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Abstract 
 
Connector ‘hubs’ are brain regions with links to multiple networks. These regions are 
hypothesized to play a critical role in brain function. While hubs are often identified based on 
group-average functional magnetic resonance imaging (fMRI) data, there is considerable inter-
subject variation in the functional connectivity profiles of the brain, especially in association 
regions where hubs tend to be located. Here we investigated how group hubs are related to 
locations of inter-individual variability, to better understand if hubs are (a) relatively conserved 
across people, (b) locations with malleable connectivity, leading individuals to show variable hub 
profiles, or (c) artifacts arising from cross-person variation. To answer this question, we 
compared the locations of hubs and regions of strong idiosyncratic functional connectivity 
(“variants”) in both the Midnight Scan Club and Human Connectome Project datasets. Group 
hubs defined based on the participation coefficient did not overlap strongly with variants. These 
hubs have relatively strong similarity across participants and consistent cross-network profiles. 
Consistency across participants was further improved when participation coefficient hubs were 
allowed to shift slightly in local position. Thus, our results demonstrate that group hubs defined 
with the participation coefficient are generally consistent across people, suggesting they may 
represent conserved cross-network bridges. More caution is warranted with alternative hub 
measures, such as community density, which are based on spatial proximity and show higher 
correspondence to locations of individual variability. 
 
Keywords: Functional connectivity, Hubs, Graph theory, Network neuroscience, Individual 
differences  
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1. Introduction 

 
In the past two decades there has been a steady increase in the application of network 

science methods to cognitive neuroscience, particularly in the analysis of functional networks 
measured with fMRI. Functional brain networks are sets of brain regions with inter-correlated 
fMRI Blood Oxygen Level Dependent (BOLD) signals. These networks are present when 
subjects are engaged in a task or at rest (Gratton et al., 2018a). Different functional brain 
networks have been implicated in distinct psychological functions including sensory, motor, 
memory, self-referential processing, and cognitive control (Biswal et al., 1995; Dosenbach et al., 
2007; Dosenbach et al., 2006; Greicius et al., 2003; Seeley et al., 2007; Thomas Yeo et al., 
2011). However, many complex tasks require integration of distinct functional systems, requiring 
an understanding of the interactions between brain networks (Bullmore and Sporns, 2009; 
Gratton et al., 2018b; Sporns, 2010). Network science methods provide an opportunity to 
quantitatively assess the distributed interactions within and across these diverse networks, as 
well as the role of specific regions within this network structure. 

Connector hubs (from this point forward simply referred to as hubs1) are specialized nodes 
within a complex system that have connections distributed across networks (Guimerà and 
Nunes Amaral, 2005; Power et al., 2013). Hubs appear to have an important role in brain 
networks, just as in many other complex systems (Bullmore and Sporns, 2009; Sporns, 2010; 
Van Den Heuvel and Sporns, 2011). Their position between different networks suggests that 
hubs may play an integrative role in brain function, perhaps associated with linking the distinct 
processes associated with different networks (Bertolero et al., 2018; Bertolero et al., 2017; 
Gratton et al., 2018b). Evidence in favor of this view comes from studies showing that hub 
activity is linked to a variety of tasks and cognitive processes (Bertolero et al., 2015; Cole et al., 
2013) and their functional connectivity varies across task contexts (Cole et al., 2013; Gratton et 
al., 2016).  Brain lesion literature also suggests that hubs play a critical role in network 
organization and brain function. Lesions to hubs lead to wide-spread cognitive deficits, relative 
to lesions to non-hub regions (Warren et al., 2014) and damage to hubs is has been associated 
with decreased brain network segregation (Gratton et al., 2012). Jointly, these findings suggest 
that hubs may play a central role in facilitating inter-network communication that enables various 
complex behaviors.  

However, most studies of functional networks and hubs have been conducted on group 
data, averaged across participants. The last few years have seen a substantial growth in studies 
showing that there is a considerable amount of inter-subject variation in functional connectivity 
(Bijsterbosch et al., 2018; Finn et al., 2015; Gordon et al., 2017a; Gordon et al., 2017b; Gratton 
et al., 2018a; Kong et al., 2019; Miranda-Dominguez et al., 2014; Mueller et al., 2013; Seitzman 
et al., 2019). Reliance on group average data may obscure important individual differences 
(Smith et al., 2021), including variation in hub regions (Gordon et al., 2018). When a large 
amount of high-quality fMRI data is collected, reliable individual-level network maps can be 
obtained (Gordon et al., 2017b; Laumann et al., 2015). While individually-mapped networks 
generally resemble those found in group average data, in each participant particular locations 
show especially high deviation from the group average (Seitzman et al., 2019). These regions of 
idiosyncratic connectivity are called “network variants”. Variant regions have been shown to be 

                                                 
1 Note that there are many ways to define hubs within complex systems, ranging from classic degree-
based measures, to measures of centrality, to connector hubs (Bullmore, & Sporns, 2012; Van Den 
Heuvel, & Sporns, 2011). For the purposes of this work, we focus on connector hubs: because of their 
links to different networks, connector hubs are well situated for transferring information across functional 
systems and have been the focus of several past studies on the importance of hubs in the human brain 
(Bertolero et al., 2015; Cole et al., 2013; Gratton et al., 2012; Gratton et al., 2016; Power et al., 2013). 
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stable within individuals, exhibit activation patterns similar to the network they connect with, and 
relate to behavioral measures collected outside the scanner (Seitzman et al., 2019). These 
findings suggest that variants are trait-like features of brain organization.  

Locations of high inter-individual variability are most prominent in higher-level association 
regions (Finn et al., 2015; Gratton et al., 2018a; Kong et al., 2019; Mueller et al., 2013), with 
network variants most frequently found in the lateral frontal cortex and near the temporal-
parieto-occipital cortex (Seitzman et al., 2019). Hubs are also typically found in association 
regions, especially the frontoparietal and cinguloopercular “control” networks (Cole et al., 2013; 
Power et al., 2013). Thus, an important question is how hubs relate to locations of individual 
variation in functional connectivity and more specifically are hubs defined at the group level 
driven by inter-subject connectivity profile variation.  

Hubs, as previously measured in large groups (“typical” hub locations), and inter-individual 
variability in functional connectivity could be related in at least three different ways. One 
possibility is suggested by the vital role that hubs seem to play in tasks (Bertolero et al., 2018; 
Bertolero et al., 2015; Gratton et al., 2016; Warren et al., 2014), and the negative impact of 
damage to these regions (Gratton et al., 2012; Warren et al., 2014). This view would support the 
idea that hubs are critical brain locations that should be conserved across individuals, with 
major variations causing a significant negative impact on brain function and cognition, in the 
same way that nearly all humans are born with two functioning lungs If so, we would predict 
that, despite the high concentration of hubs in association regions, hubs will not overlap with 
locations of strong inter-individual variation. 

A second, contrasting, hypothesis is that, as hubs are locations with variable functional 
connectivity across networks (and task contexts (Bertolero et al., 2018; Cole et al., 2013; 
Gratton et al., 2016)), hubs may be locations with generally malleable connectivity profiles, 
including profiles that can differ strongly across subjects. This would predict a correspondence 
between hub locations and locations of inter-individual variability. In this view, group hubs would 
still show connectivity across multiple networks in individual people, but the networks bridged by 
a given hub location would be variable across individuals.   

Finally, it is possible that typical hubs observed in group average data are artifactual hubs, 
representing locations of high network variability across people rather than a hub (an area with 
network connectivity evenly distributed across multiple networks) within a person. That is, a 
group-level hub could represent an area that is coupled with a single network within each 
individual but vary in which network is present across individuals, yielding an average 
connectivity profile that has connectivity evenly distributed across multiple networks. This profile 
would be mistaken for a hub if researchers focus on analyzing a group-level connectivity map. 
These scenarios are illustrated jointly in Figure 1. Note that it is also possible that different 
scenarios apply to different hubs. 
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Figure 1: Schematic showing how group hubs may be organized within single individuals. The first column represents 
a “conserved hub”, a hub that has similar cross-network connectivity in each individual and in group-average data. 
The second column shows a “malleable hub”, a hub consistently present at the same location across individuals, but 
with distinct profiles in each individual (i.e., connecting to different networks). The third column represents an 
“artifactual hub”: within each individual, this location is a non-hub with connections to just one single network, but 
there is a great of inter-subject variability in the identity of this network. When data is averaged across subjects it 
appears that connectivity is evenly distributed across networks and makes this location appear to be a hub.  

 

The goal of this study is to address these different possibilities by determining how group 
hub locations relate to areas of individual variability in functional connectivity. We examined the 
relationship between hubs and measures of individual variability in both a deep “precision” fMRI 
dataset (Midnight Scan Club; MSC, N =9 participants with ~5 hrs of resting-state fMRI) and the 
large Human Connectome Project dataset (HCP; N = 752, with 1 hr of resting-state fMRI). We 
focused primarily by examining variability at hubs defined using the common participation 
coefficient metric for connector hubs (Bullmore and Sporns, 2009; Guimerà and Nunes Amaral, 
2005), a measure of how distributed a region’s connections are across different networks. Some 
additional analyses were conducted on an alternative metric of connector hubs termed 
“community density” (Power et al., 2013), a measure of how spatially proximal a region is to 
diverse networks.  

 

2. Methods 

2.1 Overview and datasets 
 
We analyzed data from 9 highly sampled subjects from the Midnight Scan Club (Gordon et 

al., 2017b) and 752 subjects from the Human Connectome Project dataset (Van Essen et al., 
2012). The HCP subjects are an expanded sample from that used in Seitzman et al., (2019) 
including all low motion individuals regardless of familial relationship (see Seitzman et al., 2019 
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for additional details on the composition and exclusion criteria). In each of these datasets, we 
identified locations of individual variability. A dataset of 120 healthy adults was used as a group 
average reference and to provide locations of group-average connector hubs (Power et al., 
2011; Power et al., 2013). This dataset has been described in detail in Power et al (2013). 
 
2.2 Data acquisition 

 
For all three datasets collection protocols were approved by the Washington University 

Internal Review Board. HCP data was acquired on a custom Siemens 3T Skyra with a custom 
32-channel head coil (Van Essen et al., 2012). The HCP scanning protocol included a pair of 
T1-weighted (256 slices, 0.7 mm3 isotropic resolution, TE = 2.14ms, TR = 2400ms, TI = 
1000ms, flip angle = 8 degrees) and a pair of T2-weighted (256 slices, 0.7 mm3 isotropic 
resolution, TR = 3200ms, TE = 565ms) images (Glasser et al., 2013). Functional scans were 
collected using a multi-band sequence with MB factor 8, isotropic 2 mm3 voxels, TE of 33ms, 
and TR of 720ms (Glasser et al., 2013; Van Essen et al., 2012). One hour of resting state data 
was acquired per subject in 15 min. intervals over two separate sessions (Van Essen et al., 
2012).  

For the MSC, high-resolution T1-weighted (224 slices, 0.8 mm3 isotropic resolution, TE = 
3.74ms, TR = 2400ms, TI = 1000ms, flip angle = 8 degrees), T2-weighted (224 slices, 0.8 mm3 
isotropic resolution, TE = 479ms, TR = 3200ms) both with 0.8 isotropic resolution, and resting 
state BOLD data were collected on a Siemens 3T Magnetom Tim Trio with a 12-channel head 
coil (Gordon et al., 2017b). Functional scans were collected with a gradient-echo EPI sequence, 
isotropic 4mm3 voxels, TE of 27ms, and TR of 2200ms (Gordon et al., 2017b). The MSC dataset 
acquired 5 hours of resting state data per subject in 30 min. blocks over 10 separate sessions 
(Gordon et al., 2017b).  

 The WashU-120 dataset was collected on a Siemens MAGNETOM Tim Trio, 3T scanner 
with a Siemens 12 channel Head Matrix Coil. Both T1-weighted (127 slices, 1 mm3 isotropic 
resolution, TE = 3.06ms, TR = 2400ms, TI = 1000ms, flip angle = 8 degrees) and T2-weighted 
(32 slices, 2 × 1 × 4 mm3 resolution, TE = 84ms, TR = 6800ms) scans were collected (Power et 
al., 2013; Power et al., 2014). The amount of resting state data collected per subject ranged 
from 7.7 to 16.5 min (TE = 27ms, isotropic 4mm3 voxels; TR = 2500ms, flip angle = 90 degrees).  

 
 
2.3 Preprocessing 

 
2.3.1 General Preprocessing 

 
For each of the three datasets the T1-weighted images were processed via automatic 

segmentation of the gray matter, white matter, and ventricles in Freesurfer 5.3 (Fischl et al., 
2002). The default recon-all command in Freesurfer was then applied to produce the anatomical 
surface for each subject (Dale, 1999). In the MSC dataset, these surfaces were manually edited 
to improve the quality of the registration. The surfaces were registered to the fs_LR_32k surface 
space via the procedure outlined in Glasser et al. (2013). 

For the HCP dataset the volumetric BOLD time series from each run were concatenated. 
Slice timing correction was not performed for the HCP dataset in accordance with the minimal 
preprocessing pipeline guidelines (Glasser et al., 2013). Field inhomogeneity distortion 
correction was conducted using the mean field map. Motion correction was conducted using 
rigid body transforms aligning to the first frame of the first run. After this step whole-brain 
intensity values across each BOLD run were normalized to achieve a mode value of 1000 
(Miezin et al., 2000). This dataset was processed in MNI atlas space with 2 mm isotropic voxels.   
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The preprocessing pipelines used for the MSC and WashU-120 datasets were almost 
identical to the HCP with some minor exceptions. Field inhomogeneity distortion correction 
using the mean field map was applied to all sessions for the MSC dataset but not for the WashU 
120 given that field maps were not collected for this dataset (Gordon et al., 2017b; Laumann et 
al., 2015). Slice timing correction was performed in both the MSC and WashU-120 datasets 
using sinc interpolation to account for temporal misalignment in slice acquisition time. This was 
followed by motion correction which was performed within and across BOLD runs (aligned to the 
first frame of the first run) via a rigid body transformation. Then whole-brain intensity values 
across each BOLD run were normalized to achieve a mode value of 1000 (Miezin et al., 2000). 
For the WashU-120 functional BOLD data was then registered directly to a high resolution T1-
weighted structural image from each participant. For the MSC functional BOLD data was first 
registered to a T2-weighted image and then to the T1. An affine transformation was used for 
registration in both datasets. The T1-weighted image was aligned to a template atlas (Lancaster 
et al., 2000) conforming to Talairach stereotactic atlas space using an affine transformation. All 
computed transformations and re-sampling to 3 mm isotropic voxels were simultaneously 
applied at the end of these steps 
 
2.3.2 Resting State Connectivity Pipeline  

 
Steps were taken to mitigate the influence of artifacts on resting state BOLD time series.  

The impact of nuisance signals was attenuated via regression of average signal from the white 
matter, ventricles, global signal, motion parameters, as well as their derivatives and expansion 
terms (Friston et al., 1998; Power et al., 2014). The impact of motion was further mitigated via 
the removal of frames with framewise displacement > 0.2 mm, in addition to sequences 
containing less than 5 contiguous low motion frames, the first 30 seconds of each run, and runs 
with < 50 low motion frames (Power et al., 2014). In the HCP dataset, before censoring high-
motion frames, motion parameters were low-pass filtered at 0.1 Hz to reduce the effects of 
respiratory artifacts on motion estimates stemming from the short-TR multi-band acquisition 
(Fair et al., 2020; Gratton et al., 2020; Siegel et al., 2017). Then a filtered FD threshold of 0.1 
mm was applied to censor frames. The same filtering procedure was also applied to two MSC 
subjects (MSC03 and MSC10) with respiratory contamination in their motion parameters. In all 
cases, flagged head motion frames were removed and the time points were replaced with 
interpolated data using a power-spectral matched approach (Power et al., 2014), after which a 
bandpass filter (0.009 Hz-0.08 Hz) was applied to the data.  

As previous results have indicated that ~45 min. of low motion data are necessary to 
achieve high reliability of network variant locations (Kraus et al., 2021; Seitzman et al., 2019), 
we then removed any participant with less than 75%, or 45 min., of data in the HCP. In the 
1200-HCP release, this resulted in 752/1206 final participants. In the MSC dataset 9/10 
participants were retained (Gordon et al., 2017b). The excluded MSC participant was removed 
due to high motion and drowsiness (Gordon et al., 2017b; Laumann et al., 2017). 
 For all datasets the processed BOLD data were mapped to each individual’s native 
midthickness surface via the ribbon-constrained sampling procedure (Marcus et al., 2013). 
Then, the mapped data were registered to the fsaverage surface in one step using the 
deformation map generated from the ribbon-constrained sampling procedure described in 
Glasser et al., (2013). Next, smoothing was conducted via a geodesic Gaussian smoothing 
kernel to the surface registered data (FWHM = 6 mm, sigma = 2.55) (Gordon et al., 2016; 
Marcus et al., 2011).Temporally interpolated frames were then removed prior to functional 
connectivity analysis. Functional connectivity was calculated as the Pearson correlation 
coefficient between different cortical locations, based on time series averaged across regions.   
 
2.4 Regions of interest and functional brain networks 
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A set of 264 spherical (10 mm diameter) regions of interest from (Power et al., 2011) were 

used as a basis to define group-average brain hubs (Power et al., 2013). These regions divide 
into networks largely overlapping with the 14 canonical networks defined in (Gordon et al., 
2017a): the default mode (DMN), visual, fronto-parietal (FP), dorsal attention (DAN), language 
(Lang), salience, cingulo-opercular (CO), somatomotor dorsal (SMd), somatomotor lateral (SMl), 
auditory, temporal pole (Tpole), medial temporal lobe (MTL), parietal medial (PMN), and parieto-
occipital (PON). Group hubs were defined from the 264 spherical regions, based on 
participation coefficient estimates previously published in Power et al. (2013) which were 
calculated from the group average of the WashU-120 dataset (see Section 2.5). 

The 14 canonical networks are also defined at the cortical surface vertex level in the 
WashU-120 group average (Laumann et al., 2015). The cortical surface networks were used for 
the network profile analyses (see section 2.6.3). These networks were defined with the Infomap 
clustering algorithm (Rosvall and Bergstrom, 2008) which yielded data-driven functional network 
definitions for a range of edge density thresholds from 0.3%-5% (Gordon et al., 2017b). A group 
average network consensus map was derived by collapsing network definitions across 
thresholds. 

Measures of inter-individual variation (spatial correlations between an individual and the 
group average and identification of network variants) were calculated at the single cortical 
vertex, rather than regional, level. These are described in Section 2.6. 

  
2.5 Hub Definition 
 

Hubs were defined by two approaches: participation coefficient and community density. 
Primary analyses focused on the locations of brain hubs defined in group average data relative 
to locations of individual differences. These were derived from the WashU-120 group-average 
dataset based on published values from Power et al., (2013).  
 
2.5.1 Participation coefficient hubs: 
 

The participation coefficient is a graph theoretic measure that captures how evenly 
distributed a node’s connections are across networks (Guimerà and Nunes Amaral, 2005); see 
Figure 2A for schematic). The participation coefficient for node 𝑖 is defined as PC𝑖=1 −

Σ𝑠=1
𝑁𝑀  (

𝑘𝑖𝑠

𝑘𝑖
)2 , where 𝑘𝑖  is the degree (the number of edges/connections to nodes in the given 

node’s module/network) of node 𝑖,  𝑘𝑖𝑠 is the number of edges of node 𝑖 to nodes in 

module/network 𝑠, and 𝑁𝑀 is the total number of networks/modules in the graph.  
Participation coefficient hubs in the group were identified based on a previously 

published analysis of the large WashU-120 group-average dataset (Power et al., 2013). In brief, 
in that work the participation coefficient was calculated for each of 264 regions (nodes) for a 
range of sparsity thresholds from 2-10% edge density in 1% steps (network definitions were 
derived at each threshold for these calculations as well using the Infomap community detection 
algorithm [(Rosvall and Bergstrom, 2008)]). Participation coefficient values were then 
normalized and summed across thresholds to result in a final value for each region. The ten 
regions with the highest participation coefficient values out of a set of 264 regions of interest 
were selected for analysis. The MNI coordinates of the centers of each of these ten spherical 
regions of interest were projected to a vertex on the Conte69 midthickness surface and dilated 
to a 5mm radius. In addition, these locations were checked to determine if more than 30% of 
their vertices overlapped with a low signal mask (mean BOLD signal less than 750 computed as 
in (Ojemann et al., 1997)). No hub vertices overlapped with the low signal mask. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2021. ; https://doi.org/10.1101/2021.10.17.464723doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.17.464723
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.5.2 Community density hubs: 
 

Hubs defined by community density were based on the top 10 community density peaks 
listed in Power et al., (2013). In brief, these were defined through the following procedure. 
Cortical voxels were assigned to networks using the Infomap clustering algorithm (Rosvall and 
Bergstrom, 2008) at a range of density thresholds (0.5-2.5% at 0.5% intervals). Community 
density was defined as the number of networks appearing within a radius of a given voxel (with 
radii ranging from 5-10mm in increments of 1mm). Values were summed across thresholds and 
radii after normalizing the values within each analysis, resulting in one final community density 
value per voxel. The MNI coordinates of the top 10 community density peaks were then 
projected to the cortical surface and dilated 5mm. As before, regions were checked for overlap 
with a low signal mask; none of these regions exceeded the overlap threshold.     
 
 
2.5.3 Locations of inter-subject variation in functional connectivity 
 

The similarity of an individual’s connectivity profile and the group average connectivity 
profile was gauged via a spatial correlation following previously published methods (Laumann et 
al., 2015; Seitzman et al., 2019) (see Figure 2b for schematic). For each vertex on the cortical 
surface, its BOLD time series was correlated with the time series for every other vertex to form a 
seed correlation map. Each seed correlation map (connectivity profile for a given location) was 
Fisher Z transformed, vectorized, and the correlated (Pearson correlation) with the Fisher Z 
transformed correlation vector of the corresponding cortical vertex in the group average data 
map, resulting in a single similarity value for that location. Across all locations we use these 
values to form a map of correlations between the individual level connectivity profile and the 
group average connectivity profile, which we refer to in this work as a “similarity map”.  

Areas of extreme idiosyncratic functional connectivity, which we call “network variants” 
were then defined from this map using a recently developed procedure (Seitzman et al., 2019). 
We began with the similarity map and then identified the locations that were most dissimilar 
(bottom 10%) between an individual and the group. Regions were required to be composed of 
at least 50 contiguous vertices, fall outside areas with a low signal (mean BOLD signal less than 
750 computed as in (Ojemann et al., 1997)), and to not overlap with the network the area’s 
vertices were originally assigned (Seitzman et al., 2019).  

In order to determine where variants are most frequently found, we created an overlap 
map of the network variants across participants. The frequency of variants was defined as the 
percentage of subjects with a variant at a given cortical location (vertex). Variant frequency 
maps were produced for both the HCP and MSC datasets (Seitzman et al., 2019).   
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Figure 2: A schematic of the identification of connector hubs and locations of inter-individual variability. (A) Connector 
hubs are locations with connections to multiple networks. Brain network regions, or ‘nodes’ can be depicted on the 
brain based on their location (left image) or as a spring-embedded network (middle left), where nodes with more 
connections are placed closer together (colors = networks). In this depiction, it becomes clear that some nodes lie 
intermediate to multiple networks, a characteristic that can be quantified with the participation coefficient (Guimera & 
Ameral 2005; middle right). Here, we ask how connector hubs relate to locations of inter-individual variability. (B) The 
identification of locations of inter-individual variability starts by comparing the connectivity profile for each vertex in an 
individual level seed connectivity map (subject map) to the seed connectivity map for the corresponding vertex in the 
group average reference dataset (group map). For each vertex the spatial correlation between these two maps is 
calculated to produce a similarity map that represents how similar an individual is to the group at each vertex. 
Variants are defined as sets of at least 50 contiguous vertices, not falling in low SNR locations, that are all in the 
bottom similarity decile (lowest 10% of locations). 

2.6 Relationship between hubs and locations of individual variability  
 

The relationship between hubs and locations of individual variability was analyzed in 
several ways. First, we examined whether the hubs collectively overlap with network variant 
locations (locations of extreme variability). We also examined to extent to which single hub 
locations overlapped with variants. Second, we used the continuous individual-to-group 
similarity map to examine more subtle variations at hub locations. Third, we examined the 
network profile of connector hubs within single individuals and employed a local spotlight 
procedure to determine if it was possible to slightly adjust the position of hubs to improve inter-
subject correspondence.  
 
2.6.1 Quantification of overlap between group-average hubs and variants 
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We first examined the overlap of variants with group hub locations. The top 10 group 
hubs were defined as described above, using both participation coefficient and community 
density. A variant frequency map was then produced for each dataset, capturing the frequency 
of variants at each cortical location. We then measured the overlap between these maps. 

To determine if the frequency of variants at hub locations is greater than what would be 
expected for a random set of cortical locations of the same size with a similar spatial 
configuration, a null distribution was generated by randomly rotating a set of hubs across the 
cortical surface (Gordon et al., 2016). For each set of hubs (either participation coefficient or 
community density based) 1000 rotations were randomly generated and performed within each 
hemisphere. If any of the hubs intersected with the medial wall the rotation was recalculated 
until none of the hub locations overlapped with the medial wall. For each rotation, we calculated 
the average frequency of variants at rotated hubs. Across 1000 rotations, this produced a null 
distribution of the expected variant frequency at rotated hubs. We then compared the actual 
variant frequency for hubs (averaged across hub vertices) with that of the rotated distribution. 
This distribution was used to derive percentiles and 95% confidence intervals for the variant 
frequency of hubs. A similar analysis was conducted for each single hub as well, in this case 
comparing variation at that hub to a null made based on rotating only that hub location. 

 
2.6.2 Quantification of overlap between group-average hubs and subtle variation 

 
 The aforementioned analyses are geared towards determining if hubs overlap with areas 
of extreme inter-subject deviation in functional connectivity. In addition, we conducted a 
secondary analysis to investigate whether hubs overlapped with more subtle forms of inter-
subject variation. For this analysis, we used the continuous (unthresholded) individual-to-group 
similarity map described in section 2.5.3 for variant definition. For each vertex, a continuous 
value represents how similar this location is to the group average in a given MSC or HCP 
subject. We then determined whether this individual-to-group similarity of hubs was lower than 
expected by chance by comparing the values at hub locations with the values obtained through 
random rotations of hubs, as described above.   
 
2.6.3 Quantification of the network profile of hubs across individuals  

 
Next, we examined the network profile of hub locations within individual participants of the 

MSC, to determine whether they exhibited high connectivity to multiple (similar) networks. For 
each participation coefficient hub, the average correlation of the hub to each of the 14 canonical 
networks (defined on the cortical surface; see section 2.4) was calculated. This resulted in a 
14x1 network correlation vector for each participant for each hub that we call a ‘network profile’.  

2.6.4 Local adjustments of group hub locations 
 

Launching from the results of the network profile procedure above (2.6.3), we asked 
whether group hub locations could be slightly spatially shifted within individuals to improve the 
correspondence of hubs across people. We used a spotlight analysis to investigate this 
possibility in the MSC dataset. A spotlight was formed by dilating 10mm around the central 
vertex of a group hub. The hub center was then moved throughout this spotlight (with hub extent 
still defined based on a 5mm dilation). Potential hub locations with less than 70% of its vertices 
within a single network were removed from consideration. These potential hub locations were 
then trimmed  to encompass a single network (using the vertex-wise canonical network maps 
described in section 2.4).  
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At each potential hub location, we then examined how hubs were related to each of the 14 
canonical networks, creating a network profile vector as described in section 2.6.3. The resulting 
network profiles were compared (via Euclidean distance) to a group-average reference profile 
based on the WashU-120 dataset. The best fitting (lowest Euclidean distance to the reference) 
potential hub location was selected as the final adjusted hub location for a given individual.    

2.7 Data and code availability 
 
All of the data have previously been made publicly available (HCP: 
https://www.humanconnectome.org/; MSC: 
https://openneuro.org/datasets/ds000224/versions/00002; WashU 120: 
https://legacy.openfmri.org/dataset/ds000243/). Code for analysis related to network variants in 
MATLAB is available at: https://github.com/GrattonLab/SeitzmanGratton-2019-PNAS; other 
code related to MSC processing can be found at: https://github.com/MidnightScanClub. Code 
related specifically to the analyses in this article will be located at this link upon publication: 
https://github.com/GrattonLab/. 
  

3. Results 
 
3.1 Overview 

The aim of our investigation was to determine how group defined hubs relate to areas of 
variation in functional connectivity across people. We hypothesized that hubs are critical regions 
that should be conserved across individuals; thus they should exhibit relatively little variability 
across subjects. A second contrasting hypothesis is that these regions are malleable in their 
functional connectivity, exhibiting a high degree of variability in their connectivity profiles across 
participants (but still remaining a hub across participants). A final alternative is that typical hubs 
defined at the group level may arise from averaging non-hub regions associated with diverse 
single networks across individuals, creating an artifactual hub representation (Figure 1).  

To test these alternatives, we examined how group hubs relate to locations of individual 
variation in functional connectivity. We then characterized group hubs in more detail, by 
examining their network profiles and determining whether small local adjustments in those 
profiles improved correspondence across individuals. We focused primarily on hubs defined 
with the often used participation coefficient, a graph theoretic metric of the distribution of a 
node’s connections across different networks. Secondary analyses also contrasted these results 
with the alternative community density metric for connector hubs, which is based on the spatial 
proximity of a location to multiple different networks.  
 
3.2 Group hubs defined by the participation coefficient do not overlap with network variants  
 

How do hubs vary across people? We began by examining the locations of typical group 
hubs, defined as the top 10 participation coefficient regions estimated from a group-average of 
120 healthy young adults (WashU-120) in previous work (Power et al., 2013). The participation 
coefficient measure defines hubs as regions with distributed functional connectivity across 
networks (see section 2.5.1). In parallel, we identified locations of high inter-subject variability 
(which we term “network variants”; Seitzman et al 2019). We asked how hub locations 
corresponded with network variants across people. 

As can be seen in Figure 3, network variant locations are especially frequent in the 
temporoparietal junction, lateral frontal cortex, and the dorsal posterior cingulate. Participation 
coefficient group hubs are also found in association systems, but more prominently in the 
anterior insula, superior parietal cortex, and dorsolateral and medial frontal cortex (Figure 3, 
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Power et al., 2013). Thus, there appears to be relatively low overlap between participation 
coefficient hubs and locations that frequently vary across people.  

Confirming this qualitative description, participation coefficient hubs, as a whole, occurred 
over variants at a low rate in the HCP dataset, within the bounds of what would be expected by 
chance relative to 1000 random rotations of the hub set (Fig. 3B; 1.69% of people had variants 
at hub locations, at the 8th percentile of random rotations, 95% CI [1.22%, 7.93%]). This pattern 
replicated in the precision MSC dataset (Supp. Fig. 1A). Thus, group hubs defined by the 
participation coefficient do not show significant correspondence to areas of strong inter-subject 
variability.  
 

 
Figure 3: Comparison of group participation coefficient hubs to locations of inter-individual variation. A) The locations 
of group hubs defined using the participation coefficient are represented as light blue foci on the cortical surface. The 
heat map displayed on the cortical surface captures the frequency of variants (percentage of subjects with a variant 
at a location) based on the HCP dataset, with warmer colors indicating greater variant frequency. B) Compares the 
true frequency of variants at participation coefficient hubs (red dot) relative to random rotations of the hub set (black 
dots). Group hubs defined by the participation coefficient do not frequently overlap with areas of idiosyncratic 
functional connectivity.  

 
 

We also examined how each single hub varied (Fig. 4). The 10 top participation coefficient 
hubs were separately compared to a distribution of variant frequency in the HCP. This 
distribution was contrasted with a null overlap distribution produced from 1000 random rotations 
of a region of the same size as the hubs. None of these top participation coefficient hubs 
deviated from what would be expected from their null distribution (frequency of network variants 
at single hubs: 1.59% +/- 1.55%; frequency of network variants with random rotations: left 
hemisphere = 3.83% +/-5.46%; right hemisphere: 3.82% +/- 5.04%). The hub with the highest 
overlap with network variants was in the right superior caudal portion of the frontal lobe; this 
location had variants in 5.47% of people, still within the bounds of what would be expected by 
chance (77th percentile rotation). All other hubs were within a standard deviation of the null 
distribution’s mean. 

These findings show that group participation coefficient hubs do not frequently overlap with 
variants. This result is in line with the conserved hub hypothesis which states that the 
connectivity profiles of hubs are similar across individuals. In contrast, the malleable and 
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artifactual hub hypotheses predict that group hubs should correspond with areas of high 
idiosyncratic functional connectivity. 
 

 
Figure 4: Network variant frequency at single participation coefficient hub locations. Each foci on the cortical surface 
represents a participation coefficient hub based on group-average data. The scatter plots capture the relationship 
between the true frequency of network variants at a given hub region (red dot) and the amount expected by random 
rotations (black dots). None of the hubs significantly differed from what would be expected from random rotations and 
all but one of the hubs (in the superior frontal cortex) were below the mean of the null distribution.  

 
 
 
3.3 Community density hubs do overlap with locations of variability 

 
In past work, community density has been proposed as an alternative measure of connector 

hubs (Power et al., 2013). This measure defines hubs based on their proximity to multiple 
different networks, under the assumption that regions at the intersection between networks are 
well situated to mediate cross-network interactions. As before, we compared the locations of the 
top 10 group hubs, in this case defined based on community density in the same large sample 
of healthy young adults used in previous work (Power et al., 2013), with the map of the 
frequency of variants in the HCP dataset (Seitzman et al., 2019). As depicted in Figure 5A, the 
top community density hubs are found in somewhat similar locations to participation coefficient 
hubs, but more ventrally in the anterior insula, along the superior frontal cortex, and near the 
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temporoparietal junction. As a whole, community density hubs overlapped with network variant 
locations significantly more frequently than what would be expected by chance, as assessed 
with random rotations (Fig. 5B; 10.23% of people had variants at community density hubs, at 
the 99th percentile of random rotations, 95% CI [1.14%, 8.00%]). This result was replicated in 
the MSC dataset (Supp. Fig. 1B). These findings suggest that community density hubs from 
group-average data often overlap with areas of idiosyncratic functional connectivity, suggesting 
they may be identifying malleable (Fig. 1B) or artifactual (Fig. 1C) hubs. 

 
Figure 5: Comparison between group-average community density hubs and locations of strong inter-individual 
variability. A) The locations of group hubs defined using the community density metric are represented as light blue 
foci on the cortical surface. The heat map displayed on the cortical surface captures the frequency of network 
variants across people (percentage of subjects with a variant in at a location) based on the HCP dataset, with warmer 
colors indicating greater variant density. B) A scatter plot comparing the true frequency of variants (red dot) for the 
community density hub set to random rotations of the hub set (black dots). The high degree of correspondence 
between variants and community density hubs suggests that these hubs might be malleable or even artifactual hubs. 
 

 

As before, we examined these results in more detail by quantifying the overlap of specific 
community density hubs with network variants in the HCP dataset (Supp Fig. 2). On average, 
9.61% of people had variants over a connector hub (standard deviation: 6.44%; range: 0.58%-
20.44%). Two hubs fell outside of the 95% confidence intervals of what would be expected by 
chance based on random rotations: one in the right superior frontal cortex and one near the left 
temporoparietal junction, but neither case survived FDR correction (Benjamini and Hochberg, 
1995). Hubs in the left lateral frontal cortex, right temporoparietal junction, and the right lateral 
frontal cortex also exhibited relatively high frequency of variants. Thus, community density hubs 
generally have a high tendency to overlap with network variants, especially hubs in superior 
frontal cortex and near the temporoparietal junction. 

3.4 Participation coefficient hubs exhibit similarity to the group-average  

The previous analyses demonstrate that group-average participation coefficient hubs do 
not overlap strongly with network variants, areas of extreme individual deviation in functional 
connectivity. However, it is possible that more subtle forms of variation would be present at 
these hubs that are not captured by the extreme network variants. To investigate this question, 
we examined continuous measures of similarity at participation coefficient hubs (see Section 
2.6.2). 
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We measured the individual-to-group similarity of whole-brain functional connectivity for the 
top 10 participation coefficient hubs (Fig. 6). Participation coefficient hub locations generally had 
good spatial correlations with the group-average connectivity profile in both HCP (r = .59+/-.04) 
and MSC participants (r = .64+/- .04). Although the pattern of hub connectivity is generally 
consistent across subjects, there are some deviant cases like MSC09 hub 3 which will be 
explored further in sections 3.5 and 3.6). Comparisons with random rotations confirmed that hub 
regions show similar correspondence to the group average as other regions of cortex (see 
Supp. Fig. 3 and Supp. Table 1; all p(FDR) > .74). This suggests that participation coefficient 
hubs do not differ substantially across individuals, even in more subtle forms of variation.  

 

 
 
Figure 6: Continuous measures of individual-to-group similarity for participation coefficient hub locations. A) The 
location of group-average participation coefficient hubs are represented by the light blue circles, numbered for 
comparison to panels B and C. B) Each column of the x axis represents one of the analyzed MSC subjects and each 
row corresponds to one of the top participation coefficient hubs (corresponding number). The color scale represents 
the similarity of FC for a hub in each MSC individual relative to the group average, with warmer colors representing 
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greater similarity. For the most part hubs are similar to the group average connectivity profile. (C) The same 
measures were calculated for the 752 HCP participants and are represented in a violin plot. The median similarity is 
marked by a red line.  

 
3.5 Characterizing hubs based on their cross-network profiles  

The current findings suggest that hubs are largely similar in whole-brain functional connectivity 
across individuals, in the bounds of what would be expected for other regions of cortex. Next we 
examined which networks each participation coefficient hub was connected with in individuals, 
to formally address the conserved vs. malleable hub hypotheses posed in the introduction. For 
each hub in each MSC participant, we measured its connectivity to 14 canonical networks, 
creating a network profile for that region.  

These profiles are shown for the top 10 participation coefficient hubs in Figure 7. Many hubs 
showed strong connectivity between 2 networks (1, 2, 5, 8), while others appeared to connect 
with a broader set (e.g., hub 3, 10). The network profiles were generally consistent across the 
MSC participants and the group average, in accord with the conserved hub hypothesis. 
However, some exceptions were present (e.g., MSC02 for Hub 1).  
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Figure 7: Network profiles for group-average participation coefficient hubs. For each hub (color map sub-plots), we 
show the network profile for the 9 MSC participants (columns) and WashU-120 group average (final column) to 14 
canonical networks (rows; see Methods). The hub locations are shown in the bottom right corner and the canonical 
network maps are shown in the bottom left corner (each network is represented by a color). 

 

3.6 Hub locations improve in correspondence if adjusted slightly in position 

We observed some exceptions to the conservation in network profiles (Fig. 7) and similarity 
(Fig. 6) across participants (e.g., MSC02 for Hub 1, MSC09 for Hub 3). We next asked whether 
these exceptions could be ameliorated if hub locations were allowed to shift slightly in location 
between individuals. In order to investigate this possibility, we developed a spotlight procedure, 
in which hubs were adjusted slightly in position within each individual within a 10mm radius to 
find the location with the best matching network connectivity profile (see Methods; Fig. 8).  
 

 
Figure 8: Hub local adjustment procedure. Results of a spotlight search procedure for two representative example 
hubs (Hub 1 and Hub 3) show that for most subjects hub like areas can be found within a tight zone around a group 
hub. A) The blue spheres represent the original locations for group hubs 1 and 3. The underlying color map depicts 
the final adjusted hub locations across the 9 individuals in the MSC (see Supp. Fig 3 for adjusted hub locations for all 
hubs). (B) The original network profiles are shown for hub 1 (left) and hub 3 (right). (C) The adjusted hub network 
profiles are shown for the same two hubs. Adjusting hub locations improved correspondence across participants, 
especially in exception cases (e.g., MSC02 for hub 1, MSC09 for hub 3).   

 
In most cases regions can be found in the spotlight that have a fair degree of 

resemblance to the group-average network profile (see two representative example hubs in 
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Figure 8). In particular, note that the subjects that were previously exceptions to the general 
pattern (MSC02 for hub 1, MSC09 for hub 3) show higher correspondence with the group 
average network profile at a nearby location. 

The adjusted hub network profiles are shown for all hubs below in Figure 9. In 
comparing Figure 7to Figure 9, note the enhanced consistency in network profile for hubs 
across individual participants. This enhanced correspondence argues for group hubs being 
conserved across individuals, if you allow for a relatively minor local adjustment in location.  

With this enhanced correspondence, it is also clearer that adjusted hubs seem to fall into 
one of two patterns. The first pattern is marked by the hub exhibiting a high degree of similarity 
with two to three networks. This pattern characterizes hubs 1, 2, 5, 8, and 9 (see Fig 9C & Fig 
10). For example, hub 1 primarily bridges the dorsal attention and cinguloopercular networks, 
with weaker links to the frontoparietal and somatomotor systems. The other pattern is a high 
degree of similarity with a wide set of networks (see Fig 9C & Fig 10).  For example, Hub 3 
shows strong links to a range of sensorimotor and control networks.  
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Figure 9: Network profiles for group hubs after local adjustment. This figure is similar to Figure 7, but shows the 
network profiles for each of the 10 top participation coefficient hubs after those hubs have been slightly adjusted in 
location using our spotlight analysis procedure (see Methods and Supp. Fig. 3 for final adjusted locations). For each 
hub, we show the network profile for the 9 MSC participants (columns) and WashU-120 group average (final column) 
to 14 canonical networks (rows). The original hub locations are reproduced in the inset on the lower left, and 
canonical networks are shown in the lower right.  

 

4: Discussion 

Our goal in this work was to determine how group hubs vary across individuals. We 
hypothesized that hubs, which are thought to be regions critical to many important functions, 
should be relatively conserved across individuals. However, we also considered the alternatives 
that (1) hubs, as regions with diverse connectivity across networks may also show malleability 
across subjects or (2) that hubs (at the group level) may be artifactual, driven by variation in 
functional networks within single individuals both of which would be associated with high 
correspondence between inter-subject connectivity profile variation and connector hub location. 
We demonstrated that group hubs, defined with the participation coefficient, do not overlap with 
locations of idiosyncratic functional connectivity and show relatively good correspondence in 
functional connectivity and network profiles across participants, with further improvements 
observed if these hubs are adjusted slightly in location per individual. These findings are most 
consistent with the idea that participation coefficient hubs are relatively conserved across 
individuals, rather than artifactual or malleable. More caution is warranted with alternative hub 
measures, such as the proximity based community density metric, which did tend to overlap 
areas of idiosyncratic functional connectivity. Overall, the findings lend support to the idea that 
group hubs have relatively consistent functional connectivity characteristics across people, 
rather than representing sites of particular malleability or artifacts.     
 
4.1 Group connector hubs are relatively conserved across people  
 

The participation coefficient is a measure of connection diversity, measuring the extent 
to which a given node shows connections across multiple distributed networks. Many 
investigators (Bertolero et al., 2018; Bertolero et al., 2015; Cole et al., 2013; Gordon et al., 
2018; Gratton et al., 2016; Gratton et al., 2012; Power et al., 2013; Warren et al., 2014) have 
identified brain connector hubs using this metric, often based on group-average data (Power et 
al., 2013). Although these regions are defined by their diverse connection profile and are 
located in association regions of the brain (which show high inter-subject variation; Kong et al., 
2019; Mueller et al., 2013; Seitzman et al., 2019), here we show that they do not have a strong 
correspondence to diversity across people: that is, diversity in functional connectivity across 
networks does not track with diversity in connectivity across individuals. Group-average hubs 
defined with the participation coefficient do not frequently overlap with extreme variants (Fig 3), 
are relatively similar to the group average (Fig 7), and have a fairly consistent network profile 
(Fig. 8; especially if these hubs are allowed to move slightly in position across people; see Fig 
9-10). The lack of correspondence between group hubs and inter-subject connectivity variation 
was observed in two datasets and was true for both extreme deviations from the group average 
connectivity profile (variants) and more subtle deviations (similarity to the group).  

This relative lack of variation is consistent with previous literature, which has shown that 
group-average estimates of hubs serve as good priors for locations that have outsized impacts 
on network structure and behavior if damaged in lesion patients (Gratton et al., 2012; Warren et 
al., 2014). We and others have also proposed that connector hubs (defined by the participation 
coefficient) play a critical role during task execution (Bertolero et al., 2018; Cole et al., 2013; 
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Gratton et al., 2016). Hub regions are activated across a range of cognitive processes 
(Bertolero et al., 2015) and hub connectivity is modulated by task context (Cole et al., 2013; 
Gratton et al., 2016). Moreover, some evidence shows that participation coefficient hubs 
promote network modularity during task performance by tuning the connectivity of their 
neighbors (Bertolero et al., 2018), This body of work suggests that hubs may help coordinate 
activity between networks as needed in task control. This is a relatively essential set of functions 
to everyday life, likely depending on the ability to enact specific patterns of cross-network 
connectivity, and thus requiring some degree of uniformity in connector hub profiles across 
subjects.  

However, although not more variable than would be expected by chance, participation 
coefficient hubs were also not generally below the expected variation for the cortex. The lack of 
a significant difference was observed across two datasets (HCP and MSC) and across multiple 
investigative approaches focusing on both extreme deviations and continuous gauges of 
similarity. Thus, group hubs may be relatively conserved, but not more so than many other 
regions of the brain. Therefore, while these results argue that group (participation coefficient) 
hubs are not especially malleable or driven by artifacts, it is likely not correct to interpret them as 
particularly more conserved than other cortical regions. Indeed, although recent work has 
highlighted strong variation between individuals (Bijsterbosch et al., 2018; Finn et al., 2015; 
Gordon et al., 2017a; Gratton et al., 2018a; Kong et al., 2019; Miranda-Dominguez et al., 2014; 
Mueller et al., 2013), much of this variation is relatively punctate and restricted to particular 
locations in a particular person (Seitzman et al., 2019), leading many places in the cortex to 
show good correspondence to the group average (Seitzman et al., 2019). It is possible that 
improved individual measures of hubs will identify regions with better conservation (e.g., see 
section 3.6 – Fig 10 and section 3.7 – Fig 11).    

   
4.2 Individual measures of brain hubs may bring added precision 

 We have shown that hubs defined with group-average data have connectivity profiles 
that are relatively conserved. Yet, it is still not clear if these group-average hubs identify the best 
hubs within single individuals. The results of our spotlight analysis (Fig. 9-10) suggest that, at a 
minimum, researchers should consider exploring the areas surrounding group-average hub 
locations to ameliorate correspondence across participants.  

Even when group hubs are reproducible across individuals, they could miss important 
features of functional neuroanatomy that can only be observed when looking at individually-
defined hubs. It might be the case that group hubs detect hub locations that are conserved 
across individuals, but that other hubs exist within each person that are more malleable and 
difficult to capture in group maps. Hubs defined in single individuals may also contain further 
information that is obscured in group hubs. For example, individually-defined hubs might be 
needed to uncover hub sub-types, which may help uncover more refined properties associated 
with cognition (Gordon et al., 2018).  

Procedures that adopt individual-level connectivity maps, like the spotlight analysis we 
employed, could be further refined to help answer these questions. The high reliability of 
precision fMRI data makes it especially well-suited to ensuring robust applications of these 
procedures (Gordon et al., 2017b). In addition, high resolution imaging made possible by 7T 
scanners would allow for greater confidence in the accuracy of individual-level maps through 
improved signal and removal of artifactual hubs caused by spatial blurring or close proximity 
(Braga et al., 2019; Viessmann and Polimeni, 2021). Projects using these techniques may help 
to further chart correspondence between the location of hubs defined on individual subject data 
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and hubs defined at the group level, which do not always show very tight correspondence 
(Gordon et al., 2018). 

 
 
4.3 Variants are not strong hubs 
 
 Thus far, we have framed our results and discussion in terms of what our findings reveal 
for hubs. However, our findings also provide insights into variant locations. As locations of 
idiosyncratic functional connectivity, it is possible that variants are manifestations of flexible 
bridges between networks, which drives their inconsistency in their network membership across 
subjects (Vázquez-Rodríguez et al., 2019; Zhang et al., 2016). Yet, we did not find a clear 
correspondence between variants and participation coefficient hubs across several analyses in 
two datasets. While there is a correspondence between variants and community density hubs, 
this may be artifactual, due to averaging across people, rather than a manifestation of variants 
arising from a hub-like nature. These results suggest that, as a general rule, variants do not 
overlap with sites of group level connector hubs, implying that variants do not have a functional 
role as chameleon-like integrative regions. However, it is still possible that specific variants may 
show overlap with individual-level hubs that are not captured with this group approach. Future 
work will be needed to further investigate the properties of variants and their correspondence to 
individual-level hubs.   
 
4.4 Community density is a hub metric that should be used with caution in the group 

Unlike hubs defined by the participation coefficient, community density hubs defined in 
group-average data had a relatively strong correspondence with idiosyncratic variant regions. 
Community density hubs are defined based on their proximity to multiple different networks 
(Power et al., 2013), following the assumption that hubs should be positioned spatially 
intermediate to the systems that they bridge. However, although distributed somewhat similarly 
to participation coefficient hubs (Power et al., 2013), community density hubs in the group 
average are found more ventrally in the anterior insula, along the superior frontal cortex, and 
near the temporoparietal junction – locations in closer accord with locations of inter-subject 
variation (Fig 5).  

This correspondence with regions of inter-subject variation suggests that group hubs 
defined with community density represent either malleable regions or artifactual hubs caused by 
mixed signals across individuals. Individual differences in brain networks often occur near the 
boundaries between systems (Seitzman et al., 2019). As community density hubs sit at a nexus 
of multiple networks, then they may be more vulnerable to contamination from these shifting 
boundaries and the appearance of artifactual hubs. Future work using community density hubs 
should be cautious of this potential correspondence, especially if the hubs are identified with 
group average data. A solution to this issue may be to identify community density hubs within 
individual subject data instead, where hub inflation caused by inter-subject variation can be 
ruled out. In those cases, it may be possible to identify better representations of community 
density hubs that help to mediate interactions between networks based on their proximity. 

 
4.5 Conclusion 
 
Our findings from two independent datasets suggest that group-average brain hubs are 

relatively consistent in their functional topography across individuals. These findings suggest 
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that hub locations may be a relatively conserved property of brain networks, perhaps due to the 

critical role these regions have been proposed to have in cognition and brain function. 

Alternative metrics for hubs based on spatial proximity, such as community density, can overlap 

more strongly with locations of individual variability and should be used with more caution in the 

group average.  
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