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Abstract  1 
Intracranial electroencephalographic (icEEG) recordings provide invaluable insights 2 
into neural dynamics in humans due to their unmatched spatiotemporal resolution. 3 
Yet, such recordings reflect the combined activity of multiple underlying generators, 4 
confounding the ability to resolve spatially distinct neural sources. To empirically 5 
quantify the listening zone of icEEG recordings, we computed the correlations 6 
between signals as a function of distance (expressed as full width at half maximum; 7 
FWHM) between 8,752 recording sites in 71 patients implanted with either subdural 8 
electrodes (SDE), stereo-encephalography electrodes (sEEG), or high-density sEEG 9 
electrodes. As expected, for both SDE and sEEG electrodes, higher frequency signals 10 
exhibited a sharper fall off relative to lower frequency signals. For broadband high 11 
gamma (BHG) activity, the mean FWHM of SDEs (6.6 ± 2.5 mm) and sEEGs in gray 12 
matter (7.14 ± 1.7 mm) was not significantly different, however the FWHM for low 13 
frequencies recorded by sEEGs was 2.45 mm smaller than SDEs. White matter sEEG 14 
electrodes showed much lower power for frequencies 17 to 200 Hz (q < 0.01) and a 15 
much broader decay (11.3 ± 3.2 mm) than gray matter electrodes (7.14 ± 1.7 mm). 16 
The use of a bipolar referencing scheme significantly lowered FWHM for sEEG 17 
electrodes, as compared with a white matter reference or a common average 18 
reference. These results outline the influence of array design, spectral bands, and 19 
referencing schema on local field potential recordings and source localization in icEEG 20 
recordings in humans. The metrics we derive have immediate relevance to the 21 
analysis and interpretation of both cognitive and epileptic data.   22 
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Introduction 23 
Invasive neural recordings provide a unique window into human cognition. Over the 24 
last several decades, intracranial field potential recordings have yielded profound 25 
insights into a variety of neural systems including speech production (Cogan et al. 26 
2014; Pasley et al. 2012), auditory processing (Miller et al. 2021), language (Conner 27 
et al. 2019; Forseth et al. 2018), visual perception (Martin et al. 2019), motor control 28 
(Salari et al. 2019), decision making (Bartoli et al. 2018), emotion (Guillory and 29 
Bujarski 2014), and memory (Derner et al. 2018; Foster et al. 2012). An array of 30 
electrode designs and recording scales are now being implemented and ongoing 31 
progress in neuroengineering is yielding rapid advances in electrode design. The gap 32 
between what recording scale is technologically possible and that which is optimal for 33 
understanding the neurobiology of cognition, epilepsy or to provide inputs for brain 34 
machine interfaces, remains unknown (Marblestone et al. 2013; Pesaran et al. 2018). 35 
Answers to these questions, especially the optimal form factor required to resolve 36 
spatially distinct sources within the complex electric field landscape of the brain will 37 
influence the design of newer recording interfaces (Cybulski et al. 2015).  38 
 39 
The uncertainty of reconstructing the spatial and temporal sources based on multi-40 
electrode field potentials - the inverse source problem (Herreras 2016; Pesaran et al. 41 
2018) is a direct consequence of the imperfect resolution of recording electrodes and 42 
the source properties of the electric field landscape. While the complex geometry of 43 
single neurons makes the precise modeling of even one neuron’s activity in isolation 44 
difficult to model (Nunez and Srinivasan 2005), the field potential at any recording 45 
electrode is an aggregate of quasi-synchronously active dipoles from a multitude of 46 
spatially distributed neural sources (Buzsáki et al. 2012; Łęski et al. 2013). Not all 47 
neurons contribute to this electric field landscape at any given instant, and different 48 
patterns of neural activity may generate similar field potential measures depending on 49 
the distance and the density of recording sites. The neural tissue that comprises this 50 
electric field landscape is itself heterogenous, with conductivity and dielectric 51 
constants that vary based on cell packing density and cortical location (Bingham et al. 52 
2020; Howell and McIntyre 2016; Nunez and Srinivasan 2005).  53 
 54 
At the resolution currently provided by macroelectrodes used for human intracranial 55 
electroencephalographic (icEEG) recordings, the measured field potential activity is 56 
not a direct measure of the activity of local cell assemblies, but rather a larger-scale 57 
measure of activity conducted through neural space. This volume conduction can lead 58 
to linear relationships between simultaneously recorded signals at neighboring 59 
electrodes, and it is hard to disentangle whether high levels of correlated activity 60 
between two electrodes are due to underlying neural dynamics (such as common input 61 
to both regions) or due to volume conduction of voltage from neighboring regions 62 
(Kellis et al. 2016). To resolve this, we define and quantify volume conduction as the 63 
instantaneous signal correlation at zero-time lag between electrode pairs, which 64 
quantifies common activity due to volume conduction. The lower the instantaneous 65 
correlation between electrodes, the lower the signal redundancy of each electrode’s 66 
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listening zone and the greater its uniqueness. Determining the optimal spacing and 67 
location of electrodes to not only minimize signal redundancy, but to also capture 68 
separable field potential recordings is a pivotal hurdle for understanding and optimizing 69 
invasive field potential recordings in humans (Cybulski et al. 2015).  70 
 71 
To investigate the ability of multiple clinically used electrode types in resolving spatially 72 
distinct activity, we compared task-related cross-correlations in activity across 73 
subdural electrodes (SDE), stereo-electroencephalography electrodes (sEEG), and 74 
high-density sEEG (hdsEEG) electrodes in patients undergoing monitoring for the 75 
localization of medically intractable epilepsy. We analyzed the impact that referencing 76 
strategy, electrode location, and frequency components of the signal have on signal 77 
redundancy and the influence this could have on neural array design.  78 
 79 
Materials and Methods 80 
Participants: 71 patients (33 female, 18-65 years) participated in this research after 81 
providing written informed consent. All participants were semi-chronically implanted 82 
with intracranial electrodes for the localization of pharmaco-resistant epilepsy. All 83 
experimental procedures were reviewed and approved by the Committee for the 84 
Protection of Human Subjects (CPHS) of the University of Texas Health Science 85 
Center at Houston as Protocol Number HSC-MS-06-0385. 86 
 87 
Electrode Implantation and Data Recording: Data were acquired from either subdural 88 
grid electrodes (SDEs; 18 patients), stereotactically placed depth electrodes (sEEGs; 89 
47 patients) or high-density depth electrodes (hdsEEGs; 6 patients) (Figure 1C,D). 90 
SDEs were subdural platinum-iridium electrodes embedded in a silicone elastomer 91 
sheet (PMT Corporation; top-hat design; 3mm diameter cortical contact), surgically 92 
implanted via a craniotomy (Conner et al. 2011; Pieters et al. 2013; Tandon 2012; 93 
Tong et al. 2020). sEEGs were implanted using a Robotic Surgical Assistant (ROSA; 94 
Medtech, Montpellier, France) (Rollo et al. 2020; Tandon et al. 2019). Each sEEG 95 
probe (PMT corporation, Chanhassen, Minnesota) was 0.8 mm in diameter and had 96 
8-16 electrode contacts. For the standard sEEG electrodes, each contact was a 97 
platinum-iridium cylinder, 2.0 mm in length and separated from the adjacent contact 98 
by 1.5 - 2.43 mm. Each patient had 12 - 20 sEEG probes implanted. For hdsEEG 99 
electrodes, contacts were 0.5 mm in length and separated from the adjacent contact 100 
by 0.5 mm. Each patient had 1 - 4 hdsEEG probes implanted. Following surgical 101 
implantation, electrodes were localized by co-registration of pre-operative anatomical 102 
3T MRI and post-operative CT scans in AFNI (Cox 1996). Electrode positions were 103 
projected onto a cortical surface model generated in FreeSurfer (Dale et al. 1999), and 104 
displayed on the cortical surface model for visualization (Pieters et al. 2013). 105 
Intracranial data were collected during research experiments starting on the first day 106 
after electrode implantation for sEEGs and two days after implantation for SDEs. Data 107 
were digitized at 2 kHz using the NeuroPort recording system (Blackrock 108 
Microsystems, Salt Lake City, Utah), imported into Matlab, initially referenced to the 109 
white matter electrode used as a reference for the clinical acquisition system and 110 
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visually inspected for line noise, artifacts and epileptic activity. Electrodes with 111 
excessive line noise or localized to sites of seizure onset were excluded. Trials 112 
contaminated by inter-ictal epileptic spikes were discarded.  113 
 114 
Signal Analysis: Across all 75 patients, a total of 2,546 SDE, 8,493 sEEG, and 204 115 
hdsEEG electrode contacts were implanted. Of these, 704 SDE, 1,736 sEEG, and 51 116 
hdsEEG were excluded due to proximity to the seizure onset zone, frequent inter-ictal 117 
epileptiform spikes or line noise. The remaining electrodes included were: 1,842 SDE, 118 
6,757 sEEG, and 153 hdsEEG electrodes. Analyses were performed by bandpass 119 
filtering raw icEEG data from each electrode into 5 frequency bands (Theta, 4-8 Hz; 120 
Alpha, 8-15 Hz; Beta, 15-30 Hz; Narrowband Gamma, 30-60 Hz; Broadband High 121 
Gamma, 70-150 Hz). Following the removal of line noise (zero-phase 2nd order 122 
Butterworth band-stop filters), band-limited voltage traces were obtained (zero-phase 123 
3rd order Butterworth bandpass filters).  124 
 125 
Referencing and Re-referencing strategy: During the recording session, a non-noisy 126 
clinical hardware reference electrode located in white matter was used as the 127 
reference electrode. For analysis, recordings were re-referenced using one of the 128 
following schemes (Figure 1B):  129 

Common average reference (CAR): Offline, raw data were visually inspected and 130 
electrodes exhibiting electrical noise or epileptiform artifacts were excluded from the 131 
common average. Neural data was then re-referenced to the average of all 132 
remaining electrodes that were included in this CAR.  133 
Low-Power CAR: Broadband high gamma activity (70 – 150 Hz) was extracted for 134 
each time series (using the original clinical reference) using a frequency domain 135 
Hilbert transform and the percentage change in power  was measured relative to a 136 
baseline time window of -500 to -100 ms before stimulus onset. If the percentage 137 
change in mean power was less than 20%, electrodes were included in the low-138 
power CAR signal averaging.  139 
White Matter referencing: We identified all sEEG and hdsEEG electrodes located in 140 
white matter, gray matter, and cerebrospinal fluid (CSF) based on their position 141 
relative to their FreeSurfer surfaces and included all white matter located electrodes.  142 
Bipolar referencing: For the bipolar re-referencing, each electrode on the sEEG and 143 
hdsEEG probes was re-referenced to its closest neighboring non-noisy electrode 144 
located on the same probe. Electrodes on the end of the probe or whose nearest 145 
neighboring electrode was noisy were excluded from the analysis.  146 

 147 
Experimental Design and Statistical Analyses:  148 

Experimental Task: All patients participated in an auditory naming-to-definition task 149 
(Figure 1A) (Forseth et al. 2018), producing single word responses to an auditory 150 
presented definition. 70+ auditory stimuli (mean 87) were presented to each patient 151 
using stereo speakers (44.1 kHz, 15” MacBook Pro 2015) (Forseth et al. 2018). Stimuli 152 
had an average duration of 1970 ± 360 ms, and an inter-stimulus interval of 5000 ms. 153 
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The time period of interest for this analysis was from 0 to 1000 ms following auditory 154 
stimulus onset. 155 

Full width at half-maximum (FWHM) measure: To compare correlation between 156 
electrode pairs over distance, we calculated the full width at half maximum (FWHM) 157 
correlation. We first identified all non-noisy pairs of electrodes that were less than 158 
30mm from each other (in Euclidean distance). Pairwise Pearson’s correlation was 159 
calculated between the band-limited voltage traces for all electrode pairs for each trial 160 
(Figure 1A). This correlation value was then averaged across all trials to return one 161 
correlation value for each electrode pair and frequency range. A decay function was 162 
fit to the absolute values of the correlations within each individual patient (Figure 1E). 163 
The decay function was defined as r = (1 – β)d, where the correlation r decayed based 164 
on the decay factor β and the distance d. The decay factor was optimized using a 165 
least-squares fit. From this decay function, we extracted the distance at which the 166 
correlation equaled 0.5 - half the theoretical maximum correlation (half width at half 167 
maximum; HWHM). The HWHM value was doubled to generate the FWHM value for 168 
each condition (Figure 1E). For visualization purposes, the absolute values of these 169 
correlations for each patient were binned based on Euclidean distance into 2.5mm 170 
bins. 171 

Validation on Simulated Data: Simulated timeseries data were created using the 172 
neural digital signal processing toolbox (Cole et al. 2019). 100 unique power law 173 
timeseries were generated in each of the 5 previously described frequency bands of 174 
interest with a power-law exponent of -2, a sampling frequency of 2,000 Hz, and a 175 
simulation time of 1.5 seconds to account for the removal of filtering edge effects. The 176 
Pearson’s correlation coefficient was calculated between each pair of simulated 177 
signals to generate the actual correlation measurement. To calculate the 178 
reconstructed correlation dataset, timeseries from each frequency range were first 179 
combined to generate a summed electric field signal. Analyses were performed by 180 
bandpass filtering combined simulated data into the 5 previous described frequency 181 
bands using identical methods to the main analysis. Signals were randomly re-paired 182 
to create 75 simulated trials, approximately matching experimental conditions 183 
(Supplemental Figure 1).  184 

Power Spectral Density (PSD) Analysis: Thomson’s Slepian multitaper power 185 
spectral density (PSD) estimate of the signal was calculated. Significant differences 186 
between power in gray and white matter was calculated with Wilcoxon sign rank tests, 187 
corrected for multiple comparisons using a Benjamini-Hochberg false detection rate 188 
(FDR) threshold of q<0.01. 189 

Linear Mixed Effects (LME) Modelling: Linear mixed effects models were used to 190 
incorporate random and fixed-effects into a linear model. Fixed effects in our model 191 
were electrode type and frequency band. The random effect in our model was the 192 
participant. Electrode type was SDE, sEEG or hdsEEG. Data were assumed to be 193 
normal in distribution for statistical comparison. 194 

Data Visualization using Raincloud plots: Raincloud plots, incorporating raw data 195 
points, probability density, and median, mean, confidence intervals, were utilized to 196 
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visualize data (Allen et al. 2019). Reported values for each category are median ± 197 
interquartile range.  198 
 199 
Results 200 
We utilized a correlation-based analysis to compute the falloff of cross-correlation as 201 
a function of distance, between pairs of all non-noisy electrodes regardless of cortical 202 
location. We constrained our analysis to task-related neural data, based on prior 203 
evidence that the spatial spread of correlated activity is lower during activity as 204 
opposed to rest (Muller et al. 2016).  Importantly, our analyses compare differences in 205 
FWHM across referencing conditions, thereby preserving inter-electrode distance as 206 
a variable. By preserving inter-electrode distance in our FWHM measures, we 207 
effectively compute a local reduction in correlation, rather than a global reduction, as 208 
is captured in other distance-averaged correlation comparisons. 209 
 210 

 211 
 212 
Figure 1. Experimental Design. (A) Schematic representation of the auditory naming to definition task. 213 
Colored bar indicates task-related analysis window (blue; 0 to 1000ms) during which cross-correlation 214 
(r) is calculated between the waveforms of two exemplar neighboring electrodes (red and black; 215 
exemplar traces). (B) Schematic representation of the neural data acquisition and re-referencing 216 
strategies. (C) Schematic representation of the three electrode scales analyzed: subdural electrodes 217 
(SDE) 3 mm diameter disc, stereo-electroencephalography (sEEG) electrodes 2-mm long ring, and 218 
high-density sEEG (hdsEEG) electrodes 0.5-mm long ring. sEEG and hdsEEG contacts are depicted 219 
in grey. Yellow arrows depict dipole orientation within pictured cortical gray matter. (D) Representative 220 
computed tomography (CT) scan of a patient with concurrently implanted SDE and sEEG electrodes. 221 
(E) Example of full width at half maximum (FWHM) calculation. The correlation coefficient was 222 
measured using the raw voltage of every combination of electrode pairs within 30mm of each other, for 223 
each frequency range. Correlation values were fit with an exponential decay function. Half width at half 224 
maximum (HWHM) correlation was measured from this exponential decay function and doubled to 225 
generate the FWHM value for each condition. 226 
 227 
 228 
 229 
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Effect of electrode scale and signal frequency on listening zone 230 
We first compared the decay function (indexed by the FWHM) for SDE vs sEEG 231 
electrodes in gray matter, to determine whether a subdural or intracortical location of 232 
the icEEG electrode significantly influences the listening zone (Figure 2). To compare 233 
differences in FWHM across frequency and electrode scale, we used a linear mixed 234 
effects (LME) model with fixed effects modeling frequency bands and electrode scale 235 
(SDE or sEEG). This model explained a large proportion of the variance of FWHM 236 
measures (r2 = 0.65). The electrode type had a significant effect on FWHM (t(321) = -237 
4.5, b = -2.4, P < 0.001, 95% CI -3.5 to -1.4), which was 2.45 mm smaller for sEEG 238 
electrodes than for SDE electrode pairs, when comparing across all frequency ranges. 239 
The FWHM of the decay was smaller as frequency increased (LME: t(321) = -16.0 b 240 
= -1.8, P < 0.001, 95% CI -2.0 to -1.6) and there was a significant interaction between 241 
frequency and electrode type (t(321) = 3.2, b = -0.42, P = 0.001, 95% CI 0.17 to 0.68) 242 
indicating that the spatial extent of correlation is significantly dependent on frequency 243 
and electrode scale.   244 
 245 
For BHG alone, electrode type did not have a significant effect on FWHM (t(34) = 1.42, 246 
b = 1.07, P = 0.17, 95% CI -0.5 to 2.6). The mean FWHM in BHG for SDE electrodes 247 
(6.6 ± 2.5 mm) was slightly lower than for gray matter located sEEG electrodes (7.14 248 
± 1.7 mm), however this difference was not significant.  249 
 250 

 251 
Figure 2. Across-electrode differences in correlation over distance. Coverage map of locations of 252 
SDE electrodes (A; 18 patients, 1,842 electrodes, 37,272 electrode pairs) and gray matter located 253 
sEEG electrodes (B; 47 patients, 2,916 electrodes, 47,522 electrode pairs). Average full width at half 254 
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maximum (FWHM) was calculated and plotted for each patient for SDE (C) and sEEG (D) electrode 255 
pairs. Abbreviations: narrowband gamma (NBG), broadband high gamma (BHG).  256 
 257 
Location dependence of sEEG electrode listening zone 258 
SDEs sit on the cortical surface, proximal to local field generators, whereas many 259 
individual sEEG electrodes are located within white matter, distant from the cortical 260 
surface and measuring far field potentials. Thus, the physical location of sEEG 261 
electrodes could present potentially confounding correlation measures across 262 
distance. An LME model with fixed effects modeling frequency and electrode location 263 
(white matter or gray matter located sEEGs) explained a large proportion of the 264 
variance in FWHM measures (r2 = 0.78). sEEG electrodes located in gray matter had 265 
a much smaller FWHM (8.3 mm lower) compared to those located in white matter 266 
(LME: t(466) = -17.3, b = -8.3, P < 0.001, 95% CI -9.2 to -7.3) (Figure 3, Supplementary 267 
Figure 2). Additionally, the interaction between FWHM and frequency range 268 
significantly depended on electrode location (t(466) = 6.6, b = 0.95, P < 0.001, 95% CI 269 
0.67 to 1.2) with low frequencies showing a broader listening zone in white matter 270 
electrodes. For theta frequencies, the mean FWHM for sEEG electrodes located in 271 
white matter was 20.2 ± 4.3 mm, whereas the mean FWHM for gray matter sEEG 272 
electrodes was 12.1 ± 1.8 mm.  273 
 274 
When comparing the effect of electrode location on BHG activity, an LME model with 275 
fixed effects modeling electrode location explained a large proportion of the variance 276 
of the FWHM measures (r2 = 0.85). For BHG frequencies, the mean FWHM for sEEG 277 
electrodes located in white matter was 11.3 ± 3.2 mm, whereas the mean FWHM for 278 
sEEG electrodes located in gray matter was 7.14 ± 1.7 mm. For the BHG band, 279 
electrode location did have a significant effect on FWHM of signal correlation decay 280 
(t(92) = -13.5, b = -4.2, P < 0.001, 95% CI -4.8 to -3.6). Of course, there is not much 281 
power in white matter recordings and these correlations may be higher given these 282 
lower amplitude signals. To assess this, we compared mean power spectral density 283 
(PSD) plots for sEEG electrodes located in white matter or gray matter, demonstrating 284 
the much lower power in white matter sEEG electrodes (for all frequencies 18 to 200 285 
Hz; q < 0.01) (Supplementary Figure 3).  286 
 287 
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 288 
Figure 3. Anatomical location of sEEG contacts in gray or white matter significantly influences 289 
full width at half maximum (FWHM) correlation measures. Raincloud plots depicting FWHM values 290 
for each patient in each frequency range for all pairs of white matter located (A; 2,649 electrodes; 291 
43,957 electrode pairs) and gray matter located (B; 2,916 electrodes; 47,522 electrode pairs) pairs. 292 
Abbreviations: narrowband gamma (NBG), broadband high gamma (BHG).  293 
 294 
Referencing strategies for SDE and sEEG electrodes 295 
Next, we examined the influence of referencing schemes on measured correlation. 296 
Based on evidence that referencing strategies can eliminate or increase spurious 297 
correlation between recording electrodes (Li et al. 2018), we compared several 298 
commonly used referencing schemes; common average reference (CAR), low-power 299 
CAR, white matter referencing, and bipolar referencing, across SDE and gray matter 300 
located sEEG electrode pairs (Figure 4).  301 
 302 
A two-way ANOVA was conducted comparing effects of referencing scheme and 303 
frequency range on FWHM measures. For SDE electrode pairs, there was no 304 
significant interaction between the referencing scheme and the frequency band on 305 
FWHM measures (F(4,170) = 0.01, P = 0.99). There was a significant effect of 306 
frequency (F(4,170) = 57.96, P < 0.001) on FWHM, but no significant effect of 307 
referencing scheme (F(1,170) = 0.07, P = 0.79). For BHG activity, SDEs showed a 308 
correlation decay of 6.6 ± 2.5 mm FWHM for the CAR scheme (Figure 4A), and 6.6 ± 309 
2.6 mm FWHM for the low-power CAR scheme (Figure 4B). For BHG frequency 310 
specifically, a two-way ANOVA showed no significant effect of referencing scheme on 311 
FWHM for SDE electrodes (F(1,35) = 5.5 x 10-5, P = 0.99). For theta activity, SDEs 312 
showed a correlation decay of 13.0 ± 2.3 mm FWHM for the CAR scheme (Figure 4A), 313 
and 13.1 ± 2.3 mm FWHM for the low-power CAR scheme (Figure 4B). 314 
 315 
For gray matter located sEEG electrode pairs, a two-way ANOVA showed a significant 316 
effect of referencing type (F(2,690) = 586.48, P < 0.001) and frequency (F(4,690) = 317 
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207.83, P < 0.001) on FWHM values. There was a significant interaction between 318 
frequency and referencing scheme on FWHM values (F(8,690) = 9.92, P < 0.001). For 319 
BHG activity, sEEGs showed a correlation decay of 7.14 ± 1.7 mm FWHM for the CAR 320 
scheme (Figure 4C), 7.62 ± 1.8 mm for the white matter referencing scheme (Figure 321 
4D), and 3.83 ± 0.45 mm for the bipolar referencing scheme (Figure 4E). For BHG 322 
frequency specifically, a two-way ANOVA showed a significant effect of referencing 323 
scheme on FWHM for sEEG electrodes (F(2,140) = 94.4, P < 0.001). For theta activity, 324 
sEEGs showed a correlation decay of 12.1 ± 1.8 mm FWHM for the CAR scheme 325 
(Figure 4C), 14.4 ± 3.8 mm for the white matter referencing scheme (Figure 4D), and 326 
7.19 ± 1.6 mm for the bipolar referencing scheme (Figure 4E). 327 
 328 

 329 
Figure 4. Referencing scheme comparison across SDEs and gray matter located sEEGs. Average 330 
full width at half maximum (FWHM) was calculated and plotted for each patient for SDE (A-B; n = 18 331 
patients) and sEEG (C-E; n = 47 patients) electrode pairs in each frequency range of interest. For SDE 332 
electrode pairs (1,842 electrodes; 37,272 electrode pairs), average FWHM was compared using either 333 
common average reference (CAR) (A) or low-power CAR scheme (B). For gray matter located sEEG 334 
electrode pairs (2,916 electrodes; 47,522 electrode pairs), average FWHM was compared using either 335 
CAR (C), white matter (D), or bipolar referencing schemes (E). Abbreviations: narrowband gamma 336 
(NBG), broadband high gamma (BHG). 337 
 338 
Listening zone of high-density sEEG (hdsEEG) electrodes 339 
The final group analysis compared pairwise correlation between hdsEEG electrodes 340 
(6 patients; 153 electrodes) across referencing scheme. These electrodes were 341 
cylinders of 0.5 mm length as compared to 2 mm contacts in standard sEEGs. (Figure 342 
5A). For broadband gamma activity, hdsEEG electrode pairs (CAR) had a mean 343 
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FWHM of 6.5 ± 1.4 mm relative to the FWHM for gray matter located sEEG electrode 344 
pairs (7.14 ± 1.7 mm) and the SDE electrode pairs (6.6 ± 2.5 mm). For BHG frequency 345 
specifically, a two-way ANOVA showed no significant effect of referencing scheme on 346 
FWHM for hdsEEG electrodes (F(2,17) = 0, P = 0.998). For theta activity, hdsEEG 347 
electrode pairs (CAR) had a mean FWHM of 17.3 ± 6.7 mm relative to FWHM for gray 348 
matter sEEG electrode pairs (12.1 ± 1.8 mm) and SDE electrode pairs (13.0 ± 2.3 349 
mm).  350 
 351 
We compared CAR (Figure 5C), low-power CAR (Figure 5D), and white matter (Figure 352 
5E) referencing schemes for hdsEEG electrode pairs. A two-way ANOVA was 353 
conducted comparing effects of referencing scheme and frequency range on FWHM 354 
measures. There was no significant interaction between the effects of referencing 355 
scheme and frequency range on FWHM measures (F(8,75) = 0.04, P = 1.0).  Higher 356 
frequencies had significantly lower FWHM than lower frequencies (F(4,75) = 19.59, P 357 
< 0.001), and referencing scheme had no effect on FWHM measures (F(2,75) = 0.11, 358 
P = 0.90). The location of hdsEEG electrodes in white or gray matter had no significant 359 
effect on correlation over distance measures (Supplementary Figure 4).  360 
 361 
 362 

 363 
Figure 5. Referencing scheme comparison across hdsEEG electrodes. hdsEEG electrodes have 364 
0.5 mm in length electrodes (A) and an exemplar hdsEEG electrode implanted in one patient is shown 365 
in yellow (B). Average full width at half maximum (FWHM) was calculated and plotted for each patient 366 
for hdsEEG electrode pairs in each frequency range of interest. For hdsEEG electrode pairs (6 patients; 367 
153 electrodes; 1,967 electrode pairs), average FWHM was compared using either CAR (C), low-power 368 
CAR (D) or white matter referencing schemes (E). Abbreviations: narrowband gamma (NBG), 369 
broadband high gamma (BHG). 370 
 371 
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 372 
Methodological validation on simulated neural data 373 
To validate our analysis pipeline, we also analyzed simulated neural time series data 374 
(Cole et al. 2019) in the known correlation values between narrowband signals 375 
(Supplementary Figure 1). We found no significant differences between the actual 376 
correlations and those reconstructed after running the data through our analysis 377 
pipeline.   378 
 379 
Discussion 380 
We have systematically quantified the influence of electrode type, reference scheme 381 
and frequency band on the ability to dissociate sources at different scales in human 382 
icEEG recordings. Our work shows significant differences in the listening zone across 383 
electrode type and frequency band, with SDEs exhibiting the largest listening zone on 384 
average relative to sEEGs or hdsEEGs for low frequencies. When considering only 385 
high gamma activity, the listening zone was comparable across SDE and sEEG 386 
electrodes. The location of sEEG electrodes significantly influenced FWHM measures, 387 
with sEEG electrodes located in white matter exhibiting lower power and greater 388 
FWHM values than those located in gray matter. There is a significant interaction 389 
between spectral band and FWHM for all electrode types, with high frequency gamma 390 
signals exhibiting faster fall off of correlation over distance relative to lower frequency 391 
signals. Referencing schema only had a significant effect on FWHM measures for 392 
sEEG electrodes, with bipolar referencing generating significantly lower FWHM 393 
measures as compared with common average or white matter referencing.  394 
 395 
Influence of electrode type on FWHM measures 396 
The location of each electrode, whether atop the cortical surface (SDEs) or 397 
intracortically located (sEEGs) led to substantive differences in the listening zone of 398 
these electrodes. Across all frequencies, SDEs had broader spread of correlation over 399 
distance, with an average FWHM 2.45 mm greater than sEEGs, indicating a more 400 
local listening zone for sEEG electrodes. Importantly, the mean FWHM for broadband 401 
high gamma alone was not significantly different between SDE (6.6 ± 2.5 mm) and 402 
sEEGs (7.14 ± 1.7 mm), indicating a preserved locality of BHG across electrode scale. 403 
 404 
The hdsEEG electrodes explored in this analysis are parts of hybrid probes along with 405 
traditional sEEG electrodes, and the junction between the conducting and non-406 
conducting edges of the electrode are negligible, as the diameter of the probe is 407 
identical across type. While SDE, sEEG, and hdsEEG electrodes have roughly similar 408 
impedance, their spacing and location relative to the cortical sources varies 409 
significantly. hdsEEG electrode pairs had mean FWHM of 6.5 ± 1.4 mm for BHG, 410 
exhibiting the most local listening zone for correlation over distance, albeit in a smaller 411 
patient cohort with less electrode pairs in each patient than the SDE and sEEG 412 
comparisons.  413 
 414 
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While there is no consensus on the effect that various recording electrodes have on 415 
potential distribution, an electrode’s surface impedance, distance from the source, and 416 
source strength all affect source localization (Ellenrieder et al. 2021; Næss et al. 2021; 417 
Vermaas et al. 2020). In addition to the inverse problem, a physical factor confounding 418 
recorded signals is that electrodes act as capacitors, and their size and impedance 419 
(the degree of resistance and reactance with surrounding electric potentials) impacts 420 
the resolution of the data (Hnazaee et al. 2020; Moffitt and McIntyre 2005). Fitting with 421 
the literature, our analyses reveal differences in the listening zone across electrode 422 
types. The SDE, sEEG, and hdSEEG electrodes examined here all have varying 423 
electrode size, orientation, spacing, and cortical location, which introduces distinct 424 
physical differences in resolution, especially when considering activity in lower 425 
frequency ranges.  426 
 427 
Interaction between spectral band and FWHM measures 428 
When examining properties of volume conduction, we found a significant interaction 429 
with the spectral band of the filtered EEG signal. SDE electrode pairs exhibited a 430 
significant falloff in FWHM as frequency band of interest increased, with mean FWHM 431 
being 13.0 ± 2.3 mm for the theta range, whereas mean FWHM for BHG was 6.6 ± 2.5 432 
mm (Figure 2C). This increased FWHM for SDEs at lower frequencies is consistent 433 
with a larger spatial reach of lower frequency potential produced by more extensive 434 
neuronal generators, which likely induces common activity across a larger region of 435 
neural space than smaller generators of higher-frequency activity (Ellenrieder et al. 436 
2021). This difference in FWHM across frequency range was less robust in gray matter 437 
located sEEG electrode pairs, with FWHM being 12.1 ± 1.8 mm for theta and 7.14 ± 438 
1.7 mm for BHG range (Figure 2D). When comparing electrode location, white matter 439 
located sEEG electrodes did exhibit more frequency-varying falloff of spatial source 440 
over distance relative to gray matter located sEEG electrodes (Figure 3). Across 441 
electrode scale, high frequency gamma signals exhibited a faster fall off of correlation 442 
values across distance, consistent with a smaller spatial reach of a local, weaker, and 443 
less synchronous high frequency gamma signal (Dubey and Ray 2020; Ellenrieder et 444 
al. 2021; Łęski et al. 2013). This is concordant with synchronous low frequency activity 445 
engaging a larger neural substrate than more focal and transient high-frequency 446 
activity (Lachaux et al. 2012; Parvizi and Kastner 2018; Rouse et al. 2016; Torres et 447 
al. 2019). Interestingly, this fall off of correlation values at lower frequencies varied 448 
across electrode type. The mean FWHM for BHG for gray matter sEEG electrodes 449 
(7.14 ± 1.7 mm), SDE electrodes (6.6 ± 2.5 mm), and hdsEEG electrodes (6.5 ± 1.4 450 
mm) were close in value, whereas the mean FWHM for theta for hdsEEG electrodes 451 
(17.3 ± 6.7 mm) was greater than FWHM for SDEs (13.0 ± 2.3 mm) and gray matter 452 
sEEGs (12.1 ± 1.8 mm).  453 
 454 
sEEG electrode location in white or gray matter influences FWHM measures 455 
Within sEEG electrode pairs, signal redundancy between electrodes in gray matter 456 
was significantly decreased relative to their white matter located counterparts 457 
(Supplementary Figure 2). Signal attenuation is dependent on the conductivity ratio of 458 
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the medium (Rogers et al. 2020), and white matter is considered largely anisotropic 459 
(Nunez and Srinivasan 2005), especially at this scale of field potential recording 460 
(Howell and McIntyre 2016). As such, white matter has been found to reflect activity 461 
from distant gray matter signals as well as volume conduction from nearby gray matter, 462 
thus increasing the likelihood of spurious correlation with activity in adjacent or distant 463 
regions (Mercier et al. 2017). While average FWHM was significantly greater for white 464 
matter located sEEGs (BHG: 11.3 ± 3.2 mm) than gray matter located sEEGs (BHG: 465 
7.14 ± 1.7 mm), the average power of activity recorded at white matter located sEEG 466 
electrodes was significantly lower than gray matter located electrodes (Supplementary 467 
Figure 3). This is consistent with previous findings that electrodes located farther from 468 
gray matter signal generators record lower amplitude signals (Mercier et al. 2017; 469 
Young et al. 2019). As such, the current analyses comparing FWHM across electrode 470 
type, referencing scheme, and frequency spectra considered only gray matter located 471 
sEEG electrodes to avoid confounds in measures of correlation over distance due to 472 
signal attenuation.  473 
 474 
Impact of referencing schema on FWHM measures 475 
Referencing schemes have an often-understated impact on signal detection, and how 476 
the data are referenced is a critical consideration in analyses of neural data (Li et al. 477 
2018). The process of referencing neural signals has been found to distort and 478 
artificially inflate neural activation, functional connectivity and other measures (Li et al. 479 
2018; Liu et al. 2015; Mercier et al. 2017). While measures of correlation should be 480 
scale-independent, the process of re-referencing likely influences correlation 481 
measures due to a decrease in distant noise, aiding in improved signal to noise ratio 482 
between nearby electrode pairs (Hnazaee et al. 2020). In our data, referencing 483 
scheme did not significantly influence FWHM measures for SDE or hdsEEG electrode 484 
pairs. However, for sEEG electrode pairs, we found a significant effect of referencing 485 
scheme on FWHM measures (Figure 4D,E). We found the choice of bipolar 486 
referencing scheme generates significantly lower FWHM measures between proximal 487 
sEEG electrode pairs, as compared with CAR and white matter referencing. These 488 
results corroborate previous findings (Li et al. 2018) comparing the effect of 489 
referencing method on Pearson’s correlation values averaged across sEEG electrode 490 
pairs regardless of inter-electrode distance.  491 
 492 
While common average referencing is commonly implemented in icEEG analyses, 493 
there are many considerations when implementing a bipolar referencing scheme (Li 494 
et al. 2018; Mercier et al. 2017). While bipolar referencing removes all signal common 495 
to neighboring electrodes, this does not take into account anatomical location or dipole 496 
orientation, which can distort source localization (Hu et al. 2010). Depending on the 497 
location and orientation of sEEG electrodes relative to sulci and sources, bipolar 498 
referencing could have quite a variable effect on signal detection. Additionally, it is 499 
common when analyzing icEEG datasets to combine activity recorded via SDE and 500 
sEEG electrodes. In this case, the question of how to implement bipolar referencing in 501 
SDE electrodes becomes geometrically complex. As such, the FWHM for sEEG 502 
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electrode pairs under the CAR scheme is found to reflect a very local listening zone 503 
(7.14 ± 1.7 mm), and these data suggest referencing scheme is a critical consideration 504 
in ensuring common noise to all electrodes is eliminated and does not confound further 505 
analysis.  506 
 507 
Comparison with previous studies 508 
From neuroscientific research to the continuing development of brain-computer 509 
interfaces, decoding neural activity remains a necessary and complex goal. As neural 510 
interfaces continue to develop and our ability to record electrical activity from the brain 511 
at smaller scales advances, the overlap between what is feasible and what is 512 
informative remains unclear. A pivotal question of optimizing coverage, recording 513 
scale, or inter-electrode distance when designing neural interfaces remains a critical 514 
constraint. Thus, optimal balance between electrode type, size, and spacing of 515 
contacts will improve comprehensive mapping of cortical activity while minimizing 516 
redundancy of information.  517 
 518 
Determining the optimal spacing and location of electrodes to not only minimize signal 519 
redundancy, but to also capture separable field potential recordings represents a 520 
pivotal hurdle for invasive field potential recordings in humans (Cybulski et al. 2015). 521 
There is currently no consensus in how to best allocate activity recorded by various 522 
electrode types to regions of nearby cortical space. In the absence of a solution to this 523 
problem, various methods are used to estimate the spatial extent of the neural 524 
population contributing to activity recorded at an individual electrode. The current 525 
methodologies implemented rely on assumptions and in vivo measurements to model 526 
the dielectric, conductive, and anisotropic aspects of neural tissue (Howell and 527 
McIntyre 2016, 2017; Miceli et al. 2017). These include spatial discrimination 528 
techniques (Herreras 2016), surface-based estimates of the recording zone 529 
(Kadipasaoglu et al. 2015) and weighting functions based on electrode properties of 530 
size, layout, and impedance (Dubey and Ray 2019). Computational models 531 
incorporating heterogeneity and anisotropy have been found to more accurately 532 
reconstruct neural response to stimulation in DBS application (Åström et al. 2012; 533 
Howell and McIntyre 2017).  534 
 535 
In non-human primates, concurrent comparison of field potential recordings with 536 
single-unit (Dubey and Ray 2019) and multi-unit (Xing et al. 2009) resolution reveals 537 
the estimated spatial spread of cortical field potential recordings using intracranial 538 
microelectrodes (1 mm long; 400 μm pitch) to be local (roughly 3 mm) (Dubey and 539 
Ray 2020). In contrast, the location and design of neural probes in humans are 540 
largely limited to clinical application, making confident parameterization difficult. 541 
Despite these limitations, previous research has compared recording scale in 542 
humans (Halgren et al. 2018; Kellis et al. 2016; Lai et al. 2018; Muller et al. 2016; 543 
Trumpis et al. 2021) in order to disambiguate the uncertain properties of neural 544 
activity captured by different electrodes.  545 
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 546 
Modern icEEG recordings incorporate data from varying recording scales, cortical 547 
locations, referencing strategies, and analysis approaches. There is a wealth of 548 
existing data that has been gathered with a variety of tools and methodologies; the 549 
question becomes, how can findings be integrated across this diversity of scales? 550 
Beyond human neuroscience, how can direct comparisons be made with data 551 
collected from non-human primates? While icEEG recordings provide unique and 552 
robust high spatial and temporal resolution neural data, there are such disparate 553 
values of the spatial extent of LFP values reported in the literature (Kajikawa and 554 
Schroeder 2011; Kellis et al. 2016).  555 
 556 
Conclusions 557 
Our results implicate electrode spacing, location, referencing strategy, and spectral 558 
band to be pivotal considerations in the minimization of signal redundancy and other 559 
confounds influencing the clarity of field potential analyses. We explored these 560 
confounds in a large robust dataset to probe these intrinsic uncertainties of field 561 
potential recordings. As with all aspects of scientific research, it is only through 562 
understanding the limitations of the tools we have to observe neural phenomenon that 563 
we can optimize the strengths, and get closer to understanding complex aspects of 564 
human cognition.  565 
 566 
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Supplemental Figures 725 
 726 

 727 
 728 
Supplementary Figure 1. Correlation analysis on simulated timeseries data reveals no spurious 729 
correlation due to the analytic pipeline. Representative spectral power (A) and timeseries (B) of 730 
simulated neural data in each frequency range of interest (Theta, 4-8 Hz; Alpha, 8-15 Hz; Beta, 15-30 731 
Hz; Narrowband Gamma, 30-60 Hz; Broadband High Gamma, 70-150 Hz). Representative power 732 
spectrum (C) and timeseries (D) of electric field signal comprised of summed timeseries in each 733 
frequency shown in (B). Comparison of actual and reconstructed Pearson’s correlation coefficient (r) 734 
between every combination of simulated timeseries (E) overlayed with 2D probability density estimation 735 
reveal no significant difference between actual and reconstructed correlation values on simulated data. 736 
 737 
 738 
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 739 
 740 
Supplementary Figure 2. Anatomical location of sEEG contacts in gray or white matter 741 
significantly influences correlation measures over distance. Pearson’s correlation coefficient was 742 
measured between pairs of sEEG electrodes located in gray and white matter (A; 47 patients; 6,757 743 
electrodes; 244,621 electrode pairs), white matter only (B; 2,649 electrodes; 43,957 electrode pairs), 744 
or gray matter only (C; 2,916 electrodes; 47,522 electrode pairs). Each data point is binned into 0.5 mm 745 
bins based on distance between electrode pairs, colored based on frequency range of interest and fit 746 
with an exponential decay function shown as colored solid lines. Abbreviations: narrowband gamma 747 
(NBG), broadband high gamma (BHG). 748 
 749 

 750 
 751 
Supplementary Figure 3. Mean power over frequency for sEEG electrodes based on location in 752 
gray or white matter. Mean power spectral density (PSD) plots for sEEG electrodes located in white 753 
matter (WM; red; 2,649 electrodes) or gray matter (GM; black; 2,916 electrodes). Notch filters were 754 
applied at 60 Hz and harmonics. Results from Wilcoxon sign rank test with significance threshold of 755 
<0.01 denoted by black bar along the x axis.  756 
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 758 
 759 
Supplementary Figure 4. Impact of anatomical location of high-density sEEG (hdsEEG) electrodes 760 
on correlation measures over distance. Pearson’s correlation coefficient was measured between 761 
pairs of hdsEEG electrodes located in gray and white matter (A; 6 patients; 153 electrodes; 1,967 762 
electrode pairs), white matter only (B; 53 electrodes; 421 electrode pairs), or gray matter only (C; 59 763 
electrodes; 347 electrode pairs). Each data point is the correlation values for each patient binned into 764 
0.5 mm bins based on distance between electrode pairs, colored based on frequency range of interest 765 
and fit with an exponential decay function shown as colored solid lines. Abbreviations: narrowband 766 
gamma (NBG), broadband high gamma (BHG). 767 
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