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Abstract—Identification of immunological markers for neu-
rodegenerative diseases resolve issues related to diagnostic and
therapeutic. Neuro-specific cells experience disruptive mecha-
nisms in the early stages of disease progression. The autophagy
mechanism, guided by the autoantibodies, is one of the prime in-
dicators of neurodegenerative diseases. Identifying autoantibodies
can show a new direction. Detecting influential autoantibodies
from relational networks viz., co-expression, co-methylation,
etc. is a well-studied area. However, none of the studies have
considered the functional affinity among the autoantibodies while
selecting them from a relational network. In this regard, a two-
layered multiplex network based framework has been proposed,
whereby the layers consist co-expression and co-semantic scores.
The networks have been formed using three distinct cases viz.,
diseased, controlled, and a combination of both. Subsequently,
a random walk with restart mechanism has been applied to
identify the influential autoantibodies, where layer switching
probability and restart probability are 0.5 and 0.4 respectively.
Next, pathway semantic network has been formed considering the
autoantibody associated pathways. EPO and IL1RN, associated
with a maximum number of pathways, are identified as the two
most influential autoantibodies. The network also provides in-
sights into possible molecular mechanisms during the pathogenic
progression. Finally, MDPI and CNN3 are also identified as
important biomarkers.

Availability: The code is available at
https://github.com/agneet42/ImmunAL

Index Terms—Immunoprecipitation, Alzheimer’s Disease, Mul-
tiplex Network, Autoantibodies

I. INTRODUCTION

Immunology in neurodegenerative diseases (NDs) have
gained a new interest in terms of diagnosis as well as therapeu-
tics [1]. Cell specific immunoprecipitation are associated with
functional attenuation which may lead to disease initiation and
stochastic progression of the disease [2]. Therefore, autoan-
tibodies (Aabs) play a vital role in terms of diagnosis and
therapeutics. Computationally modelled effect of immunopre-
cipitation and neuro-inflammation can provide a clear insight
into an early progression of the diseases. However, compli-
cated interplay between differentially co-expressed genes and
corresponding co-semantic variation is difficult to observe
depending upon singular objective-based networks. In recent

years, network models are widely used to fetch influential
set of bio-molecules. Besides that, there are many strategies
which are implemented on biological data analysis. However,
only a single objective has been taken under consideration to
establish the relations between pair of nodes within a network
architecture, so far. Selecting effective nodes in terms of a
single relational objective is biased and is not able to provide
comprehensive biological scenarios. The concept of multiplex
network can be applied to address the aforementioned issues.
Multiplex network is a class of networks where two or more
networks share different set of relations among its node.
In a single monoplex layer of the multiplex network, the
interaction between two nodes are described through edges.
Here each of the layers have different mode of interactions.
So eventually considering multi-mode interactions from all
the networks among homogeneous nodes, the best probable
list of genes can be fetched. However, there are two such
way which would help to understand the relevance of a node
in terms of its presence at different sets of network levels.
This is done either by calculating the influence of a node
from the network topology or fetching the relatedness between
two nodes. Applying both the approaches, it would be an
unbiased decision of choosing a set of influential genes where
the relatedness between two nodes at different levels can be
established. In this article, we have proposed a bi-layered
multiplex network where layers are sharing the same proteins
with same number of nodes. However, weighted edges, which
define the relation between nodes, are different in each layer.
In this experiment, the two layers are protein co-expression
layer and co-semantic layer. These layers are formed for three
different conditions viz., disease case, controlled case and both
the cases jointly. In our work, we aim to determine the set
of influential proteins from the bi-network by performing a
random walk with restart on it to capture the inherent property
of the network. Detecting influential nodes in a network
has gained prime importance as it controls the nature and
depth of information that can percolate in a network. Much
work has been done to understand and recognize these seed
nodes, which play important roles in understanding the net-
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work structure. In [3], the authors evaluate various centrality
measures which are used to generate seed nodes and develop
a new method based on thresholding the non-seed nodes
present in the neighborhoods of the seed nodes. Comin et al.
in [4] combine three widely used centralities, betweenness,
closeness and eigenvector to show that validated seed nodes
have a 95% success rate in scale-free networks. Following
the selection process, seed nodes are selected based on their
influence in the complex network. As such, many similar
models and techniques have been developed for influence
maximization. One such model is the Independent Cascade [5]
model, where nodes switch between infected, susceptible and
inactive stages each of which is associated with a probability
of being infected during a particular cycle of spread. Chen et
al. [6] describe a community detection based model, where
community structures are described out of a network, which
narrows down candidate seed selection and finally selects seed
nodes based on the purity of the community it belongs to and
the position of that node in the network. Genetic algorithm
[7] is used to find feasible solutions in the network; whereby
a simple 1-point crossover and mutation operator is used.
The method assumes no underlying aspects of the network
and produces unbiased results. The random walk with restart
(RWR) method has been widely used in domains such as
epidemic analysis, bioinformatics, video sequencing, auto-
generation of captions etc. In [8], researchers use RWR to
detect regions in the video sequences which have a temporal
salient distribution. They use the transition matrix and restart
probability to successfully suppress noise and detect infor-
mative features. Jung et al. [9] modify the traditional RWR
process to derive influential nodes in a signed network by
introducing a signed random walker, whose behaviour mod-
ifies accordingly as per the negative/positive direction of the
edges. Duc Ha-Le in [10] investigates how the RWR algorithm
can be very useful in bioinformatics, especially in ranking
related association/interaction problems; RWR has helped in
prediction of disease related genes, top k-associations of a
protein and to simulate drug target interactions. The next
domain of consideration are the multiplex networks, where
individual networks are stacked up together; to identify multi-
modal relationships between a set of nodes. Gilles et al. [11]
discover that multiplex networks are better able to capture
the community structure in comparison to the aggregated and
heterogenous counterparts. They performed their experiments
on 4 layers of functional interactions and proved that the mul-
tiplex structures allowed for better cohesive in the structure.
Multiplex PageRank algorithm has been employed by Li et
al. [12] where they solve the complex problem of identifying
functional modules in large-scale gene-gene interaction and
protein-protein interaction networks.

From the last decade, network algorithms are extremely
useful to resolve many biological questionnaires. In [], protein-
protein interaction a network has been analyzed applying the
random walk. A complex network representing the pathway
membership has been analyzed in [] where three Y2H path-
ways are combined focusing on 10 pathways information

from KEGG. Similarly, a random walk has been applied to
predict synthetic lethal biology interactions [13]. In this article,
Chipman et al. studied S. cerevisiae and C. elegans with a
95% false-positive rate. Usually, a random walk is applied
to understand the affinity between two nodes. However, the
starting point is random unless it is pre-defined. Along with
that, the algorithm has to start the next iteration from the last
visited node. In this regard, two different algorithms have been
implemented in this paper for providing comprehensive results.
Firstly, eigenvector centrality has been implemented to identify
certain nodes which are essentially influential. Subsequently,
random walk with restart is another algorithm where we can
start again and again from the starting node which also helps
to choose another walk with a new sets of nodes. In Koschützk
et al. [14], the study shows a comparative analysis between
the centralities applied in the biological networks where they
have shown five centralities scoring Viz., eccentric centrality,
degree centrality, closeness centrality, betweenness centrality
and eigenvector centrality for both protein-protein interac-
tions and Transcription Regulation. Based on the correlation
among the centrality scoring, eigenvector centrality shows
the strongest affinity. Most of the studies where eigenvector
centrality has been successfully applied, are complex network
problems. Sola Luis et al. [15] shows a mathematical model
of eigenvector centrality which is successfully applied on a
multiplex network model. The application of the RWR is
discussed in Tong et al [16] where they develope model in
[16], successfully applied to Corel images and the DBLP
database, is faster than other conventional algorithms. The
method is successfully applied to Corel images and the DBLP
database. Association of diseases and long-non coding RNAs
are well known. In [17], a random walk based method has
been proposed to predict the association between lncRNAs and
diseases. In this case, few major similarity matrices are used to
find the probability vector for RWR. The data has been fetched
from lncRNA-disease curated database. In recent years, RWR
has been implemented on heterogeneous multiplex network.
In [18], the new RWR model on multiplex network has been
provided. Here, two different monoplex layers have been taken
Viz., Protein-Protein interaction network, and co-expression
network. The model works comprehensively well. However,
none of the models have mapped the functional modifications
as well as expression changes. To address such issues in this
article we have proposed one framework.

II. OVERVIEW ON RANDOM WALK, RANDOM WALK WITH
RESTART, AND MULTIPLEX NETWORK

This section briefly discussed the basic of random walk,
random walk with restart and multiplex network which sub-
sequently use to identify the markers.

A. Random Walk

A random walk (RW) on a graph is a random movement
within a pair of nodes of the graph. The direction of the walk
can be decided by a transition probability. Let a monoplex
graph be G (V, E), where V denotes a set of vertices and E
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denotes a set of edges, such that Eij denotes edges between
nodes i and j. Let w(Eij) denote the weight associated with an
edge Eij . Weighted edges enable quantifying the relationship,
thereby allowing varying degrees of relationships throughout
a graph. In a RW, the walker moves randomly amongst one of
its neighbors at each step. If the walker is at node i, then at
the next iteration it selects a node j, from its neighbors. It is a
Markov Process predicting or selecting the next step depends
only on the present vertex. An N-state Markov Process is
therefore characterized by a row stochastic transition matrix
P of dimension [i,j], where P(i,j) is the probability of moving
from node i to node j, where

P (i, j) =
w(i, j)

W (i, j)
, ifEijεE,whereW (j) =

∑
i

w(i, j) (1)

The transition matrix is dependent on the weight of each
edge that connects a node i and its neighbors. The transition
is guided by higher weighted edges. Hence, if πk indicates the
probability distribution at the kth iteration, then,

πk = Pπk−1 (2)

Perron and Frobenius showed when the number of iterations
k approaches infinity during a Markov Process, π becomes
a steady-state of stationary distribution. This distribution is
a function of time that a walker spends at this node. This
can only be effected by the transition matrix, P. Thus, for the
stationary distribution.

π = P × π (3)

B. Random Walk with Restart

Random Walk with Restart (RWR) is a special case of RW.
It aims at capturing a relationship between a pair of nodes.
RWR computes the affinity between two nodes i and j, such
that if the walk begins at node i, then the walker chooses
a randomly available edge each time. Interestingly, it also
has a probability of returning to i, before each iteration. This
re-start capability assures that RWR does not get stuck and
hence assures the robustness of the method. The steady state
distribution of RWR can be formulated as:

πk = (1− c)Pπk−1 + cS (4)

, where πk and P are same as Eq. 3, c is the restart prob-
ability and S = [s1, s2, s3, . . . , sN ]T , where sk denotes the
probability of the walk restarting at node k. Each node k∈S, is
known as the seed node. These seed nodes are the initialisation
points of the random walk. Selection of seed nodes becomes an
important decision, because affinity values are generated with
respect to these nodes. The restart probability c can control
the walk. A high restart probability tends to generate walks
of shorter length. RWR captures both the global structure of
the graph as well as multi-modal relationships between nodes.
The latter property has been exploited while developing the
random walk with restart on multiplex networks.

C. Multiplex Network

A monoplex network G is a graph which contains only
one layer and only one set of nodes and edges. A multiplex
network on other hand, is described by a set of families of
graphs Gm = (Vm,Em), where m denotes the index of the
monoplex networks. A multiplex network is characterized by
intra-edges between vertices of the same layer and inter-edges
between vertices of different layers. Such kinds of networks
allow for modeling of multi-faceted relationships between
the vertices. Such inter-edges between two sets of layers are
denoted as Em1m2 , which indicates a connection between two
graphs Gm1and Gm2. Each node Vm

1 , which indicates a node
in the mth monoplex network can have an intra-edge or an
inter-edge associated with it. For the purpose of a random
walk, each node will have a transition probability associated
with it which determines whether the walk will be in the same
or between different layer of the network. Fig. 1 explains the
structure of a multiplex network.

III. METHODOLOGY

Mathematical description of the RWR and Multiplex Net-
work have been given in the last section. In this article,
we have aimed to apply multiplex network based frame
which helps to identify Aabs, considering their co-functional
similarity. In this case, layer 1 and later 2 are comprised
protein co-expression and GO co-semantic respectively. The
two layered frame has been discussed below. In the first
part, the proposed network architecture has been described.
Subsequently, RWR has been discussed in the second phase.
The Complete framework has been shown at Fig. 2.

A. Network Sources

The first imperative step in developing the multiplex net-
work is to depict the multi-modal relationships that the nodes
share among themself. As mentioned above, each layer in the
multiplex layer captures independent relationships between a

Fig. 1. Structure of a multiplex network. Intra-network connections are
denoted by a complete line whereas the inter-layer edges are dotted lines. As
can be seen, the intra-layer edges are spread across an individual monoplex
network whereas the inter-layer edges are connected to only their counterpart
nodes across the layers.
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Fig. 2. A Schematic Diagram of Proposed Network

set of nodes. The following subsections develop a schematic
description of each of the monoplex networks:

1) Co-expressed Layer: In this article, we have used a
protein array of autoantibodies, associated with Alzheimer’s
Disease. Initially, a screening has been done to detect dif-
ferentially functioned protein samples. From the protein ar-
ray, these chosen samples are expected to be significantly
differentiable. In this layer, nodes are representing the Aabs
(vc1 , ...., vcn ∈ Vc) whereas weighted edges represent the co-
occurrence between them (defined as ec1 , ...., ecn ∈ Ec) and
the weights represent the rate of co-occurrence (from Equ. 5).

WEc =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(5)

where, x1, ...., xn ∈ X and y1, ...., yn ∈ Y represent
the expression values of protein samples. x and y are the
population mean. However, only co-expression is not enough
for understanding the biological implication of the network.
As discussed before, co-expression is showing the rate of
co-occurrence of protein Aabs. However, it is not necessary
that samples are sharing same set of biological processes or
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pathways. To address the problem, co-semantic layer has been
introduced.

2) Co-semantic Layer: Like co-expressed layers, co-
semantic layer depicts similarity score based on ontology
terms Viz., Biological Process, Molecular Function and Cel-
lular Component of the selected protein Aabs. Unlike the co-
expression layer, this layer provides the information regarding
co-existence within a functional system with the rate of co-
occurrence. The objective of this layer is to detect whether
the samples are sharing the same set of biological process,
molecular function and/or cellular component. More elabo-
rately, proteins which are associated with similar kind of bio-
logical processes and molecular function at same subcellular
localizations, are showing a higher rate of co-semantic score.
In this layer, nodes are representing the protein Aabs whereas
edges are representing the rate of similarity in terms of
ontology. The semantic layer is one such layer that can address
the aforementioned constraint where the co-occurrence of
autoantibodies is allied on association with similar functional
systems. To calculate the semantic similarity, we have applied
Wang’s method which [19] defined the semantic score of term
Y . Y terms are calculated as DAGY =(Y,XY ,EY ), VY and EY

represent set of GO terms and the set of GO terms connecting
edges respectively. The VY includes term Y as well as all its
ancestors. Thus, defining the contribution of a GO term p to
the semantic of GO term Y as the S − value of GO term p
related to term Y . For any of term p in DAGY , its S−value
related to term Y , SY (p) is defined as:{

SY (Y ) = 1
SY (p) = max{(ce ∗ SY (p

′) | p′ ∈ children of (p)} if p 6= Y

(6)
Here ce is the semantic contribution factor for the edge e ∈

EY linking GO term p with its child term p′. After calculating
the S− value for the GO term in DAGY , the semantic value
of GO term Y, SV (Y ) is defined as:

SV (Y ) =
∑

p∈XY

SY (p) (7)

For two given GO term, Y and Z, the semantic similarity
between them is defined as:

SSw(Y,Z) =

∑
p∈XY ∩XZ

ST (Y ) + SQ(Z)

SV (Y ) + SV (Z)
(8)

In equation 8, the method proposed by Wang et al. [19] is
used to compute the GO semantic similarity (SSw). Moreover,
SY (p) is the S − value of GO term p related to term T and
SZ(p) is the S − value of GO term p related to term Z. XZ

is the set of GO terms including term Z as well as all its
ancestors.

Based on the semantic similarity of GO terms, Best-
Match Average (BM ) [20] strategy is performed to
compute semantic similarity among sets of GO terms
associated with the markers associated with a partic-
ular pathway, which defined as: SBM (G1, G2) =∑u

1=k max
1≤n≤v

S(go1k,go2l)+
∑v

1=l max
1≤k≤u

S(go1k,go2l)

u+v here, gene

G1 annotated by GO terms set GO1 = (go11, go12 · · · go1u)
and G2 annotated by GO2 = (go21, go22 · · · go2v).

3) Bell Curve Threshold: Due to the constraints of some
proteins having no semantic score, it became imperative to
perform thresholding to ensure that the kind of proteins in both
the layers must be identical. Thus include the proteins in the
two layers of the network only after computing their respective
semantic scores. The dimensionality reduction is important to
ensure that the random walk should not be confined in the
correlation network only. The term bell curve [21] is used
to define a graphical representation of a normal probability
distribution, whose underlying standard deviations from the
mean produce a rounded bell form. A standard deviation is a
metric used to calculate the variance of dispersion of data in
a series of specified values. The ”mean” refers to the average
of all data points in the data set or sequence.

4) Network Formation: The network is formed by devel-
oping a complete graph in both the layers, co-expressed and
semantic so as to encapsulate all information. If the number of
nodes threshold via bell curve is n, then the number of edges
in the network are n(n−1)

2 .

B. Influential Nodes selection from Monoplex Network

Selection of seed nodes is an imperative process. For this,
we avail the Eigenvector Centrality. A node can be more
central if it is in relation with other entities that are themselves
central. The centrality of some node does not only depend
on the number of its adjacent nodes, but also on their value
of centrality. Eigenvector centrality of a node is its summed
connections to others weighed by its centrality. The centrality
c of a node i belonging to an adjacency matrix M is given as:

γei =
∑

λMijej (9)

where λ is the associated Eigenvalue of the centrality. In
general, the largest Eigenvalue is preferred as the associated
Eigenvalue measures the accuracy with which it can reproduce
M.

The set of influential nodes from each of the monoplex
networks are used as seed nodes for the random walk with
restart. These seed nodes are the point of restart for the
method, thereby they control the direction of the flow and
are critical to the path of the walk that is traversed by the
algorithm.

C. Random Walk with Restart on Multiplex Network

In Random walk with restart on a monoplex network, at
each step, the walk can switch to one of its neighbour nodes,
or it can restart from the seed nodes. In RWR for multiplex
networks, the walk has three possible options, i) it can restart
from one of the seed nodes, in its layer, ii) it can continue
its intra-network traversal or iii) it can jump to start its inter-
network traversal. The choice between ii) and iii) is controlled
by a parameter µ = 0,...,1; The value of µ indicates that no
inter-laying switching happens and it is equivalent to a RWR
on a monoplex network. The value of µ can be tweaked to
assign importance to different layers, higher values of µ to
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layer where more traversal is required. If there are two layers
m1 and m2, and the walker is at node V a

1 , then it can either
move to any of its neighbour is layer m1 or it can move to
V a
2 . The same is applicable for mi, where i ∈ 1, 2, . . . , n,

denoting the number of layers in the multiplex network. In
short, it moves to its corresponding node representative in the
next multiplex network, whichever is chosen by the parameter
µ. Mathematically, as represented in Equ. 10, its equivalent
equation would be :

π′k = (1− c)Pπ′(k−1) + cS′ (10)

here π′k and π′(k−1) are vectors indicating the probability
distribution of the particle in the graph. They depict the
individual distributions in each layer. The vector S can be
defined as µ × S0. S0 indicates the initial restart probability
whereas = 1, 2, . . . , n, where n denotes the number of layers.
P is the transition matrix derived out of the adjacency matrix
of the multiplex network.

D. Analysis of the Aabs Using Protein-Protein Interaction and
Pathway Semantic Network

The outcomes from the computational frames are highly
dependent on the two layered input where functional as well
as expression based aspects of the Aabs. However, the clear
impact of the selected samples can largely be analysed based
on their involvement in Protein-Protein Interaction network
and pathways. We have applied a two-fold process for the
analysis purpose:

1) Protein Protein interaction network: From the STRING
V11., we have observed the extended interaction partners
for the selected proteins based on human species entries. To
observe the core interaction module, k-means clustering has
been applied. It provides a clear insight into the interaction
core.

2) Pathway Semantic Network and Module Detection:
For the selected sample, a specific list of disease associated
pathways are observed. From the literature, the proteins and
corresponding pathways can be observed based on their affect
on alzheimer’s disease. However, the pathway cross talk
can provide newer observation. In this regard, the weighted
network Gpath has been designed where List of the pathways
are considered as nodes ∈ Vpath and The semantic similarity
between the selected members of the pathways ∈ Epath .
The module detection on such weighted network can provide
the pathway core. Similarly, the influence of each pathway
should be considered during the module detection [22]. The
eigen vector centrality based module detection can satisfy such
conditions. Therefore, the weighted network is segregated in
color modules based on the said algorithm. During the process,
eigenvector centrality for each node ∈ Vpath has also been
observed.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Data Description
In this article, we have used a protein profiling by protein

array where the samples are taken from human blood-based

serum of Aabs (NCBI ID.-GSE74763) to study the disease
progression [23]. There are 50 patient samples from Mild
Cognitive Impairment (MCI) stage (Considered as normal
for the study) and 50 patient samples from Mild Moderate
Alzheimer’s Disease (MMAD) stage. The study has been
initiated with 9000 Aabs samples.

B. Experimental Parameters

There are various experimental parameters that determine
the traversed network path. The number of influential nodes
selected from the monoplex network are 40. The rate of
restart is set at 0.3. This allows for the walk to continue at a
higher probability. This also lets the traversal scatter across the
network, affecting a larger proportion of nodes and not being
centered around the seed nodes. The inter-layer switching
probability µ is set at 0.5, to allow for equal opportunities for
the method to stay in its source layer or move to a different
layer. The bell-curve thresholding is done across halves of
2,4,6 and 8 respectively. The networks has been shown in Fig.
3

C. Influential proteins on the Monoplex networks

In the individual monoplex layers, we can identify two
different sets of relation, represented in two networks. As
mentioned earlier, the two layers i.e., co-expression and co-
semantic are homogeneous. However, three individual multi-
plex networks have been formed. To observe the variability
in terms of controlled and disease cases, we have performed
the experiment on three samples Viz.,MultN − control,
MultNdisease, and MultNdis−control. These results are ex-
pected to be more unbiased. As per the description in method
section, we have identified top 40 protein samples for each
case based on the respective eigenvector scoring. The lists
of Aabs are given in Supplementary Table 1 – Supplementary
Table 4. After thresholding limits as per bell curve distribution,
total 12 different sets of influential nodes are identified for
each monoplex layers. The experiment has been performed
individually for 12 multiplex networks. The influential nodes
from each monoplex layer from all 12 multiplex networks are
marked as seed nodes. However these 40 influential nodes
from each monoplex layer are individually based on the type
of objective the layer represents. Therefore, these nodes can
be used as starting points for the random walk.

D. Influential proteins from RWR

The prime objective of using RWR is to identify the
influential nodes considering both the layers. As per the basic
concept of the RWR, the walk starts from the seed nodes and
tries to establish the affinity with other nodes from each layer
(here, the number of layers is two). The nodes which have
been identified with a high affinity score having association
with the maximum number of nodes are known as influential
nodes. Such top nodes are detected for all the 12 multiplex
networks.
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a.

b.

c.

Fig. 3. Network diagrams post thresholding of a. controlled and diseases combined cases; b. controlled cases; and c. disease cases

TABLE I
TOP 10 PROTEINS SELECTED FROM EACH OF THE NETWORKS, WHEN THE NETWORK IS THRESHOLDED BY A FRACTION OF 4.

Controlled Network Disease Network Controlled-Disease Network
SEC31 homolog A (S. cerevisiae) (SEC31A) glial fibrillary acidic protein (GFAP) tropomyosin 1 (alpha) (TPM1)

chemokine-like factor (CKLF), transcript variant 1 erythropoietin (EPO) intraflagellar (IFT81)
MyoD family inhibitor (MDFI) Kelch-like ECH-associated protein 1 Ciliary neurotrophic factor
NCK adaptor protein 2 (NCK2) Optineurin TIMM44

melanocortin 2 receptor (adrenocorticotropic hormone) (MC2R) septin 5 (SEPT5) Interleukin-1 receptor antagonist protein
Homer protein homolog 1 tubulin, gamma 1 (TUBG1) muscleblind-like (MBNL1)

neural cell adhesion molecule 2 (NCAM2) Mirror-image polydactyly gene 1 protein melanocortin 2 receptor(MC2R)
Interleukin-19 Tumor necrosis factor ligand superfamily member 12 Neurexophilin-2

Intercellular adhesion molecule 4 (ICAM4) Melanocortin-2 receptor accessory protein zinc finger protein 273 (ZNF273)
fibroblast growth factor 12 (FGF12) Calponin-3 tubulin, gamma 1 (TUBG1)

E. Selecting the Influential Proteins

Now, from the final 12 sets of top proteins sample, a generic
set of proteins has been shared by each case shown in Figure 4.
Biologically, a shared set of proteins is significantly associated
with controlled and disease cases. Also, these proteins are
selected even after a stringent thresholding process. Moreover,
each of the influential nodes is short-listed depending on the
relation objective of each monoplex layer. More elaborately,
the selected proteins can be noted as influential in terms of
co-expression affinity as well as co-semantic affinity.

F. Analysing the Outcomes using KEGG

We have identified a total of 12 proteins from three separate
sets. Five pathways are associated with at least one sample
from each set (Controlled, Diseased and Combined). From
the EnrichR database [24], we have identified these pathways

which are highly involved in the pathogenic progression of
AD. In Table II, the list of associated pathways and cor-
responding protein members are given. From the literature
review, all the pathways are directly or partially connected with
the pathogenic progression of the AD. In [25], the reduction
of NCAM2 has been studied during AD. This reduction has
been mediated by amyloid-beta. The reduction of NCAM2 is
causing the synapse losses mediated by the synaptic adhesion.
Interestingly, cytokine-cytokine receptor pathway is highly
associated with pathogenic progression of AD [26]. From the
Table I, it has been observed that two prime proteins from
the list of RWR disease and combined (IL1RN and EPO) are
mediating the aforementioned pathway. Subsequently, a high
density of cortisol enhances the risk of dementia [27]. MC2R
is noted as one of the leading proteins triggering the cortisol
synthesis and secretion pathway.
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Fig. 4. Three Venn Diagrams for three distinctive cases Viz., Controlled, Disease and Controlled-Disease. After segregating from 12 individual sets three
Venn Diagram shows specific selected samples.

Similarly, affect of ErbB signaling pathway is largely in-
volved in hippocampus and entorhinal cortex in AD [28].
Interestingly, NCK2 is also one of the members of the ErbB
signaling pathway. Prion proteins and AD have long known
dependencies. Prion proteins are involved in cell adhesion
which has a clear connection with AD pathogenic progression.
As mentioned earlier, synaptic cell adhesion is mediated by
NCAM2. Here, we have discussed some pathways and their
association with AD.

However, other enlisted proteins also have a partial connec-
tion with the pathogenic progression. In Figure 5, the given
protein-protein interaction network has internal connections
among the selected samples. At least one sample from each
cluster is from Table II. Interestingly, inter-community con-
nectivity has been governed by the potential nodes. In the
network, some samples Viz., NCAM2, PCDHA2, and CKLF
have been confirmed with their individual connectivity with
the disease. Only two samples i.e., CNN3 and MDPI are the
novel findings from the study.

G. Analysing Using Pathway Semantic Network

The identified pathway pools were conserved within four
markers viz., NCK2, EPO, MC2R, and IL1RN. The pathway
crosstalk can be analyzed from pathway semantic network
(Shown in Figure 6). In the network, three color modules have
four, five and three pathways respectively. Interestingly, each
module has at least one pathway which is associated with an
immune response e.g., Cytokine-cytokine receptor interaction
from cyan module. The module detection algorithm is based
on the eigen vector centrality which clarifies the influence

of each node in the network. Segregated in the modules, the
pathways with maximum eigen vector from each module are
Neuroactive ligand-receptor interaction, JAK-STAT signaling
pathway, and Axon guidance. However, the average eigen
vector centrality of the cyan module is higher than any other
module. The members of the respected modules are associated
with EPO and IL1RN. Therefore, these two markers can leave
an impact on the early immune precipitation which may lead to
early stage dementia. Similarly, the pathways with maximum
eigen vectors centrality from each module are associated with
neuronal activities. Individually, all pathways are contributing
in progression of the early stage alzheimer’s disease e.g.,
the affect of Neuroactive ligand-receptor pathway and cAMP
signaling pathway in cognitive responses which lead to ad-
vance dementia [31]. However, the understanding can be more
stringent by including the essence of cell specificity e.g., the
T cell receptor signaling pathway is found as one of the
affective pathways in T memory cells as a key regulator for
alzheimer’s disease [32]. However, cytokine-cytokine receptor
pathway mediated neuroinflammation which is one of the key
regulators of alzheimer’s disease, is generic in all the neuronal
cells. Finally, EPO and IL1RN are observed as influential
biomarkers from the detailed study.

V. CONCLUSION

In this article, the objective was to identify potential Aabs
markers based on their co-expression and co-semantic patterns.
Initially, we have found the 12 indistinctive sets from three
cases. As mentioned, samples are taken based on the sharing
of GO semantic and expression rate. Therefore, the expression
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Fig. 5. Protein-Protein Interaction Network and Protein Specific Interactive Modules

of the potential sample can regulate the maximum number of
functional annotations. Interestingly, PPI shows the internal
connectivity among the selected antibodies. Also, some of
them have literature evidences in early or late onset pathogenic
progression. Therefore, the frame has successfully performed
to identify the comprehensive markers associated with AD
where EPO and IL1RN are identified as influential biomarkers.
Finally, we have identified two novel samples i.e., MDPI and
CNN3.
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