

Hemodynamic parameters (blood pressure and PWV) were measured under 

isoflurane anesthesia and analysed using physiological data analysis software 

(LabChart version 8, ADInstruments, Colorado Springs, CO, USA) as described 

previously (22). Aortic PWV is an index of arterial stiffness and is an important 95 

parameter of CV disease risk (24, 25). PWV was assessed using the foot-to-foot 

method described previously (26). Two catheters were inserted into the superior (via 

left carotid artery) and inferior (via left femoral artery) segments of the aorta using a 

PE-50 heparinized saline-filled (50 IU/mL) cannula (ID 0.58 mm, OD 0.965 mm; BD 

Diagnostics, Sparks Glencoe, MD, USA). Both arterial pressure signals were 100 

simultaneously monitored and recorded via an attached pressure transducer 

(Transonic SP200 Pressure System; Transonic Systems Inc., Ithaca, NY, USA). After 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.11.09.467505doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.09.467505
http://creativecommons.org/licenses/by-nd/4.0/


Ushida et al.,   Inflammation in pregnancy and fetal programming 

 8 

arterial blood pressure recordings, the distance from the tip of the superior catheter to 

the inferior catheter was measured. PWV was calculated by dividing the distance 

between the two catheters over the transmission time. PWV was individually analyzed 105 

and averaged using at least 100 normal waveforms. To eliminate the influence of 

diastolic pressure, β index was calculated according to the following formula: 2.11 x 

(PWV2/Diastolic pressure) (27). 

 

Echocardiography 110 

Echocardiography was performed to evaluate cardiac structure and systolic and 

diastolic functions using a Visual Sonics Vevo 2100 Imaging System (Visual Sonics, 

Toronto, ON, Canada) with a 21-MHz MicroScan transducer (MS-250). Rats were 

anesthetized with 2-3% isoflurane in air, and heart rate and breathing were monitored. 

Cardiac function was evaluated in parasternal long axis and apical four-chamber view 115 

using M-Mode, colour Doppler Mode and tissue Doppler Mode. Ultrasound data were 

analyzed using Visual Sonics software (Vevo Lab; Visual Sonics). Tei index 

(myocardial performance index), which reflects global systolic and diastolic ventricular 

function, is defined as the sum of isovolumic contraction time and isovolumic relaxation 

time divided by the ejection time (28). 120 
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Histological assessment of cardiac structure 

Following euthanasia, hearts were excised and weighed, and the atria and left 

ventricles were separated and weighed. The interventricular septum was left attached 

to the left ventricle. Heart tissues fixed in 10% formalin and paraffin-embedded were 125 

sliced into serial 5-µm sections using a Leica RM2125 RTS microtome (Leica Camera 

AG, Wetzlar, Germany). Sections on slides were stained with hematoxylin and eosin 

(H&E) to evaluate cardiomyocyte structure, and with Picro-Sirius red (0.1% Direct Red 

80 in 1% picric acid, Sigma-Aldrich Canada) to determine collagen content. All slides 

were analyzed using ImageJ 1.48 software (W.S. Rasband, NIH, Bethesda, MD, USA). 130 

In the cross sections stained with H&E, the area of cardiomyocytes in the left ventricles 

was quantified in each image at 400x magnification. The percent fibrosis area in the 

left ventricles was quantified in the sections stained with Picro-Sirius red at 100x 

magnification. Analysis was performed by an observer blinded to the treatments. 

 135 

Expression of heart failure- and cardiac growth-related genes 

The expression of Nppa, (natriuretic peptide type A), Nppb (natriuretic peptide type B), 

Gata4 (GATA binding protein 4), Gata6 (GATA binding protein 6), Ep300 (E1A binding 

protein p300) and Mef2c (myocyte enhancer factor 2C) in left ventricular tissue was 

assessed by qPCR as reported previously (29). Total RNA was purified from 140 
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homogenized tissues using a combination of Trizol (Tri Reagent; Molecular Research 

Centre, Burlington, ON, Canada) and a High Pure RNA isolation kit (Roche Scientific, 

Laval, QC, Canada) as described previously (30). Generation of cDNA from 1 µg of 

RNA was performed using a High-Capacity RNA-to-cDNA Kit (Thermo Fisher 

Scientific, Burlington, ON, Canada). Real-Time PCR was performed using FastStart 145 

SYBR Green Master (Roche Scientific) in a LightCycler 480 system II (Roche 

Scientific). The expression levels of each gene were normalized to β-actin cDNA levels. 

The sequence of primers for Nppa, Nppb, Gata4, Gata6, Ep300, Mef2c and β-actin 

are outlined in Supplementary Table 1. The PCR conditions were as follows: 

denaturation at 95°C for 5 min, followed by 40-50 cycles at 95°C for 15 s, 62°C for 20 150 

s and 72°C for 20 s. 

 

Intraperitoneal glucose tolerance test (IPGTT) 

IPGTT was performed after overnight fasting to assess ability to metabolize glucose. 

Rats were injected i.p. with a bolus of 20% glucose solution (2.0 g/kg body weight). 155 

Blood glucose levels were measured from tail vein blood using a glucometer (One 

Touch Ultra 2, Life Scan, Burnaby, BC, Canada) at 0, 15, 30, 60 and 120 minutes after 

glucose injection. 
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Insulin levels and HOMA-IR 160 

Fasting serum insulin (FSI) levels were measured using an ultrasensitive rat insulin 

ELISA (Mercodia, Uppsala, Sweden) according to the manufacturer’s instructions. 

Fasting serum glucose (FSG) levels were measured using a glucometer. To determine 

the level of insulin resistance, the homeostatic model assessment of insulin resistance 

(HOMA-IR) was calculated according to the following formula: HOMA-IR = [FSG 165 

(mmol/L) x FSI (μU/L)]/22.5. 

 

Complete blood cell (CBC) count and serum analysis 

Blood samples were collected at the time of euthanasia. CBC count was performed 

using an ABC Vet Animal Blood Counter (Scil Animal Care Company, Gurnee, IL, USA) 170 

according to the manufacturer’s instructions. Levels of total cholesterol, high-density 

lipoprotein (HDL) cholesterol, triglycerides (TG), creatinine, and urea were measured 

in serum samples at the Core Laboratory at Kingston General Hospital. Low-density 

lipoprotein (LDL) cholesterol was calculated by the formula: total cholesterol - [TG/5 + 

HDL cholesterol]. 175 

 

Thromboelastography (TEG) 

TEG is a test of whole blood coagulation that provides global information on the 
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dynamics of clot development, stabilization and dissolution (31). Blood coagulation 

state was evaluated using a TEG 5000 Hemostasis System and TEG Hemostasis 180 

Analyser software (Version 4.2) as described previously (32). Briefly, a 340-μL aliquot 

of citrated whole blood was added to a warm TEG cuvette preloaded with 20 μL of 0.2 

mol/L CaCl2. TEG parameters including R, K, α angle, MA, CI and LY30 were recorded 

for approximately 1.0 hour. R is the reaction time until initial fibrin formation, reflecting 

coagulation factor levels; K is the coagulation time indicating the rapidity of clot 185 

formation; α angle is an indication of the rate of clot formation, reflecting fibrinogen 

activity; maximum amplitude (MA) represents the ultimate strength of the clot, which 

is an indication of platelet function and fibrinogen activity; coagulation index (CI) is an 

overall indicator of coagulation; and percent clot lysis at 30 min (LY30) is a 

measurement of degree of fibrinolysis. 190 

 

Induction of pregnancy in the F1 generation and assessment of fetal growth in the F2 

generation  

Between 10-14 weeks of age, female F1 offspring born to LPS- or saline-treated dams 

(N = 5 for each group) were mated with non-experimental male rats. Detection of 195 

spermatozoa in vaginal lavage indicated GD 0.5. All dams remained untreated until 

study endpoint on GD 17.5 and fetal wet weights of the F2 generation were assessed 
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at the time of euthanasia.  

 

Utero-placental assessment of glucose transporter-1 expression 200 

Utero-placental units of F2 offspring (Saline, N = 21; LPS, N = 33) collected from F1 

dams (Saline, N = 5; LPS, N = 5) at GD 17.5 were fixed using 4% paraformaldehyde, 

processed, embedded in paraffin, and sectioned. Tissue sections (5-μm) were 

rehydrated using a graded ethanol series and subjected to heat-mediated citrate 

antigen retrieval (BioGenex, Freemont, CA, USA) for 12 minutes. Endogenous tissue 205 

peroxidases were blocked by immersion in a 0.6% hydrogen peroxide solution in 

methanol for 20 minutes. Following protein blocking (1% normal goat serum for 30 

minutes at room temperature), anti-rabbit glucose transporter-1 (Glut-1; Invitrogen; 

PA5-32428, 1:200) was added to tissues and incubated for two hours at room 

temperature. Detection of the primary antibody was achieved by incubation of tissues 210 

with a species-specific secondary polymer (Histofine® Simple Stain MAX PO; Nichirei 

Biosciences Inc., Tokyo, Japan) for 30 minutes at room temperature, followed by 

incubation with 3,3’-diaminobendizine (DAB; Cell Signaling Technology; 8059S). 

Sections were counterstained using Gill’s hematoxylin (Thermo Fisher Scientific), 

dehydrated, mounted, and scanned using an Olympus VS120 high resolution scanner. 215 

Digital image analysis was performed using HALO® image analysis platform (Indica 
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Labs). The labyrinth, junctional zone and mesometrial triangle of utero-placental units 

were manually annotated and the percent strong positive staining was calculated for 

each region.  

 220 

Immunohistochemical detection and analysis of utero-placental CD68 Expression 

F2 utero-placental units (Saline, N = 18; LPS, N = 21) collected from F1 dams (Saline, 

N = 5; LPS, N = 5) at GD 17.5 were fixed using 4% paraformaldehyde, processed, 

embedded in paraffin, and sectioned. Tissue sections (5-μm) were subjected to 

immunohistochemistry for CD68 expression and analyzed using a similar approach as 225 

described for glucose transporter-1, with the following modifications: protein blocking 

with goat serum was carried out for 45 minutes and sections were incubated overnight 

in a humidified chamber at 4°C with anti-CD68 primary antibody (ab125212, Abcam; 

1:350). Digital analysis was performed using Halo® image analysis platform (Indica 

Labs, Albuquerque, NM, USA). Scanned sections of utero-placental units were 230 

manually annotated into the mesometrial triangle, labyrinth, and junctional zone by a 

blinded observer. The percent strong and moderate positive staining was calculated 

for each region. 

 

Polychromatic flow cytometry assessment of bone marrow from F1 offspring 235 
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Bone marrow flushed from femurs from male and female F1 offspring at 12 and 24 

weeks of age was stained using two different cocktails of antibodies (Supplementary 

Table 2) to evaluate the lymphoid and myeloid immune compartments. Briefly, cells (1 

x 106) were plated in buffer (PBS with 0.5% bovine serum albumin and 1 mM EDTA) 

and non-specific Fc binding was blocked via incubation with mouse anti-rat CD32 (BD 240 

Biosciences #550271; 1:200) for 30 minutes on ice. Cells were then stained with 100 

µL of primary antibody cocktail for 30 minutes on ice, washed, and fixed for 12 minutes 

(BD Biosciences #554655). Data were acquired on a CytoFLEX S flow cytometer 

(Beckman Coulter) and analyzed using FlowJo version 10.7 software (BD 

Biosciences). Cells of myeloid (Supplementary Fig. 1a) and lymphoid (Supplementary 245 

Fig. 1b) lineages were assessed between treatment groups over the two time-points. 

 

Statistical Analysis 

Statistical analysis was performed using GraphPad Prism 9.0 software (GraphPad 

Software Inc., La Jolla, CA, USA). When comparing two groups, Student’s t test and 250 

Mann-Whitney U test were performed for parametric and non-parametric data, 

respectively. Repeated measures two-way ANOVA with Sidak’s multiple comparisons 

test was used to statistically analyze data on body weight, cardiac parameters, food 

intake, glucose levels following IPGTT, and TEG parameters in male and female F1 
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offspring born to LPS and saline treated F0 dams. Fisher’s Exact test was used to 255 

compare the proportion of FGR offspring. Two-way ANOVA followed by Tukey’s post 

hoc analysis was performed to assess differences in bone marrow immune cell 

composition in F1 male and female rats at 12 and 24 weeks of age. Rout’s test was 

performed to remove outliers. Data are expressed as means ± SEM. A value of p < 

0.05 was considered statistically significant. 260 
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Results 

Effect of aberrant maternal inflammation on neonatal outcomes 

To assess whether aberrant maternal inflammation affects neonatal outcomes, we 

defined FGR in our rats as a birth weight falling below the 10th percentile (33). Aberrant 265 

inflammation resulted in a significant increase in the FGR rate of the female F1 

generation and a significant reduction in birth weight of male and female F1 offspring 

born to LPS-treated F0 dams (Table 1). There was no significant difference in mortality 

rates for offspring born to either saline or LPS-treated mothers during the neonatal 

period (data not shown). 270 

 

Effect of aberrant maternal inflammation on offspring cardiac function and structure 

MAP was comparable for the two groups of both male and female F1 offspring (Fig. 

1a). As adults, F1 female offspring born to LPS-treated dams exhibited a trend towards 

decreased ejection fraction (EF; Fig. 1b; p = 0.06) and fractional shortening (FS; Fig. 275 

1c; p = 0.057) compared with adult F1 female offspring born to control mothers. No 

differences in global systolic and diastolic function (Tei index; Supplementary Fig. 2a), 

pulse-wave velocity (Supplementary Fig. 2b) or β index (Supplementary Fig. 2c) were 

observed between groups. Details of all cardiac parameters are shown in 

Supplementary Table 3. 280 
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To gain further insight into the mild systolic dysfunction observed in F1 female offspring 

at 24 weeks of age, we measured heart weights and calculated various ratios, 

assessed cardiac histology, and expression of genes related to cardiac development. 

F1 female offspring born to LPS-treated dams exhibited significantly increased cardiac 285 

mRNA levels of myocyte enhancer factor-2c (Mef2c) measured at 24 weeks of age 

(Fig. 2a). No significant differences were found in the expression levels of Nppa, Nppb, 

Gata4, Gata6, and Ep300 (Fig. 2b-f). Similarly, no significant differences were found 

in cardiomyocyte area (Supplementary Fig. 3a) or width (Supplementary Fig. 3b), and 

interstitial fibrosis area (Supplementary Fig. 3c) in offspring of control versus LPS-290 

treated dams. Finally, no significant differences were observed between treatment 

groups when comparing heart weight-to-tibia length ratios, heart weight-to-body 

weight ratios, or right ventricle to left ventricle plus septum weight ratios (data not 

shown). 

 295 

Effect of aberrant maternal inflammation on offspring metabolic functions 

Although the post-weaning weights of male F1 pups from LPS-treated dams was not 

significantly different from weights of F1 pups born to control-treated mothers, two-

way ANOVA analysis revealed that LPS treatment significantly reduced post-weaning 
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weights of F1 female pups in the LPS treatment group compared with weights of F1 300 

offspring from saline-treated controls (Fig. 3a). This difference was not attributable to 

differences in food intake as there were no observed differences in food consumption 

between male or female F1 offspring from born to either saline or LPS-treated mothers 

(Fig. 3b). To determine the effect of maternal inflammation on glucose tolerance in 

adult F1 offspring, IPGTT was performed at 24 weeks of age. Compared with F1 305 

controls, both F1 adult male and female offspring born to LPS-treated mothers 

exhibited a significant increase in glucose levels 15 minutes following i.p. bolus 

glucose injection (Fig. 3c, d). Neither fasting insulin levels (Fig. 3e) nor insulin 

resistance (HOMA-IR; Fig. 3f) measured at 24 weeks of age were significantly different 

in F1 offspring of saline vs. LPS-treated dams. 310 

 

Effect of aberrant maternal inflammation on offspring fat mass and lipid profile 

Visceral fat accumulation was measured at 24 weeks of age. In adult male F1 offspring 

from LPS-treated dams, omental fat accumulation trended toward being significantly 

increased compared with saline controls (Fig. 4a; p = 0.077). Mesenteric (Fig. 4b, 315 

epididymal (Fig. 4c) and retroperitoneal fat (Fig. 4d) masses were significantly 

increased in male F1 offspring from LPS-treated dams. In contrast, no differences 

were observed in visceral fat accumulation for adult female F1 offspring between 
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groups (Fig. 4a-d). No significant difference was found in the circulating lipid profile at 

24 weeks of age in F1 male or female offspring born to saline or LPS-treated dams 320 

(Fig. 4e). 

 

Effect of aberrant maternal inflammation on offspring complete blood count and renal 

function 

At 24 weeks of age, no differences in circulating leukocyte numbers were observed 325 

(Fig. 5a) in F1 offspring. However, male F1 offspring born to LPS-treated dams 

exhibited a trend toward significantly decreased red blood cell (RBC) numbers (Fig. 

5b; p = 0.085) and hematocrit (Fig 5c; p = 0.07); whereas, compared with adult female 

rats born to saline-treated dams, female F1 offspring born to LPS-treated mothers had 

significantly decreased RBC numbers (Fig. 5b) and hematocrit (Fig 5c), and showed 330 

a trend toward a reduction in hemoglobin levels (Fig 5d; p = 0.056). To investigate the 

cause of anemia, mean corpuscular volume (MCV) and mean corpuscular hemoglobin 

(MCH) were calculated and were found to be comparable in both male and female F1 

offspring born to either control or LPS-treated rats (data not shown), thus indicating 

normochromic normocytic anemia. Kidneys collected from adult male F1 offspring 335 

born to LPS-treated mothers exhibited a trend toward weighing less than kidneys 

collected from adult male F1 offspring of saline-treated controls (Fig. 5e; p = 0.057). 
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No significant differences in renal function as measured by serum creatinine (Fig. 5f) 

or urea (Fig. 5g) were observed.  

 340 

Effect of aberrant maternal inflammation on offspring coagulation function 

Thromboelastography (TEG) was performed on citrated, whole blood collected at the 

time of euthanasia (Table 2). Two-way ANOVA revealed that LPS treatment and not 

sex significantly affected reaction time [R], clot formation time [K] and rate of clot 

formation [α angle]. Specifically, compared with the adult female F1 offspring from 345 

saline-treated dams, adult F1 female offspring of LPS-treated dams showed 

significantly increased clot formation time (K).  

 

Transgenerational effect of aberrant maternal inflammation on fetal growth restriction 

The average weight of F2 fetuses from F1 adult female offspring born to LPS-treated 350 

dams (0.717g ± 0.013g) was significantly decreased compared with the average 

weight of F2 fetuses from F1 adult female offspring born to saline-treated dams 

(0.770g ± 0.010g; Table 3). The proportion of growth restricted F2 fetuses from adult 

rats born to F1 LPS-treated dams (31.7%) was significantly increased compared with 

the proportion of FGR F2 fetuses from adult F1 rats born to saline-treated dams (10%; 355 

Table 3).  
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Assessment of Glut1 and CD68 expression in F2 utero-placental units  

Glut1 expression was significantly reduced in the mesometrial triangle (Fig. 6) and 

labyrinthine zone of F2 utero-placental units collected from F1 dams born to LPS-360 

treated F0 dams compared with saline controls. No difference was observed in the 

density of Glut1 expression within the junctional zone. CD68 positivity was significantly 

increased in the mesometrial triangle, junctional zone and labyrinth regions of F2 

utero-placental units from to LPS-treated F0 dams compared with saline controls (Fig. 

7). This observed increase in the number of CD68+ macrophages was not associated 365 

with changes in the bone marrow myeloid compartment from F1 offspring 

(Supplementary Table 4).   
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Discussion 370 

This study revealed that abnormal inflammation in pregnancy results in the acquisition 

of long-lasting cardiovascular and metabolic disease risk factors in F1 offspring and 

impairs in utero growth of both the F1 and F2 generations. Overall, our results provide 

evidence in support of the concept that excessive inflammation is a key factor 

contributing to the increased risk of disease in children of women afflicted by 375 

complications such as pre-eclampsia, and that the effect of aberrant inflammation in 

pregnancy may have transgenerational consequences.  

 

Several animal studies have demonstrated sex-specific responses to prenatal adverse 

conditions (34). Most studies reveal that male offspring are more sensitive than 380 

females to adverse intrauterine conditions and therefore more prone to adult-onset 

disease (34). Our study provides evidence in support of sex-specific responses to in 

utero exposure to maternal inflammation as only F1 male offspring of LPS-treated rats 

exhibited higher fat accumulation compared with controls. In contrast, mild systolic 

dysfunction was only observed in F1 female offspring of LPS-treated rats, which is 385 

consistent with a previous study showing systolic dysfunction in response to cardiac 

damage induced by isoproterenol in female versus male rats (35). 
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In our study, LPS administration to pregnant dams resulted in significantly reduced in 

utero growth for both male and female offspring. Whereas male offspring from LPS-390 

treated dams exhibited catch-up growth, female offspring from LPS-treated dams had 

significantly lower body weight between 4 and 24 weeks of age compared with controls. 

In a rat model of pre-eclampsia induced after reducing the uterine perfusion pressure 

(RUPP model), male and female offspring exhibited growth restriction and did not 

undergo catch-up growth (36). Similarly, there was no catch-up growth in male mouse 395 

offspring five months following a pre-eclampsia-like condition induced after inoculation 

with an adenovirus that expresses soluble fms-like tyrosine kinase-1 (sFlt-1); female 

offspring, however, showed catch-up growth at two months of age (37). In contrast, in 

a rat model of FGR induced by under-nutrition during pregnancy, both male and 

female offspring showed catch-up growth by 12-30 weeks of age (38). In our 400 

inflammation-induced model of pre-eclampsia, rats exhibited reduced maternal body 

weight gain during pregnancy, indicating similarities with the rat under-nutrition model 

of FGR. Thus, it is plausible that the mismatch in prenatal and post-natal nutrition 

accelerates catch-up growth during lactation in our model; however, further 

investigation is required to determine the reasons for the sex-specific difference in 405 

growth rate. 
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Our results differ from previous human and animal studies of pre-eclampsia in that the 

offspring from our LPS-treated rats did not exhibit clear evidence of hypertension and 

cardiac hypertrophy. A systematic review reported that children of women with pre-410 

eclampsia had elevated systolic blood pressure during childhood and early adulthood 

(2). Using the sFlt-1 over-expression mouse model of pre-eclampsia, Lu et al. showed 

elevated MAP only in male offspring at six months of age (37). Similarly, only the male 

offspring of RUPP dams exhibited a significant increase in MAP at 12 weeks of age 

(36). It is remarkable that the increase in MAP in that model was substantially higher 415 

than what has been observed in humans. In our present study, both male and female 

offspring of LPS-treated dams had lower MAP at 24 weeks of age compared with the 

previous observations in animal studies. In those previous two animal studies, blood 

pressure was measured by implantable radiotelemetry in conscious animals, resulting 

in continuous and precise MAP recordings (36, 37). In contrast, we measured blood 420 

pressure in rats at a single time point prior to euthanasia using a carotid artery catheter 

inserted under isoflurane anesthesia, which has known blood pressure-lowering 

effects (39). The sensitivity of this approach may not detect small changes in MAP, 

which could explain why we did not see differences between the two groups. It is also 

possible that in an inflammation-based rat model of pregnancy complications, such as 425 

ours, hypertension in the offspring develops after 24 weeks of age. 
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Using echocardiography, we found a trend toward mild systolic dysfunction in female 

offspring from LPS-treated rats. Although only a few studies have focused on the long-

term effect of maternal inflammation on offspring cardiac function, our finding is 430 

consistent with a previous report that showed left ventricular systolic dysfunction in 

mice at eight weeks of age following maternal administration of LPS (80 μg/kg i.p) on 

GD 16 (40). In contrast, another study showed increased systolic function in 20-week-

old Sprague Dawley rats born to dams treated with LPS (0.79 mg/kg) on GD 8, 10 and 

12 (35). Another similar study revealed diastolic dysfunction in Sprague Dawley rat at 435 

four months of age after maternal LPS (0.79 mg/kg) administration on GD 8, 10 and 

12 (41). It is well recognized that the sensitivity to LPS varies according to the model, 

with Wistar rats being more sensitive to LPS compared to Sprague Dawley rats (42). 

Thus, it is possible that the observed discrepancies on the reported effects of maternal 

inflammation on offspring cardiac function are due to rat strain-specific responses, as 440 

well as differences in the timing and dose of LPS administration. 

 

A previous study demonstrated that systemic maternal inflammation and neonatal 

hypoxia induces cardiac remodelling and left ventricular dysfunction in mice (40). 

Other animal studies have shown that prenatal chronic hypoxia can cause cardiac 445 
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dysfunction in the offspring as well as increased susceptibility to ischemia-reperfusion 

injury in the heart during adult life (43, 44). Our rat model of LPS-induced inflammation 

demonstrated increased spiral artery resistance index and placental oxidative stress, 

indicative of impaired placental perfusion, on GD 17.5 (21, 45, 46). Under such 

conditions, prenatal hypoxia during the second half of pregnancy could lead to cardiac 450 

remodelling in the offspring. As we expected, female offspring at 24 weeks of age 

showed increased expression of Mef2c, a transcription factor associated with cardiac 

hypertrophy and remodelling (29, 47). 

 

F1 offspring of LPS-treated dams at 24 weeks of age had evidence of normochromic 455 

normocytic anemia, a risk factor for CV disease, and in particular chronic heart failure 

(48). This type of anemia is not caused by under-nutrition such as iron deficiency and 

vitamin insufficiency, which often lead to microcytic hypochromic anemia and 

macrocytic anemia, respectively (49). Although we suspected renal anemia 

manifested as normochromic normocytic anemia (49), due to the reduced kidney size 460 

in offspring from LPS-treated dams, we could not find any renal dysfunction after 

analysis of serum samples. Further studies are required to fully elucidate the cause of 

anemia in these rats; however, it is possible that anemia, together with the increased 

expression of cardiac growth-related genes, contributed to the development of the mild 
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systolic dysfunction observed in the female offspring. 465 

 

Our study also revealed abnormal glucose tolerance in both male and female offspring 

from LPS-treated rats at 24 weeks of age; however, there were no significant 

differences in the lipid profile. Interestingly, our results are consistent with those 

obtained using sFlt-1 overexpressing mice (50). Female offspring from sFlt-1 470 

overexpressing mice displayed a higher glucose response to IPGTT compared with 

controls, and male offspring showed lower fasting insulin level at six months of age, 

suggesting abnormal glucose metabolism (50). According to a systematic review and 

meta-analysis, no significant difference was observed in lipid profile in umbilical cord 

blood or infant blood collected following pre-eclamptic versus uncomplicated 475 

pregnancies (5). 

 

Our present study revealed an effect of LPS treatment on TEG parameters associated 

with prolonged clot formation measured in F1 offspring at 24 weeks of age. In humans, 

coagulopathy is strongly linked to the development of CV disease, especially a 480 

hypercoagulable status with suppression of fibrinolysis (51). However, our TEG results 

indicated a hypocoagulable state. We have previously used TEG with success to 

investigate coagulopathies in various studies using a similar rat model (32, 45, 46, 52). 
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The hypocoagulable state observed in the present study may be a consequence of 

endothelial dysfunction associated with the mild systolic dysfunction and metabolic 485 

alterations observed in the F1 offspring, which can impair the synthesis and/or release 

of both procoagulant and anticoagulant factors (53, 54). Anemia is another potential 

explanation for the hypocoagulable state; however, only a few studies have analyzed 

the effect of anemia on coagulation parameters (55, 56). Brooks et al. revealed that 

low hematocrit leads to high K and low R and α angle (55). In contrast, Roeloffzen et 490 

al. showed anemia leads to increased R and α angle (56). Thus, the effect of anemia 

on coagulation and whether there is a mechanistic link between hypocoagulability and 

CV disease remain unclear. 

 

In our study, we also observed a transgenerational impact of inflammation-induced 495 

impaired fetal growth. These observations align with human data demonstrating that 

daughters born to mothers with pre-eclampsia experience an increased risk of 

developing pregnancy complications (57). Moreover, using a rat model of utero-

placental insufficiency, Gallo and colleagues reported impaired second-generation 

fetal growth when their mothers were born small for gestational age (58). Our rat model 500 

of inflammation-induced fetal growth restriction was previously shown to be associated 

with reduced spiral artery remodelling, utero-placental insufficiency and increased 
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CD68+ immunoreactivity in the mesometrial triangle (21). In the present study, we 

report increased CD68+ positivity in F2 utero-placental units from fetuses who are 

descendants of LPS-treated grandmothers compared to controls. This is notable given 505 

that female F1 offspring from LPS-treated rats were not directly exposed to LPS during 

their pregnancies with the F2 generation, and yet CD68+ immunoreactivity was 

increased across the utero-placental units of the F2 generation. This increased 

presence of CD68+ cells was not attributable to alterations in the myeloid compartment 

of bone marrow of F1 offspring from LPS-treated dams. It is possible, therefore, that 510 

this observed increase in the numbers of CD68+ cells is due to proliferation of resident 

myeloid populations. Presence of large numbers of CD68+ cells is suggestive of a pro-

inflammatory state, which in turn is linked to altered placental nutrient transport (59). 

To our knowledge, the current work is the first to describe a transgenerational link 

between inflammation-induced pregnancy complications in the F0 generation and 515 

reduced growth of the F2 generation.  

 

The developing neonate relies on sufficient glucose uptake from maternal blood to 

achieve its genetically pre-determined growth potential. The glucose transporter 

GLUT1 is expressed by various trophoblast lineages in both human and rodent 520 

pregnancy and is the primary transporter responsible for glucose transfer across the 
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placenta (60-62). Our findings that GLUT1 expression is reduced in the labyrinth zone 

in utero-placental units of second-generation descendants of LPS-treated dams is 

consistent with other work reporting a link between reduced labyrinth GLUT1 

expression and impaired fetal growth (63, 64). Moreover, a recent human study 525 

revealed that maternal obesity, a condition associated with chronic low-level 

inflammation, was linked to decreased placental GLUT1 expression (65). Though the 

results of our study do not identify a causal mechanism through which FGR is heritable 

across generations, our data support an association between inflammation-induced 

FGR and reduced GLUT-1 expression in the placenta of subsequent generations.  530 

 

In conclusion, this study provides novel evidence that aberrant maternal inflammation 

associated with fetal growth restriction leads to persistent physiological alterations in 

the F1 generation, some of which are known to increase the risk of acquiring 

cardiovascular and metabolic disease in adult life. We also show that adult female F1 535 

offspring born to LPS-treated dams experience pregnancy complicated by FGR. Thus, 

pregnancy may act as a ‘second hit’ that when superimposed upon the above-

mentioned latent phenotypes in the F1 generation, results in growth restriction of the 

F2 generation. In a previous study using the same animal model we demonstrated 

that aberrant inflammation in pregnancy also leads to persistence of risk factors for 540 
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cardiovascular and metabolic disease in the affected mothers (22). Therefore, our 

findings support the concept that developing strategies to prevent or manage 

pregnancy complications associated with abnormal inflammation may significantly 

reduce the burden of subsequent disease in mothers and subsequent generations. 
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Figure legends 

 

Figure 1. Effect of aberrant maternal inflammation on F1 offspring cardiac function 

and structure. Mean arterial pressure (a) was measured by inserting two catheters into 

the left carotid artery and left femoral artery whereas ejection fraction (b), and 

fractional shortening (c) were assessed by echocardiography. MAP, mean arterial 

pressure. Data are presented as mean ± SEM. Each filled circle represents an 

individual rat. 

 

Figure 2. Effect of aberrant maternal inflammation on F1 offspring heart failure- and 

cardiac growth-related gene expression. Left ventricular mRNA expression of Mef2c 

(a), Nppa (b), Nppb (c), Gata4 (d), Gata6 (e) and Ep300 (f) were measured by qPCR. 

Data are presented as mean ± SEM; *p < 0.05. Each filled circle represents an 

individual rat. 

 

Figure 3. Effect of aberrant maternal inflammation on F1 offspring metabolic functions. 

Body weight in male and female offspring (a; n = 13-17) and food consumption (b) was 

measured weekly ± 1 day (n = 12-17). Intraperitoneal glucose tolerance test was 

performed at 24 weeks of age (c and d). Blood glucose levels were assessed after 
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injection of 20% glucose solution (injected at time 0) (n = 11-15). Fasting insulin level 

was measured at 24 weeks of age (e; n = 10).  HOMA-IR was assessed at 24 weeks 

of age (f; n= 10). Data are presented as mean ± SEM; *p < 0.05; ****p < 0.001. 

 

Figure 4. Effect of aberrant maternal inflammation on F1 offspring fat mass and lipid 

profile. Visceral fat accumulation was measured at 24 weeks of age including omental 

fat (a), mesenteric fat (b), epididymal/parametrial fat (c) and retroperitoneal fat (d).  

Serum lipids (total cholesterol, low density lipoprotein, high density lipoprotein and 

triglycerides) were assessed at 24 weeks of age (e). Data are presented as mean ± 

SEM; *p < 0.05; **p < 0.01; ***p < 0.001. Each filled circle represents an individual rat. 

TC, total cholesterol; LDL, low-density lipoprotein; HDL, high-density lipoprotein; TG, 

triglycerides. 

 

Figure 5. Effect of aberrant maternal inflammation on complete blood counts and renal 

function of F1 offspring. White blood cell counts (a) red blood cell counts (b), 

hematocrit (c) and hemoglobin levels (d) assessed from whole blood at 24 weeks of 

age. Average kidney weights (e) and serum creatinine (f) and urea (g) were measured 

at 24 weeks of age. Data are presented as mean ± SEM; *p < 0.05. Each filled circle 

represents an individual rat. WBC, white blood cell; RBC, red blood cell.  

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.11.09.467505doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.09.467505
http://creativecommons.org/licenses/by-nd/4.0/


Ushida et al.,   Inflammation in pregnancy and fetal programming 

 43 

 

Figure 6. Glucose transporter-1 expression in utero-placental units of the F2 

generation. Immunolocalization of GLUT-1 expression in the mesometrial triangle, 

junctional zone and labyrinth of F2 utero-placental units collected from F1 pregnant 

rats (N=5/group) born to either saline- or LPS-treated F0 dams. Data are presented 

as mean ± SEM; *p < 0.05. Each filled circle represents an individual utero-placental 

unit. M, mesometrial triangle; J, junctional zone; L, labyrinth. 

 

Figure 7. CD68 expression in utero-placental units from the F2 generation. 

Immunolocalization of CD68 expression in the mesometrial triangle, junctional zone 

and labyrinth of F2 utero-placental units collected from F1 pregnant rats (N=5/group) 

born to either saline- or LPS-treated F0 dams. Data are presented as mean ± SEM; 

*p<0.05. Each filled circle represents an individual utero-placental unit. M, mesometrial 

triangle; J, junctional zone; L, labyrinth. 
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Supplementary Figures 

Supplementary Figure 1. Polychromatic flow cytometry gating strategy. Myeloid (A) 

and lymphoid (B) compartments of bone marrow collected from 12- and 24-week old 

male and female F1 offspring was examined by flow cytometry. 

 

Supplementary Figure 2. Effect of aberrant maternal inflammation on F1 cardiac 

parameters. Tei index (a) was used to evaluate global systolic and diastolic function.B. 

Pulse-wave velocity (PWV; b) was measured to determine aortic wall stiffness. β index 

normalization (c) was calculated to eliminate the influence of diastolic pressure. Each 

filled circle represents an individual rat. 

 

Supplementary Figure 3. Effect of aberrant maternal inflammation on offspring 

cardiac histology. Cardiac histology including cardiomyocyte area (a) and width (b), 

and interstitial collagen fiber deposition (c) was assessed by conventional histological 

methods at 24 weeks of age. Data are represented as mean ± SEM (n = 5). Each filled 

circle represents an individual rat. 
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