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Abstract: Human-to-animal spillover of SARS-CoV-2 virus has occurred in a wide range of 
animals, but thus far, the establishment of a new natural animal reservoir has not been detected. 
Here, we detected SARS-CoV-2 virus using rRT-PCR in 129 out of 360 (35.8%) free-ranging 
white-tailed deer (Odocoileus virginianus) from northeast Ohio (USA) sampled between 
January-March 2021. Deer in 6 locations were infected with at least 3 lineages of SARS-CoV-2 30 
(B.1.2, B.1.596, B.1.582). The B.1.2 viruses, dominant in Ohio at the time, spilled over multiple 
times into deer populations in different locations. Deer-to-deer transmission may have occurred 
in three locations. The establishment of a natural reservoir of SARS-CoV-2 in white-tailed deer 
could facilitate divergent evolutionary trajectories and future spillback to humans, further 
complicating long-term COVID-19 control strategies. 35 
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One-Sentence Summary: A significant proportion of SARS-CoV-2 infection in free-ranging 
US white-tailed deer reveals a potential new reservoir. 

 
Main Text: To date, SARS-CoV-2, the virus responsible for coronavirus disease 2019 (COVID-
19), has caused over 4 million deaths globally (1). The zoonotic origins of SARS-CoV-2 are not 5 
fully resolved (2), leading to active surveillance for susceptible host species and potential new 
reservoirs. Natural infections of SARS-CoV-2 linked to human exposure have been reported in 
both domestic animals (e.g. cats, dogs, ferrets) and in wildlife under human care (e.g. several 
species of big cats, Asian small-clawed otters, western lowland gorillas, and mink) (3). 
Experimental infections have identified additional animal species susceptible to SARS-CoV-2 10 
including hamsters, North American raccoons, striped skunks, white-tailed deer, raccoon dogs, 
fruit bats, deer mice, domestic European rabbits, bushy-tailed woodrats, tree shrews, and 
multiple non-human primate species (4-13). Moreover, several naturally or experimentally 
infected species were capable of intra-species SARS-CoV-2 transmission (cats, ferrets, fruit bats, 
hamsters, raccoon dogs, deer mice, white-tailed deer) (6-8, 10, 14-16). Vertical transmission has 15 
also been suggested to occur in experimentally infected white-tailed deer (16). An in silico study 
modeling ACE2 receptor binding residues across host species predicted cetaceans, rodents, 
primates, and cervids are at highest risk for infection due to predicted binding between the ACE2 
receptor and the SARS-CoV-2 spike protein (17).  
 20 
Limited evidence for SARS-CoV-2 infection or exposure (antibodies) in free-ranging animal 
populations has also begun to emerge. In Utah (USA), free-ranging mink presumed to be 
escapees from a mink farm tested positive for SARS-CoV-2 antibodies, and a subset tested 
positive via rRT-PCR for SARS-CoV-2 (18). In Spain, two free-ranging mink also tested 
positive for SARS-CoV-2 (19). Additionally, antibodies for SARS-CoV-2 have been identified 25 
in 152 free-ranging white-tailed deer (seroprevalence 40%) sampled across Michigan, 
Pennsylvania, Illinois, and New York (USA) (20). The presence of SARS-CoV-2 in free-ranging 
animals raises critical concerns about the potential establishment of a new reservoir, future 
spillback to humans and spillover to other species including livestock based on prior studies of 
experimental transmission of other betacoronaviruses from cervids to cattle (21). 30 
 
White-tailed deer are of particular interest because their ACE2 receptor binding residues are 
predicted to have high affinity for SARS-CoV-2 (17); they demonstrate experimental 
susceptibility to and transmission of SARS-CoV-2 (7, 16); and, SARS-CoV-2 antibodies have 
been reported in free-ranging deer (20). In this study, we report the presence of SARS-CoV-2 in 35 
129 out of 360 (35.8%) free-ranging white tailed deer (Odocoileus virginianus) from northeast 
Ohio tested via rRT-PCR between January-March 2021. Genetic sequence data was used to 
estimate the number of human-to-deer transmission events, characterize the genetic diversity of 
the virus in deer, and identify phylogenetic clades of deer-only viruses consistent with deer-to-
deer transmission in certain locations. 40 
 
Results   
We sampled 360 free-ranging white-tailed deer across from nine locations (Figure 1) in northeast 
Ohio (USA) between January-March 2021. Across the entire study, SARS-CoV-2 was detected 
by rRT-PCR in 35.8% of nasal swabs from white-tailed deer (129/360, 95% CI 30.9%, 41.0%, 45 
Table S1). Prevalence estimates varied from 13.5% to 70% across the nine sites (Figure 1). Each 
site was sampled 1-3 times during the study period, for a total of 18 collection dates (Table S2). 
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At least 1 rRT-PCR-positive sample was identified from 17/18 collection dates. Fewer male deer 
(n=149) were sampled than female deer (n=211), but males (Chi2 = 25.45, p-value < 0.0005) and 
heavier deer (Wilcoxon-Mann-Whitney p-value = 0.0056) were more likely to test positive for 
SARS-CoV-2 (Table S3). Other potential predictors including deer age and harvest method (bait 
site versus opportunistically) were not associated with SARS-CoV-2 detection (Table S3). The 5 
highest prevalence estimates of SARS-CoV-2 were observed in four sites that are more urban 
and surrounded by higher human population densities (Figure 1).  
 
We obtained 14 whole-genome sequences from six of the nine sites representing seven different 
collection dates (from 1/26/2021 to 2/25/2021, Table S1). The genetic composition of the deer 10 
sequences reflected the dominant lineages that were circulating in humans in Ohio during 
January-February 2021 (Figure 2, Table S4). The dominant B.1.2 viruses were identified in deer 
at sites 4, 7, 8, and 9. B.1.596 sequences were identified at site 1 at both collection times. A rarer 
lineage, B.1.582, was identified at site 6. No sequences consistent with Alpha (B.1.1.7) or Delta 
(B.1.617.2) were identified in the deer samples; these variants became widespread among the 15 
human population only after February 2021. The deer samples were collected several weeks after 
the peak of the winter epidemic of SARS-CoV-2 in humans in Ohio, when the probability of 
human-to-deer transmission would have been highest, based solely on the amount of virus in 
circulation in humans and potentially the environment at that time. 
 20 
Although B.1.2 was identified in deer at multiple sites, the phylogenetic analysis indicates that 
each site experienced a separate human-to-deer transmission event of a slightly genetically 
different B.1.2 virus (Figure 3). There was no evidence of B.1.2 virus transmitting across sites. 
Deer-to-deer transmission may have occurred within the three sites where multiple samples were 
sequenced: sites 1, 6, and 9 involving B.1.596, B.1.582, and B.1.2 lineages, respectively. It is 25 
impossible to know if deer-to-deer transmission occurred at the other 3 sites, as only one sample 
was successfully sequenced at each. The largest cluster was observed in site 1, where 7 deer 
sequences spanning two collection dates (02/02 and 02/25) fall together within clade B.1.596 
(Figure 4). The 7 deer sequences in this clade contain 4 amino acid substitutions in ORF1 that 
were not observed in the most closely related human viruses despite having been observed in 30 
other viruses globally. Deletions were also observed in the ORF1 and spike proteins.  
 
Discussion  
 
Free-ranging white-tailed deer are distributed broadly across urban, suburban, and rural 35 
environments in the United States, and can live at densities of greater than 45 deer per square 
mile in some areas (22). Ohio is home to >600,000 free-ranging white-tailed deer (23) and 
another 440 commercial deer farms (24). Direct or indirect human-deer interaction occurs in 
parks and backyards, on livestock and cervid farms, in wildlife hospitals, and through hunting. 
The prevalence, distribution, and genetic variation of SARS-CoV-2 strains identified in free-40 
ranging deer across Ohio raises a series of questions. How is the virus directly or indirectly 
transmitted from humans to deer? How extensively and efficiently are free-ranging deer 
transmitting the virus within or between species, in Ohio or other US states? Could viral 
adaptions occur in deer as has been observed in farmed mink? Could white-tailed deer serve as a 
reservoir for future spillovers of SARS-CoV-2 to humans or to other susceptible species? 45 
 
The results from this study indicate that there have been multiple independent introductions of 
SARS-CoV-2 into deer occurring at different times and different locations around northeast 
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Ohio. How these deer acquired SARS-CoV-2 from humans remains unclear. Our results are 
consistent with at least six human-to-deer transmission events occurring during Ohio’s major 
pandemic wave last winter, which peaked from November 2020 – January 2021. Although it is 
difficult to date precisely when these human-to-deer transmissions occurred, human-to-deer  
transmissions may be most likely  during the weeks of highest virus circulation in humans. A 5 
similar temporal association was observed previously during the 2009 H1N1 influenza pandemic 
when the vast majority of transmission events from humans to swine and other species occurred 
during times of peak pandemic activity in humans. While high quality sequence coverage across 
the entire genome proved challenging for these post-mortem samples, it is likely that the 
presence of inhibitors within samples and/or sample degradation between collection and testing 10 
may have occurred. A comprehensive surveillance program in the future could provide 
additional data to help resolve remaining questions. Additionally, the recent wave of Delta 
variant infections in the human population likely represents another opportunity for SARS-CoV-
2 to spillover into white-tailed deer. Sequencing of samples from the fall of 2021 will also 
determine whether the lineages seeded in deer last winter have continued to circulate.  15 
 
It may be unsurprising that deer in urban sites were at higher risk for infection in our study. 
While it remains unknown how human-to-deer transmission occurs mechanistically, urban 
settings provide greater opportunities for direct and indirect contact with human-contaminated 
sources (e.g. trash, backyard feeders, bait stations), as well as contact with waterways that could 20 
be contaminated by multiple sources (11, 25). Viable SARS-CoV-2 is shed in human stool and 
has been demonstrated in wastewater (26, 27). Viable SARS-CoV-2 can be isolated from tap 
water and wastewater under experimental conditions (26). SARS-CoV-2 RNA has been 
identified in urban runoff in Ohio, which is useful for early detection systems. Virus isolation 
was not attempted and it is unknown whether SARS-CoV-2 was viable in these samples and 25 
capable of transmitting to other species (28). The recent detection of genetically disticnt SARS-
CoV-2 virus fragments in New York City wastewater introduces the possibility that SARS-CoV-
2 is transmitting cryptically in rodents (29). Contaminated waterways were also suggested as 
potential sources of infection for the free-ranging mink that tested positive for SARS-CoV-2 in 
Spain (19). Another question is how the virus transmits mechanistically between deer, whether 30 
by aerosols, direct contact, or environmentally. Prospective sequencing of samples from these 
deer populations will help determine whether the virus transmits long-term or only transiently in 
deer.  
 
As SARS-CoV-2 continues to evolve it will be important to determine whether particular virus 35 
lineages are more associated with infection, transmission, disease, and persistence in deer. 
Although free-ranging white-tailed deer are highly susceptible to SARS-CoV-2 infection, it is 
unknown whether this leads to clinical disease. Two previous experimental studies reported 
subclinical infections in white-tailed deer challenged with SARS-CoV-2 (7, 16). The increased 
rate of infection in males found in this study could reflect differential susceptibility between 40 
sexes, but could also be explained by sex-linked differences in behavior that influence disease 
transmission. Male white-tailed deer also have a higher prevalence of chronic wasting disease 
and tuberculosis, which has been attributed to larger male home ranges, increased movement and 
contact with other deer during breeding season (fall/winter), and dynamic male social group 
composition and size (30). Monitoring SARS-CoV-2 evolution in wildlife populations, including 45 
white-tailed deer, mustelids, rodents, and other susceptible species will be critical to future 
COVID-19 management and mitigation efforts. 
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Figure 1. SARS-CoV-2 viral RNA in white-tailed deer across the study locations. (A) The 
nine study sites were spread across a 1000 km2 landscape of varying population density in 
Northeast Ohio. Darker shading corresponds to higher human population density (people per 5 
square mile). Sampling sites one, two, five, seven, and nine are in close proximity to human 
populations and are indicated as urban sites with an asterisk in panels B and C. (B) Nasal swabs 
from white-tailed deer were tested for the presence of SARS-CoV-2 viral RNA using real-time 
reverse transcriptase PCR (rRT-PCR). Estimates of SARS-CoV-2 viral RNA are represented by 
the Ct value of the N1 rRT-PCR target subtracted from 40. Negative samples are represented 10 
with a value of zero. (C) The prevalence of SARS-CoV-2 in the white-tailed deer at each study 
site was estimated using rRT-PCR (Clopper-Pearson exact 95% confidence interval bars).  
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Figure 2. Timing of SARS-CoV-2 waves in Ohio, USA. The number of weekly COVID-19 
cases in humans in Ohio is presented from April 2020 – September 2021 (y-axis). The proportion 
of viruses sequenced each week in Ohio for routine surveillance that are assigned to one of five 
Pango lineages (or “Other”) is indicated by shading. Genomic data prior to December 2020 was 5 
too sparse to reliably estimate lineage frequency. The shading and placement of each circle 
indicates the timing and lineage of SARS-CoV-2 viruses found in white-tailed deer at seven time 
points in this study.  
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Figure 3. Evolutionary relationships of SARS-CoV-2 viruses in white-tailed deer. Maximum 
likelihood tree inferred for SARS-CoV-2 viruses in humans and white-tailed deer in Ohio during 
January – March 2021. Tips are shaded by Pango lineage and major lineages are labeled and 
boxed. Viruses found in white-tailed deer (clusters or singletons) are shaded red and labeled by 5 
location (site 4 not shown due to lower sequence coverage). All branch lengths drawn to scale. 
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Figure 4. Evolutionary relationships of B.1.596 viruses in white-tailed deer. Maximum 
likelihood tree inferred for the cluster of 7 B.1.596 viruses found in white-tailed deer at site 1 
and the 46 most closely related human B.1.596 viruses, all of which were observed in the United 
States during November 2020 – March 2021. Human viruses are shaded by month of collection. 5 
Cartoons indicate the branch where human-to-deer transmission may have occurred, followed by 
likely deer-to-deer transmission within site 1. Amino acid changes observed in the 7 B.1.596 
deer viruses are listed. Bootstrap values are provided for key nodes and all branch lengths are 
drawn to scale.  
 10 
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MZ028751.1|Ohio|Dec-30-2020
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MW812762.1|West Virginia|Mar-03-2021

MW902026.1|Arizona|Mar-12-2021

MW901595.1|Ohio|Mar-25-2021

MW731181.1|Ohio|Feb-02-2021
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