
1 

 

An updated framework to account for inter-individual variability when 1 

quantifying phenotypic variation  2 

 3 

Giacomo Puglielli1,*, Carlos P. Carmona2, Laura Varone3, Lauri Laanisto1, Carlo Ricotta3 
4 

 5 

1 Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 6 

Estonia; 7 

2 Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia;  8 

3 Department of Environmental Biology, Sapienza University of Rome, Rome, Italy.  9 

 10 

* Author for correspondence – Email: Giacomo.Puglielli@emu.ee 11 

 12 

Running title:  A novel index to quantify phenotypic variation 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2021. ; https://doi.org/10.1101/2021.10.22.465436doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465436
http://creativecommons.org/licenses/by/4.0/


2 

 

Abstract 21 

1: In trait-based ecology, phenotypic variation (PVar) is often quantified with measures that express 22 

average differences between populations standardized in the range 0-1. A major problem with these 23 

measures is that they disregard the within-population trait variability. In addition, most of these 24 

measures cannot be decomposed across scales. This can alter their interpretation, thus limiting their 25 

applicability.  26 

2: To overcome these problems, we propose a new measure, the Phenotypic Dissimilarity Index (PhD) 27 

that is insensitive to the within-population interindividual trait variability. Likewise, PhD can be used 28 

to quantify PVar between individuals in a population while accounting for the PVar within individuals.  29 

3: Using simulated and real data, we showed that PhD index correctly quantifies PVar when the within-30 

population trait variability is not negligible, as in many ecological studies. By accounting for within-31 

population trait variability, the PhD index generally provides a more parsimonious quantification of 32 

PVar across an environmental gradient compared to other estimators.   33 

4: Traits sampled within a species have an inherent variability. Accounting for such variability is 34 

essential to understand species phenotypic responses to environmental cues.  As such, the PhD index 35 

will provide ecologists with an asset to reliably quantify and compare PVar within and between species 36 

across environmental gradients at different scales. We also provide an R function to calculate the PhD 37 

index. 38 

 39 

Keywords: acclimation; functional traits; interindividual trait variability; intraspecific trait variability; 40 

phenotypic plasticity; phenotypic plasticity index; phenotypic variation 41 
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Introduction 44 

Functional traits variability within species is a key determinant of species’ ability to cope, and 45 

eventually adapt, to environmental factor variations. Accounting for this variability is considered 46 

essential to explain the success of a species under contrasting environmental conditions (Garnier et al., 47 

2015). However, trait variability within species, or intraspecific trait variability (ITV), or phenotypic 48 

plasticity (sensu Valladares et al., 2000), or phenotypic variation, has been generally overlooked in the 49 

past as it was considered to be negligible compared to interspecific variability (Garnier et al., 2001; 50 

McGill et al., 2006). While this assumption holds true at the global scale, in the last years many studies 51 

have spotlighted the adaptive role of ITV for organismal responses to environmental changes at 52 

different scales (Arnold et al., 2019; Henn et al., 2018; Kuppler et al., 2020; Siefert et al., 2015; Wong 53 

& Carmona, 2021). As a result, there has been an increasing interest in developing methodological 54 

approaches to quantify ITV in functional trait studies (e.g. de Bello et al., 2011; Niu et al., 2020). 55 

One of the major challenges in developing methods to quantify ITV in functional trait studies is the 56 

difficulty to include all its underlying sources and structure. ITV sources are genetic variability, 57 

phenotypic plasticity, and their interaction (Albert et al., 2011). However, differentiating between 58 

sources of ITV requires exact knowledge on individuals’ genotype, more than often lacking in most of 59 

the functional traits-based studies. On the other hand, ITV structure includes three levels of phenotypic 60 

variation among individuals of a species: (i) Differences between populations of a species – e.g. plastic 61 

responses of a given genotype to different static (Sandquist & Ehleringer, 1997) or temporally dynamic 62 

(e.g. Turner et al., 2008) environments; (ii) Inter-individual  variability (Bolnick et al., 2003), defined 63 

as the trait variability among individuals within a population/sub-population – e.g. phenotypic variation 64 

of individual traits across micro-environmental conditions within a site/population; (iii) Within-65 

individual variability (Bolnick et al., 2003; Herrera et al., 2015) – e.g. sun vs. shade leaves differences 66 

within a canopy (e.g. Niinemets et al., 2015), ontogenetically changing traits (Poorter et al., 2015; 67 
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Puglielli et al., 2021), or seasonally variable traits (e.g. Mason et al., 2020; Puglielli, 2019; Puglielli et 68 

al., 2019).  69 

Two  methods are widely employed to quantify ITV: i) the reaction norm: a measure of the extent 70 

and direction of an environmentally induced phenotypic change (Arnold et al., 2019; Nicotra et al., 71 

2010; Schlichting & Pigliucci, 1998); ii) various ‘indexes of phenotypic variation’ (PVar) , reviewed 72 

by Valladares et al., 2006. We refer to such indexes as (PVar) , instead of ‘phenotypic plasticity 73 

indexes’ as in Valladares et al. (2006), to clarify that they cannot discriminate between the sources of 74 

ITV, and thus they only quantify the phenotypic but not the genetic component of ITV (genetic 75 

information on the individuals under study are in fact rarely available). Here we focus on indexes of 76 

‘phenotypic variation’ (PVar), and refer to the recent work of Arnold et al. (2019) for a recent review 77 

on possibilities and pitfalls of reaction norms (e.g. linearity vs. non-linearity of trait changes along 78 

gradients). A key advantage of using PVar when quantifying ITV is that they are relatively simple to 79 

calculate, and they provide estimates of phenotypic variation that can be easily compared among 80 

species and from which to draw straightforward ecological and evolutionary interpretations (e.g., 81 

Valladares et al., 2006). Among the many available PVar, the most used remain:  82 

1) The Plasticity Index (PI) proposed by Valladares et al. (2000). PI is calculated as the difference 83 

between the maximum mean (M1) and minimum mean (M2) values of a trait in different 84 

environmental conditions divided by the maximum mean value (e.g. (M1 – M2)/M1; Balaguer et 85 

al., 2001; Castro-Díez et al., 2006; Puglielli et al., 2017; Rutherford et al., 2017). The major 86 

limitation of PI is that it quantifies only the between population trait variability component of ITV, 87 

totally disregarding the within population trait variability component (Fig. 1a). In doing that, mean 88 

differences between populations can be biased if some individuals within a population contribute to 89 

the population mean to a greater extent compared to other individuals. 90 
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2) The coefficient of variation (CV), calculated as the ratio between standard deviation and the mean 91 

of a given trait value in response to different environmental conditions. CV takes into account 92 

within population trait variability, as standard deviation is necessary for its calculation, but it 93 

cannot be decomposed across scales (Fig. 1b). 94 

3) Relative Distance Plasticity Index (RDPI) (Valladares et al., 2006). This index calculates the mean 95 

phenotypic dissimilarity among all the individuals of a given species exposed to different 96 

environmental conditions. The advantage of using RDPI over the classic PI consists in the RDPI 97 

ability to express an average phenotypic distance among all the measured individuals between 98 

individuals of a given species growing in different environmental conditions (Valladares et al., 99 

2006). While RPDI is an individual-based PVar that could in principle account for both between 100 

and within population trait variability component of ITV, here we show that RDPI index is limited 101 

because it does not account for intrapopulation variability (Fig. 1c), and because of this, RDPI 102 

values strongly depend on the trait variability within each group under comparison. In other words, 103 

by not accounting for within population trait variability when calculating between population trait 104 

variability, RDPI incurs into the same pitfall as PI. 105 

By building on the RDPI proposed by Valladares et al. (2006), we aimed to formulate a PVar that 106 

we call ‘Phenotypic Dissimilarity Index’ (PhD), able to quantify ITV between populations or groups of 107 

individuals growing in different environmental conditions by accounting for the phenotypic variability 108 

within each population/group (Fig. 1d).  109 
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 110 

Fig. 1. Representation of the calculation of the major estimators of phenotypic variation available in the 111 

literature as compared to the Phenotypic Dissimilarity Index (PhD) proposed in this paper. (a) Classic Plastici112 

Index (PI, Valladares et al. 2000) – only trait means within populations are used to calculate PI (red dots) 113 

between populations. (b) Coefficient of Variation (CV) – mean and within population trait variability (shaded114 

areas) of a trait are used for CV calculation within each considered population, but CV cannot be partitioned 115 

between populations. (c) Relative Distance Plasticity Index (RDPI) – it calculates the mean phenotypic 116 

dissimilarity among all the individuals from different populations (grey lines) without taking into account with117 

population trait variability. (d) PhD index – it calculates the mean phenotypic dissimilarity among all the 118 

individuals from different populations (grey lines) by taking into account within population trait variability 119 

(shaded areas).  120 

 121 

PhD can also be used to quantify ITV across individuals within a single site while accounting for 122 

intraindividual variability. PhD, as the other PVar indices, is bounded between 0 and 1, making its 123 

interpretation and comparison across species/individuals straightforward. As such, the proposed PhD124 

index represents an updated framework to estimate phenotypic variation by simultaneously accountin125 

for different ITV components depending on the comparison being made. 126 

We provide two worked examples to show that:  127 
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1) Accounting for within population variability is essential when calculating PVar between 128 

populations. The same applies when addressing interindividual variability within a site while 129 

controlling for within-individual trait variance;  130 

2) PhD provides reliable measures of PVar – i.e. PhD value increases with environmental 131 

dissimilarity among sites (Supporting Information Fig. S1) – and it is qualitatively comparable with 132 

previous PVar indexes. However, since previous PVar indexes do not account for 133 

intrapopulation/intragroup variability, they consistently return less parsimonious PVar estimates 134 

compared to the proposed PhD index.  135 

We propose the PhD index as a good candidate to effectively estimate PVar between 136 

populations/groups, and to compare PVar among species. The R function to calculate the PhD index is 137 

provided in Appendix S1.  138 

Methods 139 

Index formulation 140 

Studies focused on the phenotypic variation (PVar) within a species are usually based on the evaluation 141 

of how a target trait changes across a set of varying environmental conditions, either experimentally or 142 

in the field. For a species that occupies K positions along an environmental gradient or levels of a 143 

treatment (henceforth, such positions or treatments are referred to as environmental states), let kN  be 144 

the number of individuals in environmental state k ( 1, 2,..., )k K= and ikτ  be the value of trait τ for 145 

individual i ( 1, 2,..., )ki N=  in the environmental state k. 146 

According to Valladares et al. (2006), in the simplest case of only two environmental states, k and 147 

m, we can summarize the phenotypic variation of trait τ as the expected trait dissimilarity between two 148 

individuals drawn at random, one from each environmental state: 149 
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1 1k mN N

iji j
k m

RDPI d
N N

= ×∑ ∑                        (1) 150 

where 1 kN  is the probability of drawing individual i from state k, 1 mN  is the probability of drawing 151 

individual j from state m and ijd  is any symmetric dissimilarity measure between the trait values of 152 

individuals i and j such that ij jid d=  and 0iid = . For one single trait τ, Valladares et al. (2006) 153 

proposed to calculate ijd  as ( )ij ik jk ik jkd τ τ τ τ= − + . This measure is basically the univariate version 154 

of the Bray & Curtis (1957) dissimilarity, a multivariate dissimilarity index that has been extensively 155 

used by ecologists. With this index, since ijd  is bounded between zero and one, RDPI is also bounded 156 

in the same range.  157 

Note that for sake of generality, in Eq. (1) we assume that the number of individuals in 158 

environmental states k and m does not necessarily has to be the same. Note also that by replacing the 159 

univariate measure ijd  with one of the many available multivariate dissimilarity measures in the 160 

ecologist toolbox, we can easily generalize the calculation of PVar to multiple traits of various 161 

statistical types - e.g. nominal, fuzzy, ordinal (Pavoine et al., 2009; Legendre and Legendre 2012). 162 

In the context of biodiversity theory, the same index was independently proposed by Rao (1982) and 163 

by Webb et al. (2008) to measure the functional or phylogenetic dissimilarity between two species 164 

assemblages. However, Rao (1982) noted that Eq. (1) (i.e. RDPI) cannot be immediately used as a 165 

measure of phenotypic variation between environmental states k and m.  This is because the value of 166 

RDPI depends on the trait variability within each environmental state, which can be defined as:  167 

2, ,

1 1 1k kN N

k ij iji j i j
k k k

D d d
N N N

= × =∑ ∑                      (2) 168 

kD  thus summarizes the expected trait dissimilarity between two individuals i and j drawn at random 169 
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from environmental state k.  170 

Here, it is worth noting that if the trait dissimilarity ijd  among the individuals in k is calculated as half 171 

the squared Euclidean distance of trait τ between individuals i and j  �  i.e. if ( )2
1
2ij ik jkd τ τ= − - then 172 

kD  is equal to the variance of τ for all individuals in k (Pavoine, 2012). Accordingly, with the Rao-173 

Valladares framework, within-environmental state phenotypic variation kD  is directly related to the 174 

variance of the target trait τ. 175 

The consequence of the dependence of RDPI from kD  and mD  is that RDPI violates the basic 176 

condition that for two identical environmental states with the same number of individuals in each state 177 

and identical trait distribution - i.e. if for each individual i in environmental state k there is an 178 

individual j in m such that ik jmτ τ=  - the measure take the value zero. In other words, if we compare a 179 

given environmental state with itself, the resulting value of RDPI can be larger than zero, thus violating 180 

the intuitive assumption that a measure of trait dissimilarity for two identical environmental states 181 

cannot be larger than zero (Pavoine & Ricotta, 2014). In this instance, it is in fact possible to have 182 

different values of RDPI depending on the distribution of trait values within each environmental state. 183 

To overcome this problem, Rao (1982) demonstrated that if the dissimilarity matrix D with elements 184 

ijd  is squared Euclidean we have ( )1
2 k mRDPI D D≥ + . A dissimilarity matrix D with elements ijd  is 185 

said to be squared Euclidean, if the associated dissimilarity matrix Δ with elements ijd  is Euclidean 186 

so that Δ can be associated with clouds of points in Euclidean space without distortions (Gower & 187 

Legendre, 1986). Accordingly, for a squared Euclidean dissimilarity coefficient ijd  bounded in the 188 

range [0, 1], Pavoine & Ricotta (2014) proposed the following normalized version of the RDPI index: 189 

 190 
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1
2

1
2

( )

1 ( )
k m

km
k m

RDPI D D
PhD

D D

− −=
− −

                       (3)191 

where the acronym PhD stands for Phenotypic Dissimilarity, an estimator of PVar that expresses the192 

expected trait dissimilarity across environmental states in the range [0, 1]  independently of the trait 193 

variability within each environmental state. 194 

 In Eq. (3), kmPhD  is obtained by linearly rescaling RDPI between its minimum and maximum va195 

( min ) (max min )km RDPI RDPI RDPIPhD RDPI= − − . As such, PhD and RDPI converge in their PVar 196 

estimates only when the variability of a trait within each environmental state is zero (Fig. 2a), and 197 

increasingly diverge as the trait standard deviation within environmental states increases (Fig. 2b-d).198 

 199 

Fig. 2. Relationship between Relative Distance Plasticity Index (RDPI) and the Phenotypic Dissimilarity Inde200 

(PhD). In each panel, the relationship was evaluated among simulated populations (each data point) having 201 

exactly the same mean value (14.50) of a trait but varying standard deviation in the range (a) 0-0, (b) 2.04-4.7202 

(c) 5.04-7.94 and (d) 7.05 -11.96. The black solid line is a Loess fit. The shaded area represents the confidenc203 

intervals around the Loess fit. 204 
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Note here that the trait dissimilarity between pairs of individuals originally proposed by Valladares 205 

et al. (2006) ( )τ τ τ τ= − +ij ik jm ik jmd  is squared Euclidean (Legendre and Legendre 2012). Therefore, 206 

it can be used to calculate kmPhD  in a meaningful way.  207 

Finally, a simple and intuitive way to generalize kmPhD  to more than two environmental states, which 208 

is usually adopted in community ecology for calculating the beta diversity of a set of species 209 

assemblages, consists in calculating the mean value of kmPhD  for all possible ( )1 2K K −  pairs of 210 

environmental states (e.g. Legendre & De Cáceres, 2013): 211 

( )1 2

K

kmk m
K

PhD
PhD

K K
>=

−
∑

                          (4) 212 

PhDK thus represents a generalization of Eq. (3) to any number of environmental states.  213 

Example 1: Testing the effect of interindividual variability in PVar estimates using simulated 214 

data  215 

By controlling for interindividual variability when comparing populations/groups across environmental 216 

states, the PhD index is independent on the trait variance within environmental states. We use an 217 

example with simulated data to display such desirable property of the PhD index. As already described, 218 

the PhD index has two integrated components: the first is a dissimilarity estimator among individuals 219 

belonging to different environmental states, which corresponds with the RDPI component in Eq. 3 220 

(Between component from now on); the second, which summarizes trait variability within each 221 

considered environmental state, corresponds with the D term in Eq. 3 (Within component). Because we 222 

want to display the behavior of PhD index (Between - Within) as compared to its Between component 223 

alone, we generated four scenarios (Fig. 3a-d) each including 4 populations (i.e. 6 contrasts), all of 224 

them with the same mean trait value but with trait variance changing across levels, as follows: 225 
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1) Scenario 1: within-population trait variance is low and of similar magnitude across all 226 

populations (Fig. 3a). We expected the PhD index and the Between component to behave 227 

similarly given the low magnitude and similar value of the virtual trait variance within each 228 

population. In other words, the D component of the PhD index should be negligible, rendering 229 

the PhD similar to the RDPI. In this scenario, the two indexes should be highly correlated. 230 

2) Scenario 2: within-population trait variance is high and of similar magnitude across all 231 

populations (Fig. 3b). As the only difference with Scenario 1 is just an increase in the 232 

magnitude of within-population trait variance, we expected the PhD index and the RDPI to be 233 

still correlated. 234 

3) Scenario 3: within-population trait variance is relatively low across all populations, but not all 235 

populations have the same trait variance (Fig. 3c). Under this scenario, we expected the indexes 236 

to start losing their correlation, as the differences in the virtual trait distribution within 237 

populations should decouple PhD index estimates from that of the RDPI (see Index formulation 238 

section and Fig 2a-d). 239 

4) Scenario 4: within-population trait variance is relatively high across all populations, but not all 240 

populations have the same trait variance (Fig. 3d). Similar to Scenario 3, we expected the two 241 

indexes to completely lose their correlation. 242 
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 243 

Fig. 3. The four simulated scenarios used in Example 1. In each scenario all the populations have the same me244 

but in (a) Scenario 1 - the trait variance is homogeneous across populations and low in magnitude within each245 

population. (b) Scenario 2 - the trait variance is homogeneous across populations and high in magnitude withi246 

each population. (c) Scenario 3 - the trait variance is heterogeneous across populations but relatively low in 247 

magnitude within each population. (d) Scenario 4 - the trait variance is heterogeneous across populations but 248 

relatively high in magnitude within each population. 249 

 250 

Example 2: Comparing PhD index with other PVar estimators 251 

For this example, we used an already published dataset of some Mediterranean grassland species 252 

growing along a topographical and soil water content gradient (Carmona et al., 2015). From this 253 

dataset, we used specific leaf area (SLA) measurements. Following Valladares et al. (2006), we 254 

selected the following PVar: i) slope of the linear regression of a trait vs. soil water content  (Slope) 255 

(Schlichting & Pigliucci, 1998); ii) coefficient of variation (CV); iii) classic plasticity index (PI); and256 

iv) Relative Distance Plasticity Index (RDPI) (see Introduction and Fig. 1a-c for details on PI, CV an257 

RDPI calculations). For this example, we selected only species that were present in at least four plots258 

along the considered gradient, as we considered four plots to be the minimum number data points 259 

allowed to calculate a Slope estimator via simple linear regression analysis (e.g. Veresoglou & 260 

Peñuelas, 2019). Simple linear regression analysis refers to the relationship SLA vs. Soil Water 261 

13 

mean 
ch 
thin 

ut 

 

nd 

 and 

ots 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2021. ; https://doi.org/10.1101/2021.10.22.465436doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465436
http://creativecommons.org/licenses/by/4.0/


14 

 

Content. Seventeen species were included in the final analysis, and we used such species to calculate 262 

the PhD index and the other four PVar across plots representing species position along the soil water 263 

content gradient. The final dataset included species-specific mean values of PhD, Slope, CV, PI and 264 

RDPI calculated across the gradient. We explored the relationship between PhD index and the other 265 

four PVar estimators using simple linear regression analysis.  266 

Results 267 

Example 1: Testing the effect of interindividual variability in PVar estimates using simulated 268 

data  269 

The results of Example 1 show that when within-population variance is either high or heterogeneous 270 

across populations, the results provided by the PhD index and by RDPI rapidly diverge. In particular, 271 

we found that the two indexes return comparable PVar estimates (R = 0.90; p � 0.05) only when the 272 

trait variance within each population is low in magnitude and similar across populations (Scenario 1, 273 

Fig. 3a). However, when the variance differed both within and between populations (Scenarios 3 and 4, 274 

Fig. 3c-d), the two indexes were uncorrelated with R ranging between -0.04 and 0.16 in Scenario 3 and 275 

4 (p always � 0.05), independently of the variance magnitude. Surprisingly, when increasing the 276 

magnitude of the within population variance while keeping the variance magnitude comparable across 277 

populations - i.e. Scenario 2 (Fig. 3b) - the indexes turned out to be negatively correlated (R = -0.65; p 278 

� 0.05), even if we expected Scenario 2 to yield similar results as Scenario 1. This can be explained 279 

considering that the four simulated populations in Scenario 2 slightly differed among them in terms of 280 

trait variance, but such very small differences, arising due to the simulation procedure, are enough to 281 

let the indexes to diverge when the trait variance within population is high.  282 

Example 2: Comparing PhD index with other PVar estimators 283 
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Results of this analysis (Fig. 4a-d) show that PhD index is correlated with three of the four considere284 

PVar estimators. The only exception is the relationship PhD-Slope that was not significant because tr285 

variability along the gradient is not fully linear (Fig. S2; Carmona et al., 2015), and Slope-based PVa286 

estimates might not be reliable. At any rate, PhD was correlated with CV, PI and RDPI (Fig. 4b-d), 287 

demonstrating that PhD estimates are qualitatively comparable with those from other estimators. 288 

However, the estimates provided by the PhD index are generally smaller than that of CV, PI and RDP289 

as all the data points in Fig. 4b-d fall above the 1:1 line. 290 

 291 

Fig. 4. Relationship among Phenotypic Dissimilarity Index (PhD) and common estimators of phenotypic 292 

plasticity. (a) Slope of reaction norm (Slope); (b) coefficient of variation (CV); (c) classic Plasticity Index (PI293 

sensu Valladares et al., 2000); (d) Relative Distance Plasticity Index (RDPI, Valladares et al., 2006). See main294 

text for further details on the selected phenotypic plasticity estimators. Solid line indicate significant relationsh295 

at p < 0.05. Red line represents a 1:1 relationship. Correlation coefficients (R) are also shown.  296 

 297 
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Discussion 301 

The proposed PhD index quantifies phenotypic variability, or ITV, or phenptypic plasticity (sensu 302 

Valladares et al., 2000) across populations of a species by accounting for the effect of interindividual 303 

trait variability. The results from our simulation example demonstrate the importance of using the PhD 304 

index when one wants to quantify intraspecific variability between-populations using PVar estimators 305 

where the within-population trait variability cannot be considered negligible. Within-population trait 306 

variability can be considered negligible when it tends to zero, but this is very rare in most ecological 307 

studies. Moreover, we have showed that the estimates provided by the PhD index are generally smaller 308 

than that of the most common PVar estimators (Fig. 4a-d). This aspect is of particular interest as PVar 309 

estimates are classically used to identify traits that are more responsive to environmental gradients, and 310 

these traits are usually interpreted as drivers of species responses to environmental changes, including 311 

global climate change. Our results show that such conclusions need to be re-analyzed in view of the 312 

within-population variability effect on PVar across environmental gradients, and the PhD index 313 

represents an essential tool to reach such an overarching objective. 314 

The PhD index we propose is insensitive to the within-population interindividual trait variability 315 

when the target is quantifying  phenotypic variability between populations. When does accounting for 316 

within-population interindividual trait variability matters? Interindividual variability within populations 317 

is a central topic in ecology and evolution, because of its relevance in determining, for instance, the 318 

relaxation of intra- and interspecific competition through habitat specialization (e.g. Araújo et al., 2011; 319 

Bolnick et al., 2010; Cam et al., 2002; Devictor et al., 2010; Roughgarden, 1972; Violle et al., 2012). 320 

Each individual in a population can in fact use a subset of the available resources in a ‘population’s 321 

niche’ (Bolnick et al., 2003), and this can shape individuals’ resource acquisition and use strategies 322 

accordingly. Individual specialization within-populations increases the variance of traits linked to the 323 
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acquisition and the use of alternative resources, and such trait variance can ultimately differ between 324 

populations arranged along an environmental gradient. Intra- and inter-population niche variation is in 325 

fact considered as an important target for natural selection (Bolnick et al., 2003) as single individuals of 326 

the same species can be always subjected to contrasting selective pressures. Therefore, we argue that 327 

the proposed PhD index is an essential tool to quantify inter-population phenotypic variability in the 328 

field, where within-population trait variance is surely relevant. Besides, by returning measures of 329 

intraspecific variability bounded between 0 and 1, and standardized for within-population trait 330 

variability, the PhD index can be used to easily compare phenotypic variability between species across 331 

an environmental gradient. The PhD index also provides an alternative to classic analyses such as 332 

ANOVA or PERMANOVA, whose applicability is constrained by the response variable 333 

distribution/dispersion, and their results, expressed in variance units, cannot be always intuitively 334 

compared across species.  335 

 Common practice in functional ecology is to use a set of standardized rules for sampling 336 

individuals’ features in order to obtain estimates of functional traits (e.g. Pérez-Harguindeguy et al., 337 

2016 for plants). Despite such standardization of sampling procedures, for the reasons outlined above, 338 

traits sampled within a species have an inherent variability (Albert et al., 2011). Our index indeed 339 

allows the user to account for trait variability at different levels, permitting to summarize between-340 

populations differences in a consistent and comparable way across species as the determination of PVar 341 

will not anymore depend on the interindividual variability within each of the considered populations. 342 

This also applies when quantifying PVar within populations by accounting for intraindividual 343 

variability.  344 

In sum, we showed that the PhD index is a phenotypic variability estimator that reaches the greatest 345 

level of generality compared to other estimators. In particular, it represents a generalization of the 346 
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RDPI of Valladares et al. (2006). We also argue that the PhD index properties will become especially 347 

relevant when trying to determine the key traits underlying a species response to contrasting 348 

environmental conditions, particularly in a climate change context.  349 
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