
 

1	
	

Spatially-resolved transcriptomics analyses of invasive fronts in solid tumors  

Authors: Liang Wu1,2†, Jiayan Yan1,3†, Yinqi Bai1,2†, Feiyu Chen1,3†, JiangShan Xu2,4†, 
Xuanxuan Zou2,4†, Ao Huang1,3†, Liangzhen Hou2,4, Yu Zhong2, Zehua Jing2, Xiaorui Zhou2,4, 
Haixiang Sun3, Mengnan Cheng2,4, Yuan Ji1,5, Rongkui Luo5, Qinqin Li6, Liang Wu2,4, Pengxiang 
Wang3, Dezhen Guo3, Waidong Huang2,4, Junjie Lei2,4, Sha Liao2, Yuxiang Li2, Zhifeng Jiang3, 5 
Na Yao3, Yang Yu7, Yao Li7, Fengming Liu7, Mingyuan Zhang2,4, Huanming Yang2, Shuang 
Yang1, 2, 4, Xun Xu2,8, Longqi Liu1,2, Xiangdong Wang1,9, Jian Wang1,2,10, Jia Fan1,3*, Shiping 
Liu1,2,11*, Xinrong Yang1,3*, Ao Chen1,2*, Jian Zhou1,3* 

 
 10 
Affiliations:  

1 Zhongshan-BGI Precision Medical Center, Zhongshan Hospital, Fudan University, Shanghai 
200032, P. R. China.  

   2 BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, P. R. China. 
3 Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; 15 
Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 
200032, P. R. China 
4 College of Life Sciences,University of Chinese Academy of Sciences, Beijing 100049， P. 
R. China.  
5 Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. 20 
China.  
6 Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of 
Medicine, Shanghai 200025, P. R. China. 
7 National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced 
Research Institute, Chinese Academy of Science, Shanghai 201210, P. R. China. 25 
8 Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, P. R. 
China.  
9 Zhongshan Hospital of Fudan University, Department of Pulmonary and Critical Care 
Medicine, Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, 
Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai 30 
200032, P. R. China 
10 James D. Watson Institute of Genome Science, 310008 Hangzhou, China, MD 21850, P. R. 
China.  
11 Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518100, P. R. 
China  35 

 
   † These authors contributed equally to this work as first authors.  
   *Corresponding author. E-mail: zhou.jian@zs-hospital.sh.cn or chenao@genomics.cn or 
yang.xinrong@zs-hospital.sh.cn or liushiping@genomics.cn or fan.jia@zs-hospital.sh.cn. 
 40 
 
 
 
 
 45 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 22, 2021. ; https://doi.org/10.1101/2021.10.21.465135doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.21.465135


 

2	
	

Abstract: Solid tumors are complex ecosystems, and heterogeneity is the major challenge for 
overcoming tumor relapse and metastasis. Uncovering the spatial heterogeneity of cell types and 
functional states in tumors is essential for developing effective treatment, especially in invasive 
fronts of tumor, the most active region for tumor cells infiltration and invasion. We firstly used 
SpaTial Enhanced REsolution Omics-sequencing (Stereo-seq) with a nanoscale resolution to 5 
characterize the tumor microenvironment of intrahepatic cholangiocarcinoma (ICC). Enrichment 
of distinctive immune cells, suppressive immune microenvironment and metabolic reprogramming 
of tumor cells were identified in the 500µm-wide zone centered bilaterally on the tumor boundary, 
namely invasive fronts of tumor. Furthermore, we found the damaged states of hepatocytes with 
overexpression of Serum Amyloid A (SAA) in invasive fronts, recruiting macrophages for 10 
facilitating further tumor invasion, and thus resulting in a worse prognosis. We also confirmed 
these findings in hepatocellular carcinoma and other liver metastatic cancers. Our work highlights 
the remarkable potential of high-resolution-spatially resolved transcriptomic approaches to 
provide meaningful biological insights for comprehensively dissecting the tumor ecosystem and 
guiding the development of novel therapeutic strategies for solid tumors. 15 
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Solid tumors are complex organ-like structures, which tend to spread to nearby tissues and 
metastasize to remote organs through the lymph system and bloodstream1-4. Evidences have 
indicated that solid tumors are complex ecosystems with a high degree of heterogeneity, involving 
areas where cancer cells interact with various cell types like immune cells and stromal cells, as 
well as extracellular matrix (ECM) components5,6. Specifically, tumor invasive margin area, where 5 
tumor cells invade into paranormal tissues and encountered a diverse array of stromal cell and 
ECM components, which was the most active region for tumor cells infiltration and invasion4,7-11.  
A complete understanding of the components and their spatial heterogeneities, and the interplay 
between tumor cells and tumor microenvironment (TME) in this area, will facilitate to understand 
tumor invasion and metastasis, evaluate the prognoses, and explore novel therapeutic approaches 10 
for solid tumors5,6,11-14. 
Single-cell RNA sequencing (scRNA-seq) is a powerful tool for the investigation of cellular 
components and their interactions at the single-cell level, which has been used to characterize the 
TME of several types of solid tumors15,16. However, the lack of spatial information is a major 
obstacle in interrogating the correlations between the local environment, specific cell-cell 15 
interactions, and tumor progression, especially in tumor invasive margin area. Furthermore, due 
to the lack of multi-regional sampling in previous studies, intratumoral spatial heterogeneity at the 
resolution of single cells remains poorly characterized17-19. The recently developed spatial 
transcriptomics (ST) method facilitates unbiased mapping of transcripts over entire tissue sections 
using spatially barcoded oligo-deoxythymidine microarrays20,21. However, the majority of ST 20 
approaches applied in previous studies were of a low resolution, recognizing spots mixed with 
dozens of cells instead of single cells12,13. Recently, we combined DNA nanoball (DNB) patterned 
array chips and in situ RNA capture to develop SpaTial Enhanced REsolution Omics-sequencing 
(Stereo-seq) with the nanoscale resolution (220 nm × 220 nm/spot) and expandable areas (10 mm 
× 10 mm) with a few hundred spots of data captured per cell12. Stereo-seq can therefore potentially 25 
bridge the gap between scRNA-seq and ST analyses, which together can better characterize 
functional and structural studies of entire tumor ecosystems. Thus, integration of single-cell and 
high dimensional spatial data produced by Stereo-seq from tumor multi-regional tissues would 
facilitate comprehensive and unbiased tissue analyses to identify intratumor heterogeneities and 
TME cellular communications in solid tumor, especially for tumor invasive margin area.  30 
Liver cancer is one of the most malignant solid tumors worldwide, while intrahepatic 
cholangiocarcinoma (ICC) is the second most common primary liver cancer with an increasing 
global incidence during past decades22-24. However, most patients (> 70%) are already at advanced 
stages at the time of diagnoses and cannot be surgically treated due to locally advanced or 
metastatic disease25-27. In this study, we used Stereo-seq with high resolution and centimeter-sized 35 
fields of view to characterize the complexity and heterogeneity of tumor ecosystems, as well as 
their cellular interactions in ICC, by analyzing four regional sites, including tumor tissue (T), 
margin areas (B), adjacent normal tissue (P), and normal or metastatic lymph nodes (LN). By 
integrating ST data with scRNA-seq data and using bioinformatics analyses, our approach 
determined a high degree of cellular and transcriptional heterogeneities in the tumor invasive front, 40 
where tumor cells invade into paranormal tissues. We found an increased immune-escape capacity 
and a shift toward increased fatty metabolism of tumor cells, as well as an enhanced accumulation 
of immune cells, especially in the region within 250 µm from the tumor-normal borderline. 
Furthermore, we found increased expressions of SAA1 and SAA2 in hepatocytes close to invasive 
fronts, which were associated with enhanced local recruitment of macrophages and correlated with 45 
worse prognoses in ICC patients. Furthermore, we confirmed these findings in primary and 
metastatic liver cancer with other four additional cohorts. Our study highlighted the important 
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potential of high resolution, spatially-resolved transcriptomics approaches in providing 
meaningful biological insights for the development of novel therapeutic strategies for solid tumors. 
 
Results 
Spatial resolved transcriptomics profiles of multi-regional tissues from ICC patients 5 
To characterize the spatial transcriptional landscape of ICC, we processed fresh frozen tissues from 
the intratumor tissues, adjacent normal tissues, margin areas, and normal or metastatic lymph 
nodes using Stereo-seq with high resolution (220 nm × 220 nm/spot) and expandable areas (10 
mm × 10 mm) (Discovery Cohort, Fig. 1a, see Methods). We generated Stereo-seq data of 50 
slides from 27 samples (T, 6; B, 8; P, 7; LN, 6) of eight patients pathologically diagnosed with 10 
ICC (LC0, LC1, LC2, LC4, LC5, LC6, LC7, and LC8) using hemoxylin and eosin (H&E) staining 
of adjacent slides (Fig. 1a and supplementary Table 1). Detailed clinical and pathological 
information is provided in Supplementary Table 2. Moreover, we recruited additional 21 patients 
with liver cancer with margin areas stained by multiplexed immunofluorescence (IF) (Validation 
Cohort 1), 10 ICC patients with matched tumor tissues, border areas and adjacent normal tissues 15 
for bulk-RNA sequencing (Validation Cohort 2), and 93 ICC patients with paired tumor tissues 
and adjacent normal tissues for immunohistochemistry (IHC) staining (Validation Cohort 3). 
Additionally, 159 HCC patients with paired tumor tissues and paratumor tissues for bulk-RNA 
sequencing and proteomics recruited in our previous study28 were used as Validation Cohort 4 (Fig. 
1a, Supplementary Table 3). In the Discovery Cohort, scRNA-seq data generated from margin area 20 
tissues of patient LC5 (604 cells) were integrated with a recently published ICC scRNA-seq 
dataset29 to establish a reference expression fingerprint of cell types, to delineate the spatial 
tomographies of cell type populations in each tissue slide (Fig. 1a). As a result, 29,793 qualified 
cells were clustered into 11 main cell types using Seurat30, including T cells (CD3D), natural killer 
cells (NKs) (KLRF1), B cells (MS4A1), plasma cells (MZB1), macrophages (CD163/CD14), 25 
dendritic cells (DCs) (CD1C), cholangiocytes/cholangiocarcinoma cells (KRT19/EPCAM), 
hepatocytes (ALB), endothelial cells (CDH5/ENG), and fibroblasts (ACTA2) (Extended Data Fig. 
1a, b). For ST, 2~90 (a median of eight) transcripts were detected for each DNB or bin (220 nm × 
220 nm) and there were about 2,500 (50 × 50) bins for each hepatocyte (with diameters of 25~30 
µm) and about 900 (30 × 30) bins for each cholangiocarcinoma cell (with a diameter of 15 µm) 30 
(Extended Data Fig. 1c). To enable spatial cell type annotations with these reference signatures, 
the raw spatial expression matrix was converted into pseudo-spots with 25 µm square sizes (50 × 
50 bins/spot), which approximately represented one cell, and an average of 718 genes and 1,644 
mRNA molecules were detected per spot (Extended Data Fig. 1d, e). Cell components for each 
spot (50 × 50 bins/spot, 25 µm squares) in the ST slides were determined by SPOTlight31 using 35 
scRNA-seq as the reference, then 11 main cell types were annotated in spatial spots (Fig. 1b, see 
Methods). We assigned each spot to a specific cell type that showed the highest probabilistic 
proportion as the first probability was much higher than the second probability (Fig. 1c). The 
distinct higher expressions of classical cell type marker genes in defined cell clusters supported 
the rationality of cell type annotations for ST spots (Fig. 1d).  40 
The heterogeneities of cell and ECM compositions as well as spatial distributions in multi-regions 
of ICC  
Cell compositions and spatial distributions were highly heterogeneous in four regional sites (T, P, 
B, and LN) of patients with ICC. Different areas were spatially characterized with distinct tissue 
architectures, comprised of different prevailing cell components. In tumor tissues, fibroblasts, 45 
macrophages, and B cells were the most abundant cells, which accounted for almost half of all 
total cell components (Fig. 2a, b). Specifically, a larger percentage of fibroblasts was detected in 
tumor tissues than in the other three regions, implying the highly desmoplastic property of ICC 
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tumor tissues. As expected, hepatocytes were the prevailing cell type in adjacent normal tissues, 
followed by cholangiocytes and B cells (Fig. 2a, b). For margin areas, fibroblasts, B cells, and 
macrophages were the most abundant cell types, except for tumor cells and hepatocytes (Fig. 2a, 
b). In LNs, B cells, T/NK cells, and macrophages were the most abundant immune cell types, and 
B cells were scattered widely among the entire LN tissues. Different from normal LNs, in LC4-5 
LN (with LN metastases), tumor cells covered almost half of the LN area in the slide, while B cells 
covered the remaining normal areas (Fig. 2a, b). Furthermore, typical tertiary lymphoid structures 
(TLS)32,33, resulting from the co-aggregation of DCs, T/NK, and B cells in non-lymphoid tissues, 
were also detected in T, P, and B, which was further confirmed by H&E staining (Fig. 2c and 
Extended Data Fig. 2a). Furthermore, several cell types exhibited distinct enrichments in different 10 
tissue areas with high spatial heterogeneities. Most of the fibroblasts in tumor tissues showed 
matrix cancer-associated fibroblast (mCAF)29 signatures with increased expressions of ECM-
related genes (LUM, DCN, and COL3A1), while more antigen-presenting cancer-associated 
fibroblasts (AP-CAF) and inflammatory cancer-associated fibroblasts (iCAF) were found in 
adjacent normal tissues (Fig. 2d and Extended Data Fig. 2b, c). Compared with adjacent normal 15 
tissues, the ratios between exhausted and cytotoxic T cells were higher in tumor tissues and in 
margin areas (Fig. 2d), indicating suppressive states of T cells and subsequent cancer immune 
evasion in the TME. After subdividing T cells and B cells into different subpopulations, a 
significantly larger percentage of naïve T and naïve B cells were observed in LNs, and spatially 
naïve B cells were mainly surrounded by plasma B cells (Fig. 2d and Extended Data Fig. 2d). 20 
Germinal centers characterized by aggregation of DCs surrounded by B cells were also identified 
in spatial cell type maps (Extended Data Fig. 2d). Apart from the spatial heterogeneous distribution 
of fibroblast clusters and immune cells in different sites, tumor cells also exhibited distinct 
enrichment of cancer hallmarks34 in different intratumoral areas, indicating spatial heterogeneity 
between different tissues as well as within tumor tissues (Fig. 2b and Extended Data Fig. 2e). 25 
The TME is dynamically shaped by bidirectional communication between tumor cells and the 
ECM through cell-matrix interactions and ECM remodeling. To comprehensively understand 
ECM remodeling and cell-matrix interactions among four regional sites, we initiated a regional 
segmentation (1000 × 1000 bins or 500 µm × 500 µm per spot) to obtain approximately 400 spots 
of local bulk RNA profiles on each ST slide. A total of 20,400 ST spots captured from 48 slides 30 
were separated into 10 patterns according to transcriptional signatures of ECM related and 
chemokines/cytokine genes (Fig. 2e and Extended Data Fig. 3a). Segmented ST spots from the 
same site gathered from different patients were visualized by uniform manifold approximation and 
projection (UMAP), indicating a site-specific ECM and chemokine/cytokine enriched 
microenvironment (Fig. 2e and Extended Data Fig. 3a). In tumor tissues, several highly expressed 35 
genes including HIF1A, CXCL6, IL18, and MMP14 were identified (Extended Data Fig.3a, b). 
MMP14, which may promote tumor growth and invasion by degrading the matrix barrier and 
enhancing angiogenesis, was identified as the most enriched MMP in tumors, and was mainly 
secreted by fibroblasts and tumor cells, based on scRNA-seq data (Extended Data Fig. 3b). 
Furthermore, IL18, encoding a pro-inflammatory cytokine promoting tumor progression35, was 40 
most abundant in tumors and mainly produced by DCs, macrophages, and tumor cells (Extended 
Data Fig. 3b). In adjacent normal tissues, ECM components including IL6R, IL1RAP, and CXCL2 
were highly expressed, when compared with those among the other three areas. The expressions 
of clusters of chemokines or cytokines, including CXCL8 and CXCL1, were found to be mostly 
enriched in margin areas, implying strong inflammatory responses in these areas (Fig. 2f and 45 
Extended Data Fig. 3b). Specifically, CXCL8, encoding a major mediator of the inflammatory 
response, was mainly secreted by myeloid cells, including macrophages and neutrophils, according 
to the scRNA-seq data (Fig. 2f). In addition, the expressions of CCL19/CCL21 and its receptor 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 22, 2021. ; https://doi.org/10.1101/2021.10.21.465135doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.21.465135


 

6	
	

CCR7 were most abundant in LNs, when compared with three other regional areas, supporting the 
key role of the CCL19/CCL21-CCR7 axis in directing lymphocyte homing and in organizing 
immunological and inflammatory responses in LNs (Extended Data Fig. 3c). Furthermore, 
expression of co-stimulatory molecules related genes (CD28 and CD80)36, which are the most 
important molecules in T cell expansion, survival, and activation, and inhibitory molecules related 5 
genes (CTLA4, BTLA, TIGIT, CD96, CD274, and LGALS9)36,37 vital in T cell inactivation, were 
both accumulated specifically in LNs, indicating a bidirectional and balanced immune regulation 
in LNs (Extended Data Fig. 3d, e).  
Enrichment of distinctive immune cells, the suppressive immune microenvironment, and metabolic 
reprogramming of tumor cells at invasive fronts  10 
The area around the borderline, where tumor cells invade paranormal tissues and come into direct 
contact with a diverse array of stromal cells and ECM components, has been recognized as a 
complex ecosystem and the most important region of solid tumors for understanding tumor 
progression, immune surveillance, and infringement of normal tissues4,7-11. The transcriptional 
landscape in cell and ECM components in four different regional areas also indicated enrichment 15 
of inflammatory chemokines/cytokines in the margin areas (Fig. 1b, 2e, and Extended Data Fig. 
3a). We observed accumulation of macrophages and NK/T cells close to the boundaries, where 
tumor cells were in direct contact with adjacent liver tissues, comprising a sophisticated border 
microenvironment (Extended Data Fig. 4a). Thus, to further characterize the microenvironment at 
invasive tumor cell fronts, we constructed a model of the precise segmentation of margin areas 20 
around the invasive tumor fronts using six layers (each layer was a zone with a width of 250 µm 
from the borderline in the lateral direction, and each layer was equally divided into 100 equal parts 
along the axial direction of the borderline) for the bilateral sides (Fig. 3a, see Methods). We first 
fitted the invasion borderlines of margin areas according to the spatial distribution of tumor cells 
and hepatocytes in ST slides, which was confirmed by H&E staining of corresponding adjacent 25 
slides, and then analyzed the fractions and features of cell components in six layers from the 
normal and tumor slides of the borderline (Fig. 3a, see Methods). We found that immune cells 
were recruited to the areas around the borderline from the tumor side, with high heterogeneities in 
its axial directions, which were especially enriched in the 250 µm wide zone close to the borderline, 
revealing the high heterogeneities of immune cell distributions around the borderline in both the 30 
axial and lateral directions (Fig. 3b). In addition, fibroblasts were found to be enriched in tumor 
sides, but showed no obvious change in the fractions among different layers of the tumor side 
(Extended Data Fig. 4b). Among immune cells, macrophages, DCs, T/NK cells, and B cells were 
found to be more abundant in the areas close to borderlines from the tumor sides (Fig. 3c and 
Extended Data Fig. 4c). Moreover, the abundance of macrophages was found to be increased from 35 
the third layer (750-500 µm) and the second layer (500-250 µm) to the first layer (250-0 µm) in 
the tumor sides of the borderlines, while there was no change in adjacent normal tissues, further 
validated by IF result from 10 ICC patients from Validation Cohort 1 (Fig. 3c, d). A significantly 
increased percentage of anti-inflammatory macrophages (M2-like) rather than pro-inflammatory 
macrophages (M1-like) was observed from the outer two layers (750–500 µm and 500–250 µm) 40 
to the first layer (250–0 µm) close to the borderlines from the tumor sides (Fig. 3e). The 
percentages of DCs and T/NK cells increased from the third layer (750–500 µm) to the first layer 
(250–0 µm) close to the borderlines from the tumor sides, while the percentages of B cells 
increased from the second layer to the first layer (Extended Data Fig. 4c). T cell subtypes, 
including cytotoxic and exhausted T cells, were scattered among the margin areas without any 45 
accumulation around the borderlines (Extended Data Fig. 4d). However, the expression of immune 
checkpoint genes including BTLA, CTLA4, CD96, and IDO1 were enriched from the tumor side 
of the borderlines, indicating the suppressive immune states of immune cells in the area close to 
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the borderline from the tumor side (Fig. 3f and Extended Data Fig. 4e, see Methods). 
Correspondingly, tumor cells in the first layer showed enhanced immune evasion signatures, when 
compared with those in outer layers on the tumor side (Fig. 3g). Together, these results showed 
distinct TME features with enrichment of immune cells, including macrophages (M2-like), T/NK 
cells, DCs cells, and B cells in the first layer (250–0 µm) from the tumor side as well as a more 5 
immune suppressive microenvironment in the closest layers in bilateral sides to the borderline of 
invasive fronts. 
In addition to the spatial heterogeneities of immune cell distributions and distinct immune 
suppressive microenvironments in invasive fronts, we further characterized metabolic changes and 
proliferative capacity of cell components (mainly consisting of hepatocytes) around the borderlines. 10 
Generally, tumor cells on the tumor side exhibited lower hypoxia-related pathways and higher 
glycolysis levels, when compared with all cells in the paratumor side of the borderline (Fig. 3h). 
The closest bilateral layers to the borderline showed higher hypoxia-related pathway activation, 
when compared with the corresponding outer regions (Fig. 3h). Consistent with the trend of 
hypoxia levels, cell glycolysis levels in the first layer on the paratumor side of the borderlines were 15 
significantly higher than that in the outer layers (Fig. 3h). Although there was no difference in 
glycolysis levels of tumor cells among different layers, upregulated levels of tricarboxylic acid 
cycle and fatty acid metabolism components, including fatty acyl CoA synthesis and fatty acid 
beta-oxidation of tumor cells, was found in the first layer, when compared with those in outer areas 
from the tumor side (Fig. 3i and Extended Data Fig. 4f, g). This probably indicated that tumor cells 20 
in the first layer underwent metabolic reprogramming to upregulated lipid metabolism because of 
additional energy requirements for further invasion. As expected, tumor cells on the tumor side of 
the borderlines exhibited higher G2M scores, when compared with cells (mainly consisting of 
hepatocytes) at the paratumor side, revealing the higher proliferative capacity of tumor cells (Fig. 
3j, see Methods). Apart from a higher proliferative capacity, higher cell apoptosis levels were also 25 
detected among the closest layers, when compared with the outer regions from the paratumor side 
of the borderline, which may have reflected much damaged states of hepatocytes close to the 
borderline from the paratumor side. For tumor cells, higher apoptosis levels in the closest layer, 
but no difference of proliferative capacity in different layers from the tumor side of invasive fronts, 
were observed (Fig. 3j, k). Higher levels of hypoxia, glycolysis, proliferation capacity, and 30 
apoptosis in cells (mainly consisting of hepatocytes) were also found in the first layer from the 
paratumor side. We therefore defined the 500 µm wide zone centered on the borderline as 
“invasive front,” which was more reasonable than previously defining the 1,000 µm wide area 
centered on the borderline7,9. Taken together, these results showed an enhanced energy supply 
from fatty acid metabolism in tumor cells, and a dominant suppressive immune environment was 35 
found in the area close to the borderline, especially in invasive fronts. 
The damaged states of hepatocytes at invasive fronts were related to the prognoses of patients with 
primary and metastatic liver cancers. 
Apart from the phenomenon of metabolic reprogramming and enhanced immune-escape 
signatures of tumor cells at invasive fronts, cell components (mainly consisting of hepatocytes) at 40 
invasive fronts also showed both enhanced proliferative capacity and increased apoptosis. Some 
studies have reported that inflammatory responses of hepatocytes contributed to liver cancer or 
liver metastasis. To characterize the inflammatory response of cell components and to identify 
distinct cell clusters during tumor invasion, we re-clustered hepatocytes according to their gene 
expression profiling in the three layers (0–750 µm wide zones) at the paratumor side of invasive 45 
fronts. We identified two hepatocyte subtypes (Hep1 and Hep2) according to their different gene 
expression profiling, where Hep1 cells have remarkablely higher expression levels of SAA1 (acute 
phase protein Serum Amyloid A1) and SAA2 (Serum Amyloid A2) compared with Hep2 cells 
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(Fig. 4a). Regarding their spatial distributions, Hep1 cells mainly accumulated in the first layer, 
with a width of 250 µm close to the borderline, revealing the severely damaged status of 
hepatocytes because of their direct exposure to tumor invasion, which was confirmed using IF (Fig. 
4b and Extended Data Fig. 5a). The bulk RNA-seq data from Validation Cohort 2 also showed 
much higher expression levels of SAA1 and SAA2 around the border areas (bilateral sampling of 5 
tissues with a width of 5 mm along the borderline) than corresponding tumor tissues and adjacent 
normal tissues (n = 10, Extended Data Fig. 5b). Furthermore, IHC results from an additional 93 
ICC patients (Validation Cohort 3) also showed higher SAA expressions at invasive fronts than 
those in outer areas of tumor tissues or adjacent normal tissues (Extended Data Fig. 5c). Using 
gene enrichment analyses, enriched pathways including oxidative phosphorylation, MYC targets 10 
V1, and the epithelial-mesenchymal transition (EMT) for upregulated genes were also identified 
in Hep1 cells, when compared with Hep2 cells (Extended Data Fig. 5d). Single-Cell Regulatory 
Network Inference and Clustering (SCENIC) analyses (45) also identified distinct upregulated 
transcriptional factors (TFs) including CEBPG, YY1, ETV6, CDX1, and CTCFL in Hep1 cells, 
when compared with Hep2 cells (Extended Data Fig. 5e, see Methods). Among these TFs, ETV6, 15 
CEBPG, YY1, and BHLHE40, were annotated as potential TFs for SAA1 and SAA2 in SCENIC38, 
showing an increased activity score in the first layer close to invasive fronts, which were probably 
involved in mediating the high expression of SAA1 and SAA2 in Hep1 cells (Extended Data Fig. 
5f). On the other hand, the reported receptors genes for SAA, including FPR1, FPR2, TLR4, TLR2, 
SCARB1, and CD36, were predominantly enriched in macrophages according to scRNA-seq data, 20 
which was also confirmed by the ST slide results (Fig. 4c). Additionally, both macrophage spots 
expressing genes encoding SAA receptors and Hep1 cells were spatially accumulated at invasive 
fronts, further suggesting the recruitment of macrophages for the secretion of SAA from 
hepatocytes at invasive fronts (Fig. 4d). The accumulation of FPR1+ macrophages close to SAA+ 
hepatocytes at invasive fronts was further confirmed by multiplexed IF in Validation Cohort 1, 25 
including ICC (n = 10), HCC (n = 5), liver metastasis of colorectal cancer (n = 3), liver metastasis 
of pancreatic cancer (n = 2), and liver metastasis of lung cancer (n=1) (Fig. 4e, Extended Data Fig. 
S6 a~e). Specifically, significantly higher numbers of FPR1+ macrophages at the tumor side, and 
the SAA+ hepatocytes at the paratumor side of invasive fronts were found in primary liver cancers 
including ICC and HCC as well as in metastatic liver cancers mentioned above (Fig. 4f and 30 
Extended Data Fig. 6f). Strong correlations between enrichment of macrophages and SAA+ 
hepatocytes at invasive fronts were also observed (R = 0.73, P = 0.017) (Extended Data Fig. 6a). 
In addition, there is also high heterogeneity of invasive fronts along the normal-tumor borderline. 
We found that tumor cells close to SAA-enriched regions showed an enhanced EMT, upregulated 
energy metabolic processes (ATP metabolic processes, oxidative phosphorylation, and the 35 
respiratory electron transport chain), and activated immune responses (an interferon α response 
and IL2-STAT5 signaling) compared with the nearby tumor cell Hep1 non-enriched (Hep2 
enriched) region at invasive fronts (Extended Data Fig. 7a). Finally, the damaged states of 
hepatocytes at invasive fronts were found to be related to the prognoses of patients with primary 
liver cancers. The higher expressions of SAA1 and SAA2 in the border areas from Validation Cohort 40 
2 were significantly associated with worse overall survival (OS) of ICC patients (P = 0.019 for 
SAA1 and P = 0.019 for SAA2) (Fig. 4g and Extended Data Fig. 7b). IHC results from 93 ICC 
patients (Validation Cohort 3) also showed significant negative correlations between SAA 
expression levels at invasive fronts and the OS, as well as relapse-free survival (RFS) for ICC 
patients (P = 0.0062 for OS and P = 0.0024; Fig. 4h and Extended Data Fig. 7c). In addition, there 45 
was a strong correlation between SAA expressions in invasive fronts and adjacent normal tissues, 
showing that damaged states of hepatocytes in adjacent tumor tissues were partly reflected at 
invasive fronts (R = 0.75, P < 0.001; Extended Data Fig.7d). The higher expression levels of SAA 
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in paratumor areas from Validation cohort 3 were also significantly correlated with shorter OS and 
RFS in ICC (P = 0.0038 for OS and P = 0.030 for RFS; Extended Data Fig. 7e, f). The prognostic 
value of SAA expressions at the transcriptional and protein levels in paratumor tissues of HCC 
patients was further confirmed by Validation Cohort 4 [RNA-seq data and proteomics data from 
159 patients with HBV-related HCC, from our center28] (OS, P < 0.0001 for SAA1 or SAA2 in the 5 
RNA-seq data; P = 0.00027 for SAA using proteomics analysis) (Fig. 4i and Extended Data Fig. 
7g). These results suggested that the damaged states of hepatocytes were associated with tumor 
progression as well as the prognoses of patients. Most importantly, we identified the damaged 
states of hepatocytes, which were characterized by overexpression of SAA in response to tumor 
invasion, followed by recruitment of macrophages for further tumor invasion, ultimately resulting 10 
in a worse prognosis. 
 
Discussion 
In this study, we integrated spatially-resolved transcriptomics of subcellular resolution with 
scRNA-seq to map the transcriptional architecture of four regional sites from eight ICC patients. 15 
Compared with other ST methods, our Stereo-seq data had unprecedented nanoscale resolution 
(220 nm × 220 nm/spot) and expandable areas (10 mm ×10 mm), enabling a more accurate study 
of cell types or cell states in situ, and more space for spatial segmentation and further 
analyses12,20,39-42. The use of Stereo-seq in our study enabled the identification of cell types and 
ECM component distributions in different regions of ICC patients. The results confirmed the 20 
compositional heterogeneities of cells and the ECM, as well as their spatial distributions among 
different regions. By constructing a segmentation model of areas around the tumor margin area, 
we firstly identified the distinctive enrichment of immune cell clusters, metabolic reprogramming 
of tumor cells, and inflammatory states of hepatocytes in the areas around invasive fronts (500 µm 
wide zone centered on the borderline, 250 µm each side). 25 
Invasive fronts, where tumor cells invade into paratumor tissues and come into direct contact, have 
been recognized as the most important regions of solid tumors necessary for understanding tumor 
progression and metastasis4,7-11,20. Comprehensive mapping of the transcriptional architecture of 
these areas has facilitated a better understanding of the molecular pathology, and development of 
personalized therapeutic strategies, such as immune checkpoint blockade therapy for solid tumors. 30 
As a fundamental biological feature of the TME, spatial heterogeneity has been largely ignored 
due to the limitations of research tools5,6,12,43,44. In the present study, based on comprehensive 
mapping of the spatial transcriptomics architecture using Stereo-seq, the spatial heterogeneities of 
invasive fronts were compared with other regions in ICC, which helped to understand tumor 
behaviors, including invasion and metastasis. Based on a constructed model consisting of three 35 
layers on bilateral sides of the borderlines in ST slides, we found that enrichment of immune cells 
and a distinctive immune suppressive microenvironment and metabolic reprogramming of tumor 
cells were observed in the closest 250 µm wide layer from the tumor side of the borderlines. 
Among the immune cells, macrophages mainly comprised of the dominant M2-like macrophage 
accumulated at invasive fronts, indicating the dominant promotion of tumor progression by anti-40 
inflammatory macrophages. Furthermore, we found enhanced expressions of immune checkpoint 
genes, including CTLA4 in immune cells, and we also found upregulated immune evasion 
signatures in tumor cells in the closest layer to the borderlines. Thus, a more suppressive immune 
microenvironment in invasive fronts was found, which could facilitate further tumor invasion and 
metastasis of solid tumors.  45 
Based on precise segmentation of margin areas, our study also comprehensively characterized the 
distinct cell states of tumor cells at invasive fronts. By analyzing conventional pathways related 
with tumor cell behaviors, we observed more energy supply components from upregulated fatty 
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acid metabolism, including increased fatty acid synthesis and oxidation in tumor cells in the closest 
layer at the tumor side, when compared with outer layers from the tumor-paratumor borderline, 
further indicating that tumor cells at these locations underwent a distinct metabolic reprogramming 
of enhanced fatty acid metabolism for an increased energy supply, to better facilitate tumor cell 
invasion. Meanwhile, we also found enhanced hypoxia states, glycolysis levels, and both 5 
proliferative capacity and apoptosis levels in cell components at the closest layer from the 
paratumor side of the borderlines, when compared with outer areas. Because all of these results 
revealed distinct inflammatory states and special metabolic features at the areas around invasive 
fronts, we redefined the 500 µm wide zones centered at the tumor borderline as “invasive fronts,” 
which was more reasonable than previously defining a 1,000 µm wide area centered on the 10 
borderline7-9,20. Furthermore, metabolic reprogramming of enhanced fatty acid metabolism in 
tumor cells among invasive fronts for an increased energy supply could account for further tumor 
invasion of solid tumors. Therefore, therapeutic approaches that blocked this process could be a 
novel treatment to inhibit tumor invasion and metastasis.  
By further characterizing features of cell components at invasive fronts, we found that hepatocytes 15 
at invasive fronts also underwent distinct inflammatory changes, with high expressions of SAA 
and their TFs, including ETV6, CEBPG, YY1, and BHLHE40, which reflected the damaged 
conditions of hepatocytes invaded by tumor cells45,46. SAA can directly coordinate accumulation 
of innate immune cells like monocytes, immature DCs, neutrophils, and T cells. Receptors for 
SAA, including FPR1 and FPR2, were detected in macrophages at invasive fronts, and 20 
significantly accumulated close to Hep1 cells, which probably resulted from the recruitment of 
macrophages close to the borderline because of secretion of SAA by damaged hepatocytes. This 
possibility is consistent with a study reporting that hepatocytes upregulated SAA1 expression and 
provided a pro-metastatic niche for liver metastasis of pancreatic cancer in a mouse model45. The 
high expression and enrichment of SAA in invasive fronts could explain the aggregation of 25 
immune cells at this site, which has been reported in other studies, as well as our own study. SAA 
has been reported to contribute to M2-macrophage differentiation47, which could account for the 
presence of more M2-like macrophages found at invasive fronts. Moreover, higher expressions of 
SAA and accumulation of macrophages were also confirmed at invasive fronts in other solid 
tumors including HCC, liver metastasis of colorectal cancer, and pancreatic cancer, and was 30 
further found to be related with worse prognoses of patients. Our work identified heterogeneity of 
invasive fronts in the axial direction, with high variations of tumor cell states and damaged 
hepatocyte distributions along the borderlines. Most importantly, we uncovered a novel role of 
SAA expressions for hepatocytes at invasive fronts, which reflected the damaged states of 
hepatocytes, and mediated recruitment of macrophages (mainly M2-like macrophages) to further 35 
promote tumor progression. 
Although Stero-seq provided a high nanoscale resolution (220 nm × 220 nm/spot) to capture 
transcripts of a few hundred spots per cell, it was still difficult to identify cell boundaries and 
capture exact transcripts at the level of single cells21,38,39. In our study, the raw spatial expression 
matrix at a nanoscale resolution was converted into cell-sized pseudo-spots of 25 µm square sizes 40 
(50 × 50 bins/pseudo-spot) and assigned to specific cell types by the highest probability. Thus, it 
was still difficult to spatially map resolved single cell genetic information and precisely infer cell 
types because of technical limitations.  
In conclusion, this study characterized the complexity and heterogeneity of tumor ecosystems, as 
well as cellular interactions in different regional sites of ICC, which identified immune cell 45 
infiltration, a suppressive immune microenvironment, metabolic reprogramming of tumor cells, 
and damaged hepatocytes enriched at invasive fronts. We also verified this findings in HCC, liver 
metastasis of colorectal or pancreatic cancer. Overall, the results provided a comprehensive 
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understanding and detailed characterization of the heterogeneity present at tumor invasive fronts, 
which will help to develop more precise and effective therapeutic targets for the treatment of solid 
tumors. 
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Fig. 1 

 
 
Fig. 1. Spatially-resolved transcriptomics profiles in multi-regional sites in patients with 
intrahepatic cholangiocarcinoma (ICC). (a) Schematic diagram of the spatial transcriptomics 5 
acquisition workflow based on 27 samples (T, 6; B, 8; P, 7; LN, 6) from eight patients with ICC 
with further data analysis. Liver cancers* include ICC (n = 10), HCC (n = 5), liver metastasis of 
colorectal cancer (n = 3), pancreatic cancer (n = 2), and lung cancer (n = 1). (b) Hemoxylin and 
eosin (H&E) staining, gene count maps, and cell type maps of different sites of the ICC patient 
LC5. (c) The probabilistic inference of cell types at captured spatial transcriptomic spots (50 × 50 10 
bins/spot, 25 µm squares). (d) Heat map showing the expression of marker genes for cell types in 
annotated spatial spots. T, tumor tissue; B, margin area; P, adjacent normal tissue; LN, lymph node. 
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Fig. 2 

 
 

Fig. 2. The heterogeneities in composition and spatial distribution of cells and extracellular 
matrix components in multi-regional sites of ICC patients. (a) Pie graphs showing the 5 
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percentages of major cell types in all cell components at four regional sites (T, n = 6; P, n = 7; B, 
n = 8; LN, n = 6) of eight patients with ICC. (b) H&E staining and heat maps of the spatial 
distributions of fibroblasts, T/NK cells, and B cells in four regional sites. (c) The three-dimensional 
diagram and corresponding heat maps showing tertiary lymphoid structures (TLS) where DCs, 
T/NK, and B cells co-aggregated. (d) Box plots showing the percentages of mCAF, naïve T cells, 5 
and naïve B cells in all cell components, and the exhausted/cytotoxic T cells ratios in four regional 
sites. (e) Uniform manifold approximation and projection (UMAP) plots showing the clustering 
of gene expression profiles of extracellular matrix components in segmented spots (500 µm × 500 
µm/spot) from spatial transcriptomics slides. The colors represent different clusters (left panel) 
and tissues (right panel). (f) Violin plots representing the expressions of CXCL8 in four regional 10 
sites for ST (left panel) and main cell types for scRNA-seq (right panel). 
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Fig. 3 

 
Fig. 3. Segmentation of margin areas and distinct features of immune cells and tumor cells 
at invasive fronts. (a) Schematic diagram of the identification of borderlines and segmentation of 
margin areas to characterize the spatial heterogeneity of margin areas. Three layers with a width 5 
of 250 µm were drawn from the normal side and from the tumor side of the borderline, respectively, 
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and each layer was divided into 100 subregions along the borderline. (b) Line graphs (left panel) 
showing the fractions of immune cells in all cell components along the borderlines (100 subregions 
for each layer) in three layers from the normal side and tumor side of the borderlines (LC2-B), and 
box plots (right panel) analyzing average fractions of immune cells in all cell components in each 
layer from seven patients with ICC. “Distant” is defined as a 250 µm-wide zone in tumor tissues 5 
or adjacent normal tissues at least 2 mm from the borderline. Two-tailed paired t-tests were used. 
And only 5 margins included the "distant" area in margin are slides due to the sampling. (c) Line 
graphs (left panel) showing the fractions of macrophages in all cell components along the 
borderlines (100 subregions for each layer) in three layers from the normal and tumor sides of the 
borderline (LC2-B), and box plots (right panel) analyzing average fractions of macrophages in all 10 
cell components in each layer from seven patients with ICC. Two-tailed paired t-tests were used.  
(d) Box plots analyzing average number of macrophages (CD68+ cells) by immunofluorescence 
(IF) staining in different layers (1,000 µm in axial length) from the normal and tumor sides of the 
borderline in 10 ICC patients from Validation Cohort 1. (e) Left panel: H&E staining and the 
corresponding spatial distribution maps of pro-inflammatory and anti-inflammatory macrophages 15 
(LC2-B). Right panel: Box plots showing pro-inflammatory and anti-inflammatory macrophage 
ratios in immune cells in different layers from the tumor side (n = 7).  (f) Box plots showing the 
expression levels of CTLA-4 of in different layers of margin areas (n = 7). (g) Box plots showing 
the expression levels of immune evasion signatures in malignant cell (tumor side) or all cell 
components (paratumor side) from different layers of margin areas (n = 7). Two-tailed paired t-20 
tests were used. (h-k) Box plots showing the expression levels using the Gene Set Variation 
Analysis (GSVA) score of hypoxia and glycolysis (h), fatty acid beta-oxidation and the 
tricarboxylic acid (TCA) cycle (i), proliferative capacity (G2M) (j), apoptosis (k) of tumor cells 
in the tumor side and all cell components in the paratumor side of the borderlines (n = 7). Two-
tailed paired t-tests were used for panel (b-k).  25 
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Fig. 4 
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Fig. 4. Damaged hepatocyte states at invasive fronts associated with a poor prognosis. (a) 
Volcano plot showing differentially-expressed genes between Hep1 and Hep2. The red dots 
represent genes upregulated in Hep1 cells and the blue dots represent genes upregulated in Hep2 
cells. (b) Dot diagram showing the spatial distribution of Hep1 and Hep2 cells in margin areas and 
Hep1 cells (SAAhigh hepatocytes) stained by IF staining (HNF4α, SAA, and 4′-6′-diamidino-2-5 
phenylindole (DAPI)) (LC5-B). (c) Bubble chart showing expression levels of serum amyloid A 
(SAA) receptors encoding genes including CD36, FPR1/2, SCARB1, TLR2, and TLR4 in the main 
cell types in scRNA data and spatially-resolved spatial transcriptomics spots (LC2-B). (d) Scatter 
diagram of the distribution of Hep1 cells (blue dots) and macrophages (red dots) at the LC5-B ST 
side (left panel). Scatter diagram showing the expression of SAA in Hep1 (middle panel), and the 10 
expression of SAA receptors in macrophages (right panel) at the LC5-B ST side. The dash lines 
represent the borderline. (e) Multiplexed IF staining (ARG1, CK19, FPR1, CD68, SAA, and DAPI) 
showing co-aggregation of FPR1high macrophages (FPR1+CD68+ cells) and SAAhigh hepatocytes 
(SAA+ARG1+ cells) at invasive fronts of 10 ICC patients from Validation Cohort 1. (f) Cell number 
of macrophages (CD68+ cells) and the SAA+ hepatocytes (SAA+ARG1+ cells) in different layers 15 
(1000 µm in axial length) at margin areas and distant sites of 10 ICC patients using multiplexed 
IF staining. (g) Overall survival (OS) curves of 10 patients with ICC from Validation Cohort 2, 
grouped by SAA1 expressions in the border areas (1 cm-wide zone centered on the tumor-normal 
borderline) using bulk-RNA sequencing. (h) OS curves of 93 patients with ICC from Validation 
Cohort 3 grouped by SAA expressions at invasive fronts using IHC staining. (i) OS curves of 159 20 
patients with HCC from Validation Cohort 4, grouped by relative expressions of SAA in paratumor 
tissues by proteome data. 
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Materials and Methods 
Study subjects 
Matched, fresh tumor tissues, adjacent normal tissues, margin area tissues, and lymph node 
samples were collected as the Discovery Cohort from 8 ICC patients for spatial transcriptomics 
analyses, with detailed and pathological information shown in Supplementary Table 1. Formalin-5 
fixed paraffin-embedded (FFPE) tissue blocks of margin area tissues were collected from twenty-
three patients who had undergone liver resection and were pathologically diagnosed with liver 
cancer (ICC, n = 10; HCC, n = 5; liver metastasis of colorectal cancer, n = 3; liver metastasis of 
pancreatic cancer, n = 2, and liver metastasis of lung cancer, n = 1) as Validation Cohort 1. 
Matched, frozen tumor tissues (at least 2 cm from the tumor-normal borderline), adjacent normal 10 
tissues (at least 2 cm from the tumor-normal borderline), and border area tissues (1 cm-wide zones 
centered on the tumor-normal borderline) samples were collected from 10 ICC patients who had 
undergone liver resection with pathological diagnoses of ICC as Validation Cohort 2. FFPE tissue 
blocks of margin area tissues (2 × 2 × 1 cm, 2 cm-wide zones centered on the tumor-normal 
borderlines) samples were collected from 93 ICC patients who had undergone liver resection with 15 
pathological diagnoses of ICC as Validation Cohort 3. Paired frozen tumor tissues and paratumor 
tissues were collected from 159 HCC patients who had undergone liver resection with pathological 
diagnoses of HCC as Validation Cohort 4 28. The available clinical features of Validation cohorts 
are summarized in Supplementary Table 3. All patients provided informed consent for collection 
of clinical information, and the tissue collection protocols were approved by the Institutional 20 
Review Board [approval B2018-018(2)] at Zhongshan Hospital Fudan University. 
 
Single-cell RNA sequencing  
Single-cell isolation 
Margin area tissues (a 1 cm-wide zone centered on the tumor-normal borderline) were surgically 25 
removed from resected liver lobes from ICC patients and immersed in a complete medium 
containing 90% Dulbecco’s Modified Eagle medium (Gibco, Gaithersburg, MD, USA) and 10% 
fetal bovine serum (FBS; Gibco), and transported to the laboratory in a refrigerated container. 
Suitable small tissue blocks were then cut into pieces, which were transferred to MACS C tubes 
(Miltenyi Biotec, Bergisch Gladbach, Germany), with 5 mL of digesting enzyme included in a 30 
Tumor Dissociation Kit (Miltenyi Biotec). The tissues were then converted into single-cell 
suspensions using a gentle MACS Dissociator (Miltenyi Biotec) with the following steps: milled; 
incubated at 37°C for 30 min on a shaker; milled; incubated at 37°C for 30 min; milled; filtered 
through a 70 mm filter in 2% FBS. Finally, the single-cell suspension was centrifuged at 300 × g 
for 7 min,  and resuspended with cell resuspension buffer at a cell concentration of 1,000 viable 35 
cells/µl. 
Single-cell RNA-seq library  construction 
Single-cell RNA-seq libraries were prepared using DNBelab C4 system as previously described 
39. Barcoded mRNA capture beads, droplet generation oil, and the single-cell suspension were 
loaded into the corresponding reservoirs on the chip for droplet generation. The droplets were 40 
gently removed from the collection vial and placed at room temperature for 20 minutes. Droplets 
were then broken and collected by the bead filter. The supernatant was removed, and the bead 
pellet was resuspended with 100 µl RT mix. The mixture was then thermal cycled as follows: 42 °C 
for 90 minutes, 10 cycles of 50 °C for 2 minutes, 42 °C for 2 minutes. The bead pellet was then 
resuspended in 200 µl of exonuclease mix and incubated at 37 °C for 45 minutes. Afterward, the 45 
PCR master mix was added to the beads pellet and thermal cycled as follows: 95 °C for 3 minutes, 
13 cycles of 98 °C for 20 s, 58 °C for 20 s, 72 °C for 3 minutes, and finally 72 °C for 5 minutes. 
Amplified cDNA was purified using 60 µl of AMPure XP beads. The cDNA was subsequently 
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fragmented to 400-600 bp with NEBNext dsDNA Fragmentase (New England Biolabs) according 
to the manufacturer's protocol. Indexed sequencing libraries were constructed using the reagents 
in the C4 scRNA-seq kit following the steps: (1) post fragmentation size selection with AMPure 
XP beads; (2) end repair and A-tailing; (3) adapter ligation; (4) post ligation purification with 
AMPure XP beads; (5) sample index PCR and size selection with AMPure XP beads. The barcode 5 
sequencing libraries were quantified by Qubit (Invitrogen). The sequencing libraries were 
sequenced using the DIPSEQ T1 sequencer at the China National GeneBank. The read structure 
was paired-end with Read 1, covering 30 bases inclusive of the 10 bp cell barcode 1, 10 bp cell 
barcode 2, and 10 bp unique molecular identifier, and Read 2 containing 100 bases of transcript 
sequence, and a 10 bp sample index. 10 
Methods of Spatial Transcriptomics 
Stereo-seq chip preparation 
Generation of capture chips was performed following the Stereo-seq protocol 39. In brief, to 
generate the DNB array for in situ RNA capture, we first synthesized random 25 nucleotide CID-
containing oligonucleotides, circularized with T4 DNA ligase, and splint oligonucleotides. DNB 15 
were then generated by rolling circle amplification and loaded onto the patterned chips (65 mm × 
65 mm). Next, to determine the distinct DNB-CID sequences at each spatial location, single-end 
sequencing was performed on a DNBSEQ-Tx21 sequencer (MGI Research) with sequencing SE25 
strategy. After sequencing, poly-T and 10 bp MID-containing oligonucleotides were hybridized 
and ligated to the DNB on the chip. This procedure produced capture probes containing a 25 bp 20 
CID barcode, a 10 bp MID, and a 22 bp poly-T ready for in situ capture. CID sequences together 
with their corresponding coordinates for each DNB were determined using a base calling method 
according to the manufacturer’s instruction for the DNBSEQ sequencer. After sequencing, the 
capture chip was split into smaller size chips (10 mm × 10 mm). At this stage, all duplicated CID 
that corresponded to non-adjacent spots were removed. 25 
Tissue sectioning, fixation, staining, and imaging 
Matched, fresh tumor tissues (2 × 2 × 1 cm, at least 2 cm from the tumor-normal borderline), 
adjacent normal tissues (2 × 2 × 1 cm, at least 2 cm from the tumor-normal borderline), margin 
area tissues (2 × 2 × 1 cm, a 2 cm-wide zone centered on the tumor-normal borderline), and LN 
samples were collected and snap-frozen in optical cutting tissue (OCT) compound (Tissue-Tek; 30 
Sakura Finetek USA, Torrance, CA, USA). After collection, the tissues were snap-frozen in liquid 
nitrogen containing prechilled isopentane in Tissue-Tek OCT and transferred to a -80°C freezer 
for storage before the experiment. The prefrozen liver tissues in OCT were transverse sectioned at 
a thickness of 10 µm using a CM1950 cryostat (Leica, Wetzlar, Germany). Tissue sections 
adhering to the Stereo-seq chip surface were incubated at 37°C for 3 min. The tissues were then 35 
fixed in methanol and incubated at -20°C for 40 min. The adjacent tissue sections adhering to the 
glass slides were stained using H&E. Imaging for both procedures was conducted using a Ti-7 
Eclipse microscope (Nikon, Tokyo, Japan). 
Tissue patches on the chip were permeabilized using 0.1% pepsin (Sigma-Aldrich, St. Louis, MO, 
USA) in 0.01 M HCl buffer (pH = 2), incubated at 37°C for 10 min and then washed with 0.1× 40 
SSC buffer (Thermo Fisher Scientific) supplemented with 0.05 U/µL RNase inhibitor (New 
England Biolabs, Ipswich, MA, USA). Released RNA from permeabilized tissues was captured 
using DNB probes and reverse-transcribed overnight at 42°C using in-house SuperScript II (10 
U/µL reverse transcriptase), 1 mM dNTPs, 1 M betaine solution PCR reagent, 7.5 mM MgCl2, 5 
mM DTT, 2 U/µL RNase inhibitor, 2.5 µM Stereo-TSO, and 1× First-Strand buffer. After in situ 45 
reverse transcription, tissue patches were washed twice with 0.1× SSC buffer and digested with 
tissue removal buffer (10 mM Tris-HCl, 50 mM EDTA, 200 mM NaCl, and 1.5% SDS) at 37°C 
for 30 min. The cDNA-containing chips were then incubated with 400 µL cDNA release buffer 
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(10 mM Tris-HCl, 50 mM EDTA, 200 mM NaCl, 1.5% SDS, and 40 U/mL Proteinase K) treatment 
for 3 h at 55°C, and then washed once with 400 µL of 0.1× SSC buffer. All products were purified 
using 0.8 × Ampure XP Beads (Vazyme Biotech, Nanjing, China), and were amplified with KAPA 
HiFi Hotstart Ready Mix (Roche, Basel, Switzerland) using 0.8 µM cDNA-PCR primers. PCR 
reactions were conducted as follows: first incubation at 95°C for 5 min, 15 cycles at 98°C for 20 5 
s, 58°C for 20 s, 72°C for 3 min, and a final incubation at 72°C for 5 min. PCR products were 
purified using 0.6 × Ampure XP Beads. The concentrations of cDNA were quantified using a 
Qubit™ dsDNA Assay Kit (Thermo Fisher Scientific). 
Library preparation and sequencing  
A total of 20 ng of cDNA was fragmented with in-house Tn5 transposase at 55°C for 10 min. The 10 
reactions were then terminated by the addition of 0.02% SDS buffer with gentle mixing at 37°C 
for 5 min. Fragmentation products were amplified as follows: 25 µL of fragmentation product, 1× 
KAPA HiFi Hotstart Ready Mix, 0.3 µM Stereo-Library-F primer, 0.3 µM Stereo-Library-R primer 
in a total volume of 100 µL with the addition of nuclease-free H2O. The reaction was then run as 
follows: one cycle at 95°C for 5 min, 13 cycles at 98°C for 20 s; 58°C for 20 s and 72°C for 30 s), 15 
and one cycle at 72°C for 5 min. The PCR products were purified using Ampure XP Beads 
(Vazyme; 0.6× and 0.2×) for DNB generation and finally sequenced (a paired-end of 100 bp) using 
a MGI DNBSEQ-Tx sequencer.  
Cell clustering 
Clustering analysis of the scRNA dataset was performed using Seurat (version 3.2.2) and the R 20 
program, and the parameters were manually curated to portray an optimal classification of cell 
types with empirical knowledge. Specifically, low quality cells were filtered with fewer than 500 
detected genes or above 6,000, as well as with higher than 20% mitochondrial counts in data 
preprocessing, and all query genes were guaranteed to be expressed in at least three cells for further 
use. The top 3,000 highly variable genes were then selected according to their mean-variance ratio 25 
on expression levels after log1p normalization. For downstream clustering and visualization, 
principal component analysis (PCA)-based dimension reduction was initially generated, and the 
first 18 PCs were extracted for subsequent Louvain clustering to define the cell types (the 
resolution was set to 0.3). The clustering result was finally characterized in a two-dimensional 
space using the UMAP technique, and the cell types were annotated by known biomarkers that 30 
were more highly expressed in a particular cluster (via FindAllMarkers function with default 
parameters). 
Cell type inference of spatial transcriptome spots 
To overcome the low RNA capture efficiencies on single DNB spots at a resolution of 500 nm, the 
raw spatial expression matrix was convoluted into larger pseudo-spots of 50 × 50 window size 35 
(bin50 for short), or more precisely, the 25 µm squares. The cell type composition for each bin50 
spot was then inferred by SPOTlight software 31 (version 0.1.6), with factorized cell type-specific 
topic profiles from paired scRNA-seq data. The potential composition of each spot was pruned 
and renormalized using the top four cell types with respective probabilities in descending order, 
and the primary cell type was assigned for visualization. 40 
Differential gene expression analysis 
Differentially expressed gene (DEG) analysis in each cluster was performed using the 
FindAllMarkers function of the Seurat package (v3.2.2), and the differential expression genes 
between the two groups are detected by FindMarkers function. The parameter condition is 
min.pct=0.1, logfc.threshold=0.15. 45 
Functional enrichment analysis 
To identify the biological function of differentially-expressed genes of each cluster, we performed 
differential expression gene set enrichment analyses using the Molecular Signatures Database of 
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H (hallmark gene sets, version 7.4) by Gene Set Enrichment Analysis 48 (GSEA, https://www.gsea-
msigdb.org/gsea/index.jsp). To characterize the differences in pathways as well as biological 
functions between tumor cells from SAA-enriched area and non-SAA-enriched area, the 
differentially-expressed genes between the tumor cells in two layers around borderline of LC5-B 
were used. Similarly, the differential genes of the two subtypes of hepatocytes in LC5-B were used 5 
for pathway enrichment analysis. 
Transcription factors analysis 
We prepared all bins (bin 50) from stereo-seq. A bin to gene signal matrix depicting gene 
abundances was input into pySCENIC pipeline38 with default settings to infer statistically active 
TFs and their targets. First, it inferred co-expression modules using GRNBoost2, a regression per-10 
target approach. Second, it pruned indirect targets from modules using regulatory motif discovery 
(cisTarget). In brief, enriched motifs were discovered from all genes in co-expression modules. 
Each remaining TF and its potential direct target was called regulon. Finally, it used AUCell as a 
metrics computing the activity of each regulon in each bin. To obtain each TF's activity scores, we 
put the bin matrix into pySCENIC pipeline38. To identify the specific regulons of hepatocyte 15 
subtypes, we used Wilcoxson Rank-Sum test to calculated the different TF between Hep1 and 
Hep2.The specific TF in Hep1 were displayed by Feature Plots on spots. 
 
Survival analysis  
The samples of patients for survival analyses were split into two groups (high and low) according 20 
to the quantile expressions of the proposed gene(s) in the surv_cutpoint function of the R survminer 
package. Kaplan-Meier survival curves measuring the fractions of patients living for a certain time 
were plotted to compare the two patient cohorts and assess the effect of the particular gene(s) on 
prognoses. Statistical significance was calculated using the log-rank test. All analyses were 
performed using the R 3.6.0 framework. 25 
 
Identification of the tumor-normal border and invasive fronts  
To identify the border of peritumor and intratumor regions by spatial transcriptome profiling, the 
tumor section was first processed into a binary image that masked the predicted hepatocyte cells. 
Only the large area of the normal liver tissue was retained as a region of interest, and scatter signals 30 
were filtered by window-size pixel thresholding (the threshold was set manually to sweep scatter 
signals outside regions on different sections), and the boundary pixels were extracted using the 
Contours function in the Python OpenCV package and initialized into a rough edge. The edge was 
then smoothed by a spline fitting (with 20 degrees of freedom) using the R spline package, and 
local segmentation and/or rotations were introduced on the complex borders, which could not be 35 
directly fitted (for example, a border graphed as a parabola with a horizontal axis of symmetry was 
barely fitted without a 90° rotation).  
After the determination of the border, parallel curved lines were generated by perpendicularly 
extending 250, 500, and 750 µm to both tumor and normal sides, to measure the appropriate width 
of the tumor invasive front. To be specific, six infiltrating layers (bidirectional) were derived from 40 
the border, and each layer was segmented into 100 tiles with approximately equal areas along the 
border line. The spots/cells were subsequently assigned to the corresponding tiles by calculating 
the sign of the outer product of their centroid coordinates to each edge of the tiles, and were used 
to assess the variations of spatial gradients of cellular components and gene expression profilers 
on both tangential and normal directions of invasive front. 45 
 
Detection of cell subtypes 
T cell, B cell, macrophage, and CAF subtypes 
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To study the subclass of each cell type, the relative higher confidential cell spots were extracted 
from the SPOTlight output 31, under criteria that the normalized probability of primary predicted 
cell types was ≥ 0.4 and secondary types was ≤ 0.2. CPM normalization was generated for each 
spot to ensure the gene relative abundance between comparable spots, and gene standardization 
was applied to the empirical biomarkers of corresponding cell subtypes (summarized in 5 
Supplementary Table 4) to balance the expression levels for those selected marker genes that were 
significantly expressed in corresponding subtypes. The highest average score was then assigned to 
the spot to represent the most probable subtype for downstream analysis.  
 
Identification of SAA1/2high hepatocyte subtypes 10 
The SAA1/SAA2-abundant hepatocytes were directly distinguished by increasing the resolution 
of Louvain unsupervised clustering in invasive fronts of LC2 and LC5 samples, respectively, and 
the most significant marker genes (including SAA1 and SAA2), which defined this particular 
hepatocyte subtype, were intersected into a reference set. In a similar manner, the countered 
reference set was generated, specifying hepatocyte cells with SAA1/2 not significantly expressed. 15 
To identify the SAA1/2-abundant hepatocytes on other tumor border sections, the genes in the two 
reference sets were normalized and standardized, and a summed scaled expression level of two 
cell clusters was used to define the SAA1/2high or SAA1/2low hepatocytes. 
 
Cell type enrichment, gene expression, and tumor hallmark score analysis at invasive fronts 20 
After stratification and blocking of the tumor invasive front into small quasi-equal-area tiles, the 
cell type composition, gene expression, and tumor hallmark scores were assessed on these 
elaborated spatial bulk RNA profilers. In particular, cell types were summarized by the normalized 
probabilities of each bin50 spot that was inferred by the former SPOTlight31 results. The gene 
expressions were normalized using the CPM and compared between the tiles and layers on a bulk 25 
level. The tumor hallmark scores were generated by extracting the tumor cell spots (under the 
criteria of cell subtype detection section) in border-to-intratumor tiles, normalizing, and comparing 
to border-to-peritumor tiles by Gene Set Variation Analysis (GSVA) analysis. All results were 
shown as percentages of each tile, and then statistical analyses were conducted to study the 
heterogeneity on both tangential and normal directions of tumor invasive fronts. 30 
 
Multiplexed immunofluorescence staining  
In Validation Cohort 1, FFPE tissue blocks of margin area tissues (2 × 2 × 1 cm, a 2 cm-wide zone 
centered on the tumor-normal borderline) were collected from 21 patients who had undergone liver 
resection and were pathologically diagnosed with liver cancer. Multiplex staining of FFPE tissues 35 
was conducted using a PANO 7-plex IHC kit (Panovue) according to the manufacturer’s 
instructions. Primary antibodies were to CK19 (#ab52625; Abcam, Cambridge, UK), ARG1 
(#93668S, Abcam), SAA1/2 (#ab207445, Abcam), FPR1 (ab113531, Abcam), CD68 (#76437S, 
Cell Signaling Technology, Danvers, MA, USA), S100P (#ab124743, Abcam), CK20 (#13063S, 
Abcam), TTF1 (#ab76013, Abcam) were sequentially used, followed by incubation with 40 
horseradish peroxidase-conjugated secondary antibody and tyramide signal amplification. The 
slides were then microwave heat-treated after each TSA procedure. Nuclei were stained with 4′-
6′-diamidino-2-phenylindole (DAPI; Sigma-Aldrich) after all the human antigens had been 
labelled. For each slide, three zones with a width of 500 µm and length of 1,000 µm from tumoral 
areas, paratumor areas, and the areas centered on the borderline were selected for image capture. 45 
 
Bulk RNA extraction and sequencing 
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For 10 ICC patients who had undergone liver resection and were pathologically diagnosed with 
ICC in Validation Cohort 2, matched, frozen tumor tissues (at least 2 cm from the tumor-normal 
borderline), adjacent normal tissues (at least 2 cm from the tumor-normal borderline), and border 
area tissues (1 cm-wide zones centered on the tumor-normal borderline) were collected. Total 
RNAs of tumor tissues, border area tissues, and adjacent normal tissues from 10 ICC patients were 5 
isolated using a RNeasy Mini Kit (Qiagen, Hilden, Germany). Strand-specific libraries were 
prepared using a TruSeq Stranded Total RNA Sample Preparation kit (Illumina, San Diego, CA, 
USA) following the manufacturer’s instructions. Briefly, mRNA was enriched with oligo(dT) 
beads. Following purification, the mRNA was fragmented into small pieces using divalent cations 
at 94°C for 8 min. The cleaved RNA fragments were then copied into first strand cDNA using 10 
reverse transcriptase and random primers, followed by second strand cDNA synthesis using DNA 
Polymerase I and RNase H. These cDNA fragments then underwent an end repair process, 
involving addition of a single “A” base, followed by ligation of the adapters. The products were 
then purified and enriched with PCR to create the final cDNA library. Purified libraries were 
quantified using a Qubit 2.0 fluorometer (Life Technologies, Carlsbad, CA, USA) and confirmed 15 
using a 2100 Bioanalyzer (Agilent Technologies, San Jose, CA, USA) to confirm the insert size 
and calculate the mole concentration.  
Clusters were generated by cBot with the library diluted to 10 pM and then sequenced using a 
NovaSeq 6000 (Illumina). The library construction and sequencing were performed at Shanghai 
Biotechnology Corporation (Shanghai, China).For each sample, 33–95 million RNA-seq clean 20 
reads were obtained using HISAT2 (hierarchical indexing for the spliced alignment of 
transcripts)49, version 2.0.477. Sequencing read counts were calculated using Stringtie 50,51, version 
1.3.0. Expression levels from different samples were then normalized by the Trimmed Mean of M 
values method. The normalized expression levels of different samples were converted to fragments 
per kb of transcript per million mapped (FPKM) fragments. 25 
 
Immunohistochemical staining and evaluation 
FFPE tissue blocks of margin area tissues (2 × 2 × 1 cm, a 2 cm-wide zone centered on the tumor-
normal borderline) were collected from 93 ICC patients who had undergone liver resection and 
were pathologically diagnosed with ICC as Validation Cohort 3. FFPE tissue blocks of margin 30 
areas from 93 patients (Validation Cohort 2) were used for IHC staining. Primary antibody 
against SAA (#ab190802, Abcam) was used for the staining of SAA. All staining was conducted 
using the IHC/ISH System (BenchMark GX; Roche, Basel, Switzerland) following the 
manufacturer’s instructions. 
For the evaluation of the staining index, three zones with a width of 500 µm and a length of 1 mm 35 
were selected from tumor areas, areas around the borderline (the zone was centered on the 
borderline), and paratumor areas. The staining index was further acquired using the ImageJ 1.53 
(National Institutes of Health, Bethesda, MD, USA) IHC profiler. 
 
Statistical analysis 40 
Statistical analyses were performed using the R 3.6.0 framework, including Student’s t-test, 
Wilcoxon's sign rank test, and Wilcoxon's rank-sum test. Asterisks represented the significance 
levels of the performed tests (*P <0.05; **P < 0.01; ***P < 0.001). 
 
 45 
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Extended Data Fig. 1 
 

 
Extended Data Fig 1. Cell type assignment of scRNA-seq profiling and spatial transcriptome 
profiling abundance in different intrahepatic cholangiocarcinoma (ICC) regions. (a) An 5 
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UMAP plot for the cell type identification of 29,189 single cells based on scRNA-seq data using 
Seurat. (b) UMAP plots color-coded for the expression (gray to purple) of marker genes for distinct 
cell types. (c) Spatial transcriptomics (ST) spots were mapped to H&E staining of adjacent slides 
of LC4-T, and the raw spatial expression matrix with each bin/spot was convoluted into pseudo-
spots with 2.5 µm squares (5 × 5 bins/spot) to show unique molecular identifiers (UMI) counts of 5 
the cell nucleus (with a diameter of 15 µm) of a tumor cell by ST spots. (d-e) Violin plots showing 
UMI counts (d) and numbers of genes (e) captured in 50 ST slides of 27 samples (T, n = 6; P, n = 
7; B, n = 8; LN, n =6) from eight patients with ICC.  
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Extended Data Fig. 2 
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Extended Data Fig 2.  The heterogeneities of spatial distributions of cell components in four 
regional sites of patients with ICC. (a) H&E staining and corresponding heat maps illustrating 
the location of tertiary lymphoid structures (TLS) featured with co-aggregation of B cells, T/NK 
cells, and DCs in LC6-B. (b) Heat map showing differential expression genes of cancer-associated 
fibroblast (CAF) subtypes AP-CAF, i-CAF, mCAF, and vCAF in tumor tissues. (c) Box plots 5 
showing the percentages of AP-CAF, iCAF, and vCAF subtypes in all fibroblast in four regional 
sites of eight patients with ICC. (d) The H&E staining, cell type spatial maps and corresponding 
IF illustrating the structure of the lymph node including the germinal center and the distribution of 
subpopulations of main cell types in lymph nodes (LC7-LN). (e) H&E staining and signature of 
cancer hallmarks for corresponding spatial areas of tumor tissue LC5-T. 10 
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Extended Data Fig. 3 
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Extended Data Fig. 3. Composition and spatial heterogeneity of extracellular matrix (ECM) 
components in four regional sites of patients with ICC. (a) Heat map showing the clustering of 
ECM components according to differentially-expressed genes in segmented spots. Different 
patterns, tissues and patients are labeled by colors. (b) Violin plots representing the expressions of 
CXCL1, MMP14, and IL18 in four regional sites by ST data (left panel) and in different cell types 5 
by scRNA-seq (right panel). (c) Violin plots showing the expression levels of CCL19, CCL21, and 
CCR7 in four regional sites. (d) Heat map showing the expression levels of CD28, CD80, BTLA, 
TIGIT, CD96, CTLA4, CD274, and LGALS9 in segmented ST spots. Tissues and patients are 
labeled by colors. (e) H&E staining and heat maps of the spatial expression of inhibitory related 
genes BTLA, TIGIT, CTLA4, CD96, and CD274 in corresponding slide of LC5-LN. 10 
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Extended Data Fig. 4 
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Extended Data Fig. 4. Cell states and the immune microenvironment at invasive fronts. (a) 
Spatial distribution maps of all cell types and spatial heat maps of macrophages and T/NK cells in 
margin areas (LC0-B, LC2-B, LC4-B, LC5-B, LC6-B, and LC7-B). (b) Left panel: line graphs 
showing the fractions of fibroblasts in all cell components along the borderline (100 subregions 
for each layer) of three layers from the normal and tumor sides (LC2-B). Right panel: box plots 5 
showing the fractions of fibroblasts in all cell components in different layers of margin areas. 
“Distant” was defined as a 250 µm wide zone in tumor or adjacent normal tissues at least 2 mm 
from the borderline. (c) Line graphs showing the fractions of T/NK cells in all cell components 
along the borderline (100 subregions for each layer) in three layers from the normal tumor sides 
(LC2-B). Box plots showing the fractions of T/NK cells, DCs, and B cells in all cell components 10 
in different layers of margin areas. (d) Left panel: spatial distribution maps of T cell subtypes, 
including co-stimulatory, cytotoxic, exhausted, naïve, and resident T cells. Right panel: box plots 
showing the fractions of cytotoxic T cells and exhausted T cells in all cell components in different 
layers of margin areas (n = 6). (e) Box plots showing the expression levels of the immune 
checkpoint genes BTLA, CD96 and IDO1 in different layers of margin areas (n = 7).  (f-g) Box 15 
plots showing the GSVA scores of glutamine metabolism (f) and fatty acyl CoA synthesis (g) of 
tumor cells at the tumor side and all cell components in the paratumor side of the borderline (n = 
7). Two-tailed paired t-tests were used for panel b-g.  
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Extended Data Fig. 5 
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Extended Data Fig. 5. Upregulated expression of SAA in hepatocytes in invasive fronts and 
potential transcriptional factors (TFs). (a) Spatial distribution maps of Hep1 and Hep2 cells in 
three layers at the paratumor sides of invasive fronts of ST sides (LC0-B, LC2-B, LC4-B, LC6-B, 
LC7-B, and LC8-B). (b) SAA1 and SAA2 expressions of tumor tissues, the border area (a 1 cm-
wide zone centered on the borderline) and adjacent normal tissues of 10 ICC patients from 5 
Validation Cohort 2 using bulk-RNA sequencing. (c) Diagram of the sampling zones (500 µm × 
1,000 µm zone) of tumor tissues, invasive fronts, and adjacent normal tissues in 
immunohistochemistry (IHC) staining of SAA in ICC and analysis of the IHC staining index of 
SAA in the three zones of 93 ICC patients from Validation Cohort 3. Zones from tumor or adjacent 
normal tissues were acquired from the areas at least 1 mm from the borderline, and three different 10 
repeated zones were used to acquire an average value of the staining index. (d) Hallmark pathway 
analysis for upregulated genes in Hep1 cells compared to Hep2 cells in invasive fronts of ST sides. 
(e) Volcano plot of differentially-expressed TFs between Hep1 and Hep2 cells. The red dots 
represent TFs upregulated in Hep1 cells, and the blue dots represent TFs upregulated in Hep2 cells 
(LC5-B). (f) The TF activity scores of ETV6, CEBPG, YY1, and BHLHE40 in hepatocytes at 15 
invasive fronts in ST sides (LC5-B). 
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Extended Data Fig. 6 
 

 

 
 5 

 
Extended Data Fig. 6. Accumulation of macrophages close to SAAhigh hepatocytes at invasive 
fronts of liver cancers. (a) Scatter plot illustrating the correlations between the number 
macrophages and the number of SAA+ hepatocytes at invasive fronts (1,000 µm in axial length) 
of 10 ICC patients from Validation Cohort 1 using multiplexed IF staining. (b) Multiplexed IF 10 
staining (ARG1, CK19, FRP1, CD68, SAA, and DAPI) showing co-aggregation of FPR1high 
macrophages (FPR1+CD68+ cells) and SAAhigh hepatocytes (SAA+ARG1+ cells) at invasive fronts 
of HCC patients from Validation Cohort 1. (c) Multiplexed IF staining (ARG1, CK20, FRP1, 
CD68, SAA, and DAPI) showing co-aggregation of FPR1high macrophages (FPR1+CD68+ cells) 
and SAAhigh hepatocytes (SAA+ARG1+ cells) at invasive fronts of patients with liver metastasis of 15 
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colorectal cancers from Validation Cohort 1. (d) Multiplexed IF staining (ARG1, S100P, FRP1, 
CD68, SAA, and DAPI) of FPR1high macrophages (FPR1+CD68+ cells) and SAAhigh hepatocytes 
(SAA+ARG1+ cells) at invasive fronts of patients with liver metastasis of pancreatic cancers from 
Validation Cohort 1. (e) Multiplexed IF staining (ARG1, TTF1, FRP1, CD68, SAA, and DAPI) of 
FPR1high macrophages (FPR1+CD68+ cells) and SAAhigh hepatocytes (SAA+ARG1+ cells) at 5 
invasive fronts of the patient with liver metastasis of lung cancer from Validation Cohort 1. (f) Cell 
number of macrophages (CD68+ cells) and the SAA+ hepatocytes (SAA+ARG1+ cells) in different 
layers (1,000 µm in axial length) at margin areas and distant sites of 11 patients with liver cancers. 
including HCC (n = 5), liver metastasis of colorectal cancer (n = 3), liver metastasis of pancreatic 
cancer (n = 2), and liver metastasis of lung cancer (n = 1) in Validation Cohort 1 using multiplexed 10 
IF staining.  
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Extended Data Fig. 7 
 

 
 
Extended Data Fig. 7. Overexpression of Serum Amyloid A (SAA) in hepatocytes at invasive 5 
fronts or paratumor tissues correlated with poor prognoses of patients with liver cancers. (a) 
Enriched pathways in hallmark genesets for upregulated genes of tumor cells in SAA-enriched 
areas at invasive fronts, when compared with those in remanent regions at invasive fronts in ST 
sides. (b) Overall survival (OS) curves of 10 patients with ICC from Validation Cohort 2 grouped 
by SAA2 expressions in the border areas by bulk-RNA sequencing. (c) Relapse-free survival (RFS) 10 
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curves of 93 patients with ICC from Validation Cohort 3, grouped by relative expressions of SAA 
at invasive fronts by IHC staining. (d) Scatter diagram showing the correlations between SAA 
expressions at invasive fronts and adjacent normal tissues by IHC staining of 93 patients with ICC 
from Validation Cohort 3. (e) OS curves of 93 patients with ICC from Validation Cohort 3, grouped 
by relative expressions of SAA in adjacent normal tissues by IHC staining. (f) RFS curves of 93 5 
patients with ICC from Validation Cohort 3, grouped by relative expressions of SAA in adjacent 
normal tissues by IHC staining. (g) OS curves of 159 patients with HCC from Validation Cohort 
4, grouped by relative expressions of SAA1 and SAA2 in paratumor tissues by RNA-seq data, 
respectively. 
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Supplementary Table 1. 
The clinical and pathological information of 8 ICC patients in Discovery Cohort 
 

Patient ID Sex Age Tumor size 
(cm) 

lymph node 
metastasis 

distant 
metastasis 

AJCC 
stage 

LC0 Female 66 8.5 × 8 × 7.5 0 0 Ⅱ 

LC1 Female 65 4 × 4 × 2.5 0 1 Ⅳ 
LC2 Female 50 5 × 5 × 5 0 0 Ia 

LC4 Male 37 6.5 × 5 × 4 1 0 ⅢB 
LC5 Female 67 7 × 3 × 3 0 0 Ⅱ 

LC6 Male 63 7 × 7 × 5 1 0 ⅢB 

LC7 Male 65 2.1 × 1.8 × 1.5 0 0 Ia 
LC8 Female 82 3.5 × 3 × 2 0 0 Ⅱ 
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Supplementary Table 2. 
Detailed information of spatial transcriptomics slides of samples from 8 ICC patients 
 

Patients ID Tumor (T) Adjacent 
normal (P) 

Margin area 
(B) 

Lymph Node (LN) 

LC0 0 2 3 0 
LC1 2 2 2 2 

LC2 2 2 1 2 

LC4 2 2 2 1 
LC5 2 2 1 2 

LC6 2 2 1 2 
LC7 2 2 1 2 

LC8 0 0 2 0 
 
 5 
 
 
 
 
 10 
 
 
 
 
 15 
 
 
 
 
 20 
 
 
 
 
 25 
 
 
 
 
 30 
 
 
 
 
 35 
 
 
 
 
 40 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 22, 2021. ; https://doi.org/10.1101/2021.10.21.465135doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.21.465135


 

44	
	

Supplementary Table 3. 
Study subjects resource and cohorts 
 

Biological samples SOURCE Cohort 

FFPE tissue blocks (liver cancers, including 
ICC 10; HCC 5; liver metastasis of 

colorectal cancer 3; liver metastasis of 
pancreatic cancer 2; liver metastasis of lung 

cancer 1) 

Zhongshan Hospital 
Fudan University 

Validation cohort 1  
(n = 21) 

Frozen samples (ICC) Zhongshan Hospital 
Fudan University 

Validation cohort 2  
(n = 10) 

FFPE tissue blocks (ICC) Zhongshan Hospital 
Fudan University 

Validation cohort 3  
(n = 93) 

frozen samples (HCC) Zhongshan Hospital 
Fudan University 

Validation cohort 4 
 (n = 159)  
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Supplementary Table 4. 
Selected marker genes in different cell subtypes 
 

Cell types Cell subtypes Gene list 

T cells 

resident T cells RUNX3, NR4A1, CD69, CXCR6, NR4A3 

cytotoxic T cells PRF1, IFNG, GNLY, NKG7, GZMB, GZMA, CST7, 
TNFSF10 

exhausted T cells CTLA4, HAVCR2, LAG3, PDCD1, TIGIT 
costimulatory T cells ICOS, CD226, TNFRSF14, TNFRSF25, TNFRSF9, CD28 

naïve T cells CCR7, TCF7, LEF1, SELL 

B cells 

naïve B cells MS4A1, CD19, CD22, TCL1A, CD83, BANK1, CD79A 

plasma B cells MZB1, IGLL1, IGLL5, SSR4, JCHAIN, IRF4, SDC1, 
XBP1, PRDM1 

memory B cells FCRL4, CCR1, CD27, CD44, GPR183, CD69, CXCR4, 
CCR7, KLF2 

germinal center B 
cells AICDA, RGS13, GCSAM, BCL6, NANS, CD81, CD38 

HLA-Ⅱ 

HLA-DRB1, HLA-DQB1, HLA-DPB1, HLA-DRA, HLA-
DQA1, HLA-DPA1, HLA-DRB5, HLA-DRB4, HLA-DQA2, 

HLA-DRB3, HLA-DOA, HLA-DMA, HLA-DMB, HLA-
DQB2, HLA-DOB 

Macropha
ges 

anti-inflammatory 
IL1RN, IL10, IL4, IL11, IL13, TGFB1, TNFRSF1A, 

TNFRSF1B, IL1R2, IL18BP, CCL17, CCL18, CCL22, 
CCL24 

pro-inflammatory IL1B, TNF, CCL2, CCL3, CCL5, CCL7, CCL8, CCL13, 
IL6, IL12, IL23, CXCL9, CXCL10 

CAF 

muscle CAF LUM, CCL21, PTGDS, CXCL12, C7, COL1A1, DCN, 
EFEMP1, THBS2, TIMP1, COL3A1 

immature CAF CD36, FABP4, RGS5, FABP5, KCNJ8, ARHGDIB, 
NDUFA4L2, HIGD1B, FXYD6, COX4I2 

vascular CAF MYH11, S100A4, PLN, CRIP1, ACTA2, TPM2, RERGL, 
DSTN, FLNA, MYL9 
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