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ABSTRACT

Recent evidence suggests that both novelty and uncertainty act as potent features guiding exploration.
However, these variables are often conflated with each other experimentally, and an understanding of
how these attributes interact to regulate the balance between exploration and exploitation has proved
elusive. Using a novel task designed to decouple stimulus novelty and estimation uncertainty, we
identify separable behavioral and neural mechanisms by which exploration is colored. We show
that uncertainty was avoided except when the information gained through exploration could be
reliably exploited in the future. In contrast, and contrary to existing theory, novel options grew
increasingly attractive relative to familiar counterparts irrespective of the opportunity to leverage
their consequences and despite the uncertainty inherent to novel options. These findings led us
to develop a formal computational framework in which uncertainty directed choice adapts to the
prospective utility of exploration, while novel stimuli persistently draw favor as a result of inflated
reward expectations biasing an exploitative strategy. Crucially, novelty is proposed to actively
modulate uncertainty processing, effectively blunting the influence of uncertainty in shaping the
subjective utility ascribed to novel stimuli. Both behavioral data and fMRI activity sampled from the
ventromedial prefrontal cortex, frontopolar cortex and ventral striatum validate this model, thereby
establishing a computational account that can not only explain behavior but also shed light on the
functional contribution of these key brain regions to the exploration/exploitation trade-off. Our results
point to multiple strategies and neural substrates charged with balancing the explore/exploit dilemma,
with each targeting distinct aspects of the decision problem to foster a manageable decomposition of
an otherwise intractable task.
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1 Introduction

Adaptive organisms are faced with a fundamental trade-off between choosing a familiar option that leads to a known
reward, or exploring less familiar alternatives in hopes of finding something better [1]. The explore-exploit dilemma
presents an exceptional challenge with only a narrow range of circumstances in which an optimal solution is known
[2]]. Yet, despite its importance to survival, very little is known about how the human brain tackles this situation, or
how those neural computations manifest themselves behaviorally. However, an emerging literature has highlighted the
contributions of two variables driving exploration in the mammalian brain: stimulus novelty [3} 4} 5,16], and outcome
uncertainty [7} 18, 9} [10, [11]]. Despite their significance, these variables are often conflated, and nothing is known
about how they interact to regulate exploration. Here, we describe a bespoke behavioral task specifically designed
to distinguish these two variables from each other, thereby allowing both their unique and interactive influence on
behavior to be assessed. We craft and empirically test a new computational framework to describe precisely how these
variables contribute to exploration using behavioral and neural data measured using functional magnetic resonance
imaging (fMRI).

The machine learning literature offers a growing catalogue of practical approaches to the explore/exploit dilemma.
Based on the assumption that uncertainty often points to learning opportunities, one class of algorithms tries to improve
sampling efficiency by directing the decision making process according to an uncertainty bonus [12, |13} [14]. An
alternative strategy, commonly referred to as optimistic value initiation, boosts the initial reward expectation associated
with novel options, compelling the learning agent to probe novel opportunities that would not otherwise be favored
over more familiar alternatives [15, [16]. As an intriguing point of contrast, algorithms that employ an exploration
bonus during each decision can flexibly accommodate motivational changes and environmental volatility, whereas
optimistic initiation fuses the exploratory motivation into the reward expectation to foster exploration through a singular
exploitative mechanism. We set out to investigate this trade-off between exploratory flexibility and computational
efficiency as an additional understudied dimension of human learning and decision making [[17].

Studies have investigated human strategies for regulating the explore/exploit trade-off with mixed results. Humans
robustly avoid uncertainty when it cannot be reduced or taken advantage of [18]], suggesting that uncertainty itself
is undesirable. However, varied findings have emerged from learning tasks in which sampling uncertain options can
provide beneficial information, with reports of uncertainty aversion [[19]], indifference [20]], and uncertainty seeking
behavior 11, [10] amongst a range of individual differences [8, 21]. Notably, when expected value and uncertainty are
carefully decoupled, human participants preferentially sample uncertain options when given the opportunity to leverage
what they’ve learned [7}, 9], suggesting that uncertainty-directed exploration is motivated in part by the prospect of
making more rewarding choices in the future. In contrast, several lines of evidence show that animals and humans alike
exhibit a robust preference for novel options [3 !4, 5], so much so that that marketing strategies depend on it [22]]. A
puzzling incongruity is the fact is that while appetites for uncertainty vary across individuals and tasks, novelty robustly
draws favor despite the fact that novel options are themselves inherently uncertain.

Research probing the neural correlates of exploration offer additional constraints on how the human brain balances this
trade-off. Several studies have implicated frontopolar cortex (FPC) as tracking the relative uncertainty of the options
being considered [8, 23], or the potential advantage of switching to an alternative course of action [24, 25], and is
uniquely engaged when exploratory choices are made [20]. Disrupting FPC using transcranial magnetic stimulation
(TMS) increases (stimulation) or decreases (inhibition) uncertainty directed choice [26]], further implicating its role in
exploration. Additional studies have also highlighted the ventral medial prefrontal cortex (vmPFC), a region associated
with both value guided choice [27] and outcome monitoring[28]], as mitigating the switch between exploratory and
exploitative phases of behavior [10, [11} 29]], suggestive of a multi-hub circuit concerned with balancing exploration and
exploitation.

Studies investigating the neural underpinnings of novelty processing have shown that dopamine (DA) neurons elicit a
phasic burst when novel stimuli are experienced [30]. Consistent with a rich line of research linking DA to the reward
prediction error learning signal (RPE), where unexpected reward or stimuli predictive of reward induce phasic DA
signals [31} 32], it has been suggested that the novelty induced phasic burst of DA reflects a shaping bonus encouraging
exploration [33]]. Imaging results support this idea, showing that the ventral striatum reflects a skewed RPE signals
consistent with optimistic initiation [6) [34]].

Although it has been established that the factors driving exploration are multi-faceted, little is known about how
these features coexist and interact, and in particular, how the tension between novelty and uncertainty is resolved.
Complicating this issue enormously is the fact that novelty and uncertainty are challenging to distinguish experimentally
because novel options tend to be those that are maximally uncertain, and a natural correlation emerges as both
novelty and uncertainty decline with additional engagement. However, we hypothesized that it would be possible to
uncover the unique influence of these variables by decoupling their respective contributions to learning and decision
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making as a function of task horizon. Specifically, we hypothesized that novelty operates as a simple exploratory
heuristic that guides approach behavior via optimistic initiation, and since this mechanism colors exploration by way of
reinforcement learning, the effects of novelty should persist without considering the task’s horizon. On the other hand,
the more computationally rich variable of estimation uncertainty is hypothesized to reflect the prospective value of
information gain, and as such, should adaptively accommodate task horizon to render uncertain options less desirable
with diminishing opportunity to leverage what might be learned about them.

To test these ideas, we exposed human participants to a newly designed bespoke decision making task while undergoing
fMRI. The task consisted of a series of games in which participants were asked to choose between options that varied
in terms of novelty, uncertainty and expected reward. Our task design offers two important experimental advances.
First, it dissociates uncertainty and novelty by explicitly revaluing options, thereby increasing uncertainty without
affecting novelty. Second, novel and uncertain options were systematically offered as a function of proximity to a
game’s termination, allowing us to probe feature specific adaptation as a function of task horizon.

We develop a comprehensive computational framework to describe how novelty and uncertainty interact and guide
behavior. Importantly, given the subtle behavioral distinctions that emerge from various model implementations,
we leverage fMRI data to validate and discriminate between different algorithmic forms of the model by focusing
on distinguishable patterns of activity in key regions of interest identified based on their role in implementing ex-
ploration/exploitation computations, namely the ventral striatum, the ventromedial prefrontal cortex and the frontal
pole.

2 Results

Participants (n=32) performed a novel learning and decision making task while undergoing fMRI. In brief, participants
played 20 blocks of a finite horizon multi-armed bandit task designed to expose the influence of reward history, estimation
uncertainty and stimulus novelty on balancing the explore/exploit trade-off while undergoing four consecutive 15-minute
fMRI sessions (5 learning contexts blocks per session). On each trial, participants were asked to choose between two
slot machines. Having made their choice they were informed of the machine’s payout of either $1US (win) or $0US
(loss). Participants were instructed that each learning context block, framed as a visit to a new casino, would consist of
approximately 20 trials (between 18 to 23 trials) and that they should try to accumulate as much reward as they could.
At the end of the experiment, one of the casinos they visited was chosen at random from which a performance bonus
was calculated.

Each block offered a new learning context that included five visually unique and identifiable slot machines, three
of which were familiar stimuli that had been seen in previously visited casinos, and the remaining two were novel
stimuli that had not yet been shown (43 stimuli in total). Participants were informed that each slot machine had a fixed
probability of winning within a given casino, but all machines were programmed differently by each casino, and as such,
anything learned in one casino should not be applied to others. Trials were structured such that the two slot machines
varied in terms of reward probability (expected value manipulation), the number of previous exposures (novelty
manipulation), as well as the number of times they’d been sampled in the current block (uncertainty manipulation),
allowing us to to systematically examine the influence of reward, novelty and uncertainty across the task horizon.

2.1 Choice reflects reward history, novelty, and uncertainty

We first examine the degree to which reward history, uncertainty, and stimulus novelty influence choice. To investigate
the influence of reward history, choice was modelled as a function of the difference in expected value between the
left and right options (E'V, — EVy), where expected value was defined as the mean of a Beta distribution specified
according to each option’s history of wins and losses (Beta(ce =number of wins + 1, 8 = number of losses + 1)). As
illustrated in Figure 2JA, choice was robustly governed by reward history, as exhibited by an indifference between
equally rewarded options (Bgyv1=gyv2 = 0.02,p = 0.73), and an increasingly reliable preference for the option with a
higher expected value (Bryv1—pyv2 = 4.76,p < 0.01). Importantly, value learned in previous contexts did not influence
behavior, demonstrating that participants were motivated and understood the task structure (see Supplement for details).

Next, we probed the influence of stimulus novelty by focusing on the subset of trials in which a novel option was
offered, where a stimulus is considered novel if it had been presented fewer than three times prior to the current trial.
The proportion of trials in which the novel option was sampled as a function of the alternative option’s expected value is
illustrated in Figure[2B. While reward history exerts the dominant force (8gv, — pv;-=4.9, p<0.01), participants exhibited
a robust novelty-seeking bias when both options were of approximately equal value (8gv,=gv, = 0.39,p = 0.003).

We revisited this analysis to investigate the effect of uncertainty, which we quantify as the variance of the Beta
distribution describing stimulus outcome history. Limiting our analysis to the subset of trials in which participants were
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Figure 1: Experimental procedures. A): Trial dynamics. Following a jittered fixation screen (sampled from a pseudo-
randomized linear spacing of 1-4 seconds), participants were offered two slot machines, and asked to select one using a
button box (left thumb to select the option on the left, right thumb to select the option on the right). Choice feedback
was provided (handle moved to a pulled position, and outcome frame highlighted). Following a 1-4 second jitter
(sampled from a pseudo-randomized linear spacing of 1-4 seconds), reward feedback ($1/$0) was shown. B) Blocked
stimulus structure: Each learning context was framed as a visit to a unique casino. Five different slot machines could
be offered in each casino, two of which were novel and three were familiar (coloured blue and yellow respectively
here for demonstration purposes - all machines using during the task were grey). Stimuli were segregated to form an
initial set of three stimuli used early in each block, and a holdout set of two stimuli (one novel, the other familiar)
that were gradually added to the initial set from which offered stimuli may be drawn on each trial. C) Blocked trial
structure: Using stimuli from the initial set, pairs of offers were made. This included pairs with equal uncertainty but
differing familiarity, as well as pairs with equal familiarity but differing uncertainty. At pseudo random trials, the novel
and familiar holdout stimuli were added to the set from which stimuli may be drawn. D) Memory probe task: Having
completed 20 blocks of the casino task, participants were asked to label stimuli as old (they had seen them in the casino
task) or new.

offered familiar options with unequal variance (Figure [2C), again, we see that choice is strongly shaped by reward
history (Bgvy, — Eve=4.1, p<0.01). However, in contrast to the observed effects of novelty, participants shied away from
more uncertain option when the expected value was approximately equal (8gv, =gv, = —0.26,p < 0.01).

2.2 The influence of reward history, stimulus novelty and estimation uncertainty adapted to task horizon

Our experimental design allows us to probe how reward history, novelty and uncertainty differentially influence choice
across the learning context horizon. Here, we characterized these effects using a computationally agnostic logistic
regression analysis (glmer in Ime4) to model choice on each trial. Again, we defined expected value as the mean of a
Beta distribution specified according to each option’s history of wins and loses in the current context. Uncertainty was
defined as the variance of the same distribution, and stimulus novelty was defined as the variance of a Beta distribution
specified according to the total number of exposures (Beta(aw = number exposure + 1, 5 = 1)). Choice on each trial
was then modelled as a function of the difference in expected value (E'V;, — EVpg), stimulus novelty (N, — Ng), and
uncertainty (Uy, — Ug). Lastly, we probed for feature specific adaptation across the horizon of a learning context by
including trial number as an interaction term with each feature of interest.

As illustrated in Figure 2D, reward history is indeed a strong predictor of choice (Bgy = 1.43,p < 0.01), with
participants preferring the option with a higher expected value. However, the influence of expected value diminished
as participants progressed through a block of trials (Bgy.s = —0.62,p < 0.01), suggesting some deviation from
optimal outcome integration and value exploitation. Uncertainty also had a significant effect on choice. Participants
expressed differing strategies at the start of a learning block, with a roughly even split of participants directing their
sampling towards more uncertain options or trying to avoiding them, resulting in a group average that did not differ
from zero (6y = —0.04,p < 0.63). However, a model that included uncertainty offered a significant improvement
over a model that did not (x?(23, 32) = 210, p < 0.01), showing that uncertainty played a significant but varied role
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Figure 2: Behavioral evidence for the influence of reward history, novelty and uncertainty on choice. A) The proportion
of trials in which the left option was chosen as a function of the difference in expected value between the two options
(EVy, — EVR). B) The proportion of trials in which the novel option was chosen as a function of the difference in
expected value between the novel and familiar option (EVy — EVE) C) The proportion of trials in which the uncertain
option was chosen as a function of the difference in expected value between the uncertain and more certain option
(EVy — EV) D) Estimates from a logistic regression showing the influence of stimulus features on choice, and their
trajectory across a block of trials. Points depict random effects, red points and error bars depict fixed effects and 95%
confidence intervals respectively E) The proportion of trials in which the option with higher expected value was selected
(red), the option that was most novel was selected (green), and the option that was most uncertain was selected (blue)
across the task horizon. Points in panels A-C represent mean scores across participants, and error bars depict standard
error of the participant mean scores

across individuals early in learning. In line with optimal theories of exploration [2], participants grew increasingly
reluctant to explore uncertain options as the probability of task termination increased (8y.+ = —0.37,p = 0.02). Lastly,
participants expressed a robust novelty seeking bias at the start of the learning context (8y = 0.14,p < 0.01). In
contrast to the growing uncertainty aversion, novel options grew increasingly attractive as the block of trials unfolded
(Bn.: = 0.44,p < 0.01).

The feature specific trajectories exposed by this analysis are depicted in Figure JE, showing the proportion of trials in
which the stimulus with greater expected value (red), uncertainty (blue), or novelty (green) was chosen as a function
of progress through a learning context. Decisions between options with differing expected reward strongly favored
that with higher value, though this effect waned as the task proceeded. Trials in which both options were familiar but
differed in terms of uncertainty saw participants grow less likely to probe the most uncertain stimulus offered, consistent
with the normative exploration strategy in a bandit task such as ours. In contrast, participants expressed an increasing
preference for novel options, despite their inherent uncertainty.

2.3 A replication of novelty seeking and uncertainty aversion

We sought to establish the reliability of key behavioral signatures highlighted in our fMRI study. Behavioral data
was collected from N=79 participants at the University of Toronto, where participants were exposed to a variant of
the experimental protocol in which the first 6 blocks of the experiment replicate the task design described here (see
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methods for details). We report analyses from those 6 initial trial blocks here (the remainder of the experiment focused
on affective manipulations which will be reported on elsewhere).

Replicating our original findings, participants in this second study were influenced by reward history, stimulus novelty,
and estimation uncertainty. Mirroring the analyses reported in Figure 2JA-C, choice was strongly govern by reward
history, with participants exhibiting an indifference between equally valued stimuli (Bgyi—gyve = —0.04,p =
0.4), with an increasingly reliable preference for the option with a higher expected value (Bgy1—_gyve = 3.77,p <
0.01). Participants also elicited a strong novelty seeking bias when both options were of approximately equal value
(BEvy—EV, = 0.23,p < 0.01), as well as an aversion to more uncertain options (8gv, —gv, = —0.16,p < 0.01).

Noting that participants in the replication study were both novelty seeking and uncertainty averse, we probed the
trajectory of each feature’s influence on choice by administering the same regression analysis reported in Figure ZD. We
observed similar results to those of the original fMRI study, with participants expressing a growing preference for novel
options (Bn.: = 0.14,p < 0.01), while simultaneously developing an increasing distaste for more uncertain options
(Bu:t = —0.11, p = 0.04). Thus, participants in the replication study also exhibit the same growing tension between
novelty and uncertainty.

In summary, using a computationally agnostic regression model of choice we found evidence of both exploration and
exploitation during our task, which was replicated in a larger behavioral study. Of note, we identify clear conflict
between features associated with exploration and their trajectories across the task at hand, expressed as a growing distaste
for uncertainty concomitant with a growing appetite for novel alternatives despite their inherent uncertainty. Using
these results to benchmark and constrain our consideration of the mechanisms driving choice we turn to computational
models of learning and decision making to elucidate how these patterns emerge, focusing not only on how the trade-off
between exploration and exploitation is regulated, but also the puzzling tension between novelty and uncertainty guiding
exploration.

2.4 Computational model of choice

Regression analyses identified similar choice patterns in both fMRI and replication behavioral data sets, showing
that reward history, stimulus novelty, estimation uncertainty, and task horizon all influence choice. Here, we apply
computational models of learning and decision making to behavior collected during the fMRI study as a path towards a
better understanding of how the explore/exploit trade-off is regulated in the human brain.

The task was modelled from the perspective of a forgetful Bayesian learner. In brief, each option is represented as a
Beta distribution, which was defined according to a recency weighted integration of previously observed outcomes.
Novelty was accommodated by way of optimistic value initiation by either inflating the initial o (novelty seeking) or 8
(novelty averse) parameters used to specify each option’s Beta distribution. From this representation we employ the
distribution’s mean and variance as the option’s expected value and uncertainty respectively. In line with theoretical and
empirical results, uncertainty was incorporated into the decision making process as a bonus term (see materials and
methods for details).

Uncertainty and novelty were both shown to influence choice, but each followed separable trajectories across the task’s
horizon (see Figure 2D-E). We accommodated this adaptive influence into the model by including feature weights that
consider progress through the learning context. Using free parameters that define the initial (U7, Ny) and terminal (Ur,
Nr) feature weights, the model can flexibly adjust how both uncertainty and novelty factor into the subjective utility of
a given stimulus according to a linear trajectory across the task horizon.

As noted previously, participants expressed a growing distaste for uncertain options and a simultaneously increasing
preference for novel options despite their inherent uncertainty, presenting a tension that demands further scrutiny. This
pattern of response could emerge from a system that considers both novelty and uncertainty as pertinent stimulus
features, but increases the drive to seek novelty at a rate that can outpace uncertainty aversion. However, we know
of neither empirical evidence nor normative theory suggesting that novelty should be increasingly valued as a task
approaches termination (and see Supplementary materials showing evidence that boredom or superstitions do not
offer explanations consistent with the data). Alternatively, we reasoned that this pattern of behavior could emerge
by way of an interaction between novelty and uncertainty processing in the brain; specifically, a system in which
stimulus novelty interferes with uncertainty’s potency. In this framework, familiar options derive their subjective utility
according to both reward history and an uncertainty bonus. Conversely, novel options are valued according to their
optimistically initiated expected value alone, absent consideration of the uncertainty bonus. Under this scheme, as
depicted in Figure [3]A, an increasing reluctance to sample uncertain familiar options will push favor toward novel
alternatives for which uncertainty is ignored, resulting in a growing propensity to sample novel options as the motivation
for uncertainty-driven exploration diminishes.
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Figure 3: Computational modeling. A) An illustration of the mechanisms driving choice in the fmUCB model when
novel and familiar options are offered near the end of a learning context. The familiar option’s negative utility combines
the positive reward history coming from a previously rewarded encounter with a strong negative uncertainty bonus
(due to the high uncertainty and proximity to the end of the task’s horizon). Despite not having been sampled, the
novel option is endowed with a positive expected value while the otherwise aversive uncertainty is blocked, resulting in
an positive stimulus utility. B) Parameter estimates for the fmUCB model (Softmax 3 governing choice determinacy,
learning rate 7, constant novelty shaping bias N; = Np, uncertainty bonus intercept and terminal values Uy, Ur). C)
Posterior predictive check depicting the degree to which the fmUCB model captures the response patterns highlighted
by the computationally agnostic regression analysis. Histogram bars denote regression coefficient counts. behavioral
regression coefficient and 95% confidence intervals are depicted as point and bars in red along the x-axis.

We formalized this hypothesis as a computational model that could explain the interaction between novelty and
uncertainty to drive exploratory choice. We began with a baseline forgetful Bayesian reinforcement learning model
that included two free parameters: a learning rate (1) that determined the rate of behavioral adaptation in response to
observed outcomes; and a Softmax choice stochasticity parameter (3) which determined the degree to which choice
relied on value. We augmented this baseline model to embody our hypothesized mechanisms of human exploration in
what we label the familiarity modulated upper-confidence bound model (fmUCB). This model includes free parameters
Ur and Ur to incorporate an uncertainty bonus that adapts to the task horizon, and N; = N to facilitate a consistent
value initiation bias throughout the task. Importantly, we address the tension between novelty and uncertainty by
incorporating stimulus familiarity as a modulatory mechanism governing the uncertainty bonus, effectively blocking the
influence of uncertainty when stimulus novelty is high.

We examined the degree to which the fmUCB model faithfully reproduced the response patterns observed in participants’
behavior by conducting a posterior predictive analysis. To do so we fit the model to behavior using the Computational
Behavioral Modeling (cbm) toolkit [35]. We then exposed the model to the same sequence of trials observed by
a participant from the fMRI task and had the model generate choices according to parameters optimized for that
participant. This process was repeated for each participant to produce a synthetic data set that could be subjected to the
same regression analysis applied to our human participant data (as illustrated in 2D). We repeated this process 100
times to generate a distribution of estimates, marginalizing over stochasticity in the model generated choices. Figure 3IC
illiterates the estimated effects identified in our participant group (in red along the x-axis), along side the distribution of
effects generated by the model. The model can be seen to faithfully reproduce the patterns observed in the behavioral
data, indicating that the fmUCB model does indeed capture patterns of interest in the behavioral data.

2.5 Model characteristics and comparisons on behavioral data

To test whether the fmUCB model offered a parsimonious explanation of participant’s behavioral data, we performed a
model comparison in which we pitted it against alternative models. This alternative set included the baseline model
described above (including 8 and 7 as free parameters), and a family of other models containing a full permutation
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of exploration-related variables absent the additional constraints of the familiarity gating mechanism, defined by a
parameter set that includes initial and terminal novelty initiation bias (N; and Nr) as well as initial and terminal
uncertainty bonus weights (U, and Ur). We performed model comparison on the behavioral data from the fMRI
dataset which had sufficient numbers of trials per participant to enable model fitting and comparison. Using the cbm
toolkit, this comparison showed that the fmUCB model offered the best explanation of the behavioral data given the set
of models being considered with 96% exceedance probability.

As depicted in Figure 3B, the fmUCB model’s optimized parameters estimates exhibit a positive estimate of N7,
indicating that option values are indeed optimistically initiated (t(31)=3.56, CI=[0.04, 0.14], p=0.001). Furthermore,
participants also manifested a decreasing uncertainty bonus, consistent with the hypothesis that the uncertainty bonus
encapsulates the prospective benefit of uncertainty reduction (U; — Ur: t(31)=14.96, p<0.001, CI: [0.39, 0.52]).

We next considered critical details about how the fmUCB model could be implemented. Firstly, a reasonable alternative
to optimistic initiation could involve novelty acting on the decision-making process as a separable linear bonus term
that is integrated to form a subjective utility (as operationalized through the uncertainty bonus term). Thus, we sought
to probe for evidence supportive of either an optimistic initiation or a linear bonus mechanism driving novelty seeking.
Secondly, the fmUCB model does not specify the mechanism by which novelty dampens the uncertainty bonus. This
pattern of response could emerge incidentally, where novel stimuli promote a decision before the bonus can be fully
integrated into the subjective utility guiding choice, or alternatively, the neural processes engaged by novel stimuli
could directly interfere with the processes required to compute the uncertainty bonus itself. Although these mechanisms
are indistinguishable from a behavioral perspective (see below), the profile of the underlying computational variables as
they evolve over time differs between the implementations. Given that these variables should be encoded in the brain
according to the model variant that is actually being utilized at the neural level, we aimed to determine whether we
could distinguish between these implementational forms using the fMRI data.

2.6 Neural correlates of subjective utility and preference

Before investigating the mechanistic implementation of the fmUCB model, we first sought to identify regions of the
brain correlating with the model’s key variables. We focus first on identifying regions of the brain that are associated
with the subjective utility of the stimuli being offered. To do so, we defined a GLM that included event onset regressors
of zero duration (fixation, stimulus, response, and feedback), as well as a boxcar regressor lasting the trial’s duration.
We augment this GLM to include the stimulus utility for both the selected and rejected options, which is defined as the
summed expected value and uncertainty bonus as used by the fmUCB model to guide choice. We also include stimulus
novelty and estimation uncertainty for both options as stimulus-locked parametric modulators to segregate signal
associated with valuation, as well as the model’s reward prediction error as a feedback-locked parametric modulator.

We first probed the neural correlates associated with the selected option’s subjective utility (see Figure A, red). This
analysis identified a positively correlated cluster comprising of vmPFC (peak voxel: x=-10, y=41, z=-10; t=6.4) and
ventral striatum (peak voxel: x=5, y=16, z=-4; t=7.86), as well as a cluster spanning posterior cingulate cortex (peak
voxel: x=-5, y=-51, z=10; t=5.44). We sought to further characterize these signals as contributing to valuation and/or the
decision making process itself. Noting that the value of both options is correlated with their sum (selected + rejected),
while a comparative decision making process is correlated with their difference (selected - rejected) [36], we constructed
and analyzed the corresponding contrasts. The summed subjective utility contrast tracking value ascribed to either
option identified a cluster extending from vmPFC (peak voxel: x=-8, y=36, z=-14; t=5.3) to ventral striatum (peak voxel:
x=12, y=6, z=-7; t=5.39), and a small cluster in posterior cingulate cortex (peak voxel: x=-5, y=-41, z=40; t=4.36)
(Figure B red). Focusing next on the decision making process, we identified a cluster in vmPFC (peak voxel: x=-10,
y=46, z=-12; t=4.91) that was positively correlated with the relative difference in subjective utility (selected-rejected;
Figure f[C red). Consistent with numerous previous studies [28 27|, these results highlight the vmPFC as playing a
central role in the valuation and decision making process.

The fmUCB model derives the subjective utility for each option as the sum of an optimistically initiated expected value
and a familiarity modulated uncertainty bonus. We sought to determine whether these signals were represented in the
brain, and if so, how they come to influence the decision making process. In pursuit of this, we specified a second
GLM in which the subjective utility was decomposed into its constituent expected value and uncertainty bonus terms
for both the selected and rejected option. An analysis of BOLD signal change positively correlated with the selected
option stressed a prominent role for vmPFC in tracking stimulus features pertinent to value and decision making (see
Figure A blue and green), with clusters positively correlated with novelty-biased expected value (peak voxel: x=-8,
y=36, z=-10; t=6.62) as well as a largely overlapping cluster positively correlated with the uncertainty bonus (peak
voxel: x=-2, y=51, z=-4; t=5.1). We then repeated the valuation (selected+rejected) and decision (selected-rejected)
contrast analyses for both expected value and the uncertainty bonus. The valuation contrast exposed a cluster in vmPFC
that positively correlated with optimistically initiated expected values (peak voxel: x=-8, y=36, z=-14; t=4.89, Figure 4B
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Figure 4: Neural correlates of computational variables guiding choice A) Neural correlates associated with the chosen
option. Clusters including posterior cingulate gyrus, and a large cluster extending from vmPFC to ventral striatum were
positively correlated with the subjective utility of the chosen stimulus (red). A cluster including vmPFC and ventral
striatum was positively correlated with the expected value (blue), while a cluster incorporating vmPFC was positively
correlated with the uncertainty bonus (green). B) Value contrasts (selected + rejected option value) exposed a cluster
extending from vmPFC to ventral striatum as positively correlated with the mean subjective utility of both options (red).
A cluster in vimPFC was positively correlated with expected value (blue), while a cluster in mPFC was correlated with
the uncertainty bonus (green). C) Decision contrasts (selected - rejected) identified a significant cluster associated with
subjective utility extending from vmPFC to ventral striatum. Whole-brain maps for signal of interest were tested with a
cluster-forming threshold of P < 0.001 uncorrected, followed by cluster-level FWE correction at P<0.05.

blue), while a slightly more dorsal cluster in medial PFC (peak voxel: x=8, y=42, z=8; t=4.53, FigureE]B green), was
positively correlated with the uncertainty bonus. No regions were found to correlate with the relative difference between
the option’s expected values or between their uncertainty bonus terms. These results suggest that stimulus features
themselves are not directly compared; rather, an integrated subjective utility is formed and used to guide choice.

2.7 fMRI evidence for optimistic initiation

As noted previously, there are two different routes by which novelty could be incorporated to guide choice. Besides
the optimistic initiation mechanism described earlier, an alternative would involve the brain employing a separable
novelty bonus term applied at the time of decision, which we call a novelty bonus mechanism. A simulation-based
analysis of model confusability showed that these two candidate mechanisms are not identifiable using behavior alone
as the generative mechanism can only be correctly identified 54% of the time (see Methods for details). Crucially,
although the choices motivated by both mechanisms are roughly equivalent, they differ with respect to the expected
value ascribed to novel options and their subsequent RPEs when chosen. Thus, while not behaviorally distinguishable,
we aimed to determine whether fMRI activity could be utilized to differentiate between these two implementations.

Exploiting the fact that optimistically initiated values result in distorted reward prediction errors when outcomes are
observed, we first examined whether signal change in ventral striatum reflects the bias predicted by optimistic initiation
as previously reported by [6]. We extracted two reward prediction error signals from the fmUCB model’s time-course;
the first RPE (9) represents the signal generated by the fmUCB model that includes the optimistic initiation component,
and the second is the RPE as would be computed absent any effect of novelty on value expectations ( §_ ). From this
we defined a regressor representing the novelty component of the RPE as §; = & — d_ . Consistent with previous
findings [20, 37]], we found a strong correlation between the standard RPE (§_ ) and activation in ventral striatum
(see Figure[5]A). Importantly, voxels in right ventral striatum also correlated with the novelty biased component of the
RPE encoded by §y above and beyond the correlation found with the basic RPE signal (peak voxel: x=10, y=16, z=-9;
t=3.02, p<0.005 height threshold; p=0.05 SVC). These findings support the presence of a novelty biased RPE signal,
consistent with (and overlapping spatially with) previous findings reported by [6].

Pursuing this line of investigation further, we compared the variance explained by the optimistic initiation and linear
novelty bonus mechanisms in regions of interest using Bayesian model comparison. We identified the vimPFC as a
region of interest associated with valuation and choice [27, 28], defining a 15mm radius sphere centred on peak voxel
coordinates identified by [27]. We also probed ventral striatum as a second ROI given its association with reward
prediction errors as found above [6, [37]. As depicted in Figure 5B, a comparison of the variance explained by the
expected value associated with the chosen option and the subsequent RPE as predicted by both mechanisms shows that
421 voxels in vmPFC and 357 voxels in ventral striatum were best explained by the optimistic initiation mechanism
(exceedance threshold >= 0.9, cluster size >=10). Conversely, only 94 voxels were best explained by the linear bonus
mechanism. Therefore, our findings suggest that the fmUCB model operationalized in terms of optimistically initiated
reward value expectations provides a better overall account for expected value and RPE signals in both vmPFC and
ventral striatum than does the linear bonus mechanism. It should be noted that value and prediction error signals derived
from both the optimistic initiation and linear bonus implementations of the fmUCB model yield significant effects in
overlapping brain areas at the whole brain level, and these are already encompassed by our ROIs. Thus, our model
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Figure 5: Representation of optimistic initiation in vmPFC and ventral striatum A) Standard reward prediction errors
are associated with robust activity in ventral striatum (green). The additional component of the RPE attributed to
optimistic initiation was also identified in ventral striatum. B) Signal change in vmPFC and ventral striatum is better
explained by optimistic initiation than a linear bonus mechanism. Voxel-wise model comparison plots report voxels
exceedance probability > 0.9 favoring the fmUCB model (green) or the linear bonus model (blue). Mask encompassing
vmPFC and ventral striatum bordered in white.

comparison conclusions are not merely an artifact of the ROIs selected because these ROIs capture the key regions in
which statistically significant fMRI correlates of these variables are present according to either implementation (see
Supplementary Figure T] for details).

2.8 Novelty disrupts the computation of the uncertainty bonus

We also wanted to determine precisely how uncertainty and novelty interact within the human brain. The fmUCB model
flexibly adapts the uncertainty bonus according to the task’s horizon, growing increasingly unwilling to probe uncertain
familiar options toward the end of a learning context (see Figure[3D-E). The model also expresses a growing preference
for novel options despite their inherent uncertainty, which is accommodated through a familiarity modulated uncertainty
bonus. Here, we query the fMRI data for patterns consistent with two plausible candidate installations of the model’s
uncertainty bonus.

As previously outlined, this pattern of response could emerge incidentally as a result of novelty promoting a choice
before the uncertainty bonus could be fully integrated into the subjective utility. Alternatively, the neural processes
required to compute the uncertainty bonus may be directly obstructed or commandeered by processes engaged with
novel stimuli. These two competing implementations cannot not be distinguished on the basis of the behavioral data
alone as they yield equivalent choice behavior. Therefore, we sought to utilize the constraints imposed by their neural
implementation to differentiate between them. Specifically, direct interference predicts the absence of uncertainty bonus
signals associated with novel stimuli, while incidental choice induction implies that the cognitive processes responsible
for computing the uncertainty bonus ought to be present despite their inability to guide behavior.

We again used a model comparison approach to determine which of these implementations better describe the pattern
of activity in the brain. Our previous analyses show that the uncertainty bonus is reflected in mPFC (see Figure [AB),
highlighting this as a target ROI within which to evaluate the predictions of the two mechanisms. We first defined a
GLM that included event onset regressors of zero duration (fixation, stimulus, response, and feedback), as well as a
boxcar regressor lasting the trial’s duration. Reflecting the premise that uncertainty bonus signals should emerge for all
stimuli regardless of novelty, the incidental mechanism was modelled in a GLM that included expected value, novelty
and uncertainty for both options offered, as well as their trial-weighted uncertainty bonus terms absent familiarity
modulation as parametric modulators locked to stimulus onset. We compared this GLM to one in which the uncertainty
bonus signals were dampened by novelty as used by the fmUCB model and reported in Figure @B. As illustrated in
Figure [6A, a cluster of 80 voxels was found to be better represented by the familiarity modulated bonus term, whereas
no voxels favored the uncertainty bonus absent familiarity modulation (exceedance probability > 0.9, cluster threshold
= 10). Importantly, although no significant clusters were found to correlate with the unmodulated uncertainty bonus,
peak voxels were identified in this ROI at an extremely liberal threshold, demonstrating the suitabiliy of the ROI
for comparison (see Supplementary Figure [2). This suggests that the brain’s uncertainty bonus is diminished when
processing novel stimuli, and is consistent with a mechanism in which novelty actively inhibits the processes through
which uncertainty directed decision making is guided.

Inquiring further into this idea that novelty hampers the brain’s application of the uncertainty bonus, we probed for
regions expressing divergent neural correlates tied to novelty and uncertainty processing. Ultimately, the computational
variables and cognitive processes under investigation produce a behavioral choice. Here we leverage the fact that our
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Figure 6: Effects of novelty on the uncertainty bonus and choice. A) Model comparison in mPFC supports a novelty-
induced interference implementation of the familiarity modulated uncertainty bonus. Voxel-wise model comparison
report the exceedance probability favoring the explicit interference implementation of the fmUCB model. Masked brain
plots report voxels favoring the explicit fmUCB model exceeding threshold (exceedance probability > 0.9) in green,
(mask encompassing mPFC bordered in white). B) Contrasts showing significant clusters in bi-lateral FPC positively
correlated with choosing the lower valued option (blue), the more uncertain option (green), and negatively correlated
with choosing the more novel option (red). Brain maps reported exceed a cluster-forming threshold of P < 0.001
uncorrected, followed by cluster-level FWE correction at P<0.05. C) ROI analysis of mean beta estimates in ROIs
situated at bilateral FPC (white bordered circles) taken from [20] according to choice.

experimental design offered options that varied in terms of expected value, estimation uncertainty and novelty to probe
the activation patterns across these dimensions when choice strayed from reward exploitation.

We constructed a GLM that included three response-locked parametric regressors indicating whether or not the option
with lower expected value was selected (random exploration), if the option with higher estimation uncertainty was
sampled (uncertainty directed exploration), and whether or not a novel option was chosen (novelty driven exploration).
As illustrated in Figure [6B, this analysis revealed differential bi-lateral engagement in FPC for each class of choice.
We identified bi-lateral clusters in FPC that showed elevated activation when either the lower-valued option was chosen
(rFPC: x=32,y=51,z=20 t=5.94; IFPC: x=-27,y=51,z=15 t=5.4), or when the option with higher uncertainty was sampled
(rFPC: x=25,y=56,z=-12 t=5.96; IFPC: x=-25,y=64,z=0 t=4.49). In contrast, we observed a significant bi-lateral
reduction in FPC activity when novel stimuli were chosen (rFPC: x=22,y=51,z=23 t=4.91; IFPC: x=-20,y=46.5,z=13
t=5.02). These effects were corroborated by an ROI analysis centered on FPC coordinates previously reported to be
associated with exploration [20] (Figure @B-C), with both value (t(31)=4.3, p<0.01) and uncertainty (t(31)=4.3, p<0.01)
driven exploration associated with greater FPC activation, while sampling novel options elicited a significantly reduced
activation in those same regions (t(31)=-3.2, p<0.01).

These patterns of activation associated with non-exploitative choice show that while decisions to explore familiar
options preferentially engage FPC, a region that has been repeatedly associated with exploration [20, 24, |8, 138]], choice
targeting novel alternatives does not. Further to this point, sampling novel options corresponds with depressed activation
in these same regions, suggesting that the exploratory contributions fostered by FPC are impeded by stimulus novelty.

3 Discussion

In this study we investigate how the human brain balances a fundamental tension between exploration and exploitation.
Previous studies have characterized a range of normative and heuristic solutions to the problem [20, 7} 18,21} 10,6} 9} 19}
29]|; however, none have simultaneously probed the interactions between novelty and uncertainty, two key variables we
have shown to co-exist, interact and influence choice behavior during exploration/exploitation decisions. Here, we show
that humans adaptively evaluate the potential benefit of reducing uncertainty, preferentially targeting uncertain options
when new information can be exploited in the future. In contrast, and despite their inherent uncertainty, novel options
were pursued irrespective of the task horizon, and grew increasingly attractive as task termination approached. Notably,
these findings were also replicated in a larger behavioral sample, demonstrating generalizability across populations.

Using a computational model of choice constrained by neural data, we demonstrate how this apparent tension between
uncertainty-guided choice and novelty seeking can be resolved. We found that choice was biased by an adaptive
uncertainty bonus that reflects the prospective value of information. At the start of each learning context, participants
were more likely to be drawn toward uncertain options; however, as the opportunity to leverage newly gained information
diminished so too did the willingness to explore uncertain alternatives. This is a reasonable course of action from a
theoretical point of view, where the value of information is rooted in the rewarding advantages it grants in the future [2],
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and mirrors previously reported effects of task horizon linking uncertainty driven exploration to the prospective value of
information [[7]].

Consistent with the hypothesis that novelty seeking reflects a mechanism encouraging exploration though the exploitation
of corrupted reward expectations, participants did not sway from seeking novel options throughout the task. And
indeed, our results show that signal change in ventral striatum, a region that has previously been associated with
novelty biased reward prediction errors [6], and vmPFC, a region associated with both value guided choice [27] and
outcome monitoring [28]], were both best accounted for by a model that included an optimistic initiation mechanism
(see Figure[5B). Furthermore, signal change in ventral striatum associated with reward prediction errors was shown to
include an additional novelty bias component, replicating findings reported previously [6] (Figure[5A).

Contrary to normative theory, where the value of exploration stems from the prospects of greater reward in the future [2]],
we also found that participants exhibited an increasing tendency to sample novel options as the task horizon approached
its end, a pattern that optimistic initiation alone could not explain. Our analyses show that, in addition to inflating an
option’s expected value, novelty also diminished the influence of uncertainty. Model comparison demonstrated that
the fmUCB model, which included a mechanism through which stimulus familiarity modulated the influence of the
uncertainty bonus, fit the behavioral data best. Furthermore, we found that signal change in mPFC, where correlates of
the uncertainty bonus and subjective utility were localized, was better explained by a familiarity-modulated uncertainty
bonus than by a model that applied the uncertainty bonus regardless of stimulus novelty (see Figure [(JA). This, we
argue, is consistent with an antagonistic interaction between novelty and uncertainty processing as opposed to an
indirect relationship in which novelty promotes response initiation before the uncertainty bonus can be integrated into
the decision making process. Thus, we propose that the increasing appetite for novel options reflects two separable
processes that act to promote exploration: firstly, inflated reward expectations guide the brain’s exploitative circuitry
towards sampling novel options, and second; inhibited uncertainty processing diminishes the otherwise aversive nature
of the unknown when new information has low prospective utility.

The present study also has novel methodological implications that go beyond the specific research question. It provides
a clear demonstration of how neural evidence can be used to constrain and arbitrate between different computational
mechanisms in a way that sometimes cannot be achieved using behavioral measures alone. This demonstration is
pertinent to a persistent debate in the psychological literature about the utility (or absence thereof) of neuroscience
measures above and beyond behavioral measures for advancing theoretical understanding of cognitive function. While
the behavioral patterns we observed on the task allowed us to restrict the space of possible computational models,
behavior could not distinguish between several competing implementations of the model describing how stimulus
novelty influenced choice. However, variants of the model’s instantiation relied on distinct internal signals, allowing us
to compare patterns of brain activity that would be expected for different model components including the representation
of expected value, prediction errors and uncertainty bonus signals. Utilizing a model comparison approach on fMRI
data, it was possible for us to obtain evidence in support of one particular model structure, thereby validating the
importance of using brain measures alongside behavioral ones to advance theoretical understanding of cognitive
processes 39,140,141} [17]].

Our results also build on a wealth of previous work exposing the role of the vimPFC in learning and decision making. In
contrast to tasks in which decisions are either purely exploitative or exploratory [[10, [11], or where exploration was
prompted by latent change-points indicating the need for a new strategy [29, 24]], our task was explicitly designed to
encourage choice that simultaneously considered both reward and information gain as prescribed by normative theory
[2]]. Previous investigations of choice under uncertainty have shown that vmPFC tracks both the probability of choice
[20], and the relative difference between the selected and rejected values [24]], implicating vmPFC in both valuation
and decision making [27]. In line with these reports, we found that both the subjective utility of the options under
consideration and their relative difference was robustly represented by vmPFC (Figure @B-C).

Recent studies have suggested that vimPFC contributes to the regulation of exploration and exploration by monitoring
outcomes, signalling the degree to which predictions are being met (or not) [29], while others have reported vimPFC
signal consistent with the value ascribed to information seeking, be it a positive value when information can be leveraged
in the future, or a negative value when it cannot [11]]. Our results build on these findings, showing that vmPFC plays a
role in regulating the trade-off between exploration and exploitation by integrating feature values pertinent to each.
We identified signal consistent with the expected value of the options offered in vmPFC, and an uncertainty bonus
guiding exploration in mFPC. Notably, while we observed a robust signal in vimPFC reflecting the relative difference
in subjective utility, we did not observe signal consistent with the difference in feature values. This suggests that the
expected value of reward and the expected value of information gained by exploration are first integrated to form
subjective stimulus value from which choice may be directed. This is consistent with previous work arguing that vimPFC
acts as a value integration hub where disparate stimulus features are weighted according to current goals, situating
vmPFC as integral to goal-directed action selection [42] 43| 44].
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Previous research examining the neural correlates of human exploration have implicated FPC; however, the nature
of its role remains elusive. One of the first studies using fMRI to probe exploration in humans found that this region
was engaged when participants opted to forgo the most rewarding option to sample a lower valued alternative [20],
implicating FPC in random exploration. Subsequent work has associated FPC in tracking the relative uncertainty of the
available options [8} 23], while others have proposed a functional link between FPC and IPS as a means of tracking and
switching to an alternative course of action [24]. Consistent with these findings, we found that FPC was preferentially
engaged when participants decided to sample either the lower-valued or more uncertain option (Figure [(B-C). Thus, our
data highlight the role of FPC in both directed and random exploration, suggesting that this region may be critical for
motivating a diverse range exploratory strategies.

In contrast, we also found that FPC was suppressed when novel options were chosen. This, we argue, offers further
support for the hypothesis that the brain does not frame novelty seeking as exploration per se; but as value exploitation.
Furthermore, noting the uncertainty inherent to novel options, these findings may reflect the active suppression of
signals pertinent to uncertainty guided choice. This intriguing possibility could potentially be tested in follow up work
leveraging connectivity analyses and neural stimulation over the FPC.

Questions remain as to what benefit this particular configuration offers, with stimulus novelty parasitizing the brain’s
reward circuitry to promote exploration while uncertainty-directed sampling relies on separable integrated feature
values. We speculate that this offers a parsimonious decomposition of an otherwise intractable decision problem.
Inferring the prospective benefit of strategically reducing uncertainty can offer significant benefit, particularly in volatile
environments where reward contingencies and goals can change rapidly. However, the computational demands of this
approach are high, and in unfamiliar circumstances, most likely nothing more than guess work. We suggest that by
diverting computational resources away from ill suited strategies in favor of more computationally efficient heuristics
like optimistic initiation, the brain can begin to bridge the gap from a computational intractable scenario toward a
manageable landscape where more adaptive strategies like uncertainty-driven exploration can be beneficially applied.

To conclude, in this study we offer further insight into human strategies for balancing the explore/exploit trade-off and
their neural roots. By systematically decoupling stimulus novelty and uncertainty, and by leveraging neural data to
constrain models of human learning and decision making, we show that human exploration simultaneously targets
different stimulus features using distinct strategies with potentially conflicting preferences. How the brain resolves
these tensions has a significant impact on behavior, highlighting potential avenues through which dysregulation of the
balance between exploring new alternatives vs staying the course may be investigated.

4 Materials and Methods

4.1 Participants

4.1.1 fMRI study

We recruited 33 participants from the Pasadena community to take park in our study. One participant was removed from
the sample due to excess movement and poor performance (sleeping in the scanner), leaving a sample of 32 human
participants (13 female). All participants were English speakers, had normal/corrected-to-normal vision, and had no
history of neurological or psychiatric disease. Participants were paid a $40 base-rate plus a performance bonus ranging
from $5-$15. The study was approved by the Caltech IRB and participants gave their informed consent to take part in
the study.

4.1.2 Behavioral replication study

The replication study included 79 participants (48 female) from the Toronto community. All participants were required
to be fluent English speakers and have normal or corrected-to-normal vision. 77 participants reported no prior history of
psychiatric or neurological disease, but 2 additional participants reported a prior history of psychiatric illness. Those
two participants are still included in the reported analyses because omitting them made no substantive difference to the
results. Participants were paid a base rate of $10 per hour plus a performance bonus up to $20. All participants gave
their informed consent to participate in the study in accordance with the Research Ethics Board at the University of
Toronto.
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4.2 Experimental design
4.2.1 fMRI study

Participants performed 20 blocks of a novel finite horizon multi-armed bandit task designed to expose the impact of
reward, uncertainty and novelty in balancing the explore/exploit trade-off while undergoing four consecutive 15-minute
fMRI sessions (5 blocks per session). On each trial, participants were asked to choose between two slot machines.
Having selected one of the machines, they were informed of the machine’s payout, either $1US (win) or $0US (loss).
Participants were instructed that each block would consist 18 to 23 trials, and to encourage balanced attention and
motivation throughout the task, they were informed that one block would be selected at random at the end of the
experiment and they would be awarded the earning collected during that block as a cash bonus.

Each block was structured to include five visually unique and identifiable slot machines, three of which used familiar
stimuli that had been seen during previous blocks, while the remaining two used novel stimuli that had not yet been
shown (43 stimuli in total). The five slot machines that could be offered in a given block were each associated with a
fixed probability winning, which was sampled from a linearly spaced range of [0.2 - 0.8]. Participants were informed
that each slot machine had a fixed probability of winning within a block, but all machines were re-set at the start of
each block, and as such, anything learned in previous blocks would not apply in blocks to come. Trials were structured
such that the two slot machines offered on each trial varied in terms of the number of previous exposures (novelty
manipulation), as well as the number of times they’d been sampled in the current block (uncertainty manipulation),
allowing us to to systematically examine the influence of novelty and uncertainty across the horizon of trials within a
given block.

Following the slot machine task, participants performed a recognition test designed to probe their recall of which
machines they had observed. They were asked to label 86 stimuli as "old’ or "new’, half of which had been used during
the multi-armed bandit task, and half of which were not. Participants exhibited exceptional performance on the memory
probe task, with mean accuracy of 89% (min 77%, max 97%), indicating the efficacy of the novelty manipulation.

4.2.2 Behavioral replication study

The replication study consisted of an adapted version of the task described in the preceding section, with modifications
described here. Prior to the start of the task, participants were instructed that they would be playing for points that would
then be converted to a real monetary bonus up to a maximum of $20cnd. Because this version of the task included
situations of monetary loss in affective conditions instantiated after an initial baseline condition, participants were
initially endowed with a starting sum of 1200 pts, with machines paying out 50 pts for a win and 0 pts otherwise.
The baseline condition mirrors the design of the fMRI study; the affective manipulations only start after the baseline
condition is complete and will be reported elsewhere.

Participants completed 6 blocks of the baseline condition consisting of 23 trials each. On each trial, participants were
asked to chose between two slot machine from a set of six, each of which was associated with a fixed probability of
winning, either sampled form a linearly spaced range of [0.2, 0.8] or from the set comprising [0.2, 0.44, 0.48, 0.52,
0.56, 0.6]. The assigned set of fixed win probabilities for a given block was chosen randomly, and participants were
similarly instructed that the machines re-set at the start of each block. The structure of the novelty and uncertainty
manipulations followed that reported in the fMRI study, though with two novel and four familiar stimuli. Two familiar
stimuli were presented for the first 2 trials, with the first novel and third familiar stimuli introduced between trials
3-5. The remainder of the set (second novel and fourth familiar stimuli) were introduced between trial 8-19 in a
pseudo-randomised manner. Relevant for the affective manipulation but independent of the primary multi-armed bandit
task reported here, participants were probed with a subjective mood rating scale in 2 of the 6 blocks; these ratings are
not analyzed further here.

As with the fMRI study, participants performed a recognition memory task following the multi-armed bandit task. In
the replication sample participants similarly exhibited good recognition memory accuracy (mean = 82%, s.d. = 12%)

4.3 fMRI data acquisition

Imaging data was collected at the Caltech Brain Imaging Center (Pasadena, CA) using a 3T Siemens Magneto TrioTim
scanner using a 32-channel radio frequency coil. Functional scans were acquired using multiband acceleration of 4, 56
slices, voxel size = 2.5mm isotropic, TR = 1,000 ms, TE = 30 ms, FA = 60°, FOV = 200mm x 200mm. T1 and T2
weighted anatomical high-resolution scans were collected with 0.9mm isotropic resolution following the functional
scans collected during task play.
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4.4 fMRI data preprocessing and analysis

Data was preprocessed using a standard pipeline for preprocessing of multiband data. Using FSL [45], images were
brain extracted, and denoised using ICA component removal, where components were extracted using FSL’s Melodic,
and classified into signal or noise with a classifier trained on independent datasets. Functional data was then aligned,
high-pass filtered (100 s threshold), and unwarped. T2 images were aligned to T1 images with FSL FLIRT, then
both were normalized to standard space using ANTs (using CIT168 high resolution T1 and T2 templates [46, 47]).
Functional data was co-registered to anatomical images using FSL’s FLIRT, then registered to the normalized T2 using
ANTs. Finally, the functional data was smoothed using a Smm FWHM Gaussian kernel. GLMs were specified using
default specifications in SPM 12 [48]]. The details of each first level GLM are provided in the main text. Second level
T-maps were constructed by combining each subject’s first level contrasts with the standard summary statistics approach
to random-effects analysis implemented in SPM. Statistic images were assessed for cluster-wise significance using a
cluster-defining voxel threshold of p<0.001 and brain-volume cluster corrected threshold of FWE< 0.05.

4.5 Regions of interest and small volume correction

The 15mm radius sphere in vmPFC used for analyses reported in Figure 5B centered on peak vmPFC voxel reported
in a meta analysis of the neural correlates of decision making and subjective utility [x=-2, y=40, z=-6] [27]]. Center
coordinates for left ([x=-14, y=10, z=-6]) and right ([x=14, y=10, z=-6]) ventral striatum were defined using coordinates
from NeuroSynth, while the ROI was defined as the union of 15mm spheres centered at both left and right coordinates in
union with voxels labeled as comprising putamen or accumbens according to the Harvard-Oxford sub-cortical structural
atlas. FPC ROIs were defined using Smm radius spheres centered on peak voxels in left and right FPC as reported by
[20]. Spherical small volume corrected analysis applied to novelty-biased reward prediction errors reported in Figure[SJA
used a 9mm sphere centered on coordinates [x=18, y=16, z=-10] as previously reported by [6].

4.6 Statistical analyses

Behavioral data was analyzed using mixed-effects logistic regression for a descriptive characterization of task perfor-
mance (using lme4 package in R). We define each option’s expected value (F[S;]) as the mean of a Beta distribution
specified according to the number of wins and losses observed within the current block of trials (Beta[oe =number of
wins + 1; 3 =number of losses + 1]). Uncertainty (U[S;]) was defined as the variance of the same Beta distribution.
We define stimulus novelty (IV[S;]) as the variance of a Beta distribution specified according to the number of times a
particular stimulus had been observed across the entire experiment (Betaae =number of exposures + 1, 5=1]).

Probability of selecting the option presented on the left (a; = L)for each trial ¢ was modelled as :

plas = L) = (Ra +Ua + Na) #t + ((Ra + Ua + Na) # t|ID) (1)

where Ra = E[Sp] — E[Sg] denotes the reward differential in favor of the left option, while Upn = U[SL] — U[Sg],
and Na = N[Sp] — N[Sg] reflect the difference in uncertainty and novelty respectively. We include trial number ¢ as
an interaction term to model changes in feature influence across the block horizon, with random intercept and slopes
estimated all terms for each participant ID.

4.7 Computational modeling
We characterize the computational mechanisms balancing the trade-off between exploration and exploitation using a

forgetful Bayesian model of choice, augmented with an uncertainty bonus and optimistic value initiation. The subjective
utility derived for each stimulus s; is defined as:

V(si) = Qn(si) + Up(si) (2

where Up (s;) is the uncertainty bonus added to the optimistically initiated expected value, Q n (s;). The probability of
selecting either the option presented on the left (s;) or right (s,-) was derived using a Softmax function, meaning choice
was a function of both random and uncertainty-directed exploration:

p(s1) o< Bx (V(s) = V(sr)) 3)

where (3 is the Softmax parameter controlling the degree to which choice was determined by value.
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The forgetful Bayesian reinforcement learning agent maintains a representation of each slot machine in a given block
of trials as a Beta distribution. This distribution was defined according to a recency weighted integration of observed
outcomes:

T—1

aj =1+ o' t-op (4)
t=0
T—1

Br=1+> 9"t 0f (5)

t=0

where 7' denotes the current trial within the block, and O and O are binary flags noting whether or not the observed
outcome on trial £ was a win or loss respectively. Thus, 7 operates as a learning rate, controlling the rate at which past
outcomes are down-weighted in favor of more recent outcomes. Each option’s expected value was derived as the mean
of this distribution:

*

(67

Q(Si)t = m 6)

while uncertainty was derived as the variance of the same distribution:
a* L A*

2 ) _ S; Sq
o%(si)¢ (az, +B2)2 - (az, + Bz, + 1) 7

Optimistic initiation was integrated into the model by way of inflating the hyper-parameters describing the expected
value (a;j_, > 1 for a novelty seeking bias, and 8;_, > 1 for a novelty avoidance bias).

Both the novelty-induced optimistic initiation bias and the uncertainty bonus were subject to dynamic weighting terms
defined according to the block’s horizon. On each trial, weighting terms w{ and w;" are applied to the uncertainty
bonus and optimistic initiation values respectively, where weights are defined as a linear function of the current block’s
trial number:

wt[]:U[+t'(UT_UI)/Ttask (8)
wy' = Ny +t- (Np — Np)/Trask 9)
where T}, denotes the task horizon, Uy and Ny denote intercepts for uncertainty and novelty at the start of each block,

while Ur and Nt denote weights at the end of each block. Thus, w{ and w;"¥ reflect linear trajectories across the task
horizon.

We define the fmUCB model as a resolution of the tension between novelty seeking and uncertainty aversion. We
embody this mechanisms by way of a familiarity modulated uncertainty bonus. Stimulus familiarity was defined
according to the normalized variance of a Beta distribution defined according to hyper parameters (Beta[a(s;) =number
of observations + 1, and 8 = 1]), or specifically:

as;) - B
(a(si) + B)? - (a(si) + B+ 1)

in which the variance terms is scaled to range between [0,1]. We then augment the uncertainty bonus to also reflect
stimulus familiarity:

(10)

UL(si) = F(s:) - (w - 02(s0)1) (11)

Lastly, in contrast to novelty biasing the expected value, we also test a mechanism in which novelty is factored into the
decision making process as its own bonus feature, referred to as the linear bonus model. In this model the optimistic
initiation mechanism was removed from the fmUCB model, and augment the subjective utility to include a novelty
bonus term:

V(si) = Q(s1) + Up(si) + wl - (1= F(sy)) (12)
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4.8 Parameter estimation and model comparison

All model parameters were estimated using the Computational Behavioral Modeling (cbm) toolkit [35]]. The toolkit
relies on normally distributed parameters, meaning some model parameters need to be transformed to be sensible.
Novelty and uncertainty weighting terms (N7, Np, Uy, Ur) all remained normally distributed (no transformation). The
Softmax inverse temperate was constrained to range between [0 < 5 < 20], while the learning rate was constrained
to range between [0 < 7 < 1] using a sigmoid function. Initially, we used an exponential function to transform the
Softmax parameter (5 = exp(p;)); however, this resulted in convergence/halting problems as small changes in p; could
lead to very large or very small changes in 8 depending on the sign of p;. Noting that all estimates were within a [0:20]
range when using the exponential transformation, we opted to use a sigmoid function as it offered a smoother and more
balanced transformation.

Model comparison was also relied on the cbm toolkit [35]. First-level estimates were computed for each individual
and model using common priors (N(u = 0,02 = 6.25)), which were then used to inform second-level fits and
simultaneous model comparison. This process treats model comparison as a random effect (i.e. different models might
better represent different participant), while also taking advantage of hierarchical parameter estimation which relies on
empirical as opposed to prescribed priors.

S Supplementary Materials

5.1 Learning contexts were treated independently

Our experimental design decoupled estimation uncertainty and stimulus novelty by framing each block of trials as a
unique learning context, and as such, the value associated with a stimulus sampled during previous contexts should
not be applied to the current context in play. Participants were explicitly informed of this, and told that although they
may see the same slot machines in different casinos, each casino has programmed the winning probabilities for each
machine differently. Here we demonstrate that participant behavior faithfully reflects de novo learning in each context,
and thus our assumption that the expected value and uncertainty associated with stimuli encountered during previous
contexts can be appropriately modeled using an unbiased prior at the start of a learning block (Beta[aw = 5 = 1]).

We first probed for behavioral signatures of value carry over from previous contexts by augmenting the fmUCB model
to accommodate value carry-over from previously learned stimulus values. To do so, we define the Beta distribution
describing stimulus ¢’s expected value according to:

T-1
Q=143 (7 0F) + (07 % Wprew * Qpres) 13)
t=0
—1
5: =1+ Z 77T7t : OtL + (77T * Wprev * ﬂ;prev) (14)
t=0

Here, the expected value is derived according to wins and losses observed in the current context up to the current trial
T, where 7 is a free parameter regulating the rate at which previous outcomes observed in the current context are
down-weighted in favor of more recent observations (just as the *forgetting rate’ defined in the fmUCB model). The
Beta distribution’s parameters for stimulus ¢ also include some proportion of the value associated with that stimulus in
the most recent previous context (o and 37 ..,), where wy,e,, governs the proportion of value carry over, and n”

. R vprev revoT . .
down-weights the initialization value as trials proceed in order to accommodate temporal effects of learning.

We fit and submitted the fmUCB model, a model with wy,.., = 1, and a model with w),,¢, as a free parameter to a
model comparison using the cbm toolkit. This comparison showed that the original fmUBC, absent any mechanism to
carry learned values across contexts, fit the data best (exceedance probability = 0.97), showing that participants did
indeed adhere to the instructed task structure.

This comparison across computational models offers evidence that participants did not carry values across contexts
as they were instructed to do. However, we wanted to ensure that the influence of previous context wasn’t simply
misattriuted and accommodated by other mechanisms in the model. We also wanted to probe for timepoints within
a block of trials where choice might exhibit the influence from previous contexts. To address these concerns we
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implemented a sliding window regression analysis, conducting a model comparison between a model that included
values from previously encountered contexts to a model that didn’t. We defined a baseline model as:

plag =L) = RA +Ua + Na+ (1 + Ra +Ua + Na|ID) (15)

where Ra = E[S1] — E[Sg] denotes the reward differential in favor of the left option, while Ua = U[SL] — U[Sg],
and Na = N[SL] — N[Sg] reflect the difference in uncertainty and novelty respectively, with random intercept and
slopes estimated for each participant ID, with values defined as they were for Equation [T} We then defined an augmented
model that also included the expected value leaned from the most recent context:

pla; = L) = PrevRa + Ran + Ua + Na + (1 + PrevRa + Ra + Ua + NaA|ID) (16)

where PrevRa denotes the previous context’s expected value differential between left and right stimuli. We then
repeatedly fit and compared the variance explained by both model across a sliding window of two trials within blocks
(e.g. window 1 = trials 1 and 2, window 2 = trials 2 and 3, etc...). This analysis showed that the previous value did not
offer sufficient additional explanatory power for any window of trials (all p-values > 0.05, uncorrected for multiple
comparisons).

In summary, neither computational model comparison, nor computationally agnostic analysis of fine grained structure
embedded in participant’s game-play showed evidence of value carry-over from previous contexts, demonstrating that
participant behavior reflected the instructed task structure faithfully.

5.2 Other experimental variables not predictive of novelty seeking

Participants exhibited a robust preference for novel options that increased as they progressed through a learning context.
The fmUCB model reproduces this phenomena by combining a constant novelty bias pulling participants toward novel
options, and a growing push away from paired uncertain familiar options. However, colloquial interpretations such as
growing boredom, or a superstition that that novel options might offer a bonus may also tempt inquiry.

Participants may have adopted the unfounded belief that novel options were baited to offer a bonus. Participants
were not offered any instructions to hint at this, nor was there an empirical difference in the rewards experienced
after sampling a novel or familiar option for the first time (mean reward for both familiar and novel options = 0.5,
t(31) = —0.2,p = 0.85). Furthermore, given that participants exhibited a growing preference for novel options, they
would presumably need to assume that novel options presented later in a block of trials was more likely to offer a baited
bonus than novel options presented earlier. No participants reported such a strategy or belief.

Participants performed the experimental task for approximately 75 minutes while in the scanner, with an average
time of just under 4 minutes per learning block. Most participants reported finding the task challenging and relatively
fun. However, to demonstrate that behavior wasn’t influence by fatigue, boredom, or other anomalous time-on-task
phenomena, we probed for the emergence of shifting strategies as the experimental task progressed.

We modified the regression model defined in Equation [I|to include block number as an interaction term instead of trial
number.

plag = L) = (RA + Uan + Na) b+ ((Ra +Ua + Na) x b|ID) a7

Model comparison showed that trial number offered a significantly better predictor of choice than block number
(log-likelihoods -6515.5 and -6557.9 respectively), demonstrating that preferences for novelty, uncertainty or rewarded
stimuli did not shift meaningfully as the experiment progressed. We constructed a second comparative model by
augmenting the model described by Equation [I]to include an additional term specifically probing for an effect of block
on novelty seeking:

play =L) = (Ra +Un + Na) #t + (Na xb) + ((Ra + Ua + Na) xt + (Na xb)|ID) (18)

Replicating effects previously reported, this model identified a significant novelty seeking bias (B = 0.18,p < 0.01)
that increased within the block of trials (8x.; = 0.42,p < 0.01). However, there was no effect of block number
(B = —0.08, p = 0.44) nor was there a significant interaction with novelty (8y., = —0.05, p = 0.6). Furthermore,
model comparison showed that the additional block number variable was unwarranted (2 (21, 32) = 20.528, p = 0.49),
demonstrating that novelty seeking strategies are not accounted for by experiment duration (as opposed to block level)
variables.
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A Neural correlates of Q-value estimates B Neural correlates of RPE estimates

D optimistic initiation
. linear bonus

Supplementary Figure 1: Voxels correlated with expected value and reward prediction errors across mechanisms of
novelty integration. A) A cluster of voxels in vmPFC correlated with g-values estimated by the linear novelty bonus
mechanism (blue), and voxels correlated with g-values as estimated by the optimistic initiation mechanism (green
bordered). Mask comprising 15mm sphere centered on independent meta-analysis peak voxel in vmPFC bordered in
white. B) A cluster of voxels in ventral striatum correlated with reward prediction errors estimated by the linear novelty
bonus mechanism (blue), and voxels correlated with reward prediction errors as estimated by the optimistic initiation
mechanism (green bordered). Whole-brain maps for signal of interest were tested with a cluster-forming threshold of
P < 0.001 uncorrected, followed by cluster-level FWE correction at P<0.05.

5.3 Behavioral confusability analysis

Discriminability between the optimistic initiation and the linear bonus mechanism was probed via model confusability.
We first fit the fmUCB model defined in terms of both the optimistic initiation and the linear bonus mechanisms to
participant data, and used those optimized parameter estimates to specify each model’s free parameters. Each model
instantiation was then exposed to the same set of trials experienced by our participants, and generated a choice on
each trial. This process was repeated 100 times for each participant, resulting in 100 simulated experiments with data
generated by each of the two mechanisms. Finally, we fit both implementations to both set of simulated experiments
to quantify the proportion of fits that correctly identify the true generative mechanism. This analysis revealed that
data generated by the optimistic initiation mechanism was only correctly identified for 53% = 0.14 of the fits. Data
generated by the linear bonus mechanism suffered equally poor identification, with 57% + 1.8 of the fits correctly
identifying the generative mechanism. Thus, we conclude that behavior alone cannot distinguish between either the
optimistic or linear novelty bonus mechanisms given our experimental design.

5.4 Neural correlates of expected reward associated with the linear bonus model

We derive estimated time-courses for variables of interest by fitting the fmUCB model defined to use the linear novelty
bonus mechanisms (see Equation to participant behavior. We then applied model estimates as parametric regressors
in the GLM outlined in Section to identify regions associated with stimulus reward valuation (selected + rejected
g-value). This analysis identified a cluster in vmPFC that encompassed the cluster associated with g-values estimated by
the fmUCB model (see Figure[TJA). Regions identified by both models are subsumed by the vmPFC ROI independently
identified by meta-analyses [27,28]. An analysis of regions correlated with the reward prediction errors generated by
both models also revealed largely overlapping correlates in ventral striatum (see Figure[IB).

5.5 Neural correlates of the uncertainty bonus absent familiarity modulation

The GLM described in Section [2.6| was modified to include the uncertainty bonus term estimated by the fmUCB model
absent familiarity modulation to identify regions associated with value (selected + rejected uncertainty bonus):

Up(si) = w! - 02(s:); (19)

No significant clusters were found using conventional voxel height p<0.001, but we report a cluster at an extremely
liberal threshold of p<0.01. Notably, this cluster overlaps with the region associated with the familiarity modulated
uncertainty bonus reported in Figure dB.
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Neural correlates of the uncertainty bonus

D with familiarity gate

no familiarity gate
p<0.01

[x=-2, y=44, z=1]

Supplementary Figure 2: Voxels correlated with the uncertainty bonus. A cluster of voxels in mPFC correlated with
the uncertainty bonus absent familiarity modulation (blue), but only at an extremely liberal threshold of p<0.01. This
region overlaps the cluster associated with the familiarity modulated uncertainty bonus (green border), which was tested
with a cluster-forming threshold of P < 0.001 uncorrected, followed by cluster-level FWE correction at P<0.05.
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