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Abstract

The main challenge in the clinical assessment of Psychogenic Non-Epileptic Seizures
(PNES) is the lack of an electroencephalographic marker in the electroencephalography
(EEG) readout. Although decades of EEG studies have focused on detecting cortical
brain function underlying PNES, the principle of PNES remains poorly understood. To
address this problem, electric potentials generated by large populations of neurons were
collected during the resting state to be processed after that by Power Spectrum Density
(PSD) for possible analysis of PNES signatures. Additionally, the integration of
distributed information of regular and synchronized multi-scale communication within
and across inter-regional brain areas has been observed using functional connectivity
tools like Phase Lag Index (PLI) and graph-derived metrics. A cohort study of 20
PNES and 19 Healthy Control subjects (HC) were enrolled. The major finding is that
PNES patients exhibited significant differences in alpha-power spectrum in brain
regions related to cognitive operations, attention, working memory, and movement
regulation. Noticeably, we observed that there exists an altered oscillatory activity and
a widespread inter-regional phase desynchronization. This indicates changes in global
efficiency, node betweenness, shortest path length, and small worldness in the delta,
theta, alpha, and beta frequency bands. Finally, our findings look into new evidence of
the intrinsic organization of functional brain networks that reflects a dysfunctional level
of integration of local activity across brain regions, which can provide new insights into
the pathophysiological mechanisms of PNES.
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1 Introduction 1

Although decades of intensive research, one of the most clinical challenges is related to 2

the management of subjects reporting occurrences of paroxysmal episodes of loss of 3

consciousness or altered awareness. Psychogenic Non-Epileptic Seizures (PNES) are 4

rapid convulsive changes in behavior or consciousness that mimic epilepsy but without 5

electrophysiological bio-markers, which characterize an epileptic seizure in EEG 6

readouts. The investigation of these medical cases, despite extensive and exhaustive 7

clinical inquiries, may remain unfathomable because they largely focused on an 8

insufficient clinical history of the events’ description. Furthermore, the lack of an 9

alternative and robust electrophysiological marker reduces the effectiveness of 10

disentangling the PNES disorder from healthy control subjects in EEG readouts. In 11

well-equipped clinical facilities, the diagnosis of PNES can be strengthened using 12

video-EEG monitoring, with particular mention for those cases where a psychogenic 13

event is captured during spontaneous occurrences or externally triggered episodes [1]. 14

However, video-electroencephalography analysis is expensive, ethically controversial, not 15

commonly available, time and resource-consuming, and finally also prone to bias due to 16

subjective interpretation. In spite of this, clinicians routinely face a demand of 17

differential diagnoses of PNES in an EEG readout free from electrophysiological 18

features. An early and accurate diagnosis of PNES represents an important challenge 19

for patients, proxies, and caregivers. In fact, under diagnosis (or epilepsy misdiagnosis), 20

patients may be subject to a risk of inappropriate and potentially harmful treatment, 21

with a possible impact on patients’ health and placing high burdens on healthcare 22

systems [2]. This makes discrimination of PNES via EEG readout a challenging task for 23

clinicians, especially for cases of false alarms leading to harmful treatments. 24

In this pasomewhatpropose a methodological pipeline based on Power Spectral 25

Density (PSD) and Phase Lag Index (PLI). The PSD is used to grasp the signature of 26

spectral behaviors, and the PLI, concurrently with graph-driven metrics, is used to 27

grasp the statistical inter-dependencies between two anatomically distinct 28

electrophysiological time-series. The first goal is to investigate the mechanism 29

underlying information transfer among different cortices locations. The repertoire of 30

spontaneous resting-state cortical activity emerges either as a result of the embedded 31

oscillatory activity of neurons and neuronal populations or as an ongoing dynamically 32

changing in the cluster of interconnected neurons [3]. This leads to short-term network 33

connection of boundless neurons. Recent studies on inter-regional brain network 34

communication showed that neural activity is characterized by dynamic fluctuation and 35

synchronization of oscillatory activity between neuronal populations within a 36

millisecond of delay. Neurophysiologically, the intrinsic good hallmarks of brain 37

cooperation rely on the prowess of multiple functionally specialized areas interacting 38

rapidly and effectively. Thus, if two or more cortical generators promote neural 39

oscillations synchronized in frequency and/or in phase, a higher gain of information is 40

transferred; thus a more efficient communication occurs. Hence, an emerging idea is 41

that a healthy brain requires an optimal balance between functional integration and 42

functional differentiation in cortical networks. To this end, studying the rhythmic and 43

phase characteristics of electrophysiological data can reveal the neural infrastructure 44

that underlies both healthy and PNES disordered subjects as potential phenomena of 45

transient inter-regional synchronization. To date, a substantial amount of evidence 46

exists for different brain diseases, but differently from the former, the rest EEG data of 47

PNES have not been extensively investigated so far. In terms of spontaneous scalp 48

EEGs, a general trend is to investigate the redistribution of power in the frequency 49

bands to grasp the peak of frequency or dominant band. Fourier-based power spectral 50

density (PSD), to characterize the frequency distribution of resting-state PNES via 51

EEG data, was used only in [4]. Functional connectivity within particular resting-state 52
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networks can be used to study local organization and global integrated and spatially 53

distributed architecture. In the literature, we found a few EEG studies that have 54

focused on derivative tools from graph theory to characterize the synchronization 55

topologies of the neural network of PNES brain systems [5–8]. Noteworthy, we found 56

different techniques applied to study the whole-head neural network synchronization of 57

PNES, including coherence analysis [8], multivariate phase synchronization [5], 58

synchronization likelihood [9] and functional connectivity [10–13], with somewhat 59

contrasting results. According to previous studies, we grasp that there are two major 60

critical issues in the functional brain network of PNES that need to be further 61

investigated.First , despite different studies, there is no gold standard on the 62

binarization approach to use to estimate functional network interaction. Second, there 63

are conflicting results in connectivity analyses of PNES . These differences could be 64

related to the impact of subjects and environment and may be due to the use of 65

different methods, such as electrode density, reference technique, coupling methods and 66

binarization approaches, etc. In addition, we aimed to deal with the following points: 67

• Investigating possible neural reorganizations including intrinsic alterations in 68

resting-state brain networks oscillations of patients with PNES using PSD 69

analysis. 70

• Determining whether functional connectivity alterations of PNES subjects could 71

be associated with specific areas which lead to regional network dysfunctions in 72

local oscillations as well as inter-regional synchronization. 73

The remainder of the paper is structured as follows: first, in Section 2, we review the 74

state-of-the-art in PNES power spectrum and network analysis. Then, in Section 3, we 75

discuss and provide details on the proposed method, including data preprocessing and 76

the techniques used. Next, In Section 5, we present the experimental results on 77

extracting important features from rest-EEG data of PNES subjects. Finally, Section 6 78

concludes this paper with a breakdown of the proposed method and a discussion of 79

future work towards improving the models. 80

2 Related Works 81

During the last decades, a wealth of studies have focused on scalp-EEG data, recorded in 82

resting-state condition, to identify criteria that can differentiate PNES disorders based 83

on its phenomenology [14]. Many of these studies provide a window into neural network 84

oscillations [5, 11], functional connectivity [7], loss of integration [15], and dissociation 85

(lost of coherence) [10]. Additionally, in many of these studies is hypothesized that 86

PNES symptoms could be related either to neural network instability, [5–7, 16] due to a 87

mechanism of a time-limited interruption in neural networks connectivity and 88

disconnection between cortical and sub-cortical systems [7, 17], or a time-limited 89

increment in functional connectivity between limbic and motor regions [11,16]. 90

Knyazeva et al. [5] used multivariate phase synchronization to reconstruct the 91

synchronization of the whole-head topography between cortical regions in PNES. The 92

results show a right prefrontal reduction and alteration in synchronization across all 93

frequency bands with hypersynchronization over the left frontotemporal, 94

parietal-temporal networks, along with hypo synchronization in both right and left 95

frontal regions. Using a graph-theoretical approach, Barzegaran et al. [6] studied the 96

function of cortical networks in patients with PNES using Laplacian-transformed 97

time-series and cross-correlation method, founding that patients with PNES have close 98

to normal local and global connectivity and small-world structure. Xue et al. [8] applied 99

clustering coefficients (local connectivity) and global efficiency to check the coherence of 100
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neural networks for patients with PNES . Clustering coefficients and global efficiency 101

were lower in all four frequency bands, but this difference was statistically significant 102

only in the gamma band. In addition, the authors found that PNES had decreased long 103

linkage between the frontal region and posterior brain areas in the gamma band. 104

Barzegaran et al. [7] used multivariate phase synchronization to grapple lagged 105

functional connectivity—between cortical and subcortical regions. Their results observed 106

a decreased functional connectivity between the basal ganglia and limbic, prefrontal, 107

temporal, parietal, and occipital regions, in the alpha band. Umesh et al. [9] performed 108

power spectral and lagged phase synchronization analysis in the gamma band using 109

sLORETA software. The results display a higher power spectrum in the gamma band in 110

the right temporal region. In addition, the authors found a decreased gamma band in 111

the right parietal cortex, posterior cingulate cortex, and superior temporal gyrus. The 112

analysis of connectivity showed a reduced intracortical lagged coherence between the 113

right posterior cingulate gyrus and right middle temporal gyrus. Meppelink et al. [18] 114

found EEG spectral power changes in PNES before seizure events. In addition, the 115

authors found that PNES subjects showed a decrease in beta power (desynchronization) 116

at 5–6 seconds before the PNES event. Arikan et al. [19] used a quantitative EEG 117

(qEEG ) and Fast Fourier Transformation (FFT) to investigate the spectral power 118

across all frequency bands in adults with PNES. In this paper, the authors found 119

increased power around the C3 EEG scalp sensor in the beta band, and additionally 120

statistically meaningfully increased gamma power was found in P3 sensor. Amiri et 121

al. [20] applied a graph network analysis for binary functional connectivity by extracting 122

graph-theoretical measures like a nodal degree in cortical and subcortical regions of the 123

brain. Their experimental findings suggest that the functional connectivity can be 124

altered in individuals with PNES. Areas with low connectivity may be involved in 125

emotion processing and movement regulation, whereas areas with higher connectivity 126

may play a role in the inhibition of unwanted movements and cognitive processes. 127

In the end, recent emerging evidence from neuroimaging studies suggests that neural 128

network instability may be involved in PNES generation and maintenance [16]. Some 129

studies suggest that the neural networks of patients with PNES , when compared to 130

those of healthy controls, maybe less resilient in the face of additional demands and 131

more incline to aberrant shift in functional connectivity—resulting in PNES . 132

3 Materials and Methods 133

3.1 Participants 134

In this study, we retrospectively reviewed EEG datasets of 80 patients (20 males and 60 135

females, aged 18–68 years, mean 38.41 years, and SD 16.80), who were hospitalized in 136

the Regional Epilepsy Center, Great Metropolitan Hospital Bianchi Melacrino Morelli, 137

Reggio Calabria, in Italy during the years 2016-2019. All data were collected as part of 138

a routine clinical workup. The protocol of the study was approved by the Medical 139

University of Magna Graecia of Catanzaro (Italy) and all analyses were performed in 140

accordance with the approved guidelines. The collected data have been cleared of 141

identification references related to patients. The subjects with PNES were selected 142

based on the 2013 ILAE Non-Epileptic Seizures Task Force Recommendations [21]. 143

Within the studied group, 60 of the subjects recruited from inpatient or scheduled 144

clinical visits were excluded for use of psychotropic drugs (n = 40), left-handedness (n = 145

12), or because EEG traces could not be evaluated due to the strong presence of 146

artifacts (n = 8). Finally, 20 EEGs from 20 patients with PNES (7 males, mean 35.05 147

years, SD 13.07) were included. Three inclusion criteria were considered: 1) at least a 148

single typical PNES episode was recorded by video EEG, and EEG did not show any 149
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epileptiform patterns or ictal features; 2) patients had no clinical history of brain disease; 150

3) patients had no obvious irregularity in structural Magnetic Resonance Imaging (MRI) 151

examinations. In addition, two exclusion criteria were selected: 1) subjects with 152

neurological comorbidities (e.g., epilepsy); 2) subjects with simulated or true psychiatric 153

disorders (e.g., mood and anxiety disorders, schizophrenia, and psychosis). 154

We also enrolled healthy right-handed controls (HC) without a history of 155

neurological disease, seizures, or sleep disorders who did not consume caffeine and were 156

not taking any medicine until the EEG recording. The control group comprised 19 157

EEGs from 19 healthy right-hand subjects (5 males, mean age: 35.05 years, SD 13.07). 158

The choice to limit the study to right-handed subjects was due to the uncertain 159

hemispheric dominance in the left-handed brain, which might have influenced results. 160

The Edinburgh Handedness Questionnaire (EHQ) was used to assess hand 161

dominance [22]. We focused on a large cross-sectional community sample of 39 adults in 162

the age range from 18 to 68, to overcome limitations related with age-related changes in 163

spectral EEG content and network density connectivity in a wide frequency band. The 164

sensitivity power analysis conducted on G∗Power [23] revealed that our cohort size was 165

large enough to have a statistical power (1− β) of 0.60 to detect significant differences 166

(α = 0.05) between subjects with an effect size of 0.65 (Cohen’s d for Welch test). 167

3.2 EEG Recording and Preprocessing 168

The EEGs were collected in an electromagnetically shielded and light-controlled room 169

where the participants were seated comfortably with closed eyes in a lab chair. The 170

data were recorded according to a standard 20-minute clinical protocol including rest 171

condition using a 19 channels EEG system (Micromed, Italy), having a frequency 172

response from DC to 100 Hz ( which attenuates by 40 dB per decade). The signal was 173

processed through an analog 0.5Hz high-pass filter and digitized with a 12-bit analogical 174

to digital converter (ADC) at 512 Hz. The average duration of recording was 20.2 175

minutes and has a range of 19.5–22.1 minutes. The recording transducers, Ag/AgCl 176

ring electrodes, were accommodated according to the international 10–20 system with 177

channel layout: Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, 178

Cz, and Pz, on G2 (between electrodes Fz and Cz). The electrode–skin impedance was 179

less than 20 kΩ. EEG signals were down-sampled to 256 Hz, digitally band-pass filtered 180

(0.5–200 Hz, 24 dB/octave), and further we applied notch filtered to reduce power line 181

interference. Finally, stored on a local server for further analysis. 182

The analysis of participants’ EEG data was performed with custom-built scripts in 183

MATLAB (R2021, Mathworks Inc., Natick, MA,USA) and EEGLAB toolbox [24]. First, 184

the collected EEG data were visually inspected to detect bad electrodes or artifacts 185

(e.g., jaw clenching or head-scratching), additionally high-frequency artifacts, such as 186

muscle and high-amplitude slow wave were rejected by means of an automatic algorithm 187

with an initial threshold fixed at 80 µV. Second, the bad channels identified in the 188

previous step were interpolated and a common average referencing was performed. 189

Third, the data were further preprocessed by 0.5 Hz high-pass filter, and FastICA 190

independent component analysis (ICA) was performed to remove components related to 191

eye blinking, eye movement, muscle activity, heartbeat artifacts and instrumental noise. 192

All ICA components were inspected visually and manually selected for rejection (3.41 ± 193

0.19). Additionally, to validate the selection of ICA components we apply a ICLabel 194

classification [25]. Fourth, twenty-minute of artifacts free scalp EEG data were epoched 195

from 0 to 5 sec into 240 non-overlapping chunks of equal length. Fifth, each individual 196

channel was digitally band-passed, using zero-phase Blackman-windowed FIR filters 197

(cut-off frequencies = flow(f=0.5 Hz) and fhigh(f=45 Hz), transition bandwidth = 2Hz), 198

to select the EEG rhythm range of interest. Finally, for each epoch we have applied a 199

third-order zero-phase shift Butterworth filter to capture the significant 200
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electrophysiologic sub-bands: delta (0.5–3.5 Hz), theta (4–7.5 Hz), alpha (8–13 Hz), and 201

beta (13–32 Hz). The proposed pipeline is graphically presented in Figure. 1. 202

Fig 1. Flowchart of the proposed methodology. Panel (A) shows the international standardized 19 scalp EEG channels
location. Panel (B) depicts the signal preprocessing pipeline used to clean the collected EEG time series. Panel (C) highlights
the power spectral density processing step, where each single EEG channel was feed in the pwelch function. For each dataset,
we extracted channel × epochs × frequency band. Panel (D) depicts the EEG based PLI network analysis. At this stage,
each PLI matrix was thresholded and the adjacency matrix was computed to map the brain network graph. Panel (E) lists
the indices used to test the performance of the network. In detail, we used global efficiency, node betweenness, cluster
coefficient, small-worldness, and shortest path length like network indices.

3.3 Power Spectral Density Analysis 203

The artifact-free time series were submitted to a power spectrum analysis using the 204

Welch periodogram method with Hanning tapered windows of 1s of duration and 50 % 205

of window overlap. The Power spectral density (µV2Hz) was estimated for a continuous 206

range from 0.5 to 32 Hz in steps of 0.50 Hz. Our analysis was limited to frequencies 207

lower than 32 Hz, why higher frequencies suggested very minimal contributions to those 208

frequencies in the eyes-closed resting spectrum; in addition, we also tried to avoid 209

excluding as much as possible electromyogenic activity. The power spectral density was 210

computed using a multi-taper approach. Applying a multi-taper approach, the time 211

series are sliced into segments and the average of their periodograms was found. For 212

each time series x(n), the Welch’s modified periodogram averages a sequence of 213

segments into overlapping sequences. In this paper, we use EEG segment equals to 5(s) 214

length. This type of windowing is generally used to reduce spectral leakage and to 215

smooth the power spectrum [26]. 216

Let the overlap between the adjacent windows be represented as K samples, then 217

the windowed rth segment of data x(n) can be represented using Equation 1. 218
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xr(n) = x(n+ rK), 0 ≤ n ≤ L− 1, 0 ≤ r ≤ R− 1 (1)

Where r has a length of 1280 samples. 219

The periodogram is calculated by computing the discrete Fourier transform and then 220

squaring the magnitude of the Fourier transformed signal. The periodogram is then 221

averaged, which reduces the variance of the individual power measurements. According 222

to the Welch method, the power spectral density is expressed using Equation 2. 223

Pxx(ejω) =
1

RM
|
M−1∑
n=0

ω(n)x(n+ rK)e−jkω|2 (2)

Where n is a number of slide windows and the length of each interval is M. R is the 224

normalization value and can be calculated as depicted by Equation 3. 225

R =
1

N
|
N−1∑
n=0

|x(n)|2 (3)

Since Welch method is the average of data sequences, the Welch’s power spectrum 226

for each interval can be represented using Equation 4. 227

Pxx(ejω) =
1

RM

R−1∑
r=0

Prxx(ejω) (4)

Where Pxx is the periodogram computed on the EEG signal for each interval. 228

For this analysis, we use the “pwelch” function provided by MATLAB. To bypass 229

the smears of energy in the spectral domain or the decaying tails, due to the 230

convolution of the separate spectra of the signal, each rth epoch of the sliced EEG signal 231

was submitted to a Hamming window to reduce the spectral leakage and then processed 232

by Fast Fourier transform to compute the frequency coefficient. The number of FFT 233

points was assigned to 256. Finally, before applying further analysis, the EEG spectrum 234

was transformed to decibel (dB) units (10log10(Xn)) to standardize individual 235

differences in EEG amplitude. To quantify an individual’s frequency, we further split 236

the whole band 0.5 to 32Hz in the delta, theta, alpha, and beta bands with a maximum 237

of 0.50 Hz within each narrowband under analysis. All PSD analyses were performed 238

within subjects, resulting in channel × frequency × trial matrices of PSD values. 239

3.4 Graph Analysis 240

Graph theory offers a method to study the relation between network structure and 241

function, regarding, for example, measures of efficiency, robustness, cost, and growth. A 242

graph is a representation of a network, which is indicated by its nodes (‘vertices’) and 243

connections (‘edges’). Graphs can be characterized by several parameters and 244

principally by a clustering coefficient (CC) and shortest path length (SPL), node 245

betweenness (NB), global efficiency (Ge), and small-world (SW). The small-world 246

network architecture could be of primary importance for cortical dynamics because it 247

represents a balance between local information processing and rapid sharing of this 248

information with other regions. The common parameters to describe the graphs are the 249

clustering coefficient (for segregation) and the path length (for the integration). The 250

former is a measure of the local connectivity of the graph, whereas the latter is an index 251

of overall connectivity. The small-world networks organization, instead, is focusing on 252

an optimal balance between local specialization (segregation) and global integration. 253

Therefore, we describe measures of functional integration and segregation and quantify 254

the importance of individual brain regions, as well as to characterize local patterns and 255
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test the resilience of networks to PNES disorders. Graph analysis was implemented 256

using the Brain Connectivity Toolbox [27]. 257

3.5 Phase-locking index analysis 258

We apply PLI [28] to quantify the asymmetry in the distribution of the phase difference 259

across all pairwise combinations of EEG sensors, resulting in a 19 × 19 (19 = number of 260

recorded EEG channels). Finally, PLI between two electrodes was assessed getting the 261

instantaneous phase from the analytical signal, obtained using the Hilbert transform as: 262

PLI = |〈sign[sin(∆φ(tk))]〉| (5)

where ∆φ(tk) represents the phase difference and the sign function denote the 263

average over time, t. Unlike other phase synchronization measures, such as phase 264

coherence and the imaginary component of coherency, PLI is much less affected by the 265

influence of common sources (volume conduction) and active reference electrodes [29]. 266

Thus, under the assumption that the effects of brain volume conduction at the scalp 267

level are instantaneous and no phase distortion is introduced, we compute the 268

instantaneous phase of a time series x(t) as follows: 269

∆Φab(t) = Φa(t)− Φb(t) (6)

The equation 6 is denoted as the phase difference of signal a and signal b, where Φa 270

is the phase of the signal calculated by Hilbert transformation. The PLI assesses the 271

relative phase distribution’s asymmetry, which refers to the likelihood that the phase 272

difference in the interval -π < ∆ φ > 0 is different from the likelihood that it is in the 273

interval 0φ < ∆ φ < π. In this paper, we obtained the index of the time series with 274

phase difference ∆ φ(tk) (phase lag index) as follows: 275

PLIab =
1

n

n∑
t=1

exp(i∆Φab(t)) (7)

When ∆Φab(t) is a constant and the EEG time series is synchronized, PLIab = 1. If 276

the time series is unsynchronized, then PLIab = 0. PLI values range between 0 and 1. 277

The PLI value of zero indicates no coupling or coupling with a phase difference centered 278

around (0π). The PLI value of 1 indicates phase synchronization in ∆φ different from 279

(0π). The more consistent this nonzero phase locking is, the larger the PLI is. 280

In this paper, the complex network associated with each epochi, was generated by 281

measuring the functional connectivity (PLIi(i, j) ) between all possible pairs of 282

electrodes i and j. Considering n = 19 sensors, there are n(n− 1)/2 = 171 possible 283

pairs of channels. The matrices of PLIith were determined for every epoch (with 284

e = 1, . . . , 240). The related (symmetric) connectivity matrix was generated by 285

associating with each off-diagonal entry (i,j), the corresponding value of PLI(i,j). The 286

functional connectivity analysis was performed as follows: for each patient, the original 287

artifact-free EEG was subdivided in non-overlapping segments, here named (epochs); for 288

each epoch, five 19 × 19 connectivity matrices have been derived; respectively in delta, 289

theta, alpha and beta as well for the wide-band. To obtain a solid measure of functional 290

connectivity, we used a 1 s length window to be within at least 4 oscillatory cycles. The 291

lower edge was set to 0.5 Hz. Next, the network measures used in this paper were 292

calculated on the basis of the 19 × 19 adjacency matrix. For each adjacency matrix, we 293

calculated the graph G for each thresholded PLI matrix. Each graph is represented as 294

G = (N,W ), where N is equal to the number of EEG sensors and W = wij ; thus, W is 295

the N ×N symmetric matrix wii = 0 and wij . Finally, the PLI index, determined 296

between electrode i and j. 297
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3.5.1 Network parameters 298

To perform network analysis based on PLI measure, the first step was to extract binary 299

graphs, normalized to the interval 0–1, from the weighted connectivity matrices. 300

However, it is noteworthy to mention that not all the weighted links in the initial 301

connectivity matrices are significant, thus it is better to remove the non-significant 302

branches and minimize the noise level. There are no exclusive methods for binarizing 303

the connectivity matrices, but the binarization approach is the most used. A simple 304

approach to binarizing a weighted connectivity matrix is to apply a threshold th, that is 305

if a link has a weight higher than th, the corresponding entry value of the adjacency 306

matrix is one, and zero otherwise. The common pitfall with the binarization approach is 307

that several valid threshold values can be found to extract the important branches. To 308

overcome this challenge, the threshold value was often included in a fixed range. 309

However, there may be individual variations in the functional connectivity since some 310

subjects might have higher average connectivity than others, thus the same threshold 311

applied to all subjects may lead to different network densities. Many of the network 312

topological properties can be biased by the binarized approach. Thus, to avoid these 313

problems, one can study the network properties as a function of density instead of the 314

threshold. It is common to use a threshold index such that the connectivity matrices 315

have the same density values. One much-appreciated solution is to consider a range of 316

density values and study the topological properties of the extracted networks. To obtain 317

normalized network measures, the entry PLI values were normalized between 0 and 1, 318

then were divided by the average obtained from a set of 101 random graphs (obtained 319

by randomization of all actual matrices) with the same number of nodes and 320

connections as the actual graphs. 321

For each subject under analysis, the adopted PLI-based network map consists of a 322

fully connected graph with 171 nodes. The network size was stable over the epochs and 323

the subjects. For every subject, the PLIe matrices are estimated, with PLIe = 1, 324

. . . ,227. The entry PLI matrix, named PLIe, was binarized and the related adjacency 325

matrix computed for every subject was computed. Now, let Ψ=Xn∈R(r,c)N , be an EEG 326

set holding N trials from the PLI dataset, recorded from a single subject, with r the 327

number of sensors and c the number of samples of each trial. Here λ (Xn=1:19→Xn
′
,ff ) 328

was a PLI measure between the phase of channel Xn and Xn′ at frequency ff . We 329

obtained a connectivity matrix ∆(ff ). The value of f varies in the range from 0.5 to 32 330

Hz. Within the whole band we highlighted five sub bands here defined as delta, theta, 331

alpha, beta and full 0.5 to 32 Hz. The PLI values range form 0 to 1, showing the degree 332

of uncorrelated to fully correlated phase locking between pairs. At this stage, each trial 333

is characterized as ∆(ff ) ∈ Rr,r,N,f , where ∆(ff ) stands for PLI functional connectivity 334

matrix. Next, statistical significance of PLI was determined to remove inconsistent or 335

powerless connections. In this study, for each Ni and ff we handled these data through 336

three different threshold values (e.g 0.05, 0.15 and 0.25) that led us to get binarized PLI 337

matrices. Finally, our Ψ was Ψ=Xn ∈Rr,r,f,tN ; where t is a number of threshold value 338

(here equal to three). Numerically, for each subject (Xn), we characterized a Ψ like # 339

19 × # 19 × # 3 × # 5 × N, where # 19 are the number of EEG sensors, 3 are the 340

threshold values and five are the frequency bands under investigation (e.g delta, theta, 341

alpha, beta and full band). Each ∆(ff ) matrices were averaged within bandwidth ff 342

across N to reduce the final size of our Ψ to the final size of # 19 × # 19 × # 3 × # 5 343

for each subject. 344

3.6 Graph metrics 345

In the literature, we found a plethora of graph theory metrics, but not all of them are 346

robust enough for studying the brain network functions. Here, we take into 347
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consideration several neurobiologically relevant network measures related to brain 348

functions including information, segregation, and integration. Indeed, since EEG signals 349

are interdependent, spurious connections may be generated by applying PLI measures 350

to estimate connectivity from them. We tested the connectivity matrices over a range of 351

different thresholds to overcome the issue of semi-arbitrary thresholding. We examined 352

how the network density changed at various threshold values from 0.05 to 1 with step 353

0.1. The density of a network is characterized by the percentage of edges that remain 354

after thresholding, which changes with the threshold level. The connection density from 355

0.05 to 1 with step 0.1 was tested as this was reported that 0.5 provides an optimal 356

trade-off between reducing spurious connections and retaining true connections, 357

providing biologically likely information about the brain functional networks. The graph 358

analysis is explored in greater depth in section 4.2. Functional integration in the brain 359

represents the ability to integrate information among distributed brain regions. 360

Measures of integration or differentiation are developed to characterize the 361

communication among brain regions. Measures of communication between cortical areas 362

are commonly based on the concept of a path. The path is a sequence of distinct nodes 363

and links, and in anatomical networks, represent potential routes of information flow 364

between pairs of brain regions. We used a number of different graph measures including 365

average shortest path length, global efficiency, cluster coefficients, small-worldness, and 366

node betweenness. 367

3.6.1 Averaged shortest path length 368

The path length is a measure of global integration within a network and represents the 369

potential for functional integration between brain regions. The shortest path length 370

between two nodes is the minimum number of edges between two nodes [30]. The 371

average shortest path connecting any couple of nodes in the graph is the shortest path 372

represented as follows: 373

λ =
1

n(n− 1)

∑
i 6=j

di,j (8)

where di,j stands for the shortest distance between nodes i and j. The averaged 374

shortest path length is a graph property, which describes how well its elements are 375

integrated/interconnected. A common drawback of the characteristic path length is that 376

if any pair of nodes i and j are not connected through any path, the corresponding 377

shortest path length value is di,j = ∞. Here we refer to the averaged shortest path 378

length as (SPL). 379

3.6.2 Global efficiency 380

Differently from the characteristic path length, the global efficiency (Ge) is a measure of 381

network performance based on its global topology. The global efficiency often increases 382

by increasing network density (e.g, the number of connections), it is inversely related to 383

the topological distance between nodes, and it measures the global information 384

exchange across a network. Global efficiency is a graph index defined as the inverse of 385

the average path length among all nodes [31]. Formally, it is calculated as follows: 386

Ge =
1

n(n− 1)

∑
i 6=j

i

dij
(9)

where n is the network size and dij is the average distance between node i and j in the 387

network. The global efficiency is a measure of the integrated information between 388
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distributed nets and stands for the overall network capacity to transfer information in 389

parallel. 390

3.6.3 Clustering Coefficient 391

Functional segregation represents the ability of processing that occurs within 392

interconnected brain regions, and it is commonly applied to quantify the presence of 393

clusters or modules within the network. Measures of segregation are based on the 394

number of triangles (triples of fully interconnected nodes) in the network. Locally, the 395

triangles of interconnected nodes around an individual node are known as the clustering 396

coefficient. The clustering coefficient is equivalent to the fraction of the node’s 397

neighbors that are also neighbors of each other [32]. It is a measure of local 398

connectedness [33]. The mean clustering coefficient reflects the prevalence of clustering 399

connectivity around individual nodes. The clustering coefficient CC quantifies the 400

possibility that two neighbors nodes are neighbours. The average CC is defined as: 401

CC =
1

n

∑
1∈N

Ci =
1

n

∑
1∈N

2ti
ki(ki − 1)

(10)

where CCi represents the cluster coefficient of the node i and ki is the degree of node i, 402

and ti denotes the number of edges between pairs of nodes, j and j′, that are both 403

connected to i. The number of the connections around a node i can be calculated as ki, 404

(ki − 1)/2, where ki is the degree of node i [34]. 405

3.6.4 Small-worldness 406

The human brain consists of complex and specialized areas for sharing and integrating 407

information [35]. The connections between cortical areas are not random, but are 408

organized in a so-called small-worldness network topology. Integration and segregation 409

properties combine functional specialization with higher-order processing like 410

multi-sensory integration, cognition, and executive functions that require large-scale 411

integration. The small-worldness reflects an optimal balance of functional integration 412

and segregation [30]. The small-worldness network measure is defined as: 413

SW =
C

Crand

E

λrand
(11)

where Crand and λrand are the clustering and path length coefficients of a random 414

network with an equal number of nodes. The functional integration of brain regions 415

(hubs) plays a crucial role in network interaction and communication across brain areas. 416

3.6.5 Node betweenness 417

Node betweenness (NB) is a measure of the centrality of a node in a network and is 418

calculated as the fraction of shortest paths between pairs of nodes that pass through the 419

node of interest. Node betweenness is used to measure the influence of a node on the 420

propagation of information through the network [36]. NB is defined as: 421

NBi =
∑
i 6=j

λij(i)

λij
(12)

where λi,j is the number of shortest paths between nodes i and j, and λi,j(i) is the 422

number of shortest paths making use of the node i. 423
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3.7 Statistical Analysis 424

To calculate the statistical significant differences between PNES and HC, we used a 425

non-parametric cluster-based permutation test to address a multiple comparison 426

problem. We investigated the relationship between brain areas and neural rhythms. 427

First, we applied a Shapiro–Wilk test to grasp the distribution of our data. The null 428

hypothesis is that the network data, in different frequency bands and at different 429

thresholds, are independently distributed. Thus, we will accept the null hypothesis if 430

the p-value is higher than the chosen significant α level. Additionally, our data were 431

submitted to an independent sample, two-tailed permutation test based, using a 432

family-wise alpha1 level of 0.05 and alpha2 of 0.001 to construct clusters of significant 433

spatial t-value maps. Separately, we represent our results in box plot figures to highlight 434

the differences between frequencies and brain area between PNES and HC. For the 435

permutation test, we shuffled all epochs and splitted them into two datasets. Next, we 436

constructed a cluster-level statistics and calculated a probability to estimate 437

cluster-level p-values for each area and frequency. PSD data were the input of the 438

cluster-level statistics. The output was a p-value for each cluster-level statistic. The 439

cluster-level p-values were corrected and approximated using a permutation test. To 440

test the impact of different threshold values in the network binarization methods, we 441

applied a permutation test, we shuffled all the adjacency matrices to obtain a t-value 442

map. We repeated this procedure using a simulation with 1000 iterations, and extracted 443

the clusters from each permutation to compare the latter with the original dataset. 444

Subsequently, we constructed a box plot of the cluster-level statistics with the 445

calculated probability of cluster-level p-values for each EEG rhythm under analysis. In 446

this case, we used three datasets of 3-dimension (eg. number of thresholds × number of 447

parcellations × number of frequencies), as an input for the cluster-based permutation 448

tests. We further conducted t-tests for the two datasets of network measures to obtain a 449

t-value map of statistical significance in different frequencies and among the three 450

brains under analysis. The analysis of the within-subject effects of PNES and HC was 451

run with MATLAB 2021 and its associated toolboxes. 452

4 Results 453

In this section, we present the experimental results. 454

4.1 Relative PSD analysis 455

In the present resting-state EEG study, for each subject and each epoch, we have 456

extracted a set of features. In particular, the relative delta, theta, alpha, and beta 457

power bands were computed for each channel as the ratio between the sum of the 458

original PSD (computed using the Welch method in the whole band 0.5–32Hz (total 459

power)) and the preferred frequencies: delta (0.5–4 Hz), theta (4–7 Hz), alpha (8–12 460

Hz), and beta (13–32 Hz). Our power spectral density EEG analysis was also conducted 461

within subjects. The background of the PSD decreased from slower to faster frequencies, 462

according to an inverse power-law, with a 1/f -like shape [37]. Notably, in the delta 463

frequency band, the relative log normalized PSD values for PNES ranged in [0.3, 0.6]. 464

In the beta frequency band, the relative PSD fluctuated in [0.025, 0.35], indicating that 465

most energies focused at the lower frequency when the subjects were resting. 466

Comparing the relative PSD values between PNES group and the HC (See Figure. 2, 467

A), we found higher PSD in the delta band for PNES in sensors related to the frontal 468

area. Conversely, in the theta band (See Fig. 2, B) the PSD results in a higher PSD 469

pathway within the central to back area, whereas in alpha (See Figure. 2, C) the PSD it 470
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is generally higher for HC. In addition, our results underpin that compared to PNES, 471

HC subjects show a statistically significant shift of spectral power from high to low in 472

alpha frequencies in all the brain areas under investigation. Next, the PSD curves in the 473

beta band (See Figure. 2, D) highlight a stable trend of oscillation between 0.1 and 0.3. 474

To further grasp more insight into the power spectrum results, we performed a post–hoc 475

analysis of PSD values in four frequency bands and three brain parcellations (Frontal, 476

Central and Parieto-occipital areas) (See Figure 3). In this paper, we applied the 477

following brain parcellation: we considered the sensors (FP1-FP2-F3-F4) as frontal; the 478

sensors (C3-C4-Cz-Pz) as central; and the sensors (P3-P4-T3-T4-T5-T6-O1-O2-P3-P4) 479

as parieto-occipital. The PNES group was found to have significantly higher PSD in the 480

delta band in the frontal and central area (p < 0.05), in addition we found higher PSD 481

in theta band respectively in frontal, central and parieto-occipital area (p < 0.01). In 482

the theta band, post-hoc analysis showed that PNES group differed as compared to HC 483

(p=0.0082, p=0.0476 and p=0.0076 respectively for frontal, central and 484

parieto-occipital area). Differences was also present in the beta band (p=0.0255 and 485

p=0.0308 and p=0.0043 respectively). In beta band we found higher values of PSD for 486

HC compared to PNES. In the delta band, HC showed a lower PSD values as compared 487

to HC (p=0.0262,p=0.342,p=0.0153). In alpha band the values of PSD for HC were 488

higher than PNES with (p=0.0032, p=0.00443 and p=0.023 respectively) in all the 489

brain parcellations. 490
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Fig 2. Grand-averaged of log normalized PSD of 19 EEG channels in the (A) delta, (B) theta, (C) alpha, and (D) beta
frequency band for PNES group and the control group. Blue line denote HC subject and red line highlight the PSD of PNES

Compared to HC, the relative PSD values were increased for PNES in the delta 491

band in the frontal and central areas. In contrast, PSD for alpha and beta bands were 492

increased in the HC more than the PNES subjects in all the parcellations. 493

As illustrated in Figure. 3, frontal, central, parieto-occipital area displayed a 494

significant PSD difference in the alpha and beta bands. 495
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Fig 3. Relative normalized log PSD averaged over the 19 electrodes in four frequency bands for frontal, central,
parieto-occipital areas between PNES and the control group. The horizontal line denotes significant difference between groups.
** p < 0.05 indicates that the p-value is statistically significant at α = 5%, and *** p < 0.001 indicates that the p-value is
statistically significant at α = 1 %. The PSD measures was computed in PNES and control in the delta,theta,alpha and beta
frequency bands. In delta frequency band significant differences were found between controls and PNES in frontal, central
and parieto-occipital area. In the alpha frequency band the PNES had lower PSD value compared to controls. Differences
were found in all the frequency band.

4.2 PLI analysis 496

To evaluate the functional brain network organization between the two groups, the 497

networks were calculated for all frequency bands and for each epoch using PLI’s 498

algorithm [28]. To grasp the differences in graph measures we performed a thresholding 499

analysis at different values of th. A different threshold means a graph with a different 500

edge density that lead to infer the degree of network disconnectedness. The 501

disconnectedness of the graphs affects the quantitative values of many network metrics, 502

thus choosing a good threshold might be a significant challenge in making a fair 503

comparison between networks estimated in healthy volunteers and in PNES. All the 504

graph metrics were initially estimated in the network from 0.05 to 1 with step 0.1 % of 505

density. 506

We explored different thresholding values that force graphs to be connected even at 507

sparse densities to address the issue of disconnectedness that can arise as a result of 508

global thresholding. Furthermore, we attempted to dig statistically significant 509
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differences in graph indices at different thresholds in silico analysis of the real data. We 510

computed a PLI analysis applying an iterative thresholding of the adjacency matrix 511

(thresholding from 0.05 to 1 with step 0.01). Since the in silico computed curves of the 512

network parameters are monotonous after the threshold of 0.25, we have chosen this 513

value as the observation extreme (See .4). To that end, we explored the effects of 514

density on reliability by estimating all metrics in networks with different densities (see 515

Figure 4 ). 516
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Fig 4. Network Density estimated by the PLI-based network analysis of the EEGs of the two group of subjects PNES and
HC. Network Density was estimated by binarizing the connection matrix for different threshold values, as detailed in Section
4.2. This figure depict the mean and standard deviation results of clustering coefficient (CC), short path length (SPL), global
efficiency (Ge), node betweenness (NB), small-world (SW) as the function of the thresholds 0.05, 0.15 and 0.25 at 0.1 step for
the range 0.05 to 0.25. The analysis was computed on data in the whole frequency bands 0.5-32 Hz. The red colored circles,
the blue colored squares are respectively for PNES and HC.

To explore how different values of the threshold could affect the network parameters, 517

we explored three different points (here reported as 0.05, 0.15, and 0.25). In this way, 518

we observe how the network parameters change as a function of the threshold and 519

frequency. Additionally, to exclude the possibility that the observed associations 520

between graph theory measures and thresholds of different frequency bands were biased 521

by age of the subjects’ group as well as differences in brain activity, the EEGs was 522

scrambled and subsequently processed as described (See Methods section). Noticeably, 523

no correlations between graph theory measures and thresholds of different frequencies 524

and age were found for the scrambled data. In Figure 5,6 and 7 we summarize the 525

results of different tests performed to find the differences between the network indices at 526

different thresholds and between different frequencies between PNES and HC. 527

We calculated the Euclidean distance between specific network parameters to obtain 528

a summary of all differences between the two classes. As reported in Figures from 5 to 529

7, the difference between the density of network coefficients calculated in delta, theta, 530
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Fig 5. Panel A: The scatterplots depict point-like differences within specific band of frequency (e.g delta, theta, alpha and
beta) for HC (x-axes) and PNES (y-axes). The point-like differences were computed as an euclidean distance between two
network indices, PNES vs HC, at 0.05 of threshold. We used Euclidean distance to grasp differences in network measure
distribution. Additionally, each histogram depict the data distribution and the p-value, and the significant samples are shown
like a sample-specific t-tests at the Bonferroni-corrected level of 0.05. Last column of the panel show an histogram that
compare the whole 0.5-32 Hz network indices value at 0.05 of threshold value between HC and PNES. Here the read and blue
bins stand respectively for HC and PNES.

alpha, and beta within three different threshold values provides information on the 531

direction of the similarity/divergence in the network values. Differences between 532

network parameters across threshold values in different bands between HC and PNES 533

were computed using the permuted state vectors, and p-values were determined by 534

comparing the observed statistics to the null (1000 permutations). To facilitate visual 535

comparisons (See Figures 5,6 and 7), the chi-square variance test was used by defining 536

the category with the minimum distance as zero and the maximum depending on the 537

calculated distance in each combination. For the comparisons, the level of significance 538

dropped from 0.05 to 0.001 between the combinations. The Euclidean distance of the 539

network indices (HC vs PNES) with statistically significant differences was depicted by 540

each histogram. We found that all the network values were statistically significant 541

(p=0.05) in a Monte Carlo random permutation test across all subjects within each 542

frequency sub-band at 0.05 of threshold between HC and PNES. th(0.05)(Global 543

efficiency; delta(p=0.045); theta (p=0.00032); alpha(p=0.032) and beta (p=0.0044)); 544

(Shortest path length; delta(p=0.0133); theta (p=0.0024); alpha(p=0.013) and beta 545

(p=0.033)); (Cluster coefficient; delta(p=0.023); theta (p=0.014); alpha(p=0.00023) 546

and beta (p=0.0122)); (Small world; delta(p=0.0022); theta (p=0.032); 547

alpha(p=0.0013) and beta (p=0.042)); (Node betweeness; delta(p=0.014); theta 548

(p=0.023); alpha(p=0.0033) and beta (p=0.023)). Based on the aforedescribed 549

framework we chose 0.05 as a threshold value for our analysis. Next, we used a method 550
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Fig 6. Panel B: Point-like distances of graph theory indices computed like an Euclidean distance between two class of
subjects in each specific band of frequency at 0.015 of threshold. Here the raw of the panel rapresent a specific network
indices, whereas the column a specific band of frequency. The scatterplots report the absolute values of distance measures
among network indices and within specific band of frequency (e.g delta, theta, alpha and beta) for HC (x-axes) and PNES
(y-axes). Additionally, for each scatter plot the linked histogram depict the data distribution and the related p-value, where
the significant samples are shown as sample-specific t-tests at the Bonferroni-corrected level. The last column show an
histogram that compare the whole 0.5-32 Hz network indices values. Here, the data were submitted to sample-specific t-tests.

to compute the symmetry in the distribution of phase difference across all pairwise 551

combinations of scalp sensors. The phase lag index can be considered as a measure of 552

the synchronism of different EEG time series in the frequency domain. In this paper, 553

PLI analysis was applied to all pairwise EEG channels for the PNES and the healthy 554

control group. Based on the PLI method, the functional network can be reconstructed. 555

When the entry of the PLI matrix (Figure. 1) is larger than the threshold, the entry is 556

set to 0, otherwise 1. It is well known that many network measures are heavily 557

dependent on network density. The approach is, therefore, to binarize the connectivity 558

matrices in a way that produced networks having the same density [38]. We binarized 559

the matrices using the threshold value of 0.05 (based on the aforedescribed test). The 560

matrix PLIij of 19×19 values was transformed into a binary matrix Aij (Adjacency 561

matrix). Suppose the PLIij value was less than the threshold of 0.05, the corresponding 562

aij of the binary matrix Aij is fixed to 1 (link), indicating the group difference of PLI 563

between electrode i and j was significant; otherwise, it equals to 0 (no Link). Thus, the 564

functional connectivity can be extracted from the PLI matrix, and the functional 565

properties could be further quantified. Figures. 8, 9,and 10 show the topographic maps 566

of the relative PLI for PNES and the HC group. The optimal threshold for each subject 567

and frequency band was applied to the functional connectivity matrix to understand the 568

global topology of large-scale brain synchronization in patients and controls. 569

In the control group figures, 8, 9,and 10, there were more fully connected areas than 570
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Fig 7. Panel C: Scatter plots of network indices difference (e.g Global efficiency, Node betwenness, Cluster coefficient,
Small world and shortest path length). The point-like differences were computed as an Euclidean distance between
normalized network values. Here the raw of the panel rapresent a specific network indices, whereas the column a specific band
of frequency. The scatter plots report the absolute values of distance measures among network indices and within specific
band of frequency (e.g delta, theta, alpha and beta) for HC (x-axes) and PNES (y-axes). Additionally, for each scatter plot
the histogram depict network indices data distribution in that frequency and the p-value, where the significant samples are
shown as sample-specific t-tests after Bonferroni-corrected

in the PNES group. PNES group showed high values of synchronization in the delta 571

and theta band, while scattered distributed connections in the frontal, temporo-parietal, 572

and occipital areas in the alpha and beta bands were found. 573

HC group had a higher synchronization within frontal regions than PNES in delta 574

and theta. We observed higher synchronization within the areas of the frontal and 575

front-to–to-back regions for the HC group. In the beta band, less synchronization 576

between the frontal, temporal, and parietal regions in the right hemisphere was 577

observed for the PNES group. Lastly, in the alpha band, the synchronization in the left 578

hemisphere was greater than the right hemisphere in the PNES group. 579

In Figure 11 we highlight the network coefficients measured in PNES and HC. 580

We further performed a statistical test analysis based on two-tailed independent 581

t-tests without assuming equal variance after giving F-test for the certification of group 582

differences in the shortest path length, small worldness, global efficiency, node 583

betweenness, and clustering coefficient at any threshold value accounted and among 584

PNES and HC group. Our goal was to find important import differences that could lead 585

us to grasp brain areas in PNES showing significant network impairments. Here, a 586

significance level was taken as p < 0.05. Additionally, post hoc analysis showed that 587

there was a significant influence of different frequency bands with bands and thresholds 588

on node betweenness, cluster coefficient, and small worldness (all p-values corrected for 589

double comparison using Bonferroni correction: p < 0.05). 590
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Fig 8. Panel A: Graphs representation of Phase Lag Index connectivity in Healthy subject and PNES in delta, theta, alpha
and beta frequency bands. The channels layout in the network map reflects the location of the EEG montage in the
acquisition system. The first couple of raw depicts the network maps of HC, the second one the PNES PLI maps tested at
th=0.05. The line thickness highlights path with high value of PLI.

Frontal Area Central Area Parieto-occipital Area
Graph index δ θ α β δ θ α β δ θ α β

Global efficiency 0.0532 0.132 0.102 0.251 0.04 0.06 0.0128 0.0013 0.073 0.122 0.016 0.00123
Node betwenness 0.273 0.322 0.421 0.151 0.073 0.122 0.033 0.023 0.013 0.018 0.263 0.032
Cluster coefficient 0.074 0.126 0.452 0.321 0.142 0.785 0.0412 0.022 0.561 0.174 0.0430 0.0012

Small world 0.752 0.134 0.144 0.434 0.33 0.431 0.04 0.014 0.335 0.453 0.034 0.174
Shortest path 0.331 0.123 0.424 0.041 0.021 0.014 0.143 0.041 0.012 0.033 0.012 0.044

Table 1. Results of our statistical analysis accross cluster of EEG sensors (See EEG layout parcelization in Section 4.1) in
all of the frequencies band under analysis to grasp significant differences in network indices between the two classes (HC vs
PNES). We evaluate Global efficiency, Node betwenness, Cluster coefficient, Small world, Shortest path characteristic. We
performed a post-hoc analysis for multi-comparison. The p value (p<0.05) corresponds to significant difference in network
index values for the testing conditions. See Section 3.7 for further information.

As reported in table 1, our multi-way statistical analysis depicted an overall 591

significant difference in network indices in central and parieto-occipital areas. We have 592

verified that beyond the threshold used to binarize the network, the areas of the brain 593

in which the PNES exhibit a lower expression of complexity of network parameters were 594

related to the central area and the posterior area. Furthermore, we found a higher 595

statistical variation in the central area more than the parieto-occipital area. We found 596

global efficiency differences in alpha (p=0.014) and beta (p=0.0011) with a central to 597

posterior rate. Additionally, our results underpinned a Cluster coefficient statistical 598

difference (p=0.0022) in alpha and (p=0.021) in beta for central and Parieto occipital 599

areas. We found more small world differences in the central area than the occipital. The 600
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Fig 9. Panel B shows a Graphs representation of Phase Lag Index connectivity in Healthy subject and PNES in delta, theta,
alpha and beta frequency bands. Here the PLI matrix was binarized using 0.15 as a threshold value. The first raw depict the
network maps of HC, the second one the PNES network. Line thickness highlight path with high value of PLI.

shortest path length is the network index with higher difference between brain areas, 601

thus it could be the most discriminative. 602

4.2.1 Measures of integration and segregation 603

Measures of integration estimate the score of communication between distributed nodes. 604

Specifically, the shortest path length (SPL) indicates that, on average, each node can 605

reach other nodes with a path composed of only a few edges, while the global efficiency 606

is an appropriate measure in the case of disconnected networks since the paths between 607

disconnected nodes have infinite length, and thus zero efficiency. The global efficiency is 608

the average inverse shortest path length, defined as one of the most elementary 609

measures of the network’s integration but when defined only for the neighbours of a 610

specific node, so this measure may be treated as an indicator of segregation that can 611

share information between distributed regions. The measure of segregation defines the 612

ability of specialized processing within a densely interconnected group of nodes in a 613

specific network (clusters or modules). We also used a measure of segregation, the 614

clustering coefficient, defined as the fraction of the node’s neighbors that are also 615

neighbors of each other. 616

Segregation and integration are interdependent measures. Segregation decreases and 617

integration increases as global pairing increases. When the global coupling is weak, 618

there is high segregation and low integration, and the perturbed network nodes are 619

disconnected and it operates in an independent way. Conversely, when the global 620

coupling is strong, the integration is high and the segregation is low because the 621

perturbed nodes are coupled. 622
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Fig 10. Panel C: Phase Lag Index connectivity in Healthy subject and PNES in delta, theta, alpha and beta frequency
bands. The EEG channels layout in the map reflect the location of the EEG montage in the acquisition system. The first
couple of raw depict the network maps of HC, the second one PNES tested using a th=0.25.

We found significant differences in clustering coefficient (CC) in the delta, theta, and 623

alpha bands. We found that CC was increased in the delta, theta, and alpha bands for 624

the PNES group (Figure. 11. In addition, no significant differences are observed for Ge 625

in all four-frequency bands (except Ge in the alpha). We found that Ge was relatively 626

higher for HC group than PNES group in the whole band. As a measure of integration, 627

the shortest path length shades light over the efficiency of global information 628

communication. The shortest path length is a unique sequence of edges that connects 629

two nodes, and its length is given by the number of steps or the sum of the edge with 630

the shortest path length. We found a decrease of the shortest path length in delta, 631

theta, alpha, and beta bands for the PNES group compared to HC group. In the beta 632

band, the SPL value is slightly lower in the PNES group than HC group (Figure. 11). 633

The human brain can be described as a small-world network structured around a large 634

number of spatially distributed network communities with clustered connectivity, in 635

which the local computations are highly segregated. In small-world architecture, 636

integrated and segregated information are promoted by network hubs that arrange 637

efficient communication and information processing. 638

4.2.2 Measures of Centrality 639

The centrality is a measure of the relative importance of a node connecting a network in 640

the brain and hence it is important for the functional integration of the brain. The 641

different measures of centrality exist, including degree, closeness centrality, eigenvector 642

centrality, and betweenness centrality. Nodes with high centrality are called hubs. Our 643

results highlighted a decrease of Node betweenness in PNES in delta, theta, alpha, and 644
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Fig 11. Box plots of network coefficients measured in PNES and HC. Here, we report normalized network coefficient values
of: CC, Ge, NB, SPL and SW in delta, theta, alpha, and beta bands. The first raw highlights the network coefficients of
the healthy control subjects. The horizontal mark within each box represents the median, the edges of the box represent the
first and third quartile, the whiskers extend to the most extreme data points that are not considered outliers.

beta bands more than HC group (Figure. 11). Our findings highlighted a loss of 645

network performance. 646

5 Discussion 647

Different cortical brain regions are toned to oscillate at an individual rate [39]. These 648

oscillations reflect local, intrinsic physiological mechanisms related to the fine-tuning of 649

corticothalamic circuits within which each cortical region tended to resonate at 650

approximately the same frequency. Rhythmic patterns of neural activities are believed 651

to play an important functional role in local processing and communication between 652

different neuronal systems. Thus, the study of brain frequencies in PNES does not only 653

have theoretical relevance but also clinical implications. In addition, we used PSD to 654

find specific differences in modulation in frequency tuning of brain areas among PNES 655

subjects and healthy control [40]. 656

We further investigated the functional connectivity in brain networks of PNES 657

patients and healthy controls. The functional network represents the temporal lag of 658

phase in the brain network communication, and the network measures are tools used to 659

investigate the efficiency of communication between brain regions. The human brain 660

can be described as a small-world network, that is structured around a large number of 661

spatially distributed network communities with clustered connectivity, in which the 662

local computations are likely to be highly segregated. Integration of segregated 663

information in small-world is promoted by network hubs, which connect network 664
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communities and ensure efficient communication and information integration. Our 665

results are discussed in the next subsections. 666

5.1 PSD measures 667

Figure 2 shows that the PNES subjects and controls had a similar pattern of the power 668

spectrum. However, we observe that the relative PSD of PNES patients are significantly 669

increased in the theta frequency band (See Figure 2 B) while markedly decreased in the 670

alpha frequency band (See Figure 2 C). In Figure 3 we check for a spatial pattern of 671

PSD to infer brain areas with strong differences across PNES and control subjects. 672

Particularly, we found that in central and parieto-occipital areas the PSD of healthy 673

subjects was higher than that of PNES subjects. We hypothesize that these results in 674

HC may be related to a wealth in information processing and network connection and 675

that the neural model of the healthy subject engages a greater number of processing 676

and exchange of information in long as well in short-range. On the other hand, an 677

increase of PSD in delta band in frontal and central areas for PNES may reflect a lack 678

of influence of subcortical structures on cortical activity [41]. Frontal and central areas 679

are implicated in the control of sensory feedback and attention. The hypothesis that in 680

subjects with PNES there is a greater increase in power in these areas, leads us to think 681

that there could be a greater alert and pre-activation of the cortical circuit implicated 682

with sensory and movement control. Thus, the pre-activation or hyper-activation in this 683

cortical circuit could leave this to fire and trigger a long front-to-back route when 684

activated. Our findings, supported by other studies [18,19], highlighted that PNES 685

network alterations are related to high-frequency oscillations. Additionally, we found 686

alpha rhythm alterations in PNES in different brain areas. Therefore, alpha alterations 687

could reflect pathological resting-state dynamics in which thalamus, midline, frontal and 688

parietal cortices play an important role in accountability to seizures [42]. The alpha 689

rhythm is thought to arise through cortico-thalamic interactions, and to possibly reflect 690

top-down processes that subtend a vast number of cognitive operations, in particular 691

attention, working memory and sensory system control [43]. Arıkan et al. [19] found 692

that PNES correlates with high-frequency oscillations on central and parietal areas, 693

whereas Meppelink et al. [18] found a decrease in PSD in the beta band. 694

5.2 PLI Measures 695

In Figures 5, 6 and 7 and in Figures 8,9 and 10 we summarize our analysis in network 696

measures at different thresholds. We tested the network density of shortest path length, 697

small world, global efficiency, node betweennes, and cluster coefficient in the range 0.05 698

to 1 at 0.01 steps. Our results highlight, (See Figure 4), how these curves assume a 699

shape of a monotonic function. Additionally, we found that 0.25 is the knee point after 700

which the curves assume this characteristic. We also observe how the curve maintains a 701

certain degree of separation for each threshold against which they have been tested. In 702

Figures 5, 6 and 7 we performed an Euclidean based difference analysis between 703

coefficients data to grasp how the index differ between two groups. In table 1 we 704

present our pos-hoc analysis to highlight differences at different thresholds in delta, 705

theta, alpha, and beta for the graph measures are used. These results may suggest 706

frequency-specific network organization and imply various functional roles for different 707

frequency bands. Additionally, we highlight that in delta, alpha, and beta all the 708

network metrics tested at 0.15 and 0.25 of density were not enough significantly 709

different. Furthermore, we observe that 0.05 is a consistent and reliable value of 710

threshold to investigate the resting-state graph metrics of PNES with lower bias. 711

Recently, the scalp EEG-based studies revealed that PNES might lack a relatively long 712

linkage in the brain network topology, indicating the impairment of information 713
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transferring and processing [8]. As shown in Figures 8,9 and 10, the two network 714

topologies differ in the bilateral hemisphere with a marked difference in alpha and beta 715

band. Decreased functional connectivity in the alpha band could be associated with a 716

decreased attitude to generate seizure oscillations in EEG rhythm, thus uncontrolled 717

movements of the PNES subject could be triggered by altered neurobiological 718

substrates. This hypothesis is corroborated by the finding that PNES patients exhibited 719

a more path-like topology with a decreased long-range synchronization in the alpha and 720

beta band. Moreover, the network properties are effective to capture the information of 721

spatial differentiation in the networks. The network topology differences in Figures 8, 722

9,and 10 shows that subjects with PNES have fewer and weak links between the frontal 723

and the temporal/occipital areas than subjects in the healthy group, which is consistent 724

with the structural abnormality difference between the two group found in [44,45]. The 725

working mechanisms of PNES are further revealed in Figures. 8, 9,and 10, which shows 726

that the PLI analysis captures the differentiating spatial network information in the 727

brain network. These results corroborate the hypothesis that PNES is a phenomenon of 728

neuronal disconnection and that in high frequency, integration and differentiation of the 729

network are lost. 730

5.3 Measures of Segregation and Integration 731

In this paper we used CC, Ge, and SPL to evaluate segregation and integration. The 732

boxplot in Figure. 11 shows how the PNES subjects have increased clustering 733

coefficients and decreased shortest path length as compared to the normal subjects; this 734

could be a predictor of impaired local information processing and loss of global 735

integration in patients [46]. In PNES the higher clustering values are a feature of 736

regular local networks with symmetrical structures and highly connected with their 737

closest neighbours. Instead, short path length describes the number of edges among 738

vertices, and we utilize it as a feature known for random networks. PNES has been 739

shown to correlate with functional and structural brain network alterations using 740

MRI-related studies [12]. We also found a decreased global efficiency that could reveal 741

that PNES might lack a relatively long linkage in the brain network topology, indicating 742

impairment of information transferring and processing. In practice, PNES patients can 743

be easily discerned from normal subjects based on their abnormal behavior. The CC, 744

Ge, and SPL are measurements determined by spatial topology where the complete 745

information of a network is significantly more complex than the adopted statistical 746

measurements. Thus, the essential spatial information of a network would be 747

meaningful to further improve the ability to differentiate the PNES subjects. In detail, 748

we found a decreased averaged shortest path length (SPL) in PNES for all the EEG 749

sub-bands under consideration and Ge in the delta, theta and alpha bands, indicating 750

the network of PNES subjects like a model highly segregated and unable to integrate 751

information over long distances. The general hypothesis is that to process relevant 752

information to a momentary challenge, the neural responses are not only reflected by a 753

change of neural activity in certain regions of the brain but also by a global 754

reorganization of connectivity patterns. We highlight a loss of network synchronization 755

(See.Figure 11) in the rest of the EEG of PNES as a spatial pattern related to a change 756

of neural activity in certain regions involved in a momentary challenge and a global 757

reorganization of connectivity patterns during the information processing. We argue 758

that functional measures of segregation and integration can improve the knowledge on 759

the rest behaviours of the whole-brain of PNES subjects. We can evaluate the ability of 760

the brain to encode information using CC, Ge and SPL measures as well to characterize 761

the effective integration of distributed information across the whole brain 11. The 762

measures of connectivity calculated as the strength of the edges between the nodes 763

highlight loss of functional integration between brain regions due to the loss of 764
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long-range linking. In addition, our results are in agreement with other studies [5, 7, 10]. 765

Different from Xue et al. [8], we report cluster coefficient values higher in PNES than 766

HC. However, we also observe that PNES subjects had higher CC than HC. 767

5.4 Measures of Centrality 768

We used centrality to characterize the relevance of individual nodes in the network using 769

Node Betweenness. Our finding revealed that HC had a higher level of NB than PNES 770

subjects, except for the beta band. Furthermore, our analyses suggest that impaired 771

information processing involves connectivity across multiple cortical areas in the beta 772

bands. Moreover, for PNES, in the beta band, fewer brain connections were found in 773

the right frontocentral cortical areas. This is coherent with previous literature evidence, 774

pointing to the pathogenesis of PNES disorders resulting from the contribution of the 775

right hemisphere [20,47,48]. 776

5.5 Small-Worldness 777

In order to further understand if clustering coefficient or path length are contributing 778

equally to the observed small-worldness differences between group we performed a 779

small-world analysis. The small-world networks have a high clustering and a short path 780

length like random networks. Given that the small-world model supports both 781

specialized and integrated information processing in the brain, we attempt to describe 782

the effect of the impairment on the topological property of small-worldness 783

characteristics derived from EEG connectivity data. Furthermore, the PNES group 784

present a significant network differentiation in theta, alpha, and beta bands, with fewer 785

small-worldness characteristics. As reported in Ding et.al (2013), the PNES 786

small-worldness had altered functional and structural connectivity networks, which is 787

related to a more regular organization in large-scale brain networks. Additionally, Ding 788

et.al (2013) found alteration in region involving attention, sensorimotor, subcortical 789

networks [12]. In other studies, the loss of integration and segregation in PNES was 790

supposed to be related to emotion, executive control, and motor function 791

impairments [10]. 792

6 Conclusion 793

In this study, the proposed methodology can reveal subtle changes in the graph 794

properties of PNES at different EEG frequency bands. We found that PNES patients 795

present an increased spectral power density in the delta and theta bands in the frontal 796

and central areas and an overall decreased spectral power in the other frequency bands 797

under analysis. Additionally, functional connectivity networks exhibited altered nodal 798

characteristics in global efficiency, node betweenness, and path length. We also found a 799

decreased coupling strength of functional connectivity in PNES. The synchronized 800

oscillatory maps showed high sensitivity to differentiate PNES patients from healthy 801

controls. It supports the hypothesis that the PNES reflects an irregular brain 802

architecture with a loss of functional connectivity and a disturbance of the right 803

back-to-front or vice-versa pattern of information flow in brain areas related to cognitive 804

operations, attention, working memory, and movement regulation. Additionally, as 805

reported in table 1, we found that the shortest path length and node betweenness are 806

the most significant/discriminative indices with differences within high frequency in the 807

central and posterior areas. Differences in network parameters could highlight impairing 808

in segregation and integration as well as in information processing during rest activity 809

at the time of Video EEG monitoring. These alterations could also be related to the 810
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psychological condition, stress induced by the transient EEG monitoring event, as well 811

as the alertness of the subject waiting for a particular/apparent trigger. From this 812

perspective, PSD and graph measures might be effectively used to discriminate PNES in 813

scalp EEG time series. As future work, we will attempt to increase the cohort of PNES 814

subjects as well to collect EEG data with an high density acquisition system to raise the 815

statistical precision of our analysis. It could also be interesting to investigate whether 816

the abnormal organization found in this study can be further confirmed in a large 817

cohort of PNES subjects using other methods such as weighted PLI or directed PLI. 818

Next, we plan to apply this method to data acquired during transcranial magnetic 819

stimulation (TMS) [49] to study how the brain networks of PNES changes under 820

external perturbations. 821
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