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Abstract 
 
Recent advances in single cell omics technologies enable the individual or joint profiling of 
cellular measurements including gene expression, epigenetic features, chromatin structure and 
DNA sequences. Currently, most single-cell analysis pipelines are cluster-centric, i.e., they first 
cluster cells into non-overlapping cellular states and then extract their defining genomic 
features. These approaches assume that discrete clusters correspond to biologically relevant 
subpopulations and do not explicitly model the interactions between different feature types. 
However, cellular processes are defined in individual cells and inherently involve multiple 
genomic features that interact with each other and together provide complementary views on 
principles of gene regulation. In addition, single-cell methods are generally designed for a 
particular task as distinct single-cell problems are formulated differently. To address these 
current shortcomings, we present SIMBA, a single-cell embedding method that embeds single 
cells along with their defining features, such as genes, chromatin accessible regions, and 
transcription factor binding sequences, into a common latent space. By leveraging the co-
embedding of cells and features, SIMBA allows for cellular heterogeneity study, clustering-free 
marker discovery, gene regulation inference, batch effect removal, and omics data integration. 
SIMBA has been extensively applied to scRNA-seq, scATAC-seq, and dual-omics data. We show 
that SIMBA provides a single framework that allows diverse single-cell analysis problems to be 
formulated in a common way and thus simplifies the development of new analyses and 
integration of other single-cell modalities. 
 
Introduction 
 
Recent progress in single cell molecular profiling technologies have dramatically advanced our 
ability to define cell types and states as well as discover key genes and regulatory regions in 
development and disease. Both the number of cells and the number of cellular modalities that 
can be profiled has recently expanded rapidly. The emergence of single-cell multi-omics 
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technologies allows for the measurements of multiple cellular layers, including genomics, epi-
genomics, transcriptomics, and proteomics. This has opened an avenue to better understand 
the interplay between these ‘omic’ layers and cell states based on diverse genomic and 
molecular features including genes, regulatory elements, transcription factors, and other 
cellular components. However, as single-cell multi-omics assays quickly evolve towards the 
incorporation of more modalities and increasing resolution, harnessing their full potential poses 
significant computational challenges. 
 
In the past few years, numerous computational methods have been developed for single-cell 
single-modality analysis (e.g., scRNA-seq or scATAC-seq analysis) 1-4. These methods implement 
a common workflow with several standard steps including feature selection, dimension 
reduction, clustering, and differential feature detection. Cluster-centric analysis methods rely 
on accurately defined clustering solutions to discover meaningful and informative marker 
features. Unfortunately, clustering solutions may range widely within the space of the user-
defined clustering resolution (number of clusters) and the chosen clustering algorithm. These 
parameters may markedly influence the resulting cluster assignment and clusters may not 
always correspond to the correct cell populations, thereby leading to inconsistent and 
potentially misleading biological annotations. Although initial efforts have been made recently 
to develop clustering-free approaches, they are specifically designed for extracting gene 
signatures 5, 6 or identifying perturbations between experimental conditions7 from scRNA-seq 
data, and are therefore limited to single-modality and single-task analysis. 
 
In addition to single-batch/modality analysis, approaches have also been proposed for multi-
batch and cross-modality analysis, such as multimodal analysis (distinct cellular parameters are 
measured in the same cell)8, batch correction (the same cellular parameter is measure in 
different batches) 9-11, and integration of multi-omics datasets (distinct cellular parameters are 
measured in different cells)10, 11. These approaches play a critical role in removing batch effects 
that confound true biological variation, improving the characterization of cell states by 
leveraging the unique strengths of each assay, and providing insights into the complex 
mechanisms of gene regulation.  
 
However, these problems are formulated differently from those in single-batch/modality 
settings and thus require development of new dedicated analysis techniques. Also, while 
multiple types of cellular parameters (features) might be present, the relation between 
features cannot be exploited directly by most current methods. Furthermore, similar to single-
batch/modality analysis methods, these methods identify marker features based on groups of 
cells obtained by clustering and therefore are limited to clustering solutions. 
 
To overcome these limitations, we propose SIMBA (SIngle-cell eMBedding Along with 
features), a versatile single-cell embedding method that co-embeds cells and features into a 
shared latent space, in which the relation between cells and features or between features (e.g., 
genes, peaks, or DNA sequences) can be assessed based on their locations. By formulating 
single-cell analyses as multi-entity graph embedding problems, SIMBA can be used to solve 
popular single-cell tasks in a single, unified framework that would otherwise require the 
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development of distinct specialized approaches for each task. For each task, SIMBA constructs a 
graph, wherein differing entities (i.e., cells and features) are represented as nodes of the graph 
and relations between these entities are encoded as edges of the graph. Once the graph is 
constructed, SIMBA then applies a multi-entity graph embedding algorithm leveraged from 
advances in social networking technologies and knowledge graph embeddings as well as a 
Softmax-based transformation to embed the nodes/entities of the graph into a common low-
dimensional space wherein cells and features can be comparatively analyzed. We show that the 
SIMBA framework can perform many common and important single-cell analysis tasks, 
including dimensionality reduction techniques for studying cellular states; clustering-free 
marker detection based on the similarity between single cells and features; single-cell 
multimodal analysis and the study of gene regulation; batch correction and omics integration 
analysis as well as the simultaneous identification of marker features. SIMBA is adapted to 
these diverse analysis tasks by simply modifying how the input graph is constructed from the 
relevant single-cell data. We believe that SIMBA will simplify the burden of adapting existing 
single-cell analyses to new tasks and measurements.  
 
We extensively tested SIMBA in multiple scRNA-seq, scATAC-seq and dual-omics datasets 
covering the popular single-cell tasks including scRNA-seq analysis, scATAC-seq analysis, 
multimodal analysis, batch correction, and multi-omics integration. We demonstrate 
that SIMBA performs comparably to or better than current state-of-the-art methods specifically 
developed for each task.  
 
Results 
 
Overview of SIMBA 

SIMBA is a single-cell embedding method with support for single- or multi- modality analyses 
that embeds cells and their associated genomic features into a shared latent space, generating 
interpretable and comparable embeddings of cells and features. It leverages recent graph 
embedding techniques that have been successful in modeling complex and hierarchical 
information present in natural languages, social networks, and other domains, represented as 
“knowledge graphs”. In our case, these graphs encode different components of cellular 
regulatory circuits and the relations between them. 

SIMBA first encodes different types of entities such as cells, genes, open chromatin regions 
(peaks or bins), transcription factor (TF) motifs, and k-mers, into a single graph (Fig. 1, Methods) 
where nodes represent different entities and edges indicate the relations between them. For 
example, if a gene is expressed in a cell, an edge is created between the gene and cell. The 
weight of this edge is determined by the gene expression level.  Similarly, an edge is added 
between a cell and a chromatin region if the region is open in this cell, or between a chromatin 
region and a TF motif if the TF motif is found in the region.  

Once the graph is constructed, the low-dimensional representations of its nodes are then 
computed using an unsupervised graph embedding method (Methods). This graph embedding 
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procedure leverages the PyTorch-BigGraph framework 12, which allows SIMBA to scale to 
millions of cells (Methods). The resulting joint embedding of cells and features not only 
reconstructs the heterogeneity of cells but also allows for the discovery of the defining features 
for each single cell in a clustering-free way, separating cell-type specific features from the non-
informative features. In fact, the proximity between the embeddings of entities is informative 
on the potential importance of a feature to a cell and the discovery of the interplay between 
features. When multiple types of features (e.g., transcriptomic and epigenetic features) are co-
embedded, SIMBA provides an intuitive way to study gene regulation and the regulatory 
mechanisms underlying cellular differentiation and cell type formation.  

 

Figure1. SIMBA framework overview. SIMBA co-embeds cells and various features measured 
during single-cell experiments into a shared latent space to accomplish both common tasks 
involved in single-cell data analysis as well as tasks, which remain as open problems in single-cell 
genomics.  (Left) Examples of possible biological entities may be encoded by SIMBA including 
cells, gene expression measurements, chromatin accessible regions, TF motifs, and k-mer 
sequences found in reads. (Middle) SIMBA embedding plot with multiple types of entities into a 
low-dimensional space. All entities represented as shapes (cell = circle, peak = triangle, gene = 
square, TF motif = star, k-mer = hexagon) are colored by relevant cell type (green, orange, and 
blue in this example). Non-informative features are colored dark grey. Within the graph, each 
entity is a node, and an edge indicates a relation between entities (e.g., a gene is expressed in a 
cell, a chromatin region is accessible in a cell, or a TF motif/k-mer is present within an open 
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chromatin region, etc.). Once connected in a graph, these entities may be embedded into a 
shared low-dimensional space, with cell-type specific entities embedded in the same 
neighborhood and non-informative features embedded elsewhere. (Right) Common single-cell 
analysis tasks that may be accomplished using SIMBA. 
 
 
Graph construction is inherently flexible, enabling SIMBA to be applied to a wide variety of 
single-cell tasks. In the following sections, we demonstrate the application of SIMBA to several 
popular single-cell tasks including scRNA-seq, scATAC-seq, multimodal analysis, batch 
correction and multi-omics integration (Fig. 1). 
 
 
Single cell RNA-seq analysis with SIMBA 

Single-cell RNA sequencing (scRNA-seq) is the most robust and widely used measurement to 
profile single cells. Fig. 2a provides an illustrative overview of the SIMBA graph construction 
and the resulting low-dimensional embedding matrix of both cells and genes. To clearly 
demonstrate SIMBA’s ability to perform scRNA-seq analysis, we applied SIMBA to a popular 
PBMCs dataset from 10x Genomics, which is used in the tutorials of both Scanpy 2and Seurat1. 
After the standard preprocessing steps including normalization and log-transformation, SIMBA 
discretizes the gene expression matrix into multiple gene expression levels (five levels, by 
default). The input graph is then constructed wherein two types of nodes –cells and genes are 
connected by edges that embody the relation between them and are weighted according to the 
corresponding multiple levels of gene expression. SIMBA then generates embeddings of these 
nodes through a graph embedding procedure (Fig. 2a, Methods).  

We first visualized the SIMBA embeddings of cells using UMAP, which is a comparable output to 
other current single-cell analysis methods. Each of the previously assigned eight cell types, 
including B cells, megakaryocytes, CD14 monocytes, FCGR3A monocytes, dendritic cells, NK 
cells, CD4 T, and CD8 T cells, was clearly separated (Fig. 2b). We next applied UMAP to visualize 
the SIMBA embeddings of cells and genes together (Fig. 2c). The same set of marker genes used 
to annotate these cells from Scanpy was highlighted on the UMAP plot. In addition, as a control, 
we also show the locations of two housekeeping genes GAPDH and B2M, which would not be 
expected to associate with any particular cell type. From the UMAP plot, we can see that SIMBA 
not only was able to embed major-cell-group specific genes to the correct locations (e.g., IL7R 
was embedded into CD4T cells and MS4A1 was embedded into B cells), but also was robust to 
rare-cell-group specific genes (e.g., PPBP was embedded into megakaryocytes). On the 
contrary, non-informative or non-cell-type specific genes such as the aforementioned 
housekeeping genes were embedded in the middle of all cell groups.  

In addition to visualizing all the entities at once using UMAP, SIMBA also provides a feature-
specific ‘barcode plot’ to visualize the estimated probability of assigning a feature to a cell (Fig. 
2d, Methods). The barcode plots in Figure 2d offer a rank-ordered probability of a given gene 
being associated with each cell (colored by cell type) where the total probability over all cells 
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sums to one. An imbalance in probability indicates cell-type-specific association of a gene to a 
sub-population of cells, whereas a uniform probability distribution indicates a non-cell-type-
specific gene. Figure 2d displays barcode plots for four genes, which are correspondingly 
highlighted in red, in Figure 2c. Three of these genes are commonly used marker genes for 
identifying subpopulations within PBMCs datasets (CST3 for monocytes and dendritic cells, 
MS4A1 for B cells, and NGK7 for NK and CD8T cells). On the contrary, GAPDH is a housekeeping 
gene expressed in all cell types. With the same threshold, 1e-3 (represented by the dashed line) 
for marker genes, we observed a clear excess in the probability of assigning each gene to their 
respective cell types. Conversely, for GAPDH, we observed a more balanced distribution and the 
probability of associating that gene with any particular subset of cells is much lower than for 
marker genes. Hence, SIMBA barcode plots serve as an informative way of visualizing gene 
expression patterns by showing the cell assignment probability distribution.  

 

Figure2. ScRNA-seq analysis of the 10x PBMCs dataset using SIMBA. (a) SIMBA graph construction 
and embedding in scRNA-seq analysis. Biological entities including cells and genes are 
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represented as shapes and colored by relevant cell types (green and orange). Non-informative 
genes are colored dark grey. Gene expression measurements for each cell are organized into a 
cell-by-gene matrix. These normalized non-negative observed values undergo discretization into 
five gene expression levels. Cells and genes are then assembled into a graph with nodes 
representing cells and genes, and edges between them representing different gene expression 
levels. This graph may then be embedded into a lower dimensional space resulting in a #entities 
x # dimension (by default, 50) SIMBA embedding matrix. (b) UMAP visualization of SIMBA 
embeddings of cells colored by cell type. (c) UMAP visualization of SIMBA embeddings of cells 
and genes. Cells are colored according to cell type as defined in b. Genes are colored slate blue. 
Cell-type-specific marker genes and housekeeping genes collected from Scanpy are indicated 
with text and arrows. Genes highlighted in red will be shown in d,e,and f. (d) SIMBA barcode plots 
of genes CST3, MS4A1, NKG7, and GAPDH. The x-axis indicates the ordering of a cell as ranked by 
the probability for each cell to be associated with a given gene.The y-axis describes the 
probability. The sum of probability over all cells is equal to 1. Each cell is one bar and colored 
according to cell type as defined in b. (e) SIMBA metric plots of genes. All the genes are plotted 
according to the Gini index against max score. The same set of genes as in c are annotated. (f) 
UMAP visualization of SIMBA embeddings of cells colored by gene expression of (left to right): 
CST3, NKG7, MS4A1, and GAPDH. 
 

In addition, SIMBA also provides several quantitative metrics, including max value, Gini index, 
standard deviation, and entropy, to assess cell type specificity of various features (Methods). As 
an example, the gene metric plot of max value (a higher value indicates higher cell-type 
specificity) vs Gini index (a higher value indicates higher cell-type specificity), we see that 
marker genes (e.g., CST3, NKG7, MS4A1) fall in the upper right corner, as opposed to 
housekeeping genes (e.g., GAPDH) in the lower left corner (Fig. 2e). Similar separation is 
observed in other metrics (Supplementary Fig. 1b). These marker genes were further validated 
by the visualization of their expression pattern on UMAP plots (Fig. 1f and Supplementary Fig. 
1c), accompanied by SIMBA barcode plots (Supplementary Fig. 1d).   

To demonstrate that SIMBA provides a more accurate means of detecting marker genes, which 
differs from the statistical-testing-based methods implemented by tools such as Scanpy and 
Seurat, we compared a similar number of top marker genes identified by SIMBA (based on max 
value and Gini index) with those identified by Scanpy (based on the Wilcoxon rank-sum test) 
(Supplementary Fig. 2a). Upon comparison, we can see that nearly half of the marker genes 
discovered by SIMBA overlap with the marker genes identified by Scanpy (Supplementary Fig. 
2a). However, on inspection of the top non-overlapping marker genes, all genes identified by 
SIMBA are found to be enriched only within certain groups of cells (Supplementary Figs. 2b and 
2c) while genes identified by Scanpy but not by SIMBA include the housekeeping gene B2M and 
multiple ribosomal protein genes (e.g., RPS3 and RPS6) that are expressed ubiquitously in all 
cell types (Supplementary Figs. 2b and 2d). Specific limitations of cluster-centric approaches to 
scRNA-seq analysis are highlighted by inconsistencies in the statistical tests for differential 
expression applied after clustering in Scanpy. IL7R (marker gene of CD4 T) was identified only by 
the t-test method while FCER1A (marker gene of dendritic cells) was identified only by a 
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Wilcoxon rank-sum test. In contrast, SIMBA successfully identified IL7R and FCER1A as 
informative genes (Fig. 2e and Supplementary Fig. 1b).  

Lastly, we showed that SIMBA does not require variable gene selection, which is an essential 
step in standard scRNA-seq pipelines such as Seurat or Scanpy. SIMBA produces very similar 
embeddings for cells and genes with and without variable gene selection (Supplementary Fig. 
2e), though we observed that variable gene section does improve efficiency of the training 
procedure. 

 
Single cell ATAC-seq analysis with SIMBA 
 
As one of the most popular single-cell epigenomic techniques, single-cell assay for transposase-
accessible chromatin using sequencing (scATAC-seq) has been widely used to profile regions of 
open chromatin and identify functional cis-regulatory elements such as enhancers and active 
promoters. In scATAC-seq, cells are characterized by different types of features 13, such as regions 
of accessible chromatin (“peaks” or “bins”) and cis-regulatory elements (DNA sequences) within 
these accessible regions including transcription factor (TF) motifs or k-mer (short sequences of a 
specific length, k). Unlike existing methods that use only the positional information of peaks/bins 
or the sequence content found within them, in SIMBA both types of features can be encoded into 
a single graph. When only positional information is used, SIMBA constructs a graph with nodes 
representing cells and chromatin regions (peaks or bins) and edges indicating the accessibility of 
the chromatin regions in cells. When the DNA sequences for chromatin regions are available, 
SIMBA can also encode DNA sequences including TF motifs and k-mers into the graph by adding 
edges between these entities as nodes and the existing chromatin region nodes. The edges in 
this case indicate the presence of TF motifs/k-mers within these chromatin-accessible regions. 
Through the embedding procedure, SIMBA generates embeddings of cells along with peaks and 
DNA sequences (Fig. 3a, Methods). 
 
To demonstrate the value of SIMBA embeddings for scATAC-seq analysis, we first applied 
SIMBA to a scATAC-seq data of 2,034 human hematopoietic cells with FACS-characterized cell 
types14. For the embeddings of cells alone, as shown using UMAP (Figure 3b), SIMBA accurately 
embeds cells such that cells belonging to distinct cell types are visually separated. In addition to 
cells, SIMBA can also embed various types of features. The UMAP plot in Figure 3c highlights 
how distinct features from both positional (peaks) as well as sequence-content (TF motifs and 
k-mers) information are embedded together based on their biological relations. Notably, these 
highlighted features that are embedded within the subpopulation of each defined cell type all 
have high cell-type specificity scores (shown in the upper right part of SIMBA metric plots in 
Figure 3d).  
 
Analysis using SIMBA led to several key findings in human hematopoietic differentiation.  
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Figure3. ScATAC-seq analysis of the human hematopoiesis dataset Buenrostro2018 using SIMBA. 
(a) SIMBA graph construction and embedding in scATAC-seq analysis. Biological entities including 
cells, peaks/bins, TF motifs, k-mers are represented as shapes and colored by relevant cell types 
(green and orange). Non-informative features are colored dark grey. Cells and chromatin 
accessible features (peaks / bins) are organized into a cell x peaks / bins matrix. When sequence 
information (TF motif or k-mer sequence) within these regions is available, they can be organized 
into two sub-matrices to associate a TF motif or k-mer sequence with each peak/bin. These 
constructed feature matrices are then binarized and assembled into a graph. When single feature 
(chromatin accessibility) is used, the graph encodes cells and peaks/bins as nodes. When multiple 
features (both chromatin accessibility and DNA sequences) are used, this graph may then be 
extended with the addition of TF motifs and k-mer sequences as nodes connected. Finally, SIMBA 
embeddings of these entities are generated through a graph embedding procedure. (b) UMAP 
visualization of SIMBA embeddings of cells colored by cell type. (c) UMAP visualization of SIMBA 
embeddings of cells and features including TF motifs, k-mers, and peaks. Cells are colored by cell 
type while motifs are colored green, k-mer sequences are colored blue, and peaks are colored 
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pink. Cell type specific features that are embedded nearby their corresponding cell types are 
indicated through the text (colored according to feature type) with arrows. (d) SIMBA metric 
plots of TF motifs, k-mers, and peaks. All these features are plotted according to the Gini index 
against max score. Cell-type specific TF motifs, k-mers, and peaks are highlighted. Dashed red 
lines indicate the cutoffs of cell type specific marker features. (e) Genomic tracks of aligned 
scATAC-seq fragments, separated and colored by cell type. Two marker peaks P1 and P2 in red 
are shown beneath the alignment as are RefSeq gene annotations. Within the peak P1, k-mer 
GATAAG and its resembling GATA1 motif are highlighted. (f) UMAP visualization of SIMBA 
embeddings of cells colored by TF activity scores of the GATA1 motif and k-mer GATAAG using 
chromVAR. (g) SIMBA barcode plots of the GATA1 motif, k-mer GATAAG, and the two peaks P1 
and P2. Cells are colored according to cell type labels described above. Dotted red line indicates 
the same cutoff used in all four plots. 
 
 
First, SIMBA analysis identified key master regulators of hematopoiesis. As highlighted in Figure 
3c, we observed that motifs of previously reported TFs were all embedded near their respective 
cell types in UMAP. For example, the GATA1 and GATA3 motifs are close to megakaryocyte-
erythroid progenitor (MEP) cells15; the PAX5 and EBF1 motifs are close to common lymphoid 
progenitor (CLP) cells16; the CEBPB and CEBPD motifs are close to monocytes (mono)17.  
 
Second, SIMBA analysis identified an unbiased set of DNA sequences, i.e., k-mers, that  e 
important TF binding motifs involved in hematopoiesis, enabling de novo motif discovery. We 
observed that these k-mers were embedded near their resembling TF binding motifs and 
relevant cell subpopulations (Figure 3c and 3e, Supplementary Figure 3b). For example, the 
DNA sequence CAGCTG is embedded in plasmacytoid dendritic cells (pDCs), and this sequence 
matches the TCF12 binding motif, which controls dendritic cell lineage specification.  
 
To further illustrate the interpretability of the SIMBA embeddings of TF motifs and k-mers,  
we calculated TF activity scores (high-variance TF motifs/k-mers) with chromVAR18. As shown in 
Figure 3f, the GATA1 TF motif and k-mer GATAAG that were both embedded in MEP cells by 
SIMBA, also showed high-level activity in MEP cells by chromVAR. The consistency between 
SIMBA embedding and chromVAR TF activity was observed for most of other TF motifs and k-
mers as well (Supplementary Fig. 3a, 3b). We also noticed that SIMBA was still able to identify 
cell-type-specific TF motifs even when chromVAR failed to do so (e.g., PAX5 was embedded in 
CLP cells by SIMBA but did not show a CLP-specific TF activity pattern using chromVAR). These 
highlighted features are also accompanied by SIMBA barcode plots, showing the sorted 
probabilities of each feature being assigned to different cells (Figure 3g and Supplementary Fig. 
3a,3b). For example, the GATA1 TF motif and k-mer GATAAG are both being assigned with 
much higher probabilities to MEP cells compared to the other cell types. 
 
Third, SIMBA analysis identified differential accessible regions that may mediate cell-type 
specific gene regulation. For example, the two peaks at chr19:12997999-12998154 (P1) and 
chr19:12998329-12998592 (P2) that were embedded within MEP cells were almost exclusively 
observed in MEP cells on KLF1 genome track (Fig. 3e). Interestingly, P1, upstream of KLF1, 
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contains the k-mer GATAAG that matches the GATA1 binding motif, while transcription factor 
GATA1 is known to regulate the gene KLF1and plays in a pivotal in erythroid cell and 
megakaryocyte development19. Therefore, by embedding these MEP-cell-related regulatory 
elements into the neighborhood of MEP cells, SIMBA demonstrates a new analytic way for 
studying cell-type-specific epigenetic landscape of the genome. To further validate the 
differential accessible regions identified by SIMBA, we randomly picked 100 peaks within each 
cell type in SIMBA co-embedding space. From the heatmap of chromatin accessibility, we 
clearly see that the peaks embedded in the neighborhood of each cell type by SIMBA shows 
strong cell-type specificity and this is robust to the number of cells within each cell type 
(Supplementary Fig. 3c).  
 
Although SIMBA strongly differs from existing computational methods for scATAC-seq analysis in 
that SIMBA enables the co-embedding of cells and features, we still compared the resulting 
SIMBA embeddings of cells with these specialized methods by their ability to distinguish cell types. 
We observed that SIMBA yields very similar embeddings of cells when using either a single 
feature (peaks) or multiple features (peaks and DNA sequences from within those peaks) across 
four scATAC-seq datasets of varying technologies and organisms (Supplementary Fig. 4). Hence, 
to be fair we used the same set of features (i.e., peaks) for SIMBA as other methods in comparison 
against the top three methods, including SnapATAC 4, Cusanovich201820, and cisTopic21 
recommended by the recent benchmark study13 (Supplementary Fig. 5). We compared SIMBA 
with these three methods in four scATAC-seq datasets of different technologies and organisms 
qualitatively based on UMAP visualization and quantitatively based on their clustering 
performance. As Supplementary Fig. 5 shows, SIMBA performs as well as or better than each of 
the methods evaluated, which are specialized for scATAC-seq only, further demonstrating the 
wide utility of SIMBA. 
 
 
Single cell multimodal analysis with SIMBA 

scRNA-seq and scATAC-seq are two of the most widely-adopted single-cell sequencing 
technologies, but they are limited to measuring only a single aspect of cell state at a time. To 
improve our ability to interrogate cellular states, several single-cell dual-omics technologies 
have been developed 22-25 to jointly profile transcriptome and chromatin accessibility within the 
same individual cells, therefore providing the potential to correlate gene expression with 
accessible regulatory elements and further delineate the yet elusive principles of gene 
regulation. In this section, we demonstrate how SIMBA may be used to perform multimodal 
analyses. We applied SIMBA to three recent single-cell dual-omics technologies: SHARE-seq23, 
SNARE-seq22, and a multiome PBMCs dataset from 10x Genomics. Figure 4a illustrates the 
procedure of graph construction and generation of the final SIMBA embedding matrix. Briefly, 
for scRNA-seq data, the gene expression matrix is discretized to generate different levels of 
gene expression. For scATAC-seq, both the chromatin accessibility matrix and motif/k-mer 
match matrix are binarized. In this graph, there are five types of entities (nodes), including cells, 
genes, peaks, motifs, and k-mers. For scRNA-seq data, an edge indicates whether a gene is 
expressed in a cell and its weight indicates the gene expression level (five levels, by default). For 
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scATAC-seq, an edge indicates whether a peak is present in a cell or if a TF motif/k-mer is 
present within a peak.  

 

Figure 4. Multimodal analysis of the SHARE-seq hair follicle dataset using SIMBA. (a) SIMBA graph 
construction and embedding in multimodal analysis. Overview of SIMBA’s approach to 
multimodal (scRNA-seq + scATAC-seq) data analysis. (b) SIMBA metric plots of genes, TF motifs, 
and peaks. All these features are plotted according to the Gini index against max score. Cell-type 
specific genes, TF motifs, and peaks are highlighted. (c) UMAP visualization of SIMBA embeddings 
of cells (Top-left), cells and genes (Top-right), and cells along with genes, TF motifs, and peaks 
(Bottom). (d) Ranked scatter plot of candidate master regulators as identified by SIMBA. (e) 
Schematic description of SIMBA’s strategy for identifying target genes given a master regulator. 
(f) Top 30 target genes of transcription factors Lef1 and Hoxc13 as inferred by SIMBA.   
 

To demonstrate the usefulness and versatility of the SIMBA embeddings, we analyzed the cell 
populations undergoing hair follicle differentiation from mouse skin profiled with SHARE-seq. 
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First, we used SIMBA to assess the cell-type specificity of different types of features, including 
genes, TF motifs, and peaks (Fig. 4b, Methods).  As shown in Figure 4b, genes (e.g., Lef1 and 
Hoxc13), which are associated with hair follicles each have relatively higher max values and Gini 
index scores. Similarly, TF motifs and peaks proximal to the genomic loci of these genes also 
score in the upper right quadrant of the metric plots. SIMBA’s cell-type specificity metrics 
successfully revealed the key genes and regulatory factors important to the hair follicle 
differentiation process. 

Next, we visualized and interrogated the SIMBA embeddings of 1) cells; 2) cells and genes; and 
3) cells together with genes, TF motifs, and peaks. Figure 4c shows the UMAP visualization of 
the SIMBA embeddings of cells and informative features selected based on SIMBA metric plots. 
The UMAP visualization of SIMBA embeddings of cells and the full set of features was also 
performed (Supplementary Fig. 6a). However, we observed that with the SIMBA embeddings of 
cells and the informative features selected by SIMBA, UMAP plots show more visible cell 
subgroups without obstruction by entities that may be present in much larger quantities (e.g., 
peaks). SIMBA embeddings of cells were able to reveal the three fate decisions from transit-
amplifying cells (TACs), including inner root sheath (IRS), medulla, and cuticle/cortex. SIMBA 
embeddings also uncovered important genes and regulatory factors along the hair follicle 
differentiation trajectories. For example, the marker genes Krt71, Krt31, and Foxq1 were 
embedded into their corresponding cell types: IRS, cuticle/cortex, and medulla, respectively. 
The Lef1 motif was embedded into the beginning of medulla and cuticle/cortex lineages while 
the Hoxc13 motif was embedded into the late stage of cuticle/cortex differentiation. Peaks near 
the Lef1 and Hoxc13 loci were also embedded into the nearby regions of these genes and 
motifs, as expected. To show the robustness of SIMBA embedding, we also performed the 
single-modality analyses within the SHARE-seq dataset, separating the scRNA-seq and scATAC-
seq components. With the consistent embedding results of cells and features as in multimodal 
analysis, we further demonstrated that SIMBA embedding procedure is robust to the type and 
number of features encoded in the input graph (Supplementary Fig. 6b,6c). Each marker gene 
was further validated using the UMAP plots with cells colored by gene expression as well as 
using the SIMBA barcode plots. The two aforementioned TF motifs and their respective peak 
sets were also validated visually using SIMBA barcode plots. As expected, in SIMBA barcode 
plots these marker features clearly showed an imbalanced distribution with much higher 
probabilities in the correct cell types (Supplementary Fig. 7a-d). 

Further, we demonstrated that the SIMBA co-embedding space of cells and features provides 
the potential to identify master regulators of differentiation and infer their target regulatory 
genes. To define a master regulator a priori, we postulate that both its TF motif and TF gene 
should be cell-type specific and given that active gene regulation involves the expression of TF 
and accessibility of its binding sites, TF motif and TF gene should be embedded closely in the 
shared latent space. Extending this logic to identify putative master regulators, we assessed the 
cell-type-specificity of TF motifs and genes based on SIMBA metrics and ranked all potential 
master regulators based on the distance between the TF motif and the respective TF gene in 
the shared SIMBA embedding space (Methods).  SIMBA successfully identified previously 
described master regulators such as Lef1, Gata6, Nfatc1, and Hoxc13. as the top master 
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regulators related to lineage commitment in mouse skin (Fig. 4d, Supplementary Table 2). To 
infer the target genes of a given master regulator, we postulate that in the shared SIMBA 
embedding space, 1) the target gene is close to both the TF motif and the TF gene; 2) the 
accessible regions (peaks) near the target gene loci must be close to both the TF motif and the 
target TF gene. Resting on these assumptions of cis-regulatory dynamics, the inference of target 
genes was performed by calculating the distance between target gene candidates and the 
respective TF motif and gene. In addition, nearby peaks around the target gene’s locus and the 
presence of TF motif in these nearby peaks are also considered (Fig. 4e, Methods). The top 30 
target genes of TF Lef1 and TF Hoxc13 inferred by SIMBA are shown respectively (Fig. 4f). The 
full list of ranked target genes is provided in Supplementary table 3. Notably, we were able to 
recover targets genes that were also reported in the original study23. For example, genes Lef1, 
Jag1, Hoxc13, Gtf2ird1 are regulated by the TF Lef1, while genes Cybrd1, Hoxc13, St14 are 
regulated by the TF Hoxc13. We also showed the target genes of three additional top master 
regulators identified by SIMBA including Relb, Gata6, and Nfatc1(Supplementary Fig. 7e).  

In addition to SHARE-seq, we also applied SIMBA to another two dual-omics datasets, the 
mouse cerebral cortex dataset profiled by SNARE-seq22 (Supplementary Fig. 8) and the 
multiome PBMCs dataset from 10x Genomics (Supplementary Fig.9). By validating the 
embeddings of cells and features with given labels (Supplementary Fig. 8a and Fig.9a), marker 
genes from the original study (Supplementary Fig. 8a,b,d and Fig.9a,b,d), and differentially 
accessible chromatin regions (Supplementary Fig. 8c and Fig.9c), we further demonstrate the 
suitability of SIMBA for multimodal analysis. 

 
Single cell batch correction analysis with SIMBA 
 
Efforts to collect data from single cells has grown to the level of consortia that span multiple 
institutions with the hopes of finely mapping and characterizing specific tissues. However, while 
the feasibility of generating large cohorts of single-cell data has increased, this has brought with 
it an increased demand for analysis methods that are capable of negating technical covariates 
inherent to multi-batch data collection. Covariates including experimental replicate identity, 
sample preparation, and sequencing platform are capable of confounding biological signal and  
batch correction that removes the effects of technical covariation while preserving true 
biological signals is required prior to downstream analysis 26, 27.  
 
We demonstrate that SIMBA readily corrects batch effects and produces joint embeddings of 
cells and features across multiple datasets with different sequencing platforms and cell type 
compositions. Thus, while previous methods primarily rely on specialized tools for batch 
correction, SIMBA works as a stand-alone package obviating the need for prior input data 
correction when applied to multi-batch scRNA-seq dataset. In SIMBA, batch correction is 
accomplished by encoding multiple scRNA-seq datasets into a single graph. Cells in different 
batches are linked to genes as in the previously described scRNA-seq graph construction. Here, 
the gene nodes are shared between the cell nodes of different batches. In addition to the 
experimentally measured edges, batch correction is further enhanced through computationally 
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inferred edges drawn between similar cell nodes across datasets using a truncated randomized 
singular value decomposition (SVD)-based procedure inspired by Seurat v311. SIMBA then 
generates the embeddings of all nodes including cells of each batch and genes from the 
resulting graph, which may then be visualized using tools such as UMAP, similar to the analyses 
presented in the sections above (Fig. 5a, Methods). 
 

 
 
Figure 5. Batch correction analysis of scRNA-seq data using SIMBA. (a) SIMBA graph construction 
and embedding in batch correction analysis. Overview of SIMBA’s approach to batch correction 
across scRNA-seq datasets. Distinct shapes indicate the type of entity (cell or gene). Colors 
distinguish batches or cell types. (b) UMAP visualization of the scRNA-seq mouse atlas dataset 
with two batches of different technologies (Microwell-seq and Smart-seq2) before and after 
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batch correction. Cells are colored by scRNA-seq profiling technology and cell type respectively. 
Top: UMAP visualization before batch correction; Middle: UMAP visualization after batch 
correction with SIMBA; Bottom: UMAP visualization of SIMBA embeddings of cells and genes, 
with batch effect removed and known marker genes highlighted. (c) UMAP visualization of the 
scRNA-seq human pancreas dataset with five batches of different studies before and after batch 
correction. Cells are colored by scRNA-seq data source and cell type respectively. Top: UMAP 
visualization before batch correction; Middle: UMAP visualization after batch correction with 
SIMBA; Bottom: UMAP visualization of SIMBA embeddings of cells and genes, with batch effect 
removed and known marker genes highlighted. (d-e) Quantitative comparison of SIMBA with 
three other batch correction methods including Seurat3, LIGER and Harmony, using, left-to-right: 
average silhouette width (ASW), adjusted Rand index (ARI), and local inverse Simpson’s index 
(LISI) on the scRNA-seq mouse atlas dataset and human pancreas dataset respectively. 

 
 
SIMBA was applied to a mouse atlas dataset composed of two batches and a human pancreas 
dataset that spans several batches used in a recent benchmark study26. The mouse atlas 
dataset contains two scRNA-seq datasets with shared cell types from different sequencing 
platform. The human pancreas dataset contains five samples pooled from five sources using 
four different sequencing techniques, in which not all cell types are shared across each sample. 
For both datasets, SIMBA successfully corrected the batch effects where the resulting 
embeddings of cells are clustered by the cell types while each batch is mixed evenly, indicating 
the preservation of biological signal and the simultaneous elimination of confounding technical 
covariates (Fig. 5b-c, middle, upper). It is important to note that the mouse atlas dataset was 
collected from nine different organ systems, so there exists some expected heterogeneity 
within the cell type labels. Conversely, the human pancreas datasets are curated from a single 
organ and SIMBA sufficiently separated cell types into transcriptionally-distinct homogeneous 
cell clusters (Fig. 5c).  
 
In addition to batch effect removal, SIMBA also simultaneously identifies cell-type-specific 
marker genes (Fig. 5b-c, bottom).  Having effectively eliminated differences between cells due 
to technical covariates, marker genes are discoverable across multiple samples by querying 
according to cells of each cell type within the batch-corrected SIMBA embedding. As shown in 
the SIMBA co-embedding of cells and variable genes, the known marker genes were correctly 
placed within each cell type while non-marker genes were embedded away from any cell type 
(Supplementary Fig. 10, 11). The resulting marker genes recapitulated the clustering-based 
differential expression (DE) analysis results for each datasets28-33 (e.g. Cdh5, Tie1, Myct1 for 
endothelial cell and C1qc, Fcgr1 for macrophage, S100a8, Trem3 for Neutrophil in the mouse 
atlas dataset and KIF12 for alpha cell and KRT19 for ductal cell in the human pancreas dataset) 
and are shown to be expressed specifically in the queried cell types (Supplementary Fig. 10, 
Supplementary Fig. 11). This distinguishes SIMBA from other batch correction methods, in 
which clustering is performed first in the batch-corrected space and then marker genes of each 
batch are identified through DE analysis in the original, uncorrected space of the corresponding 
batch.  
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Multiple methods have now been developed to correct for the technical effects of sample 
preparation and data collection in single cells. While SIMBA is a generalizable graph embedding 
method capable of several tasks outside of batch correction, we still compared SIMBA with the 
methods that are particularly designed for batch correction or data integration, including three 
top-performing batch correction methods, Seurat3, LIGER and Harmony, which are widely 
adopted and even recommended by a recent benchmark study26 (Supplementary Note1). To 
qualitatively compare these methods, we visualized cells of each dataset before and after 
batch-correction in UMAP plots (Supplementary Figure 12). For the quantitative evaluation of 
this batch correction performance, the conservation of biological information and batch effect 
removal are measured using three different metrics: average silhouette width, adjusted Rand 
index, and local inverse Simpson’s index9 as in the previously-mentioned benchmark study26 
(Methods). Each metric measures the relative mixing of class labels, where optimal 
performance is associated with maximal mixing in the batch labels and minimal mixing in the 
cell type labels. We observed that SIMBA achieved comparable batch correction performance 
both qualitatively and quantitatively for both the mouse atlas dataset and the human pancreas 
dataset (Supplementary Fig. 12, Fig. 5d, Fig.5e). 
 
 
Single cell multi-omics integration analysis with SIMBA 
 
Single-cell assays are now capable of measuring a broad range of cellular modalities including 
mRNA, chromatin accessibility, DNA methylation and cell-surface proteins. Thus, data is being 
generated that describes cells by varying features sets, which has motivated the need for 
methods that leverage these features to perform multi-omics integration such that a more 
comprehensive description of cell state may be learned. We demonstrate that SIMBA can be 
applied to the integration analysis of such multi-omics datasets, especially as it applies to 
datasets comprised of scRNA-seq and scATAC-seq. Specifically, SIMBA accomplishes this 
integration by first building one graph for scRNA-seq data and another graph for scATAC-seq 
data, independently as described in previous sections. To connect these two graphs, SIMBA 
then calculates gene activity scores by summarizing accessible regions from scATAC-seq data 
and then infers edges between cells of different assays based on their shared gene expression 
modules through a similar procedure as in the previously described batch correction section. 
Finally, SIMBA embeds the graph of cells, genes, and peaks into a common, low-dimensional 
space. The SIMBA embeddings of these multi-omics entities can be visualized using UMAP or 
similar visualization tools (Fig. 6a, Methods).  
 
To facilitate the evaluation of data integration performance, we created datasets with ground-
truth labels by manually splitting the dual-omics datasets into two single-modality datasets (i.e., 
scRNA-seq and scATAC-seq), in which we know the true matching between cells across the two 
modalities. We then applied SIMBA to the integration analysis of two case studies where 
scRNA-seq and scATAC-seq datasets are generated from the SHARE-seq mouse skin dataset and 
the 10x Genomics multiome human PBMCs dataset, respectively. We observed that SIMBA was 
able to preserve cellular heterogeneity while evenly mixing the two modalities (Fig. 6b-c, top 
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and middle). For example, within the SHARE-seq mouse skin dataset SIMBA was able to identify 
the pattern of differentiation from the TAC cell type to the IRS, medulla, and hair shaft 
cuticle/cortex cell types while maintaining a proper mixture of both scRNA-seq and scATAC-seq 
modalities (Fig. 6b, middle). 
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Figure 6. Multi-omics integration of scRNA-seq + scATAC-seq data using SIMBA. (a) SIMBA graph 
construction and embedding in multi-omics integration. Overview of SIMBA’s approach to data 
integration across scRNA-seq and scATAC-seq. Distinct shapes indicate the type of entity (cell, 
gene, or peak). Colors distinguish batches or cell types. (b) UMAP visualization of the integrated 
scRNA-seq and scATAC-seq data manually created from the SHARE-seq mouse hair follicle 
dataset before and after data integration. Cells are colored by single-cell modality and cell type 
respectively. Top: UMAP visualization before integration; Middle: UMAP visualization after 
integration with SIMBA; Bottom: UMAP visualization of SIMBA embeddings of cells, genes, and 
peaks with two cell modalities integrated and known marker genes highlighted. (c) UMAP 
visualization of the integrated scRNA-seq and scATAC-seq data manually created from the 10x 
human PBMCs dataset before and after data integration. Cells are colored by single-cell modality 
and cell type respectively. Top: UMAP visualization before integration; Middle: UMAP 
visualization after integration with SIMBA; Bottom: UMAP visualization of SIMBA embeddings of 
cells, genes, and peaks with two cell modalities integrated and known marker genes highlighted. 
(d-e) Quantitative comparison of SIMBA with two other methods including Seurat3, LIGER for 
multi-omics integration, using, left-to-right: anchoring distance rank, anchoring distance, 
silhouette index, and Fraction in the same cluster, on the SHARE-seq mouse hair follicle dataset 
and 10x human PBMCs dataset, respectively. 

 
Importantly, SIMBA simultaneously identified marker genes and peaks at single-cell resolution. 
In the co-embedding space, we observed that the neighbor genes of cells (highlighted in UMAP 
plots), are each exclusively expressed in their corresponding cell types (Supplementary Fig. 
13a-c,e, Fig. 14a-c,e). For example, in the SHARE-seq mouse skin dataset, Foxq1 and Shh are 
located within medulla and TAC-2, respectively; in the 10x PBMCs dataset, PAPSS2 and 
KCNMA1, which are the marker genes of blood monocytes, are embedded close to each other. 
Similarly, we observed that the neighbor peaks of cells show a clear cell-type-specific 
accessibility pattern that is robust to the cluster size of a given cell type (Supplementary Fig. 
13a-d, Fig. 14a-d).  
 
We next demonstrate SIMBA performs similarly or better than two widely-adopted methods for 
single-cell data integration, Seurat3 and LIGER in these two case studies. Out of the 
aforementioned, top-performing integration methods, Seurat3 and LIGER were selected 
because they have explicit documentation for the task of integrating scRNA-seq and scATAC-seq 
data. We first qualitatively evaluated these methods by inspecting UMAP visualization plots. For 
the SHARE-seq dataset, we observed that all three methods perform comparably well in mixing 
cells of two modalities though LIGER generated particularly small and noisy clusters 
(Supplementary Fig. 15a). For the 10X PBMCs dataset, SIMBA exhibited a clear superiority in 
mixing cells belonging to each modality (Supplementary Fig. 15b). We next quantitatively 
assessed the integration performance of these methods by four different metrics (Methods). 
Each metric quantifies the distances between matched cells in the integrated space. In addition 
to the commonly-used metrics including anchoring distance, Silhouette index, and Fraction in 
the same cluster, we developed an additional metric, anchoring distance rank (ADR), which 
represents the normalized rank of the distance between matching cells. If two matching cells 
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from scRNA-seq and scATAC-seq are mutually closest to one another, their ADR will be close to 
0 (Methods). SIMBA performed comparably or better by each metric for both datasets with the 
best performance in ADR and cluster agreement in both datasets (Fig. 6d). 
 
 
Discussion 
 
Simultaneous multimodal measurements of individual cells offer new and unexplored 
opportunities to investigate complex interactions between interacting components involved in 
establishing transcriptional programs. Despite the exciting potential for discovery associated 
with these datasets, methods to define cell states and important features across modalities 
remains under development. 
 
As presented in this manuscript, SIMBA models single cells and measured features as nodes 
encoded in a graph and employs a scalable and efficient graph embedding procedure to embed 
cells and features into a shared latent space. We demonstrate that direct graph representations 
of single-cell data are able to capture not only relations between cells and the quantified 
features of the experiment (e.g., gene expression or chromatin accessibility) but additionally 
boast the capacity to capture hierarchical relations between features. An example of such a 
hierarchical relation might include the coordinate-level description of an ATAC-seq peak and 
the corresponding TF motifs and/or k-mer sequences contained within that region. In the 
resulting joint embedding, proximity-based queries can be performed to discover cell-type-
specific regulatory mechanisms and the respective features integral to such mechanisms. 
Therefore, SIMBA enables unbiased multimodal feature discovery, and complements the 
current gene regulatory network analyses. SIMBA also circumvents the typical workflow led by 
cell clustering and followed by differential feature detection, and thus relieves the researcher of 
relying on user-defined clustering resolution that may lead to artifactual discovery or false 
negative results.  
 
SIMBA has been extensively benchmarked across single-cell modalities and tasks and obtained 
comparable or better performance compared to current state-of-the-art methods developed 
for the respective task. These results suggest a wide applicability of SIMBA’s graph-based 
framework and therefore obviates the need for stitching together workflows over multiple 
analysis tools. This contrasts with task-specific methods, which have been specially developed 
for a given data type and modality. A foreseeable extension of SIMBA would include encoding 
increasingly complex measurements of single-cells such as spatial transcriptomics wherein 
transcriptomic and (real) proximity data should be considered 34. We also envision extending 
this framework to single-cell Hi-C data wherein the interaction between DNA segments should 
be encoded. SIMBA is particularly apt towards analysis single-cell Hi-C measurements as these 
DNA fragments, analogous to scATAC-seq data contain hierarchical information such as TF 
motifs and k-mer sequences. Finally, lineage-traced single-cell datasets35  wherein a subset of 
cells retain a known lineage are of interest. In this example, lineages might be encoded 
hierarchically with respect to gene expression. In general, we are interested in the further 
incorporation of external information and hierarchical relationships between features in the 
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graph. While the extension to various experimental design is relatively straightforward, we note 
that the interpretation of the output embedding in each case may vary as a function of the 
input graph construction and training process thus requiring some level of domain-specific 
expertise. 
 
Graph embedding methods hold significant promise for the analysis of biological data. Previous 
applications of graph embedding include functional annotation of genes 36, transcription factor 
binding to DNA motifs 37 and more recent single-cell RNA-seq analyses 38, 39. The graph encoding 
and embedding procedures we have outlined may be potentially improved and extended to 
better capture or represent biological entities and their respective relations. We envision 
employing continuous edge weights as well as the consideration of both node attributes and 
edge information to determine the proximity of node pairs 40. Considering embedding distances 
as a function of the node attribute may better equip our approach to extend to time series data 
as well as to better align cells stratified by positions on a developmental axis. In addition, to 
improve interpretability it may be possible to provide a metric of uncertainty alongside the 
resulting embedding and generalization to the unseen nodes41. 
 
The propensity to generate high-quality, complex datasets that capture and quantify multiple 
classes of molecules (omics) will undoubtedly continue to increase. Already this progress has 
outpaced our ability to gain integrative insights from such data, highlighting a need for methods 
that break through previous limitations as well as extend easily to new tasks. Here we believe 
SIMBA satisfies these conditions for such a comprehensive yet accessible method for exploring 
cellular heterogeneity and investigating the regulatory mechanisms that drive the cellular 
diversity while laying a groundwork for the development of new non-cluster-centric single cell 
omics computational methods. 
 
 
Methods 
 
Single-cell data preprocessing 
 

a. Single-cell RNA-seq 
Genes expressed in fewer than three cells were filtered.   Raw counts were library size-
normalized and subsequently log-transformed. Optionally, variable gene selection 11 (a 
python version is implemented in SIMBA that is inspired by Scanpy2) may be performed  
to remove non-informative genes and accelerate the training procedure. Notable 
differences in the resulting cell embeddings were not observed upon limiting feature 
input to those identified by variable gene selection but SIMBA embeddings of non-
variable genes will not be generated as they are not encoded in the graph. 

  
 b. Single-cell ATAC-seq 

Peaks present in fewer than three cells were filtered. Optionally, we implemented a 
scalable truncated-SVD-based procedure to select variable peaks as a preliminary step 
to additionally filter non-informative peaks and accelerate the training procedure. First 
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the top k principal components (PCs) were selected, with k chosen based on the elbow 
plot of variance ratio. Then for each of the top k PCs, peaks were automatically selected 
based on the loadings using a knee point detection algorithm implemented by ‘kneed’42. 
Finally, peaks selected for each PC were combined and denoted as “variable peaks”. 
Similar to the observation made with scRNA-seq data, the optional step of variable peak 
selection has a negligible effect on the resulting cell embedding. Despite this minimal 
impact on the resulting embedding, this feature selection step imparts a significant 
practical advantage in reducing training procedure time.  
 
k-mer and motif scanning was performed using packages ‘Biostrings’ and ‘motifmatchr’ 
with JASPAR202043.  Included in the implementation of SIMBA is a convenient R 
command line script “scan_for_kmers_motifs.R” , which will convert a list of peaks 
(formatted in a bed file) to a sparse peaks-by-k-mers/motifs matrix, which is stored as 
an hdf5-formated file. 

 
Graph construction (five scenarios) 
 

i. Single-cell RNA-seq analysis 
The distribution of non-zero values in the normalized gene expression matrix was first 
approximated using a k-means clustering-based procedure. First, the continuous non-
zero values were binned into 𝑛𝑛 intervals (by default 𝑛𝑛=5). Bin widths were defined using 
1-dimensional k-means clustering wherein the values in each bin are assigned to the 
same cluster center. The continuous matrix is then converted into a discrete matrix 
wherein1, … ,𝑛𝑛 are used to denote 𝑛𝑛 levels of gene expression. Zero values are retained 
in this matrix.  Then the graph was constructed by encoding two types of entities, cells 
and genes, as nodes and relations with 𝑛𝑛 different weights between them, i.e., 𝑛𝑛 levels 
of gene expression, as edges. These 𝑛𝑛 relation weights range from 1.0 to 5.0 with a step 
size of 5/𝑛𝑛 denoting gene expression levels (lowest: 1.0, highest: 5.0), such that edges 
corresponding to high expression levels affect embeddings more strongly than those 
with intermediate or low expression levels. This discretization is implemented in the 
SIMBA package using the function, “si.tl.discretize()”. 

 
ii. Single-cell ATAC-seq analysis 

Peak-by-cell matrices were binarized, with “1” indicating at least one read within a peak 
and “0” otherwise. The graph was constructed by encoding two types of entities, cells 
and peaks, as nodes and the relation between them, denoting the presence of a given 
peak in a cell, as edges. The single relation type was assigned with a weight of 1.0. When 
the DNA sequence features were available, they were encoded into the graph using k-
mer and motif sequence entities as nodes. This was performed by first binarizing the 
peak-by-k-mer/motif matrix then constructing an extension to the original peak/cell 
graph using the peaks, k-mers, and motifs as nodes and the presence of these entities 
within peaks as edges between these additional nodes and the peak nodes. The relation 
between k-mers and peaks was assigned a weight of 0.02 while the relation between TF 
motifs was assigned a weight of 0.2. Of note, k-mers and motifs may be used 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2021. ; https://doi.org/10.1101/2021.10.17.464750doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.17.464750
http://creativecommons.org/licenses/by-nd/4.0/


independently of each other as node inputs to the graph, depending on the specific 
analysis task. 

 
iii. Multimodal analysis 

Combination of the above outlined strategies for graph construction of scRNA-seq and 
scATAC-seq data was used to construct a multi-omics graph. 

 
iv. Batch correction 

A graph for each batch was constructed as described in i).  Edges between cells of 
different batches were inferred through a procedure based on truncated randomized 
singular value decomposition (SVD) inspired by Seurat v3 11 to stitch together graphs of 
different batches. More specifically, in the case of scRNA-seq data, consider two gene 
expression matrices 𝑋𝑋1𝑛𝑛1×𝑚𝑚 and 𝑋𝑋2𝑛𝑛2×𝑚𝑚, where 𝑛𝑛1, 𝑛𝑛2 denotes the number of cells and 
𝑚𝑚 denotes the number of the shared features, i.e., variable genes, between datasets. 
The matrix 𝑋𝑋𝑛𝑛1×𝑛𝑛2 was then computed by multiplying 𝑋𝑋1 and 𝑋𝑋2:  

 
𝑋𝑋 = 𝑋𝑋1 × 𝑋𝑋2𝑇𝑇  

 
Truncated randomized SVD was subsequently performed on 𝑋𝑋: 
 

𝑋𝑋 ≈ 𝑈𝑈 × Σ × 𝑉𝑉𝑇𝑇 
 
where 𝑈𝑈 is an 𝑛𝑛1 × 𝑑𝑑 matrix,  Σ is an 𝑑𝑑 × 𝑑𝑑 matrix, and 𝑉𝑉 is an 𝑛𝑛2 × 𝑑𝑑 matrix (by 
default 𝑑𝑑 = 20).  
 
Both 𝑈𝑈 and 𝑉𝑉 were further 𝐿𝐿2 normalized. For each cell in 𝑈𝑈, we searched for 𝑘𝑘 
nearest neighbors in 𝑉𝑉 and vice versa (by default, 𝑘𝑘 = 20). Eventually, only the mutual 
nearest neighbors between 𝑈𝑈 and 𝑉𝑉 were retained as inferred edges between cells 
(represented as dashed lines in Fig. 5a). The procedure of inferring edges between 
cells of different batches is implemented in the function “si.tl.infer_edges()” in the 
SIMBA package. 
 
For multiple batches, SIMBA can flexibly infer edges between any pair of datasets. In 
practice, however edges are inferred between the largest dataset(s) or the dataset(s) 
containing the most complete set of expected cell types and other datasets.  
 

v. Multi-omics integration 
scRNA-seq and scATAC-seq graphs were constructed following steps i) and ii), 
respectively. To infer the edges between cells of scRNA-seq and scATAC-seq, gene 
activity scores were first calculated for scATAC-seq data3. More specifically, for each 
gene, peaks within 100kb upstream and downstream of the TSS were considered. 
Peaks overlapping gene body region or within 5kb upstream of gene bodies were 
given the weight of 1.0. Otherwise, peaks were weighted based on their distances to 
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TSS using the exponential decay function: 𝑒𝑒
−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

5000 . Subsequently, the gene score of 
each gene was computed as a weighted sum of the considered peaks. These gene 
scores were then scaled to respective gene size. These steps are implemented by the 
function “si.tl.gene_scores()” in SIMBA. For user convenience, the SIMBA package 
curates the gene annotations of several commonly used reference genomes, including 
hg19, hg38, mm9, and mm10. Once gene scores were obtained, the same procedure 
described in iv) was performed to infer edges between cells profiled by scRNA-seq and 
scATAC-seq using the function, “si.tl.infer_edges()” in SIMBA. 
 

The procedure of generating constructed graphs is implemented in the function, 
“si.tl.gen_graph()” in the SIMBA package. 

  
Graph Embeddings with Type Constraints 

 
Following the construction of a multi-relational graph between biological entities, we 
adapted graph embedding techniques from the knowledge graph and recommendation 
systems literature to construct unsupervised representations for these entities. 

 
We provide as input a directed graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), where 𝑉𝑉 is a set of entities (vertices) 
and 𝐸𝐸 is a set of edges, with a generic edge 𝑒𝑒 = (𝑢𝑢, 𝑣𝑣) between a source entity 𝑢𝑢 and 
destination entity 𝑣𝑣. We further assume that each entity has a distinct known type (e.g., 
cell, peak, etc.). 

 
Graph embedding methods learn a 𝐷𝐷-dimensional embedding vector for each 𝑣𝑣 ∈ 𝑉𝑉 by 
optimizing a link prediction objective via stochastic gradient descent, with D=50 used for 
our experiments. We will denote the full embedding matrix as 𝜃𝜃 ∈  𝑅𝑅|𝑉𝑉|×𝐷𝐷 and the 
embedding for an entity 𝑣𝑣 as 𝜃𝜃𝑣𝑣. 

 
For an edge 𝑒𝑒 =  (𝑢𝑢, 𝑣𝑣) , we denote 𝑠𝑠𝑒𝑒 =  𝜃𝜃𝑢𝑢 ∗  𝜃𝜃𝑣𝑣 as the score for 𝑒𝑒, and optimize a 
multi-class log loss 

ℒ =  −𝑙𝑙𝑙𝑙𝑙𝑙
exp (𝑠𝑠𝑒𝑒)

∑ exp (𝑠𝑠′𝑒𝑒)𝑒𝑒′∈𝒩𝒩
 

 
Where 𝒩𝒩 is a set of “negative sampled” candidate edges generated by corrupting 𝑒𝑒 44. 
This log loss objective attempts to maximize the score for all (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸 and minimize it 
for (𝑢𝑢, 𝑣𝑣) ∉ 𝐸𝐸. 

 
Negative samples are constructed by replacing either the source or target entity in the 
target edge 𝑒𝑒 =  (𝑢𝑢, 𝑣𝑣) with a randomly sampled entity. However, in graphs like ours 
where only edges between certain entity types are possible, previous work has shown 
that it is beneficial to optimize the loss only over candidate edges that satisfy the type 
constraints45. Thus, for e.g., a cell-peak edge we only sample negative candidates 
between cell and peak entities. This modification is crucial in our setting since most 
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randomly selected edges will be of invalid type (e.g., peak-peak), forcing the 
embeddings to primarily be optimized for irrelevant tasks (e.g., having low dot product 
between every pair of peaks). 

 
Furthermore, it has been frequently observed that in graphs with wide distribution of 
node degrees, it is advantageous to sample negatives proportional to some function of 
the node degree to produce more informative embeddings that don’t merely capture 
the degree distribution 12, 46.  For each graph edge in the dataset encountered in a 
training batch, we produce 100 negatives by corrupting the edge with a source or 
destination sampled uniformly from the nodes with the correct types for this relation 
and 100 by corrupting the edge with a source or destination node sampled with 
probability proportional to its degree12. 

 
As with many ML methods, graph embeddings are prone to overfitting in a low-data 
regime (i.e., low ratio of edges to parameters). We observed overfitting measurable as a 
gap between training and validation loss on the link prediction task, which we addressed 
with 𝐿𝐿2 regularization on the embeddings 𝜃𝜃, 

 

ℒ𝑟𝑟𝑒𝑒𝑟𝑟 = ℒ + 𝜆𝜆 ��𝜃𝜃𝑢𝑢𝑢𝑢2
𝐷𝐷

𝑢𝑢=1𝑢𝑢∈𝑁𝑁

. 

 
with λ =𝑤𝑤𝑑𝑑 ∗  𝑤𝑤𝑑𝑑_𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑖𝑖𝑣𝑣𝑖𝑖𝑙𝑙. For weight decay parameter (𝑤𝑤𝑑𝑑), by default it is calculated 
automatically as 𝐶𝐶

𝑁𝑁𝑑𝑑
, where 𝑁𝑁𝑒𝑒 is the training sample size (i.e., the total number of edges) 

and 𝐶𝐶 is a constant. For weight decay interval (𝑤𝑤𝑑𝑑_𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑖𝑖𝑣𝑣𝑖𝑖𝑙𝑙), we set it to 50 for all 
experiments. 

 
We use the PyTorch-BigGraph framework, which provides efficient computation of 
multi-relation graph embeddings over multiple entity types and can scale to graphs with 
millions or billions of entities12. 

 
The resulting graph embeddings have two desirable properties that we will take 
advantage of: 
1. First-order similarity: for two entity types 𝑇𝑇1,  𝑇𝑇2  with a relation between them, 
edges with high likelihood should have higher dot product; specifically, for any 𝑢𝑢 ∈ 𝑇𝑇1, 
the predicted probability distribution over edges to 𝑇𝑇2 originating from 𝑢𝑢 is 
approximated as  𝑒𝑒𝑥𝑥𝑢𝑢∗𝑥𝑥𝑣𝑣

∑ 𝑒𝑒𝑥𝑥𝑢𝑢∗𝑥𝑥𝑣𝑣′𝑣𝑣′∈𝑇𝑇2
 . 

2. Second-order similarity: within a single entity type, entities that have ‘similar 
contexts’, i.e., a similar distribution of edge probabilities, should have similar 
embeddings. Thus, the embeddings of each entity type provide a low-rank latent space 
that encodes the similarity of those entities’ edge distributions. 

 
Evaluation of the model during training 
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During the PBG training procedure, a small percent of edges is held out (by default, the 
evaluation fraction is set to 5%) to monitor overfitting and evaluate the final model. Five 
metrics are computed on the reserved set of edges, including mean reciprocal rank 
(MRR, the average of the reciprocal of the ranks of all positives), R1 (the fraction of 
positives that rank better than all their negatives, i.e., have a rank of 1), R10 (the 
fraction of positives that rank in the top 10 among their negatives), R50 (the fraction of 
positives that rank in the top 50 among their negatives), and AUC (Area Under the 
Curve). By default, we show MRR along with training loss and validation loss while other 
metrics are also available in SIMBA package (Supplementary Fig. 1a).  The learning 
curves for validation loss and these metrics can be used to determine when training has 
completed. The relative values of training and validation loss along with these 
evaluation metrics can be used to identify issues with training (underfitting vs 
overfitting) and tune the hyperparameters weight decay, embedding dimension, and 
number of training epochs appropriately. For example, in Supplementary Figure 1 
training can be stopped once the validation loss plateaus. However, for most datasets 
we find that the default parameters do not need tuning.  

 
Softmax transformation 
 

PyTorch-BigGraph training provides initial embeddings of all entities (nodes).  However, 
entities of different types (e.g., cells vs peaks, cells of different batches or modalities) 
have different edge distributions and thus may lie on different manifolds of the latent 
space. To make the embeddings of entities of different types comparable, we transform 
the embeddings of features with the Softmax function by utilizing the first-order 
similarity between cells (reference) and features (query). In the case of batch correction 
or multi-omics integration, the SoftMax transformation is also performed based on the 
first-order similarity between cells of different batches or modalities.  
 
Given the initial embeddings of cells (reference) (𝑣𝑣𝑐𝑐1 , … , 𝑣𝑣𝑐𝑐𝑑𝑑) and features (𝑣𝑣𝑓𝑓1 , … , 𝑣𝑣𝑢𝑢𝑚𝑚), 
the model-estimated probability of an edge �𝑐𝑐𝑖𝑖 ,𝑓𝑓𝑗𝑗� obeys 
 

𝑃𝑃 �𝑣𝑣𝑐𝑐𝑑𝑑,𝑓𝑓𝑗𝑗  � ∝ exp �𝑣𝑣𝑐𝑐𝑑𝑑 ⋅ 𝑣𝑣𝑓𝑓𝑗𝑗� 
 
Therefore, if a random edge was sampled from feature 𝑓𝑓𝑗𝑗 to a cell, the model would 
estimate the distribution over such edges as 
 

𝑝𝑝𝑐𝑐𝑑𝑑,𝑓𝑓𝑗𝑗 =
exp (𝑣𝑣𝑐𝑐𝑑𝑑 ⋅ 𝑣𝑣𝑓𝑓𝑗𝑗)

∑ exp (𝑣𝑣𝑐𝑐𝑘𝑘 ⋅ 𝑣𝑣𝑓𝑓𝑗𝑗)
𝑛𝑛
𝑘𝑘=1

 

 
i.e., the Softmax weights between all cells {𝑐𝑐𝑖𝑖}  and the feature 𝑓𝑓𝑗𝑗. We can then compute 
new embeddings for features as a linear combination of the cell embeddings weighted 
by the edge probabilities raised to some power. 
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𝑣𝑣�𝑓𝑓𝑗𝑗 =
∑ 𝑝𝑝𝑐𝑐𝑑𝑑,𝑓𝑓𝑗𝑗

𝑇𝑇−1 𝑣𝑣𝑐𝑐𝑑𝑑
𝑛𝑛
𝑖𝑖=1

∑ 𝑝𝑝𝑐𝑐𝑑𝑑,𝑓𝑓𝑗𝑗
𝑇𝑇−1  𝑛𝑛

𝑖𝑖=1
 

 
𝑇𝑇 is a temperature hyperparameter that controls the sharpness of the weighting over 
cells. At 𝑇𝑇 = 1, the cell embeddings are weighted by their estimated edge probabilities; 
at 𝑇𝑇 → 0, each feature embedding is assigned the cell embedding of its nearest 
neighbor; at  𝑇𝑇 → ∞, it becomes a discrete uniform distribution, and each query 
becomes the average of reference embeddings. We set 𝑇𝑇 = 0.5  for all the analyses. 

 
 These steps are implemented in the function “si.tl.embed()” in the SIMBA package. 
 
Metrics to assess cell-type specificity 
 

Four metrics are proposed to assess the cell type specificity of each feature from 
different aspects, including max value (a higher value indicates higher cell-type 
specificity), Gini index (a higher value indicates higher cell-type specificity), standard 
deviation (a higher value indicates higher cell-type specificity), and entropy (a lower 
value indicates higher cell-type specificity). We observe these four metrics generally give 
consistent results. For SIMBA metric plot, by default, Gini index is plotted against max 
value. For feature 𝑓𝑓𝑗𝑗 : 
 
The max value is defined as the average normalized similarity of top 𝑘𝑘 cells (by default, 
𝑘𝑘=50). The similarity normalization function is defined as: 
 

𝑛𝑛𝑙𝑙𝑖𝑖𝑚𝑚(𝑥𝑥𝑖𝑖) = 𝑥𝑥𝑖𝑖 − 𝑙𝑙𝑙𝑙𝑙𝑙
∑ exp (𝑥𝑥𝑗𝑗)𝑛𝑛
𝑗𝑗=1

𝑛𝑛
  

 
Where 𝑖𝑖 = 1, … ,𝑛𝑛. 𝑛𝑛 is the number of cells and 𝑥𝑥𝑖𝑖 represents the dot product of 𝑣𝑣�𝑓𝑓𝑗𝑗  and 
the embedding of cell 𝑖𝑖.  
 
The max value is computed as: 
 

max�𝑓𝑓𝑗𝑗� =
∑ 𝑛𝑛𝑙𝑙𝑖𝑖𝑚𝑚(𝑥𝑥𝑖𝑖)𝑘𝑘
𝑖𝑖=1

𝑘𝑘
 

 
The Gini index is computed as: 
 

gini�fj� =
∑ (2𝑖𝑖 − 𝑛𝑛 − 1) ∗ 𝑝𝑝𝑐𝑐𝑑𝑑,𝑓𝑓𝑗𝑗
𝑛𝑛
𝑖𝑖=1

𝑛𝑛 ∑ 𝑝𝑝𝑐𝑐𝑑𝑑,𝑓𝑓𝑗𝑗
𝑛𝑛
𝑖𝑖=1

 

 
The standard deviation is computed as: 
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std�fj� = �
1

𝑛𝑛 − 1
�(𝑝𝑝𝑐𝑐𝑑𝑑,𝑓𝑓𝑗𝑗 − 𝜇𝜇)2
𝑛𝑛

𝑖𝑖=1

 

Where 𝜇𝜇 = 1
𝑛𝑛
∑ 𝑝𝑝𝑐𝑐𝑑𝑑,𝑓𝑓𝑗𝑗𝑖𝑖
𝑛𝑛
𝑖𝑖=1 . 

 
Entropy is computed as: 

entropy�fj� = −�𝑝𝑝𝑐𝑐𝑑𝑑,𝑓𝑓𝑗𝑗log (𝑝𝑝𝑐𝑐𝑑𝑑,𝑓𝑓𝑗𝑗)
𝑛𝑛

𝑖𝑖=1

 

 
Identification of master regulators 

 
To identify master regulators, we take into consideration both the cell type specificity of 
each pair of TF motif and TF gene and the distance between them. More specifically, for 
each TF motif, first its distances (Euclidean distance by default) to all the genes are 
calculated in the SIMBA embedding space. Then the rank of this TF gene among all these 
genes is computed. In addition, we also assess the cell type specificity of this pair of TF 
motif and TF gene based on SIMBA metrics (by default, max value and Gini index are 
used). The same procedure is performed for all TFs. Finally, we identify master 
regulators by filtering out TFs with low cell-type specificity and scoring them based on 
TF gene rank. This procedure is implemented in the function 
“st.tl.find_master_regulators()” in SIMBA package. 
 

 
Identification of TF target genes 

Given a master regulator, its target genes are identified by comparing the locations of 
the TF gene, TF motif, and the peaks near the genomic loci of candidate target genes in 
the SIMBA co-embedding space (Fig. 4e). More specifically we first search for 𝑘𝑘 nearest 
neighbor genes around the motif (TF motif) and the gene (TF gene) of this master 
regulator, respectively (𝑘𝑘 = 200 by default). The union of these neighbor genes is the 
initial set of candidate target genes. These genes are then filtered based on the criterion 
that open regions (peaks) within 100kb upstream and downstream of the TSS of a 
putative target gene must contain the TF motif.  

Next, for each candidate target gene, we compute four types of distances in SIMBA 
embedding space: distances between the embeddings of 1) the candidate target gene 
and TF gene; 2) the candidate target gene and TF motif; 3) peaks near the genomic locus 
of the candidate target gene and TF motif; 4) peaks near the genomic locus of the 
candidate target gene and the candidate gene. All the distances (Euclidean distances by 
default) are converted to ranks out of all genes or all peaks to make the distances 
comparable across different master regulators. 
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The final list of target genes is decided using the calculated ranks based on two criteria: 
1) at least one of the nearest peaks to TF gene or TF motif is within a predetermined 
range (top 1,000 by default); 2) the average rank of the candidate target gene is within a 
predetermined range (top 5,000 by default). This procedure is implemented in the 
function “st.tl. find_target_genes ()” in SIMBA. 

Benchmarking scATAC-seq computational methods 
 
To compare SIMBA to other scATAC-seq computational methods including SnapATAC 4, 
Cusanovich201820, and cisTopic21, we employed the previously developed benchmarking 
framework from Chen et al13. This framework evaluates different methods based on 
their ability to distinguish cell types. We applied three clustering algorithms: k-means 
clustering, hierarchical clustering, and Louvain on the feature matrix derived from each 
method.  
 
For datasets with ground-truth (FACS-sorted labels or known tissue labels), including 
simulated bone marrow data, Buenrostro 2018, and sci-ATAC-seq subset, three metrics 
including Adjusted Rand Index (ARI), Adjusted Mutual Information (AMI), and 
Homogeneity are applied to evaluate the performance. ARI measures the similarity 
between two clusters, comparing all pairs of samples assigned to matching or different 
clusters in the predicted clustering solution vs the true cluster/cell type label.  AMI 
describes an observed frequency of co-occurrence compared to an expected frequency 
of co-occurrence between two variables, informing the mutual dependence or strength 
of association of these two variables. Homogeneity measures whether a clustering 
algorithm preserves cluster assignments towards samples that belong to a single class. A 
higher metric value indicates a better clustering solution. 
 
For 10x PBMCs dataset with no ground truth, the Residual Average Gini Index (RAGI) 
proposed in the benchmarking study13 is used as the clustering evaluation metric. RAGI 
measures the relative exclusivity of marker genes to their corresponding clusters in 
comparison to housekeeping genes, which should demonstrate low specificity to any 
given cluster. In brief, the mean Gini Index is computed for both marker genes and 
housekeeping genes. The difference between the means is computed to obtain the 
average residual specificity (i.e., RAGI) of a clustering solution with respect to marker 
genes. A higher RAGI indicates a better separation of biologically distinct clusters. 
 

Benchmarking single-cell batch correction methods 
 
The batch correction performance of SIMBA was compared to Seurat v311, LIGER10 and 
Harmony9 in two benchmark datasets: the mouse atlas dataset and the human pancreas 
dataset (see Supplementary Table 1). For Seurat3, LIGER and Harmony, the batch 
correction was done with the same parameters used in a previous benchmark study26.  
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To evaluate the batch integration performance, average Silhouette width (ASW), 
adjusted Rand index (ARI), and local inverse Simpson’s index (LISI)9 were calculated for 
the batches and cell types using the Euclidean distance as described in a previous 
benchmark26. To make a fair evaluation, only the cell types that are present in all 
batches were considered. We used the same number of dimensions (50) for these 
methods and all other parameters were set as in the benchmark. 
 
Average Silhouette width (ASW) 
 
Average Silhouette width is the mean value of Silhouette scores calculated from each 
cell. Silhouette width measures the relative closeness of cells with the same label 
compared to the cells with the different label and ranges from -1 to +1. Silhouette score 
for a data point with a label is calculated as  
 

𝑠𝑠(𝑖𝑖) =
𝑏𝑏(𝑖𝑖) − 𝑖𝑖(𝑖𝑖)

max{𝑖𝑖(𝑖𝑖), 𝑏𝑏(𝑖𝑖)} 

 
where 𝑖𝑖(𝑖𝑖) is the distance to the closest point with the same label, and 𝑏𝑏(𝑖𝑖) is the 
distance to the closest point with different labels. A high Silhouette score means the 
point is located more closely with the same label, where a low Silhouette score closer to 
-1 means the point is located closer with different labels than that of itself. The ideal 
batch correction result will give a low ASW score for batch labels as the point is well 
mixed with other batches and a high ASW score for the cell type labels as the cells of the 
same cell type should cluster together after the batch correction. The final score is 
calculated as the median ASW scores from 20 subsets of randomly sampled 80% cells.  
 
Average Rand Index (ARI) 
 
To evaluate the cell type purity, the true cell type labels and the k-means clustering 
solution were used to calculate the cell type ARI. To evaluate the batch correction 
performance, the true batch labels and the k-means clustering solution were used to 
calculate the batch ARI. The final ARI was calculated as the median ARI scores of 20 
subsets comprised of randomly sampled 80% cells for batches and cell types, 
respectively.  A superior batch correction will have a high cell type ARI (high agreement 
between the clustering solution and the true cell type labels), and a low batch ARI ( the 
clustering solution is not mainly driven by batches and clusters contain cells with well-
mixed batch labels). 

 
Local Inverse Simpson’s Index (LISI) 
 
Local Inverse Simpson’s Index (LISI) 9 measures the local batch and cell type mixing. For 
each data point, it considers the Gaussian kernel weighted distribution of labels in its 
neighborhood with a perplexity argument. We set perplexity to 50 40 as in the previous 
benchmark study. Using the weighted neighborhood label distribution, the inverse 
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Simpson’s index is calculated as 1
∑ 𝑝𝑝(𝑙𝑙)𝑙𝑙

 where 𝑙𝑙 is the batch or cell type labels and 𝑝𝑝(𝑙𝑙) is 

the probability of each label in the local neighborhood obtained with the kernel. For 
each cell, the LISI is the expected number of cells to be sampled locally before a cell of 
the same label is sampled. A perfect batch correction will have a cell type LISI (cLISI) of 1 
and a batch LISI (integration LISI, iLISI) close to the number of batches. The final LISI 
score was calculated as the average LISI scores of all cells. 

 
Benchmarking single cell multi-omics integration methods 

 
Two pairs of scRNA-seq and scATAC-seq datasets manually split from the dual-omics 
SHARE-seq mouse skin dataset and 10X PBMCs dataset respectively were used for the 
modality integration task. For Seurat and LIGER, the parameters and preprocessing were 
done as described in their documentations. However for the LIGER analysis of the 
SHARE-seq mouse skin dataset the parameter ‘lambda’ was set to 30 and the 
‘ref_dataset’ was set to scATAC-seq to get a better alignment. For the Raw results, the 
activity matrix of scATAC-seq was constructed using Seurat and the first 20 PCs of the 
scRNA-seq count matrix and the activity matrix were used for the comparison. The 
integration results generated by each method were evaluated with four metrics—
Anchoring distance, anchoring distance rank, Silhouette index, and cluster agreement— 
as described below.  
 
Anchoring distance 
 
The Anchoring distance  was proposed in Dou et al., 202047 and is the normalized 
distance between the matched cells of two modalities (e.g. RNA and ATAC). Here we 
considered the Euclidean distance and normalized the distance by the mean of the 
distances calculated between random pairs of cells. The number of pairs randomly 
sampled was set to 10% of the total number of cells. 
 

 Anchoring distance rank 
 
Given that the anchoring distance does not account for the local density of cells, we 
propose a new metric entitled anchoring distance rank (ADR). The ADR is based on the 
normalized rank of the distance between the matched cells of two modalities. For each 
cell 𝑥𝑥𝑖𝑖𝑖𝑖 with cell identity i and modality j, the distance between the cell and all the other 
cells of the other modality j’, 𝑑𝑑�𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑘𝑘𝑖𝑖′�,𝑘𝑘 = 1, … ,𝑁𝑁 is calculated, where N is the total 
number of cells. Then the rank of 𝑟𝑟𝑖𝑖 =  𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑖𝑖𝑖𝑖′) within the calculated distances is 
normalized by the number of pairs 𝑁𝑁 − 1 to obtain the final anchoring rank 𝑚𝑚𝑖𝑖 = 𝑟𝑟𝑖𝑖−1

𝑁𝑁−1
. 

For each cell, an anchoring rank of 0 indicates an ideal modality integration performance 
as the matched cells are closest to each other in the embedding.  
 
Silhouette index 
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The silhouette index was calculated as described in 10) based on the cluster assignment 
wherein each cluster consists of two cells, one cell from a scRNA-seq dataset and one 
cell from a scATAC-seq dataset.  
 
Fraction in the same cluster 
 
Fraction in the same cluster was calculated as the fraction of the matched cells from two 
modalities in the same cluster. The clusters of cells were generated using Louvain 
algorithm and the number of clusters is equal to the number of cell types in the dataset. 

 
Data availability: 
 
All the datasets used in this study (eight scRNA-seq datasets, four scATAC-seq datasets, and 
three dual-omics datasets) are summarized in Supplementary Table 1. All these datasets are 
curated in the SIMBA package, and they can be easily downloaded and imported directly to 
reproduce the analyses presented in this manuscript. 
 
Code availability: 
 
We provide a comprehensive Python package ‘simba’ available at 
https://anaconda.org/bioconda/simba and https://github.com/pinellolab/simba. All the 
proposed procedures are implemented in the “simba” package. ‘simba’ can be easily installed 
with conda “conda install -c bioconda simba”. We also built a website (https://simba-
bio.readthedocs.io), providing a detailed introduction of the ‘simba’ software and several 
SIMBA tutorials for different types of single-cell analyses presented in this manuscript. 
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Supplementary Figure 1. SIMBA analysis of the scRNA-seq 10x PBMCs dataset. 

a. Three default metrics used to evaluate SIMBA training procedure, including training loss 
(top), validation loss (middle), mean reciprocal rank (MRR) 

b. SIMBA metric plots of genes. All the genes are plotted according to the Gini index 
against max score, standard deviation (std) against max score, and entropy against max 
score, respectively. The same set of genes as in Figure 2c are highlighted. 

c. UMAP visualization of SIMBA embeddings of cells colored by cell type or gene 
expression of those genes highlighted in (b). 

d. SIMBA barcode plots of the genes highlighted in (b). 
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Supplementary Figure 2. Comparison of SIMBA with Scanpy on the scRNA-seq 10x PBMCs 
dataset. 

a. Venn diagram of top marker genes identified by SIMBA and Scanpy 
b. Scanpy-derived UMAP visualization of cells colored by cell type 
c. Top marker genes detected only by SIMBA. Colored by intensity of gene expression. 
d. Top marker genes detected only by Scanpy. Colored by intensity of gene expression.  
e. SIMBA embedding result after implementing variable gene selection. Left: variable gene 

selection step implemented in SIMBA. Middle: UMAP visualization of SIMBA 
embeddings of cells. Right: UMAP visualization of SIMBA embeddings of cells and 
variable genes.  
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Supplementary Figure 3. SIMBA analysis of the Buenrostro2018 dataset 
 

a. UMAP visualization of SIMBA embeddings of cells colored by cell type (top-left), and TF 
activity scores of TF motifs calculated with chromVAR, respectively. The SIMBA barcode 
plot of each TF motif is shown below the UMAP plot. 

b. Top: UMAP visualization of SIMBA embeddings of cells colored by TF activity scores of k-
mers calculated with chromVAR. Middle: SIMBA barcode plots of the corresponding k-
mers. Bottom: the matching known motif against the enriched k-mer sequences. 

c. Heatmap of cells against neighboring peaks of each cell type that are selected in the 
SIMBA co-embedding space. Chromatin accessibility is binary and colored accordingly.  
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Supplementary Figure 4. Comparison of SIMBA performance using scATAC-seq peaks and DNA 
sequence content vs only scATAC-seq peaks.  
 
Top: UMAP visualization of SIMBA embeddings of cells for each indicated dataset generated 
from only scATAC-seq peak information.  
 
Bottom: UMAP visualization of SIMBA embeddings of cells for each indicated dataset generated 
from scATAC-seq peak information and DNA sequence content information.  
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Supplementary Figure 5. Benchmark of SIMBA against top-performing scATAC-seq analysis 
methods. 
  
Top: Evaluation of SIMBA and other methods including cisTopic, SnapATAC, Cusanovich2018 for 
scATAC-seq analysis using metrics 1) ARI, AMI, and Homogeneity for datasets with ground truth 
cell type labels and 2) Residual Average Gini Index (RAGI) for the 10x PBMCs dataset without 
ground truth labels. 
 
Bottom: UMAP visualization of feature matrices produced by each method on each dataset 
colored by cell type annotation or cluster label.  
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Supplementary Figure 6. SIMBA multimodal analysis of the SHARE-seq hair follicle dataset. 
 
a. SIMBA embedding results when both gene expression and chromatin accessibility are 

encoded in the graph. Left: UMAP visualization of SIMBA embeddings of cells and genes. 
Middle: UMAP visualization of SIMBA embeddings of cells along with genes, TF motifs, and 
k-mers. Right: UMAP visualization of SIMBA embeddings of cells along with genes, peaks, TF 
motifs, and k-mers. 

b. SIMBA embedding results when only gene expression is encoded in the graph. Left: UMAP 
visualization of SIMBA embeddings of cells. Right: UMAP visualization of SIMBA embeddings 
of cells and variable genes. 

c. SIMBA embedding results when only chromatin accessibility is encoded in the graph. Left: 
UMAP visualization of SIMBA embeddings of cells. Right: UMAP visualization of SIMBA 
embeddings of cells and peaks. 
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Supplementary Figure 7. Cell type specific marker genes and the target genes of master 
regulators identified by SIMBA in the SHARE-seq hair follicle subset dataset. 
 

a. UMAP visualization of SIMBA embeddings of cells colored by cell type and gene 
expression intensity.  

b. SIMBA barcode plots of each gene plotted above.  
c. SIMBA barcode plots of TF motifs Lef1 and Hoxc13.  
d. SIMBA barcode plots of peaks near the loci of Lef1 and Hoxc13. 
e. Top 30 target genes of the master regulators Relb, Gata6, and Nfatc1 as inferred by 

SIMBA.   
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Supplementary Figure 8. SIMBA multimodal analysis of the SNARE-seq mouse cerebral cortex 
dataset. 
 

a. From top to bottom: UMAP visualization of SIMBA embeddings of (i) cells (ii) genes 
alongside cells (iii) genes, motifs, and k-mers alongside cells (iv) genes, peaks, motifs, 
and k-mers alongside cells. 

b. UMAP visualization of SIMBA embeddings of cells colored by indicated gene expression 
intensity.  

c. Heatmap of cells against neighboring peaks of each cell type that are selected in the 
SIMBA co-embedding space. Chromatin accessibility is binary and colored accordingly.  

d. SIMBA barcode plots of the genes highlighted in (a). 
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Supplementary Figure 9. SIMBA multimodal analysis of the 10x multiome PBMCs dataset. 
 

a. From top to bottom: UMAP visualization of SIMBA embeddings of (i) cells (ii) genes 
alongside cells (iii) genes, motifs, and k-mers alongside cells (iv) genes, peaks, motifs, 
and k-mers alongside cells. 

b. UMAP visualization of SIMBA embeddings of cells colored by indicated gene expression 
intensity.  

c. Heatmap of cells against neighboring peaks of each cluster that are selected in the 
SIMBA co-embedding space. Chromatin accessibility is binary and colored accordingly.  

d. SIMBA barcode plots of the genes highlighted in (a). 
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Supplementary Figure 10. SIMBA-inferred marker genes for the scRNA-seq mouse atlas dataset 
in batch correction analysis. 
 

a. UMAP visualization of SIMBA embeddings of cells colored by cell type.  
b. UMAP visualization of SIMBA embeddings of cells and genes.  
c. UMAP visualization of SIMBA embeddings of cells and genes. Biological “query” points 

are highlighted with a red “+”. Nearby informative genes are colored accordingly.   
d. UMAP visualization of SIMBA embeddings of cells colored by indicated gene expression 

intensity, separated by cell type.  
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Supplementary Figure 11. SIMBA-inferred marker genes for the scRNA-seq human pancreas 
dataset in batch correction analysis. 
 

a. UMAP visualization of SIMBA embeddings of cells colored by cell type.  
b. UMAP visualization of SIMBA embeddings of cells and genes.  
c. UMAP visualization of SIMBA embeddings of cells and genes. Biological “query” points 

are highlighted with a red “+”. Nearby informative genes are colored accordingly.   
d. UMAP visualization of SIMBA embeddings of cells colored by indicated gene expression 

intensity, separated by cell type.  
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Supplementary Figure 12. Comparison of SIMBA to other methods for batch correction of the 
mouse atlas and human pancreas scRNA-seq datasets. 
 

a. UMAP visualization of raw and preprocessed mouse atlas data alongside the batch 
corrected results produced by Seurat3, LIGER, Harmony, and SIMBA. Colored by 
technology (top) and cell type (bottom).  

b. UMAP visualization of raw and preprocessed mouse atlas data alongside the batch 
corrected results produced by Seurat3, LIGER, Harmony, and SIMBA. Colored by batch 
origin (top) and cell type (bottom).  
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Supplementary Figure 13. SIMBA-inferred marker features for the SHARE-seq mouse skin 
dataset in multi-omics integration analysis. 
 

a. UMAP visualization of SIMBA embeddings of cells colored by cell type.  
b. UMAP visualization of SIMBA embeddings of cells, genes and peaks.  
c. UMAP visualization of SIMBA embeddings of cells, genes and peaks. Biological “query” 

points are highlighted with a red “+”. Nearby informative genes and peaks are colored 
accordingly.   

d. Heatmap of cells against neighboring peaks of each cell type that are selected in the 
SIMBA co-embedding space. Chromatin accessibility is binary and colored accordingly.  

e. UMAP visualization of SIMBA embeddings of cells colored by indicated gene expression 
intensity, separated by cell type.  
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Supplementary Figure 14. SIMBA-inferred marker features for the 10x human PBMCs dataset in 
multi-omics integration analysis. 
 

a. UMAP visualization of SIMBA embeddings of cells colored by cluster assignment.  
b. UMAP visualization of SIMBA embeddings of cells, genes and peaks.  
c. UMAP visualization of SIMBA embeddings of cells, genes and peaks. Biological “query” 

points are highlighted with a red “+”. Nearby informative genes and peaks are colored 
accordingly.   

d. Heatmap of cells against neighboring peaks of each cluster that are selected in the 
SIMBA co-embedding space. Chromatin accessibility is binary and colored accordingly.  

e. UMAP visualization of SIMBA embeddings of cells colored by indicated gene expression 
intensity, separated by cell type.  
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Supplementary Figure 15. Comparison of SIMBA to other methods for multi-omics integration 
of the SHARE-seq mouse skin and 10x multiome human PBMCs datasets. 
 

a. UMAP visualization of the raw scRNA-seq and scATAC-seq data from the SHARE-seq 
mouse skin dataset alongside the integrated results produced by Seurat3, LIGER, and 
SIMBA. Colored by data modality (top) and cell type (bottom).  

b. UMAP visualization of the raw scRNA-seq and scATAC-seq data from the 10x multiome 
human PBMCs dataset alongside the integrated results produced by Seurat3, LIGER, and 
SIMBA. Colored by data modality (top) and cluster assignment (bottom).  
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