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Abstract 14 

Objective. Electrical recordings of neural activity from brain surface have been widely employed 15 

in basic neuroscience research and clinical practice for investigations of neural circuit functions, 16 

brain-computer interfaces, and treatments for neurological disorders. Traditionally, these surface 17 

potentials have been believed to mainly reflect local neural activity. It is not known how informative 18 

the locally recorded surface potentials are for the neural activities across multiple cortical regions. 19 

Approach. To investigate that, we perform simultaneous local electrical recording and wide-field 20 

calcium imaging in awake head-fixed mice. Using a recurrent neural network model, we try to 21 

decode the calcium fluorescence activity of multiple cortical regions from local electrical 22 

recordings. Main results. The mean activity of different cortical regions could be decoded from 23 

locally recorded surface potentials. Also, each frequency band of surface potentials differentially 24 

encodes activities from multiple cortical regions so that including all the frequency bands in the 25 

decoding model gives the highest decoding performance. Despite the close spacing between 26 

recording channels, surface potentials from different channels provide complementary 27 

information about the large-scale cortical activity and the decoding performance continues to 28 

improve as more channels are included. Finally, we demonstrate the successful decoding of 29 
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whole dorsal cortex activity at pixel-level using locally recorded surface potentials. Significance. 30 

These results show that the locally recorded surface potentials indeed contain rich information of 31 

the large-scale neural activities, which could be further demixed to recover the neural activity 32 

across individual cortical regions. In the future, our cross-modality inference approach could be 33 

adapted to virtually reconstruct cortex-wide brain activity, greatly expanding the spatial reach of 34 

surface electrical recordings without increasing invasiveness. Furthermore, it could be used to 35 

facilitate imaging neural activity across the whole cortex in freely moving animals, without 36 

requirement of head-fixed microscopy configurations. 37 

Introduction 38 

As an important tool for electrophysiological recordings, neural electrodes implanted on the brain 39 

surface have been instrumental in basic neuroscience research to study large-scale neural 40 

dynamics(1) in various cognitive processes, such as sensorimotor processing(2) as well as 41 

learning and memory(3). In clinical settings, neural recordings have been adopted as a standard 42 

tool to monitor the brain activity in epilepsy patients before surgery for detection and localization 43 

of epileptogenic zones initiating seizures(4) and functional cortical mapping(5). Neural activity 44 

recorded from the brain surface exhibits rich information content about the collective neural 45 

activities reflecting the cognitive states and brain functions, which was leveraged for various types 46 

of brain-computer interfaces during the past decade. For example, surface potential recordings 47 

have been used for studying motor control, such as controlling a screen cursor(6) or a prosthetic 48 

hand(7). They have also been used to decode the mood of epilepsy patients, paving the way for 49 

the future treatment of neuropsychiatric disorders(8). Recent advances have shown that electrical 50 

recordings from cortical surface combined with the recurrent neural networks can even enable 51 

speech synthesis(9), demonstrating superior performance compared to those achieved through 52 

traditional noninvasive methods. 53 

For the interpretation of surface potentials in terms of their neural correlates, most research has 54 

focused on local neural activities. The high-gamma band has been found to correlate with the 55 

ionic currents induced by synchronous synaptic input to the underlying neuron population(10). 56 

Besides that, the dendritic calcium spikes in the superficial cortical layers also contribute to 57 

surface potentials(11). Recently, it has been reported that even the action potentials of superficial 58 

cortical neurons could be detected in surface recordings(12). Despite the predominant focus of 59 

relating the surface potentials to local neural activity, they may also correlate with the large-scale 60 

activity of multiple cortical regions. This could be achieved through the intrinsic correlations of the 61 
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spontaneous activities among large-scale cortical networks(13, 14) due to the anatomical 62 

connectivity(15) and the global modulation of neuromodulatory projections(16). However, this rich 63 

information content of surface potentials encoded for the large-scale cortical activity remains 64 

unexploited and little is known about how local surface potentials are correlated with the 65 

spontaneous neural activities of distributed large-scale cortical networks.  66 

In this work, we investigate whether the rich information content of the local neural potentials 67 

recorded from brain surface can be harnessed to infer the cortex-wide brain activity. We employed 68 

optically transparent graphene microelectrodes implanted over the mouse somatosensory cortex 69 

and posterior parietal cortex to perform simultaneous wide-field calcium imaging of the entire 70 

dorsal cortex during local neural recordings in awake mice. Multimodal datasets generated by 71 

these experiments were used to train a recurrent neural network model to learn the hidden 72 

spatiotemporal mapping between the local surface potentials and the cortex-wide brain activity 73 

detected by wide-field calcium imaging. We demonstrated that both the average spontaneous 74 

activity from multiple cortical regions and the pixel-level cortex-wide brain activity can be inferred 75 

from locally recorded surface potentials. Our results show that in addition to the changes of local 76 

neural activity, the spontaneous fluctuations of locally recorded surface potentials also reflect the 77 

collective variations of large-scale neural activities across the entire cortex. 78 

Methods 79 

Fabrication of graphene array 80 

Electrode arrays were fabricated on 4” Silicon wafers spin coated with 20 μm-thick PDMS. 50 μm-81 

thick PET (Mylar 48-02F-OC) was placed on the adhesive PDMS layer and used as the array 82 

substrate. 10 nm of chromium and 100 nm of gold were deposited onto the PET using a Denton 83 

18 Sputtering System. The metal wires were patterned using photolithography and wet etching 84 

methods. Single-layer graphene was placed on the array area using a previously developed 85 

transfer process(17, 18). The wafer was then soft baked for 5 minutes at 125°C to better adhere 86 

graphene to the substrate. PMMA was removed via a 20-minute acetone bath at room 87 

temperature then rinsed with isopropyl alcohol and DI water for ten 1-minute cycles. The graphene 88 

channels were patterned using AZ1512/PMGI bilayer photolithography then oxygen plasma 89 

etched (Plasma Etch PE100). A four-step cleaning method was performed on the array consisting 90 

of an AZ NMP soak, remover PG soak, acetone soak, and 10-cycle isopropyl alcohol/DI water 91 

rinse. 8 μm-thick SU-8 2005 was spun onto the wafer as an encapsulation layer and openings 92 

were created at the active electrical regions using photolithography. The array was then given a 93 
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final 10-cycle isopropyl alcohol/DI water rinse to clean SU-8 residue and baked for twenty minutes 94 

at temperature progressing from 125°C to 135°C. 95 

Animals 96 

All procedures were performed in accordance with protocols approved by the UCSD Institutional 97 

Animal Care and Use Committee and guidelines of the National Institute of Health. Mice (cross 98 

between CaMKIIa-tTA:B6;CBA-Tg(Camk2a-tTA)1Mmay/J [JAX 003010] and tetO-GCaMP6s: 99 

B6;DBA-Tg(tetO-GCaMP6s)2Niell/J [JAX 024742], Jackson laboratories) were group-housed in 100 

disposable plastic cages with standard bedding in a room with a reversed light cycle (12 h-12 h). 101 

Experiments were performed during the dark period. Both male and female healthy adult mice 102 

were used. Mice had no prior history of experimental procedures that could affect the results. 103 

Surgery and multimodal experiments 104 

Adult mice (6 weeks or older) were anesthetized with 1–2% isoflurane and injected with baytril 105 

(10 mg/kg) and buprenorphine (0.1 mg/kg) subcutaneously. A circular piece of scalp was removed 106 

to expose the skull. After cleaning the underlying bone using a surgical blade, a custom-built 107 

head-bar was implanted onto the exposed skull over the cerebellum (~1 mm posterior to lambda) 108 

with cyanoacrylate glue and cemented with dental acrylic (Lang Dental). Two stainless-steel wires 109 

(791900, A-M Systems) were implanted into the cerebellum as ground/reference. A craniotomy 110 

(~7 mm × 8 mm) was made to remove most of the dorsal skull and the graphene array was placed 111 

on the surface of one hemisphere, covering somatosensory cortex (S1) and posterior parietal 112 

cortex (PPC). The exposed cortex and the array were covered with a custom-made curved glass 113 

window, which was further secured with Vetbond (3M), cyanoacrylate glue and dental acrylic. 114 

Animals were fully awake before recordings. During recording, animals were head-fixed under the 115 

microscope, free to run or move their body, and not engaged in task. 116 

The wide-field calcium imaging was performed using a commercial fluorescence microscope 117 

(Axio Zoom.V16, Zeiss, objective lens (1x, 0.25 NA)) and a CMOS camera (ORCA-Flash4.0 V2, 118 

Hamamatsu) through the curved glass window as previously described(19). The light source for 119 

wide-field calcium imaging is HXP 200 C (Zeiss). The filter set for imaging GCaMP signals is 120 

commercially installed in the microscope. It consists of a bandpass filter for the excitation light 121 

(485 ± 17 nm), a beamsplitter (500 nm), and a tunable bandpass filter centered at 520 nm for the 122 

emission light. Images were acquired using HCImage Live (Hamamatsu) at 29.98 Hz, 512 x 512 123 

pixels (field of view: 8.5 mm x 8.5 mm, binning: 4, 16 bit). 124 

The microelectrode array was connected to a custom-made connector board through a ZIF 125 

connector. The surface potential data was sampled with Intan RHD2132 amplifier and recorded 126 

using Intan RHD2000 system. The sampling frequency was 10 kHz. To synchronize the electrical 127 

recording with the calcium imaging, we used a trigger signal (TTL), a 2 V pulse of 1 s, to trigger 128 
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the start of the calcium imaging. Meanwhile, this trigger signal was also sent to the ADC of Intan 129 

recording system. During the data processing stage, we detected the onset of the pulse and 130 

aligned the imaging data and electrical data to that time point. Three mice were recorded, each 131 

having 2-3 recording sessions. The length for each recording session was 1 hour. 132 

ΔF/F processing 133 

To obtain the ΔF/F time series from the wide-field calcium imaging data, we first down-sampled 134 

the 512 x 512 pixel images to smaller images of 128 x 128 pixels. For each pixel, we defined a 135 

dynamic fluorescence (F) baseline for a given time point as the 10th percentile value over 180 s 136 

around it. For the beginning and ending of each imaging block, the following and preceding 90-s 137 

window was used to determine the baseline, respectively. An 8th order 6 Hz Butterworth low-pass 138 

filter was applied to the ΔF/F activity of each pixel to remove the high frequency noise and 139 

hemodynamic contamination from heartbeat. The activity of each cortical region was obtained by 140 

averaging over the ΔF/F signals from all the pixels within the same cortical regions defined by the 141 

Allen Brain Atlas.  142 

Surface recording data processing  143 

The raw surface recording data was first passed through notch filters to eliminate the 60 Hz 144 

powerline contaminations and their higher harmonics at 120 Hz and 180 Hz. The signals were 145 

further filtered with multiple 6th order Butterworth band-pass filters designed for different 146 

frequency bands (δ: 1 – 4 Hz, θ: 4 – 7 Hz, α: 8 – 15 Hz, : 15 – 30 Hz, : 31-59 Hz, H-: 61 – 200 147 

Hz). The resulting signals were squared and smoothed by a Gaussian function with 100 ms time 148 

window to obtain an estimate of the instantaneous power. To prepare the input data for the 149 

decoding neural network, the power traces at different frequency bands were down-sampled to 150 

29.98 Hz by interpolation to match the sampling rate of calcium imaging data. To suppress the 151 

potential artifacts in the recording signal, at each frequency band we clip the power traces with a 152 

threshold of 95 percentile. 153 

Neural network models 154 

The neural network model consists of a sequential stacking of a linear hidden layer, one 155 

bidirectional LSTM layer and a linear readout layer. The first linear layer was followed by batch 156 

normalization, ReLU activation, and dropout with a probability of 0.3. The LSTM layer was 157 

followed by batch normalization. The multichannel power at different frequency bands were used 158 

as inputs to the network. To decode the neural activity at each time step t, the power segments 159 

between [t-1.5s, t+1.5s] was used (90 time steps in total). The first linear layer had 16 neurons 160 
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and the bidirectional LSTM had 8 hidden neurons. The same neural network model was used for 161 

the two decoding tasks except that the number of neurons in the final output layer differs based 162 

on the targeting output. To decode the ΔF/F activity of 12 cortical regions simultaneously, the 163 

output neuron number was set to 12. To decode the cortex-wide brain activity, the output neuron 164 

number was set to 10 to generate the scores for the 10 ICs. Assuming using 6 frequency bands 165 

from 16 recording channels, setting sequence length of LSTM layer to 90, and setting batch size 166 

to 128, the input and output size for each layer of the model is shown in Table 1. Note that we 167 

flattened the last two dimensions of the LSTM output to make it 128 x 1440 before feeding it to 168 

the last linear layer. 169 

Table 1. The size for input and output tensors of each layer 170 

 Input size Output size 

First linear layer 128 x 90 x 96 128 x 90 x 16 

Bi-LSTM layer 128 x 90 x 16 128 x 90 x 16 

Last linear layer 128 x 1440 128 x 12 or 128 x 10 

 171 

The neural network model was implemented in Pytorch(20). The model parameters were trained 172 

through Adam optimizer with learning rate = 1e-4, beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8. The 173 

batch size was 128 and the training usually converged within ~30 epochs. For both tasks, the 174 

mean squared error was chosen as the loss function. We performed 10-fold cross-validation 175 

where each 1 h recording session was chunked into ten segments, each lasting for 6 min. The 176 

neural network model was trained on 9/10 of the data segments and tested on a different held-177 

out segment that was unseen during the training. To evaluate the model performance, correlation 178 

between the decoded and ground truth data for each held-out set was averaged. For each 1 h 179 

recording session, a new network model is trained and tested. Then, for each mouse, the 180 

correlation was further averaged across the recording sessions to give the performance for that 181 

mouse. 182 

Statistical tests 183 

All statistical analyses were performed in MATLAB. Statistical tests were two-tailed and 184 

significance was defined by alpha pre-set to 0.05. All the statistical tests are described in the 185 

figure legends. Multiple comparisons were corrected for by Benjamini-Hochber corrections. 186 

Results 187 

Multimodal recordings of cortical activity 188 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.14.464468doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.14.464468
http://creativecommons.org/licenses/by-nd/4.0/


7 
 

Cortical recordings in both clinical applications and neuroscience studies use conventional metal-189 

based neural electrode arrays. However, these opaque neural electrodes are not suitable for 190 

multimodal recordings combined with optical imaging since they will block the field of view and 191 

generate light-induced artifacts under optical imaging(21, 22). Compared to conventional neural 192 

electrode arrays, graphene-based surface arrays are optically transparent and free from light-193 

induced artifacts, both of which are key to the simultaneous electrical recordings and optical 194 

imaging of cortical activity(18, 23). Wide-field calcium imaging is an optical imaging technique that 195 

can provide simultaneous monitoring of large-scale cortical activity and has been used to study 196 

the dynamics of multiple cortical regions and their coordination during behavior(19, 24-26). 197 

Compared to fMRI that also offers large spatial coverage, the wide-field calcium imaging provides 198 

better spatiotemporal resolution and higher signal-to-noise ratio(25). It has been shown that wide-199 

field calcium signals mainly reflect local neural activity(19). Therefore, the multimodal experiments 200 

combining electrical recordings based on graphene arrays and the wide-field calcium imaging 201 

generate unique datasets that are ideal for investigating the mapping from local neural signals to 202 

large-scale cortical activity. 203 

We fabricated transparent graphene arrays on 50 μm thick flexible polyethylene terephthalate 204 

(PET) substrates(18, 23) (see methods for details). 10 nm of chromium and 100 nm of gold were 205 

deposited onto the PET and the metal wires were patterned using photolithography and wet 206 

etching methods. The graphene layer was transferred and patterned with photolithography and 207 

oxygen plasma etching to form electrode contacts. Finally, 8 μm-thick SU-8 was used as an 208 

encapsulation layer and openings were created at the active electrical regions using 209 

photolithography. The graphene array has 16 recording channels, each of size 100 x 100 μm. 210 

The spacing between adjacent channels is 500 μm. The graphene array was implanted 211 

unilaterally over the somatosensory cortex (S1) and posterior parietal cortex (PPC) of the mice to 212 

perform the simultaneous electrical recordings and wide-field calcium imaging (Figure 1a). We 213 

performed multimodal recordings of spontaneous neural activity in awake mice during either quiet 214 

resting state or actively running or moving. An example wide-field image obtained during the 215 

experiment is shown in Figure 1b. Note that the cortical activity under the array could still be 216 

observed due to the transparency of the graphene electrode. Based on Allen brain atlas, we 217 

parcellated the brain into 12 different ipsilateral (the hemisphere with array implanted) and 218 

contralateral cortical regions (Figure 1c), including the primary and secondary motor cortices (M1, 219 

M2), the somatosensory cortex (S1), the posterior parietal cortex (PPC), the retrosplenial cortex 220 

(RSC), and the visual cortex (Vis). Representative spontaneous cortical activity recorded during 221 

the experiment is shown in Figure 1d. We observed dynamical changes of large-scale cortical 222 
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activity, involving co-activations of multiple cortical regions. In the simultaneous multi-channel 223 

neural recordings, we also observed differences in power traces from different channels at 224 

multiple frequency bands during the spontaneous cortical activity (Figure 1e). Compared with the 225 

fluorescence activity, the neural potential signal has a much higher temporal resolution and richer 226 

frequency components.  227 

Cortical activity decoder design 228 

To investigate whether the locally recorded surface potentials could be used to infer the cortex-229 

wide brain activity, we investigated two decoding tasks, namely the decoding of the average 230 

activity from individual cortical regions and the decoding of pixel-level cortex-wide brain activity. 231 

To achieve these goals, we developed a compact neural network model consisting of a linear 232 

hidden layer, a one-layer LSTM network, and a linear readout layer (Figure 2, See methods for 233 

details). In both tasks, the signal power traces of multiple frequency bands recorded from different 234 

recording channels were used as inputs to the neural network. In the first task, the neurons in the 235 

output layer of the neural network directly generate the activity of all the cortical regions 236 

simultaneously. In the second task, we first performed principal component analysis (PCA) on the 237 

cortical activity to remove the noise and reduce the dimensionality of the data. Across all the mice, 238 

the top 10 principal components (PCs) explain > 92% variance in the data (Supplementary Figure 239 

1). Then based on the PCA results, we further performed spatial independent component analysis 240 

(ICA) to obtain the independent components (ICs) and their weighting scores for the data at each 241 

time frame. In all the three mice, the identified ICs reflect different functional modules and 242 

hemodynamic signals on blood vessels (Supplementary Figure 2) and provide a set of functionally 243 

meaningful basis for the decomposition of the large-scale cortical activity. The output layer of the 244 

neural network directly generates the estimated weighting scores of individual ICs, which were 245 

further used to reconstruct the cortex-wide brain activity at each time frame with pixel-level spatial 246 

resolution (Figure 2).  247 

Decoding of activity for individual cortical regions 248 

Based on the multimodal data we collected during the animal experiment and the above designed 249 

decoder network model, we decoded the mean activity of both the ipsilateral and contralateral 250 

cortical regions using the power of six frequency bands from all recording channels. An example 251 

of decoded and ground truth (ΔF/F from wide-field calcium imaging) cortical activity from one held-252 

out set is shown in Figure 3a. The decoding performances for S1, PPC, and RSC regions closely 253 

resemble the ground truth cortical activity, while the decoding performances for M1, M2, and Vis 254 
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are lower, possibly due to their increasing distances to the recording electrode array. We 255 

performed the same decoding analysis using shuffled data. The results show decoding 256 

performance close to zero (Supplementary Figure 3a). We evaluated the stability of the decoding 257 

performance across time using a 30 s sliding window. The results show that the decoding 258 

performance fluctuates from time to time but remains stable in the longer time intervals 259 

(Supplementary Figure 4A). We also compared the decoding performance of individual cortical 260 

regions during rest and movement intervals and found similar decoding performance between 261 

rest and movement phases (Supplementary Figure 4B). Therefore, the fluctuations of the 262 

decoding performance across time are not due to animal movements. 263 

To further evaluate how informative different frequency bands are for the decoding of the activity 264 

from different cortical regions, we used the signal power from different frequency bands of all 265 

channels as inputs and performed 10-fold cross-validation to evaluate the decoding performance 266 

of the neural network model. We find that even though all the frequency bands are informative of 267 

the activities in different cortical regions, the high gamma power band gives the highest decoding 268 

performance for all the cortical regions compared to other frequency bands (Supplementary 269 

Figure 5 and 6). However, across all the cortical regions, using all the frequency bands yields the 270 

best decoding performance compared to using any single frequency band (Figure 3b), implying 271 

that different frequency bands provide complementary information about the activity in multiple 272 

cortical regions. Decoding with the shuffled data gives performance close to zero for all the 273 

frequency bands (Supplementary Figure 3b). For the ipsilateral cortical regions, we also find a 274 

negative correlation between their decoding performance and their distance ranks to the recording 275 

array. However, for the contralateral cortical regions, no significant correlation is observed (Figure 276 

3c). When comparing the decoding results of the activity from ipsilateral cortical regions using 277 

different frequency bands, we find that higher frequency bands tend to have a steeper slope for 278 

the decoding performance vs. distance to the recording array (Supplementary Figure 7). 279 

Besides the frequency bands, we also examined whether different recording channels encode 280 

nonredundant information for decoding the activity of different cortical regions. Therefore, we 281 

evaluated the decoding performance of the neural network model using all six frequency bands 282 

from different numbers of channels. Specifically, we performed 10-fold cross-validation on the 283 

neural network multiple times and each time we sequentially added the signal power of all 284 

frequency bands from one random channel until all the channels were included. As shown in 285 

Figure 3d, for all the cortical regions, increasing the number of channels significantly improves 286 

the decoding performance, suggesting that recording channels of local neural potentials provide 287 
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nonredundant information about the activity from multiple cortical regions. On the other hand, 288 

decoding with the shuffled data gives performance close to zero for different number of included 289 

channels (Supplementary Figure 3c). 290 

Decoding of pixel-wise activity across cortex 291 

Given that the local neural signals encode average activity from individual cortical regions, which 292 

could be recovered by the neural network model using multi-channel signal power of different 293 

frequency bands, we further investigated whether the pixel-level activity across the whole dorsal 294 

cortex could also be decoded using locally recorded neural signals. The same neural network 295 

model for decoding the average activity in different cortical regions was then employed to 296 

simultaneously decode the ten IC scores at each time frame. The power traces of all the six 297 

frequency bands from all the recording channels were used as inputs to the neural network. An 298 

example of the decoded and ground truth scores for the ten ICs from one held-out set is shown 299 

in Figure 4b. The decoding result using shuffled data is shown in Supplementary Figure 3d. Based 300 

on the decoded IC scores and the IC modules (Figure 4a), the pixel-level cortex-wide activity at 301 

each time frame could be reconstructed. Examples of the reconstructed pixel-level cortex-wide 302 

activity during 4 representative time intervals are shown in Figure 4c. The reconstructed cortex-303 

wide activity captured various patterns of cortical activations in ground truth, including both the 304 

synchronous and asynchronous activations among different cortical regions. These diverse 305 

activation patterns cannot be explained solely by PC1 (see Figure 4c and the supplementary 306 

videos). To further quantify this observation, we computed the correlation between the ground 307 

truth activity of each ICs and the PC1. The median correlations between IC1, IC2 and IC8 to PC1 308 

are close to zero, showing that their activities are not strongly correlated to PC1 (Supplementary 309 

Figure 8). These results suggest that the model does not merely predict dominant activity patterns 310 

showing activation around S1 and RSC. We found that all the ten IC scores could be decoded 311 

using the locally recorded neural signals (Figure 4d, Supplementary Figure 9). We demonstrated 312 

that the pixel-level cortex-wide activity could be reconstructed for all the recording sessions 313 

(Supplementary Videos 1-7). This reveals that the cortical activations of distinct functional 314 

modules indeed induce different responses in local cortical electrical signals, which could be in 315 

turn used to recover the diverse cortex-wide activity patterns. In addition to cortical activity, in all 316 

the mice, we observed one or two ICs showing the hemodynamic activity (Supplementary Figure 317 

2). Our decoding results also show that these hemodynamic activities could be decoded from the 318 

neural recordings, which is mainly due to the fact that hemodynamic activity and the neural activity 319 

are often correlated(27). Next, we examined the pixel-level correlations between the decoded and 320 
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ground truth activities imaged using wide-field imaging in individual cortical regions. We observed 321 

high correlations between the decoded and the ground truth data for all cortical regions (Figure 322 

4e) and close-to-zero correlations using shuffled data (Supplementary Figure 3e). The activities 323 

of cortical regions closer to the array are better decoded than those of the cortical regions far 324 

away from the array. Consistent with the decoding of mean activity in each cortical region, the 325 

pixel-wise correlation decreases as the distance rank to the surface array increases for the 326 

ipsilateral cortical regions, whereas for the contralateral cortical regions no such correlation exists 327 

(Figure 4f). 328 

Discussion 329 

In this work, we performed multimodal recordings of local neural potentials and wide-field calcium 330 

imaging in awake mice and developed a recurrent neural network model to decode the large-331 

scale spontaneous cortical activity from the locally recorded multi-channel electrical signals. Both 332 

the averaged and the pixel-level activity across the entire dorsal cortex could be decoded, and 333 

the best decoding performance was achieved using all frequency bands of recorded neural 334 

potentials. These results suggest that even though the cortical electrical recording is a complex 335 

signal contributed by various mechanisms at multiple spatial scales, the responses in individual 336 

frequency bands across multiple recording channels still provide important discriminative 337 

information about the activity of different cortical regions. By developing a decoder model, the 338 

mixed information in the electrical signal responses could be used to recover the simultaneously 339 

recorded cortex-wide brain activity.  340 

The cortical potentials have long been believed to mainly detect local neural activities that are 341 

within a sensing distance between 500 μm to 1-3mm(28-30), depending on the size of the 342 

electrode(28) as well as the spatial correlation pattern of neural activity(29). Consistent with this 343 

claim, for the decoding of mean activity from individual cortical regions, we find a decreasing 344 

decoding performance for the ipsilateral cortical regions located ~1.5-3mm from the array. 345 

Interestingly, for the contralateral cortical regions, the decoding is still possible even though their 346 

activities are unlikely to be directly detected by the neural electrodes. We suspect that the 347 

successful decoding of contralateral cortical regions is mainly due to the fact that the spontaneous 348 

activities of same functional cortical regions in both hemispheres are often correlated 349 

(Supplementary Figure 10). Such correlated activity could arise from the anatomical 350 

connectivity(15) and further orchestrated by neuromodulatory projections(16).  351 
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Our decoding results for the activity of individual cortical regions show that even with single 352 

recording channel, the decoding is possible (mean correlation performance between 0.35-0.65 353 

for different cortical regions). By including more channels, initially we observed an increase in 354 

decoding performance, but the performance starts to saturate after the inclusion of ~10 recording 355 

channels (mean correlation performance between 0.6-0.75 for different cortical regions). We 356 

suspect that this is mainly because of the fact that the neural potentials in adjacent channels are 357 

partially correlated due to the volume conduction in the brain tissue(31, 32). It has been shown 358 

that the correlation between neural potentials from adjacent channels at different frequency bands 359 

decreases as the distance increases(33, 34). Even though the cross-channel correlation at high 360 

frequency bands is lower than that at low frequency bands, it does not go below chance level 361 

even with a distance of ~1.5mm. However, our results empirically confirm that even though the 362 

neural potentials from adjacent channels are partially correlated, they still differentially encode 363 

information about the cortical activities to some extent so that sequentially including more 364 

recording channels tends to increase the decoding performance. However, beyond a certain 365 

threshold adding more channels does not further increase the decoding performance.  366 

For the decoding of cortex-wide brain activity, instead of attempting to directly reconstruct the 367 

activity of individual pixels, we chose to perform PCA followed by spatial ICA on the cortical activity 368 

and later to decode IC scores to recover the cortex-wide activity at pixel level. The adoption of 369 

this approach was based on both scientific and computational considerations. First, the PCA 370 

effectively reduced the spatial dimensions, while preserving a large proportion of variance in 371 

cortical activity. Since the activity of each single pixel was noisy, performing PCA reduced the 372 

noise, leading to a more reliable estimate of the true activity. Second, choosing the IC scores as 373 

network outputs greatly reduced the parameters in the output layer of the neural network model, 374 

prevented overfitting, and speeded up model training. Finally, the spontaneous cortex-wide brain 375 

activity was decomposed into a set of local and spatially organized cortical activation patterns 376 

based on neural activity, generating a biologically meaningful decomposition that matches the 377 

brain dynamics. This decomposition provides a good demixing of cortex-wide brain activity and 378 

enables a tractable mapping from cortical neural responses, which can be learned by the 379 

decoding network model. Taken together, these results reveal that the activation of different 380 

cortical functional modules are associated with distinct components in local neural activity. By 381 

exploiting the mapping between the two modalities, the decoding of cortex-wide brain activity is 382 

possible from locally recorded neural signals. 383 

Conclusion 384 
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In this paper, we designed a neural network model to show that both the mean activity of different 385 

cortical regions and the pixel-level cortex-wide neural activity can be decoded using locally 386 

recorded surface potentials. These findings demonstrated that the locally recorded neural 387 

potentials indeed contain rich information for large-scale neural activity and the surface potential 388 

responses in different frequency bands and different recording channels provide distinct 389 

information about the large-scale neural activity. 390 

Data and code availability 391 

The data and custom Python and MATLAB codes are available on Github repository 392 

https://github.com/xinliuucsd/Cortex-wide-Fluorescence-Decoding. 393 
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486 
Figure 1 | Simultaneous multimodal wide-field calcium imaging and surface potential 487 

recordings. 488 

a, Schematic of the multimodal experimental setup combining neural recordings using transparent 489 

graphene electrodes and wide-field calcium imaging. 490 

b, Example field of view of wide-field calcium imaging during experiment (left). Clear area at the 491 

center of the transparent array includes 16 graphene electrodes, whose scanning electron 492 

microscope image is shown on the right.  493 

c, Imaged cortical regions based on Allen Brain Atlas. M2: secondary motor cortex; M1: primary 494 

motor cortex; S1: primary somatosensory cortex; PPC: posterior parietal cortex; RSC: 495 

retrosplenial cortex; Vis: visual cortex. 496 

d, Wide-field fluorescence activity during 10-s long recordings, showing the diverse spontaneous 497 

activity across the mouse cortex. 498 

e, Fluorescence activity for different cortical regions (left), the simultaneously recorded neural 499 

signals (middle) for a 3-s time interval (marked by the yellow bar on the left), and their power at 500 

three frequency bands (δ: 1 - 4 Hz, : 15 – 30 Hz, H-: 61 – 200 Hz, right three columns). 501 
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502 

Figure 2 | Schematic of the decoding model.  503 

Signal power from different channels during time interval [t-1.5 s, t+1.5 s] (90 time steps) is used 504 

to decode the cortical activity at time point t. The decoding neural network model consists of a 505 

sequential stacking of a linear hidden layer, one bidirectional LSTM (Bi-LSTM) layer and a linear 506 

readout layer. For the task of decoding the mean ΔF/F activity from multiple cortical regions, the 507 

final linear readout layer directly outputs the activities of 12 cortical regions at time t. For the task 508 

of decoding the pixel-level cortex-wide brain activity, the final linear readout layer outputs the 509 

weighting scores for all the independent components at time t, from which the cortex-wide brain 510 

activity at time t is reconstructed. 511 
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 512 

Figure 3 | Decoding the activities of multiple cortical regions 513 

a, Decoded (colorful) v.s. ground truth (black) ΔF/F activity of different cortical regions in the 514 

contralateral (left) and ipsilateral (right) hemispheres for one mouse. 515 

b, Decoding performance evaluated for different cortical regions in the contralateral (top) and 516 

ipsilateral (bottom) hemispheres using different frequency bands (δ: 1 – 4 Hz, θ: 4 – 7 Hz, α: 8 – 517 

15 Hz, : 15 – 30 Hz, : 31-59 Hz, H-: 61 – 200 Hz, and all 6 frequency bands). Each dot marks 518 

the mean correlation evaluated by 10-fold cross-validation using the data recorded from one 519 

mouse. 520 

c, Decoding performance for different cortical regions in the contralateral (left) and ipsilateral 521 

hemispheres evaluated as a function of distance (rank orders). Each dot is the mean correlation 522 

for one mouse given by 10-fold cross-validation. For ipsilateral hemisphere, the decoding 523 

performance decreases as the distance rank to the electrode array increases (ρ = -0.676, P = 524 
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0.002, n = 18). For contralateral hemisphere, no such correlation is observed (ρ = -0.163, P = 525 

0.519, n = 18). Distances from the center of the array to the center of each cortical region: i-M2 526 

3.63 mm, i-M1 2.65 mm, i-S1 0.98 mm, i-PPC 0.7 mm, i-RSC 2.36 mm, i-Vis 2.49 mm, c-M2 527 

5.01 mm, c-M1 5.53 mm, c-S1 5.96 mm, c-PPC 5.37 mm, c-RSC 3.83 mm, c-Vis 6.32 mm. 528 

d, Decoding performance for different cortical regions in the contralateral (top) and ipsilateral 529 

(bottom) hemispheres using all the frequency bands, but different numbers of recording 530 

channels. Each dot marks the mean 10-fold cross-validated correlation over all the recording 531 

sessions for one mouse. Each line is the mean correlation averaged across 3 mice. For all the 532 

cortical regions, the decoding performance increases as more recording channels are included 533 

(P<0.05, n = 48, FDR correction). 534 

  535 
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 536 

Figure 4 | Decoding of the pixel-level cortex-wide brain activity 537 

a, Identified independent components for the cortical activities recorded in one mouse, showing 538 

different functional modules of the cortical activity (IC 1-9) and the blood vessel activity (IC 10). 539 

b, Decoded (red) and ground truth (black) weighting scores of the observed cortex-wide activity 540 

onto the 10 ICs shown in a. 541 

c, Reconstructed (top rows) and ground truth (bottom rows) cortex-wide ΔF/F activity for 4 542 

different time intervals, each lasting for 5 s, as indicated with different colors in b. For 543 

visualization, the reconstructed and true cortex-wide brain activity are shown for every 0.5 s. 544 

d, Decoding performance evaluated for different ICs for one recording session. Each dot marks 545 

the decoding performance evaluated on one fold during the 10-fold cross-validation. The 546 

weighting scores for all the 10 ICs could be successfully decoded. 547 
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e, Decoding performance evaluated at pixel-level for all the cortical regions in the ipsilateral and 548 

contralateral hemispheres. Each dot marks the mean 10-fold cross-validated correlation for 549 

individual pixels of one specific cortical region from one mouse. 550 

f, Pixel-wise decoding performance evaluated at individual cortical regions and displayed as a 551 

function of distance to the array (rank orders). For ipsilateral hemisphere, the decoding 552 

performance decreases as the distance to the electrode array increases (ρ = -0.649, P = 0.003, 553 

n = 18). For contralateral hemisphere, no correlation is observed (ρ = -0.074, P = 0.770, n = 18).  554 
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