
1 
 

Explosive Synchronization-Based Brain Modulation Reduces Hypersensitivity in The 

Brain Network: A Computational Model Study 

 

Short title: Brain network modulation model to reduce hypersensitivity of the brain 

 

MinKyung Kim1,2*, Richard E. Harris3, Alexandre F. DaSilva4, UnCheol Lee1,2# 

 

1Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, 

MI 48109, USA 

2Center for Consciousness Science, University of Michigan Medical School, 

Domino’s Farms, P.O. Box 385, Ann Arbor, MI 48105, USA 

3Chronic Pain and Fatigue Research Center, Department of Anesthesiology, 

University of Michigan, 24 Frank Lloyd Wright Drive, Ann Arbor MI 48105 

4Headache & Orofacial Pain Effort (HOPE) Laboratory, Biologic & Materials 

Sciences Department, University of Michigan School of Dentistry, Ann Arbor, MI, 

48109, USA 

 

#Corresponding author: UnCheol Lee (uclee@umich.edu) 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2021. ; https://doi.org/10.1101/2021.10.18.464748doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.18.464748
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract  

Fibromyalgia (FM) is a chronic pain condition that is characterized by hypersensitivity to 

multi-modal sensory stimuli, widespread pain, and fatigue. We have previously proposed 

explosive synchronization (ES), a phenomenon wherein a small perturbation to a network 

can lead to an abrupt state transition, as a potential mechanism of the hypersensitive FM 

brain. Therefore, we hypothesized that converting a brain network from ES to general 

synchronization (GS) may reduce the hypersensitivity of FM brain. To find an effective 

brain network modulation to convert ES into GS, we constructed a large-scale brain 

network model near criticality (i.e., an optimally balanced state between order and 

disorders), which reflects brain dynamics in conscious wakefulness, and adjusted two 

parameters: local structural connectivity and signal randomness of target brain regions. 

The network sensitivity to global stimuli was compared between the brain networks before 

and after the modulation. We found that only increasing the local connectivity of hubs 

(nodes with intense connections) changes ES to GS, reducing the sensitivity, whereas 

other types of modulation such as decreasing local connectivity, increasing and 

decreasing signal randomness are not effective. This study would help to develop a 

network mechanism-based brain modulation method to reduce the hypersensitivity in FM. 

Author summary  

Phase transitions, the physical processes of transition between system states in nature, 

are divided into two broad categories: first and second-order phase transitions. For 

example, boiling water presents abrupt transition (a first-order) along with high sensitivity 

to temperature change, distinct from gradual magnetization near Curie temperature (a 

second-order). Recently, we found that chronic pain shows specific brain network 
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configurations that can induce the first-order transition, so-called 'explosive 

synchronization.' In this modeling study, we tried to identify a modulation method that can 

convert a first-order transition into a second-order transition in the brain network, 

expecting that it may inhibit the hypersensitivity in chronic pain. We found that increasing 

structural connectivity of hubs changes the type of phase transition in the brain network, 

significantly reducing network sensitivity. 

Introduction 

Hypersensitive responses to external stimuli have been widely observed in various 

physical and biological systems such as cascading failures in power-grids, abrupt state 

transitions in an electronic circuit, abrupt loss and recovery of consciousness in general 

anesthesia, and epileptic seizures in the brain (Boccaletti et al., 2016; Chen et al., 2013; 

C.-Q. Wang et al., 2017). Fibromyalgia (FM), a chronic pain disorder, is characterized by 

fatigue, poor memory, sleep problems, and mood disturbance (Hawkins, 2013; Menzies, 

2016). Many of these individuals also present a hypersensitive response to external 

sensory stimuli, which is regarded to involve central sensitization associated with 

structural and functional changes in the brain (Harris et al., 2013; Harte et al., 2018). In 

our previous study, we found that explosive synchronization (ES; a 1st order phase 

transition in a network) to be an underlying mechanism of the hypersensitivity in FM brain 

(U. Lee et al., 2018). A strong positive correlation was detected between the strength of 

ES conditions and chronic pain intensity in FM patients. This suggests that specific 

topological and functional network configurations of the brain could induce the 1st order 

phase transition (abrupt state transition) against an external stimulus (M. Kim et al., 2016, 

2017; U. Lee et al., 2018).  
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Global synchronization in a network is initiated by the merging of synchronization clusters 

across nodes. In a brain network following a general synchronization (GS) path, hubs 

(nodes with intense connections) lead a global synchronization of the network, forming a 

large synchronization cluster (Gómez-Gardeñes et al., 2007). Once a large 

synchronization cluster has formed, it grows gradually, absorbing smaller local clusters. 

However, if the growth of the largest cluster is somehow suppressed by pharmacological, 

neurological, or pathological types of perturbation, it allows disconnected clusters to grow 

until the network reaches a critical threshold wherein a small stimulus triggers a singular 

explosive unification of all clusters termed explosive synchronization (ES). In these 

synchronization processes, hubs play a central role in creating a giant synchronization 

cluster in the brain network (M. Kim et al., 2017; Zhang et al., 2015). Therefore, we 

expected modulating the hubs in the brain network can be the most effective and practical 

stimulation target to convert the type of state transition, from ES to GS, in brain networks.  

A previous model study demonstrated the possibility to convert an ES network into a GS 

network by modulating the ratio of inhibitory to excitatory connectivity (Zhang et al., 2016). 

However, modulating the ratio of inhibitory connectivity in the global brain network may 

not be feasible with current stimulation techniques. Furthermore, it has not been tested if 

the brain network state is near criticality, which presents complex brain dynamics of a 

conscious state, is convertible from ES into GS by a brain modulation. In principle, 

reversing the core mechanism of ES may convert an ES network into a GS network, but 

this would require reversing suppression of the giant synchronization cluster formation. In 

essence, this may change an abrupt state transition to a gradual state transition as well 

as significantly reduce the network sensitivity. We hypothesized that enhancing the hub 
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connectivity may be a way to facilitate the giant synchronization cluster formation, which 

in turn can convert an ES network to one of GS.  

To justify the hypothesis, we constructed a large-scale human brain network model 

occurring ES, using a modified Stuart-Landau oscillator model on the anatomically 

informed human brain network structure (H. Kim et al., 2018). After constructing ES brain 

network models, two different network properties were modulated as control parameters 

for the brain network modulation: (1) the local structural connectivity of brain regions and 

(2) the randomness of node dynamics within a certain diameter centered on a target node. 

The correlation between node degrees and frequencies, which is one of the ES conditions, 

was measured at critical states of the brain networks before and after the modulation. To 

evaluate which is the most effective type of brain network modulation for reducing the 

brain network sensitivity, we directly applied an external stimulus to the brain network 

models and measured the change of brain network sensitivity with surrogate measures—

responsivity and Lempel Ziv complexity (M. Kim & Lee, 2020). The schematic diagram of 

the study design is illustrated in Figure 1. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2021. ; https://doi.org/10.1101/2021.10.18.464748doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.18.464748
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

 

Figure 1. Schematic diagram of the study design. We simulated the fibromyalgia (FM) 

brain network using a model with the explosive synchronization (ES) mechanism. The 

ES brain network model was constructed by using a modified coupled Stuart-Landau 
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oscillator on an anatomically informed human brain network structure. We found a 

critical state of ES brain network model by calculating autocorrelation function (ACF) to 

simulate the FM brain during conscious wakefulness. Four different types of network 

modulation (local structural connectivity increase and decrease, signal randomness 

increase and decrease) with thirty different target brain regions were applied to the 

model to investigate which modulation types and which target brain regions can convert 

an ES network to one of general synchronization (GS) thereby reducing the sensitivity. 

Then we induced external stimuli to the brain networks at a critical state before and after 

the modulation, evaluated sensitivity (responsivity and complexity) of the brain network 

responses, and compared the sensitivity between the networks before and after the 

modulation. 

Results 

Increasing regional brain connectivity converts abrupt transition into gradual transition 

Four types of brain network modulation (local structural connectivity increase: CI; local 

structural connectivity decrease: CD; local randomness (bifurcation parameter) increase: 

RI; local randomness (bifurcation parameter) decrease: RD) were tested to convert an ES 

network into a GS network. For each type of modulation, we applied the modulation to the 

brain networks centered on thirty different highest-degree nodes to investigate the effect 

of regional modulation. Figure 2 presents representative examples for the shape of 

synchronization transition before (blue line) and after (red line) the modulation. The 

examples are the shapes of synchronization transition of brain network modulation 

targeting the right precuneus for each type of modulation. The simulated brain network 

before the modulation showed an abrupt synchronization transition near the critical state 
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(blue lines in Figure 2A-2D), which reflects ES (the 1st order phase transition). Only CI 

modulation converted the type of synchronization transition from ES to GS (red line in 

Figure 2A), whereas the other types of modulation (CD, RI, and RD) did not (red lines in 

Figure 2B,2C, and 2D). The shapes of synchronization transition targeting other nodes of 

all types of modulation were presented in supplementary materials (Supporting 

Information Figure S1-S4). The CI modulation targeting other nodes mostly showed the 

shape change of synchronization transition from abrupt to gradual (Supporting 

Information Figure S1). Other types of modulation (CD, RI, and RD) did not show the 

shape change in most of the nodes (Supporting Information Figure S2-S4). 
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Figure 2. Synchronization transition shapes of four types of network modulation: (A) local 

structural connectivity increase: CI; (B) connectivity decrease: CD; (C) signal 

randomness (bifurcation parameter) increase: RI; (D) signal randomness (bifurcation 

parameter) decrease: RD. For each type of modulation, thirty different brain regions 

were targeted and modulated respectively. The node modulation centered around the 

left precuneus is shown as an example of node modulation. A blue (orange) line 

indicates levels of network synchronization 𝑅𝑅  along with a change of the coupling 

strength 𝑆𝑆  of the model before (after) modulation. Only CI shows relatively gradual 

synchronization in the network after the modulation. The abrupt transition near the 

critical point, which is one of the characteristics of ES, is relatively maintained for CD, 

RI, and RD modulation. 

 

Increasing regional brain connectivity mitigates ES condition  

We examined a correlation between node degree and node frequency (𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑−𝑓𝑓𝑓𝑓𝑑𝑑𝑓𝑓) in the 

brain network to investigate whether the four types of modulation disrupt a typical ES 

condition. In generic network models, a larger positive 𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑−𝑓𝑓𝑓𝑓𝑑𝑑𝑓𝑓 induces ES with a higher 

probability. Figure 3A-3D respectively show the 𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑−𝑓𝑓𝑓𝑓𝑑𝑑𝑓𝑓 values before and after the four 

types of modulation for the thirty target nodes. The gray shaded areas in Figure 3 indicate 

the mean ± standard error of  𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑−𝑓𝑓𝑓𝑓𝑑𝑑𝑓𝑓 before the modulation and the square dots with 

error bars indicate the mean ± standard error of  𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑−𝑓𝑓𝑓𝑓𝑑𝑑𝑓𝑓  after the modulation. The 

name of the target brain regions is presented on the x-axis. We found that only CI 

modulation gives rise to significant decreases of  𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑−𝑓𝑓𝑓𝑓𝑑𝑑𝑓𝑓  for the most target node 

modulations (Left pallidum, thalamus, hippocampus, amygdala, temporal pole, insula, 
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entorhinal cortex, precentral cortex, postcentral cortex, isthmus cingulate, right thalamus, 

temporal pole, cortex, right precuneus, entorhinal cortex, and accumbens area; t-test, 

*p<0.05, Figure 3A), while the CD modulation showed an increase of 𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑−𝑓𝑓𝑓𝑓𝑑𝑑𝑓𝑓 for some 

target nodes (Left and right putamen, right amygdala, left and right pallidum, right 

thalamus, left amygdala, left and right caudate, right insula, and right entorhinal cortex, 

Figure 3B). The RI and RD modulations did not change  𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑−𝑓𝑓𝑓𝑓𝑑𝑑𝑓𝑓 or only a few target 

node modulations induced alternation (Figure 3C, and 3D). The comparison among 

𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑−𝑓𝑓𝑓𝑓𝑑𝑑𝑓𝑓  values for four types of modulation is presented in Supporting Information 

Figure S5. The CI modulation was significantly lower than other types of modulation. In 

addition, we investigated the change of signal properties such as a global synchronization 

and a signal amplitude, which is associated with the responsiveness of a network against 

stimulation (M. Kim & Lee, 2020). Only CI modulation significantly increased the global 

synchronization and the amplitude of the signal (Supporting Information Figure S6), which 

implies the decreased responsiveness and the mitigated ES condition. 
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Figure 3. Correlation values between node degree and frequency 𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑−𝑓𝑓𝑓𝑓𝑑𝑑𝑓𝑓  of the 

networks before and after the four types of modulation: (A) CI, (B) CD, (C) RI, and (D) 

RD. The grey area indicates the mean±standard errors of 𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑−𝑓𝑓𝑓𝑓𝑑𝑑𝑓𝑓 over 30 different 

initial conditions of brain networks before the modulation. The colored square with error 

bars indicates the mean±standard errors of 𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑−𝑓𝑓𝑓𝑓𝑑𝑑𝑓𝑓 over 30 different initial conditions 

of brain networks after the modulation. Each marker indicates the centered target node 

for the modulation. A target node presenting a significant change after the modulation is 

marked with ‘*’ (t-test, *p<0.05). The CI modulation induces a significant decrease of 

𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑−𝑓𝑓𝑓𝑓𝑑𝑑𝑓𝑓 for most of the target nodes. In contrast, other types of modulation induce 

significant changes for the much smaller number of nodes (CD and RI). The RD 

modulation shows no change for all nodes.  

 

Increasing regional brain connectivity decreases network sensitivity  

Next, we implemented an external stimulus and compared the changes in brain network 

responses before and after the modulation to directly evaluate the brain network 

sensitivity change. Responsivity 𝑃𝑃 and complexity 𝐿𝐿𝐿𝐿𝐿𝐿 were calculated to evaluate the 

brain network sensitivity with perturbed signals during 300 msec after the stimulation. 

Only CI modulation with specific target brain regions showed decreases in both 

responsivity and complexity. Figure 4 shows the responsivity (left) and complexity (right) 

for the CI modulation. The names of the target brain regions are presented in the x-axis. 

The gray area covers the 25% to 75% values of 𝑃𝑃 and 𝐿𝐿𝐿𝐿𝐿𝐿 before the CI modulation. The 

blue and green shaded areas in Figure 4A and 4B respectively denote the 25% to 75% 

quantiles of 𝑃𝑃 and 𝐿𝐿𝐿𝐿𝐿𝐿 after the CI modulation for 30 different target brain regions. The 
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red star markers indicate the effective target brain regions where the network sensitivity 

is significantly decreased (t-test, *p<0.05). Increasing the regional brain connectivity 

centered on subcortical regions and some cortical hub regions (Left putamen, pallidum, 

amygdala, insula, entorhinal cortex, accumbens, isthmus cingulate cortex, right putamen, 

amygdala, pallidum, hippocampus, temporal pole, caudate nucleus, insula, precuneus, 

and entorhinal cortex) significantly decrease the brain network sensitivity. The 

responsivity of the brain networks in the other types of modulation (RI and RD) was also 

decreased significantly, however, the changes in responsivity were not (Supporting 

Information Figure S7). 

 

Figure 4. Changes in brain network responsivity and complexity after the CI modulation. 

The (A) responsivity and (B) complexity of the brain networks before and after the CI 

modulation are presented. The grey area covers 25% to 75% values of network 

responsivity (sensitivity) before the CI modulation over different initial conditions. The 

blue (green) colored area covers 25% to 75% values of network responsivity (complexity) 

after modulation over different initial conditions. A target node presenting significantly 

different responsivity (complexity) is marked as ’*’ (t-test, *p<0.01). The CI modulation 
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to the right and left insula, right precuneus, and left isthmus cingulate cortex results in 

decreased responsivity and complexity in the brain network. 

 

Hub nodes are effective target sites to reduce brain network sensitivity 

We hypothesized that the hub nodes in the brain network can be effective target sites to 

reduce brain sensitivity. Therefore, we evaluated the relationship between the node 

degree of target brain regions and the sensitivity of the node modulation. Figure 5A (5B) 

presents the relationship between the average node degree of target brain regions and 

the responsivity (complexity) of the target node CI modulation. Both responsivity and 

complexity showed significant negative Spearman correlations with the node degree of 

target brain regions (-0.52 and -0.43, respectively), suggesting that the CI modulation 

targeting hub nodes gives rise to lower responsivity and complexity than targeting 

peripheral nodes. The large correlation between network sensitivity and node degree 

implies the existence of effective target sites in the brain network, which also reveals the 

possibility of developing a systematic brain modulation method with better outcomes 

considering the network topology.  
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Figure 5. The relationship between the node degree of target brain regions and the 

sensitivity after the CI modulation. The sensitivity was evaluated by responsivity and 

complexity. The relationships between the node degree of target brain regions and the 

(A) responsivity and (B) complexity are presented. The Spearman correlation coefficient 

between the network responsivity (complexity) and the average degree of target nodes 

is -0.52 (-0.43). The CI modulation to larger degree nodes (i.e. hubs) induces more 

decrease in the brain network sensitivity. 

 

Discussion 

Hypersensitivity of ES may provide an opportunity for a system to have flexible adaptation 

to external stimuli with high susceptibility and fast response, but also it implies high risks 

of unwanted excessive responses that might cause a neurologic problem in the brain 

which may explain previous neuroimaging findings in FM. Empirical evidence of ES in FM 

brain network and the possibility for converting ES into GS network in previous model 
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studies motivated us to investigate brain modulation methods that could reduce 

hypersensitivity of the brain network at the fundamental level. We found that increasing 

the regional brain connectivity, especially centered on hubs, changed the ES brain 

network to GS brain network, disrupted the ES condition, and reduced network sensitivity 

against an external stimulus. Considering a central role of hubs in FM (Kaplan et al., 2019) 

and giant synchronization cluster formation, changing hub connectivity in the brain 

network could potentially reverse the key mechanism of ES, facilitating giant 

synchronization cluster formation in the network, so that in principle the network is 

converted from ES (a 1st order phase transition) into GS (a 2nd order phase transition) with 

reduced brain network sensitivity. 

Converting ES into GS in the brain network Previous computational modeling studies 

have identified network conditions to prevent the onset of ES (Dai et al., 2020; Zhang et 

al., 2016). The authors have found that ES could be changed to GS if the population of 

inhibitory connections was larger than a threshold (about 10%) in the networks consisting 

of inhibitory and excitatory connections. The ratio of the inhibitory connections required 

for converting ES into GS depended on the network size (the total number of nodes) and 

the average node degree (the average number of connections among nodes). Such 

existence of the threshold implies that converting ES into GS is controllable by modulating 

the population of inhibitory connections. However, it is difficult to directly apply this method 

to a large-scale human brain network due to its complex hierarchical modular structure 

and complex dynamics. In addition, it has not been tested in network dynamics near a 

critical state, presumably reflecting brain network dynamics in a conscious state. 

Therefore, we instead searched a practical way to convert ES into GS in the brain network, 

modulating local brain connectivity and local brain signal randomness that can facilitate a 
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giant synchronization cluster formation, that is, reversing the core mechanism of ES. In 

addition, targeting local brain regions with intense connectivity such as hubs in the brain 

network is feasible with current non-invasive brain stimulation tools.  

Hub as an effective target site We selected hubs in the brain network as the most 

promising target site for the brain network modulation because brain network hubs are 

the most powerful candidate that can control the whole brain network with local 

modulation. Hubs have been known that they show the largest network controllability in 

the model (Gu et al., 2015) and play a central role in chronic pain (Kaplan et al., 2019). In 

addition, hub structure in the brain network plays as a major determinant in global 

synchronization and desynchronization (Schmidt et al., 2015; Vlasov & Bifone, 2017). 

Topologically, the hierarchical hub structure in the brain network called “rich club,” is a 

highly connected and centralized collection of nodes that occupies only 10% of the brain 

network but facilitates 70% of the communication pathways across the brain regions 

(Schmidt et al., 2015; van den Heuvel & Sporns, 2011), which can be one of the reasons 

why hubs are the most effective target sites to promote or suppress global synchronization 

in the brain network.  

Recent brain imaging studies have presented that the hub or the membership of the rich 

club is varied with the intensity of clinical pain. The posterior insula, primary 

somatosensory, and motor cortices (S1/M1) belonged to the rich club only in FM patients 

with the highest clinical pain intensity, which was not observed in patients with low pain 

intensity and healthy controls. The altered hub topology suggests that pronociceptive 

regions such as insula appear to have acquired new hub status that would influence the 

quality and quantity of information processing in the brain network (Kaplan et al., 2019). 
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Moreover, the altered hub topology with new hubs may enhance heterogeneity of the 

brain network, suppressing the onset of global synchronization and changing the brain 

network closer to the ES network. Therefore, we propose that generating a dominant hub 

node whose local connectivity is enhanced via CI modulation can successfully convert ES 

to GS. The enhanced hub connectivity can lead to a gradual synchronization 

propagation starting from the dominant hub node to other nodes, instead of a sudden 

singular unification near a critical point.  

Increasing local structural connectivity in brain network In this study, we showed that only 

increasing local structural connectivity of target nodes can mitigate the ES condition with 

a more negative correlation between node degree and frequency (Figure 3). A positive 

correlation between node degree and frequency is a well-known network configuration for 

ES, suppressing a giant synchronization cluster formation (Gómez-Gardeñes et al., 2011). 

If higher frequencies were distributed to hubs in a network (i.e. a positive correlation 

between node degree and frequency), hubs would suppress the overall network 

synchronization until the network reaches a critical point because higher frequency 

oscillators have small/irregular amplitudes and incoherent phases in a network (Gollo et 

al., 2015; Honey et al., 2007; Moon et al., 2015, 2017). On the contrary, if slower 

frequencies were distributed to hubs (i.e. a negative correlation between node degree and 

frequency), hubs would tend to increase the local synchronization around them and 

progressively expand the synchronization throughout the whole network (Moon et al., 

2015). 

We evaluated how the network sensitivity is significantly changed by a direct brain 

stimulus after the four types of brain network modulation (increasing/decreasing brain 
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regional connectivity around target nodes and increasing/decreasing randomness of 

target node dynamics). Only enhancing local structural connectivity around target nodes 

significantly reduced the brain network sensitivity (Figure 4). In addition, the reduced 

network sensitivity was highly correlated with the average node degree of target brain 

regions, which verifies our hypothesis on the central role of the hubs in reducing the 

network sensitivity. In contrast, decreasing the local connectivity and 

increasing/decreasing the randomness of node dynamics gave rise to the opposite results 

because they made the target sites functionally more separated from other nodes, 

hampering a hub-dominated progressive synchronization growth. Notably, the results 

imply that despite the importance of hub nodes as effective target sites, the type of 

modulation is also crucial to converting ES into GS network. These computational 

modeling results provide a theoretical criterion for developing an effective brain 

modulation method to reduce the hypersensitivity in FM. Irrespective of brain modulation 

methods, for instance, pharmacologic, electric, and magnetic stimulation, the outcomes 

of brain modulation should avoid significant decreases in the hub connectivity and 

significant change in the hub dynamics (i.e., decreasing/increasing randomness of local 

brain activity around hubs) that can enhance the ES condition as well as the network 

sensitivity in the brain.  

Modulating the brain network at criticality and its relationship with fibromyalgia We 

implemented criticality to the brain network model to simulate spontaneous brain activities 

in a conscious resting state and examined the network sensitivity change between the 

critical states of the networks before and after the modulation. Brain activities in the 

conscious resting state share various signal properties of a system near criticality: large 

variance, large autocorrelation, long-range correlation, high susceptibility, and power-law 
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(Beggs & Plenz, 2003; H. Kim & Lee, 2019; Shew et al., 2011; Tagliazucchi et al., 2016). 

As far as we know, modulating the brain network at criticality and examining the 

dependence of the network sensitivity on different types of network modulation, especially 

for the brain network occurring ES, have not been studied yet. In addition, this 

computational modeling study and the empirical evidence of ES in FM brain give us 

insights into the potential application of other important characteristics of ES and its 

relationship to chronic pain. In general, a system with ES conditions can be characterized 

by a hysteresis phenomenon, that is, differential pathways between forward and 

backward state transitions (i.e. transitions from incoherent to synchronized states and vice 

versa) (Boccaletti et al., 2016; Gómez-Gardeñes et al., 2011). Hysteresis is a universal 

phenomenon observed in nature and has been investigated in various research fields 

such as physics, biology, and engineering, as well as state transitions in the brain such 

as sleep and general anesthesia (Bertotti & Mayergoyz, 2006; Chikazumi et al., 1997; 

Friedman et al., 2010; Joiner et al., 2013; Rempe et al., 2010; Steyn-Ross et al., 2004; 

“The Elastic Hysteresis of Steel,” 1912; Voss et al., 2012). In particular, it has been found 

in general anesthesia of diverse species (drosophila, murine, mouse, rat, and human) that 

the anesthetic concentration required for inducing unconsciousness is higher than the 

concentration where consciousness is regained during general anesthesia (Luppi et al., 

2021; McKinstry-Wu et al., 2020; Sepúlveda et al., 2019). In addition, our previous study 

has demonstrated that human subjects who have larger ES conditions in 

electroencephalogram (EEG) networks show larger hysteresis in state transitions during 

the loss and recovery of consciousness (H. Kim et al., 2018), implying individuals with 

larger ES conditions take longer time to recover from general anesthesia. Therefore, we 

expect that the brain with larger ES conditions such as FM brain experiences a large 
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hysteresis phenomenon during state transition, for instance, faster loss of consciousness 

and more prolonged recovery in anesthesia. 

In addition, another representative characteristic of ES at a critical point is the high 

instability of functional connectivity, which is originated from the large variance of network 

synchronization at a critical point (M. Kim & Lee, 2020). In a GS network, the structural 

connectivity significantly shapes functional connectivity patterns at a critical point with a 

large correlation (H. Kim et al., 2018; M. Kim et al., 2017). We have mathematically proved 

the underlying mechanism of this large correlation, empirically confirmed it with brain 

networks of different species (mouse, monkey, and human), and suggested the large 

correlation between functional and structural connectivity as an indicator of brain criticality 

(H. Lee et al., 2019). However, ES network has an aberrant hub network organization 

because the hub connectivity of the ES network is directly or indirectly disrupted. 

Considering the essential role of hubs in the organization of higher-order brain functions 

such as cognition (Vatansever et al., 2020; S. Wang et al., 2021; Zdanovskis et al., 2020), 

such aberrant functional brain organization may be associated with the cognitive deficit in 

FM. However, the detailed association between the cognitive deficit and the aberrant hub 

structure in the brain remains to be tested. 

Implication for effective brain modulation in fibromyalgia The identified effective target 

sites in the human brain network model with the ES condition provide many implications 

for developing an effective brain modulation method for FM. The simulation results 

showed that increasing the local structural connectivity centered on hub regions including 

the insula, left isthmus cingulate cortex, and right precuneus is the most effective way to 

reduce the brain network sensitivity changing ES to GS. Interestingly, the brain regions 
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such as the insula and the cingulate cortex have been already known as hubs in FM brain 

and currently take into account as the target sites for brain modulation to reduce the pain 

intensity (Kaplan et al., 2020). Recently, the motor cortex (M1) has been also considered 

as a target site for transcranial direct current stimulation (tDCS) for pain treatment 

(Cummiford et al., 2016; Foerster et al., 2015). Here we suggest the right precuneus, 

which is a hub region in the cortex, as a feasible target site for non-invasive brain 

stimulation such as tDCS to treat FM because of the limitation of direct stimulation to 

subcortical regions.  

Limitation This study contains several limitations. First, the Stuart-Landau model has 

limitations in interpreting the simulation results because the model is not based on a 

biophysical mechanism. Instead of simulating the realistic brain activities, we focused on 

identifying a general network principle that could be associated with the emergence of 

hypersensitivity in the brain networks and effectively reduce the hypersensitivity at a 

global brain network level. This general network principle is applicable to diverse brain 

networks with different genders, ages, and diseases. Second, the target brain sites that 

we suggested to reduce the brain network sensitivity were selected from an anatomical 

brain network structure averaged over individuals. Thus, acquiring individual brain 

network structures would enable us to identify individualized target sites that might result 

in better performance to convert ES into GS. Third, the modulation we induced can reflect 

neuroplasticity and cortical excitability changes that are empirically observed in tDCS 

trials but cannot explicitly show it changes the excitatory or inhibitory connectivity. Fourth, 

the effects of the four types of brain network modulation are not independent of each other. 

However, despite the theoretic limitation of separating the intertwined effects, the different 

types of brain modulation (increasing/decreasing local connectivity or randomness of 
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local node dynamics) provide us measurable aims that can be achieved with the 

experimental design. We expect that future studies with a fine model setting can address 

some of these limitations. 

Conclusion This computational model study suggests a network mechanism-based brain 

modulation method that can significantly reduce brain network sensitivity. Increasing the 

local structural connectivity centered on hubs such as insular, isthmus cingulate cortex, 

and precuneus fundamentally changes the type of state transition from a 1st-order 

synchronization transition (ES) to a 2nd-order synchronization transition (GS), mitigates 

the ES condition, and reduces network sensitivity of the brain. The ES mechanism-based 

brain network modulation will provide a theoretic framework to design an effective brain 

stimulation method to systematically control the hypersensitivity in chronic pain patients. 

Materials and methods 

The whole computational modeling procedures were summarized as the following (See 

Figure 1 for a schematic diagram of the study design). 

1. We constructed a large-scale human brain network model containing ES as in the 

FM brain. We assumed that the large network sensitivity of ES is the underlying 

mechanism of hypersensitivity of FM brain, and the degree of ES condition 

correlates with the pain intensity of FM patients according to our previous empirical 

study (U. Lee et al., 2018). 

2. We then modulated the degree of ES condition in the human brain network model 

with four different types of network modulation: increasing/decreasing the local 

structural connectivity and increasing/decreasing the randomness of node 

dynamics within a certain diameter centered on a target node. 
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3. The critical states for the brain network models were identified by searching 

through parameter space, at which the simulated brain activities reflect the 

characteristic brain dynamics during a conscious resting state. The brain networks 

with different ES and GS conditions had their own distinctive critical states. 

4. We evaluated the ES condition (correlation between node degrees and 

frequencies) and the change of brain network sensitivity before and after a brain 

network modulation. We directly induced a global pulsatile stimulus to the brain 

network models before and after the modulations and quantified the changes of 

brain network sensitivity with surrogate measures— responsivity and Lempel Ziv 

Complexity. 

5. Finally, we identified the type of network modulation and effective stimulation sites 

that can reduce the ES condition and the brain network sensitivity. 

Construction of ES human brain network model 

We used a coupled Stuart-Landau model to simulate the oscillatory dynamics of the 

human brain network. The coupled Stuart-Landau model with an anatomically informed 

brain network structure has been widely applied to simulate the signals from various types 

of imaging modalities including EEG, magnetoencephalogram (MEG), and functional 

magnetic resonance imaging (fMRI) (Cabral et al., 2014, 2017; Deco et al., 2017, 2018; 

H. Kim et al., 2018; Kim & Lee, 2019; Moon et al., 2015). Since the goal of this study is to 

convert ES brain network into GS brain network, we used a modified Stuart-Landau model 

including an adaptive feedback term. Our previous study introduced the model to simulate 

a hysteresis phenomenon during general anesthesia (H. Kim et al., 2018). With this model, 

we can adjust the ES strengths of the brain network by modulating the adaptive feedback 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2021. ; https://doi.org/10.1101/2021.10.18.464748doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.18.464748
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

term Rj
𝑍𝑍, i.e., a recursive interaction process between a node j and the other nodes. The 

modified coupled Stuart-Landau model, composed of the 𝑁𝑁  number of oscillators, is 

defined as the following: 

𝑟𝑟�̇�𝚥(𝑡𝑡) = �𝜆𝜆𝑗𝑗 − �𝑟𝑟𝑗𝑗(𝑡𝑡)�
2� 𝑟𝑟𝑗𝑗(𝑡𝑡) + 𝑆𝑆�𝐴𝐴𝑗𝑗𝑗𝑗𝑟𝑟𝑗𝑗cos (𝜃𝜃𝑗𝑗�𝑡𝑡 − 𝜏𝜏𝑗𝑗𝑗𝑗� − 𝜃𝜃𝑗𝑗(𝑡𝑡))

𝑁𝑁

𝑗𝑗=1

, 

𝜃𝜃�̇�𝚥(𝑡𝑡) = 𝜔𝜔𝑗𝑗 + 𝑅𝑅𝑗𝑗𝑍𝑍𝑆𝑆�𝐴𝐴𝑗𝑗𝑗𝑗
𝑟𝑟𝑗𝑗
𝑟𝑟𝑗𝑗

sin (𝜃𝜃𝑗𝑗�𝑡𝑡 − 𝜏𝜏𝑗𝑗𝑗𝑗� − 𝜃𝜃𝑗𝑗(𝑡𝑡))
𝑁𝑁

𝑗𝑗=1

, 𝑗𝑗 = 1,2, … ,𝑁𝑁. 

 Here rj(𝑡𝑡) is the amplitude of oscillator (node) j at time t. λj is a parameter modulating the 

randomness of the amplitude dynamics and S is a coupling strength among anatomically 

connected oscillatory dynamics. Changing these parameters induces various amplitude 

and phase dynamics through competition of independent node dynamics and its 

topological connections with other oscillators upon an anatomical brain network structure 

(Cavanna et al., 2018). Each node shows supercritical Hopf bifurcation, and the dynamics 

of the oscillator settle on a limit cycle if 𝜆𝜆𝑗𝑗 > 0, and on a stable fixed point if 𝜆𝜆𝑗𝑗 < 0. Ajk is 

the anatomical connection weight between oscillator j and k. The connection matrix A 

consists of 82 brain regions including cortical and subcortical regions which were 

constructed from diffusion tensor imaging (DTI) (van den Heuvel & Sporns, 2011). A 

certain value from 0 to 1 was assigned to Ajk based on the white matter connection weight 

between brain region j and k. The τjk = Djk/s, is a time delay between region j and k, 

where Djk is a distance between brain regions with s = 7 ms, an average speed of axons 

across brain regions (Caminiti et al., 2013). The node 𝑗𝑗 interacts with a connected node 

𝑘𝑘 after the time delay 𝜏𝜏𝑗𝑗𝑗𝑗. θj(𝑡𝑡) is a phase of the oscillator j at time t, and ωj is a natural 
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frequency of the oscillator j . 𝑅𝑅𝑗𝑗  is defined as 1 2⁄ (𝑒𝑒𝑖𝑖𝜃𝜃𝑗𝑗 + 1/N∑ 𝑒𝑒𝑖𝑖𝜃𝜃𝑘𝑘𝑁𝑁
𝑗𝑗=1 ) , which is the 

extent of synchrony of node j with the other nodes. The 𝑅𝑅𝑗𝑗 enhances a heterogeneity in 

the amplitude and phase dynamics of the brain network, incorporating the memory of a 

given synchronized state into the dynamics. The Z  is a scale term for the adaptive 

feedback process 𝑅𝑅𝑗𝑗, and it plays a role of a control parameter for adjusting ES strengths 

of the brain network model, indicating it inhibits a giant synchronization cluster formation 

centered around a node j with large synchrony, which is a core mechanism of ES (H. Kim 

et al., 2018).  

We used Gaussian distribution for the natural frequency 𝜔𝜔 with a mean frequency of 10 

Hz and a standard deviation of 0.4 Hz to simulate the dominant frequency bandwidth of 

human EEG alpha activity (H. Kim et al., 2018; M. Kim et al., 2017; U. Lee et al., 2018; 

Moon et al., 2015, 2017). We first fixed 𝜆𝜆𝑗𝑗 ≡ 𝜆𝜆 as 0. The coupling strength among the 

oscillators 𝑆𝑆  was modulated from 0 to 30 with 𝛿𝛿𝑆𝑆 = 0.2, yielding the change of brain 

network from a fully incoherent state to a fully synchronized state. We set 𝐿𝐿 = 3, which is 

large enough to simulate ES in the brain network. We numerically solved differential 

equations of the Stuart-Landau model using the Runge-Kutta 4th method with 1,000 

discretization steps and resampled the data with 250 Hz. For every coupling strength, the 

last 40 seconds of spontaneous oscillatory dynamics were used for the analysis after 20 

seconds of saturation periods. Thirty different initial frequency configurations were 

simulated in each parameter set, and the results were averaged over all configurations. 

Four types of brain network modulation to convert ES into GS network 

According to our hypothesis, enhancing hub connectivity between brain network nodes 

may facilitate giant synchronization cluster formation, which in turn converts ES network 
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into GS network, reducing the brain network sensitivity significantly. In addition, it is known 

that repetitive tDCS targeting a local brain region can induce a long-lasting change in the 

brain network activity through neuroplasticity and cortical excitability shifts (Nitsche et al., 

2007). Therefore, we tested four types of brain network modulation: 

increasing/decreasing the regional structural connectivity centered on a target node and 

increasing/decreasing the randomness of the regional activities centered on a target node 

in the ES human brain network model. These types of modulation may reflect 

neuroplasticity and cortical excitability shifts that are empirically observed in tDCS 

experiments. For changing the regional connectivity, we increased or decreased the local 

structural connectivity by three times within a radius of 2 cm centered on the targeted 

brain region, roughly simulating the effective range for connectivity change covered by a 

tDCS patch. For changing the randomness of regional brain activities, we increased or 

decreased the bifurcation parameter 𝜆𝜆 of nodes, respectively 𝜆𝜆 = 2 and 𝜆𝜆 = −2 , within a 

radius of 2 cm centered on the target brain region. The parameters were chosen for 

simulating the most realistic results after the parameter test. The 30 highest-degree nodes 

in the human brain network were selected as the target brain regions and tested the 

modulation effect for each target brain region (Left and right putamen, amygdala, pallidum, 

thalamus, hippocampus, caudate, temporal pole, insula, precuneus, entorhinal cortex, 

precentral cortex, superior parietal cortex, accumbens-area, isthmus cingulate cortex, left 

superior frontal cortex, left postcentral cortex). Extreme cases such as 𝜆𝜆 = 5 or 𝜆𝜆 = −5 

were presented in Supporting information Figure S8. The initial frequency configurations 

of the brain network models are all the same for the four types of modulation. 
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Identification of critical states for the brain network model 

Recent computational modeling and empirical studies suggest that brain dynamics in 

conscious states are near criticality (i.e., an optimally balanced state between order and 

disorder), and losing criticality is related to altered states of consciousness (Haimovici et 

al., 2013; H. Kim & Lee, 2019; Kitzbichler et al., 2009; Muñoz, 2018; Tagliazucchi et al., 

2012). The network dynamics at a critical state reflect the characteristics of the brain 

activities in the conscious resting state: an optimal balance between stability and 

instability, optimal information processing, large flexibility to adapt to a changing 

environment, and wide repertoires of brain states (Beggs, 2008; Cocchi et al., 2017; 

Haimovici et al., 2013; H. Kim & Lee, 2019; Kitzbichler et al., 2009; Tagliazucchi et al., 

2012). Therefore, we assumed that the critical states of a brain network before and after 

modulation of ES condition might reflect the distinctive brain activities in conscious states 

before and after the brain modulation. In this modeling study, we searched the parameter 

space of various coupling strengths and bifurcation parameters and determined the 

parameter set having a maximal autocorrelation function (ACF) as a critical state. The 

maximal ACF is one of the characteristics of a system approaching a critical transition, 

which is called “critical slowing down” and refers to the tendency of a system to take longer 

to return to equilibrium after a perturbation (Scheffer et al., 2009). To calculate the ACF 

of a simulated brain signal, we selected the time lag of 50-msec, which catches the 

dynamics of the alpha oscillations in the simulated brain signals. 

Evaluation of brain network sensitivity for the four types of brain network modulation  

To test which type of brain modulation effectively reduces the brain network sensitivity 

and changes the type of state transition from ES (1st order phase transition) to GS (2nd 
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order phase transition), we investigated three different properties. (1) We examined the 

typical phase transitions of ES and GS. Converting ES into GS should present the typical 

change in transition pattern from a discrete synchronization transition (1st order phase 

transition) to a continuous synchronization transition (2nd order phase transition). (2) We 

examined whether a brain network modulation induces the typical network configuration 

of ES, a positive correlation between node degrees and node frequencies in the brain 

network. (3) Then, we directly measured the change of network sensitivity after the 

modulation directly implementing an external stimulus to the brain network.  

To investigate the shape of synchronization transition, the instantaneous network 

synchronization 𝑟𝑟(𝑡𝑡) at time 𝑡𝑡 was measured by the order parameter of the oscillators, 

𝑟𝑟(𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖(𝑡𝑡) =
1
𝑁𝑁
�𝑒𝑒𝑖𝑖𝜃𝜃𝑗𝑗(𝑡𝑡)
𝑁𝑁

𝑗𝑗=1

 

where 𝜃𝜃𝑗𝑗(𝑡𝑡) is a phase of 𝑗𝑗𝑡𝑡ℎ oscillator and 𝜓𝜓(𝑡𝑡) is the average global phase at time 𝑡𝑡. 

Here 𝑟𝑟(𝑡𝑡) equals 0 if phases of oscillators are uniformly distributed and 1 if all oscillators 

have the same phase. The global network synchronization 𝑅𝑅 is calculated by taking the 

average of the instantaneous network synchronization over time. As the coupling 

strengths increase in the brain networks before and after the four types of modulation, we 

investigated the shape of R to determine whether the transition is discrete or continuous. 

A positive correlation between node degrees and frequencies was introduced as one of 

the network configurations that can induce ES in a heterogeneous network (Gómez-

Gardeñes et al., 2011). Therefore, we tested which type of brain network modulation and 

which target node effectively mitigate the ES condition. The degree of 𝑗𝑗𝑡𝑡ℎ  node was 
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calculated by 𝐺𝐺𝑗𝑗 = ∑ 𝐴𝐴𝑗𝑗𝑗𝑗𝑁𝑁
𝑗𝑗=1  and the frequency of the 𝑗𝑗𝑡𝑡ℎ node was calculated using the 

instantaneous phases of the 𝑗𝑗𝑡𝑡ℎ node in the brain network at a critical state. A Spearman 

correlation between the degrees and frequencies, 𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑−𝑓𝑓𝑓𝑓𝑑𝑑𝑓𝑓 , was calculated for all the 

brain networks before and after modulation of different target nodes. 

Finally, we directly measured the network sensitivity against an external stimulus and 

investigated which type of brain network modulation significantly reduces the brain 

network sensitivity. For the brain networks before and after the four types of modulation, 

we induced a global pulsatile stimulus to the brain networks and quantified the change of 

the network sensitivity. The global pulsatile stimulus was induced with 𝑢𝑢(𝑡𝑡)  as the 

following: 

𝑟𝑟�̇�𝚥(𝑡𝑡) = �𝜆𝜆𝑗𝑗 − �𝑟𝑟𝑗𝑗(𝑡𝑡)�
2� 𝑟𝑟𝑗𝑗(𝑡𝑡) + 𝑆𝑆��𝐴𝐴𝑗𝑗𝑗𝑗𝑟𝑟𝑗𝑗 cos �𝜃𝜃𝑗𝑗�𝑡𝑡 − 𝜏𝜏𝑗𝑗𝑗𝑗� − 𝜃𝜃𝑗𝑗(𝑡𝑡)�� + 𝑢𝑢(𝑡𝑡)

𝑁𝑁

𝑗𝑗=1

, 

𝜃𝜃�̇�𝚥(𝑡𝑡) = 𝜔𝜔𝑗𝑗 + 𝑅𝑅𝑗𝑗𝑍𝑍𝑆𝑆�{𝐴𝐴𝑗𝑗𝑗𝑗
𝑟𝑟𝑗𝑗
𝑟𝑟𝑗𝑗

sin (𝜃𝜃𝑗𝑗�𝑡𝑡 − 𝜏𝜏𝑗𝑗𝑗𝑗� − 𝜃𝜃𝑗𝑗(𝑡𝑡))
𝑁𝑁

𝑗𝑗=1

}, 𝑗𝑗 = 1,2, … ,𝑁𝑁. 

𝑢𝑢(𝑡𝑡) = �𝑝𝑝,   𝑡𝑡1 < 𝑡𝑡 < 𝑡𝑡2
0,    𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

Here, 𝑝𝑝 is the intensity of the stimuli during a period 𝑇𝑇 = 𝑡𝑡2 − 𝑡𝑡1. We fixed 𝑝𝑝 = 20 and 

duration 𝑇𝑇 = 100 ms based on our previous findings (M. Kim and U. Lee 2020). The global 

stimulus was given at a randomly selected timing 𝑡𝑡1 for each trial. Twenty different trials 

were performed for each thirty different initial frequency configurations. Therefore, the 

same external stimulus was given 600 times to all the brain networks before and after 

modulation. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2021. ; https://doi.org/10.1101/2021.10.18.464748doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.18.464748
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

The sensitivity was obtained by measuring the responsivity and Lempel-Ziv complexity of 

the brain network’s response after the stimulation (M. Kim and U. Lee 2020). To measure 

the responsivity and complexity, we first calculated an instantaneous amplitude of the 

nodes for each stimulation trial. The instantaneous amplitude value for the 𝑗𝑗𝑡𝑡ℎ node of one 

trial was normalized by the mean and standard deviation of the baseline amplitude values 

of the 𝑗𝑗𝑡𝑡ℎ node. The baseline amplitude values were obtained from a total of 200-sec, 

consisting of 20 different stimulation trials of 10-sec pre-stimulus segment for each trial. 

We considered (1 − 𝛼𝛼) ∗ 100𝑡𝑡ℎ  percentile with 𝛼𝛼 = 0.05  as a significantly changed 

amplitude after a stimulus onset. A perturbation response (PR) of the amplitude for the 

𝑗𝑗𝑡𝑡ℎ node at time 𝑡𝑡 was defined in a binary fashion: 𝑃𝑃𝑅𝑅𝑗𝑗(𝑡𝑡) = 1, if the amplitude after the 

stimulus onset is significantly changed, and 𝑃𝑃𝑅𝑅𝑗𝑗(𝑡𝑡) = 0, otherwise. 

The responsivity 𝑃𝑃 and Lempel-Ziv complexity 𝐿𝐿𝐿𝐿𝐿𝐿 were calculated with the binary PR 

during 300 msec after the stimulus onset. The responsivity 𝑃𝑃 was calculated by taking the 

average of 𝑃𝑃𝑅𝑅(𝑡𝑡) for all nodes over 300 msec. The 𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) of the 𝑃𝑃𝑅𝑅(𝑡𝑡) was defined as 

below: 

𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) =
𝐿𝐿(𝑡𝑡)

𝑁𝑁/ log2 𝑁𝑁
 

Here 𝐿𝐿(𝑡𝑡) is the nonnormalized Lempel-Ziv complexity calculated by LZc76-algorithm 

[Lempel & Ziv, 1976], which is the number of unique patterns in the 𝑃𝑃𝑅𝑅(𝑡𝑡) at time 𝑡𝑡, and 

𝑁𝑁 is the number of nodes. The 𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) is the normalized 𝐿𝐿(𝑡𝑡). The 𝐿𝐿𝐿𝐿𝐿𝐿 was calculated by 

taking the average of 𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) over 300 msec after the stimulus onset. The 𝑃𝑃 and 𝐿𝐿𝐿𝐿𝐿𝐿 were 

calculated for each stimulation trial. The sensitivity results for each target brain regional 
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modulation were the average of the 30 frequency configurations with the 20 stimulation 

trials.  
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