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Summary 25 

Plants activate immunity upon recognition of pathogen-associated molecular patterns. 26 

Although phytopathogens have evolved a set of effector proteins to counteract plant 27 

immunity, some effectors are perceived by hosts and induce immune responses. Here, 28 

we show that two secreted ribonuclease effectors, SRN1 and SRN2, encoded in a 29 

phytopathogenic fungus, Colletotrichum orbiculare, induce cell death in a signal 30 

peptide- and catalytic residue-dependent manner, when transiently expressed in 31 

Nicotiana benthamiana. The pervasive presence of SRN genes across Colletotrichum 32 

species suggested the conserved roles. Using a transient gene expression system in 33 

cucumber (Cucumis sativus), an original host of C. orbiculare, we show that SRN1 and 34 

SRN2 potentiate host pattern-triggered immunity. Consistent with this, C. orbiculare 35 

SRN1 and SRN2 deletion mutants exhibited increased virulence on the host. In vitro 36 

analysis revealed that SRN1 specifically cleaves single-stranded RNAs at guanosine, 37 

leaving a 3′-end phosphate. This activity has not been reported in plants. Importantly, 38 

the potentiation of C. sativus responses by SRN1 and SRN2 depends on the signal 39 

peptide and ribonuclease catalytic residues, suggesting that secreted SRNs cleave RNAs 40 

in apoplast and are detected by the host. We propose that the pathogen-derived 41 

apoplastic guanosine-specific single-stranded endoribonucleases lead to immunity 42 

potentiation in plants. 43 

 44 

Key words: Colletotrichum orbiculare, effector, ribonuclease, plant immunity, 45 

pathogen-associated molecular pattern (PAMP), pattern-triggered immunity (PTI) 46 

 47 

Introduction  48 

Plants and phytopathogens have developed mutual attack and defense systems over 49 

millions of years of coevolution. Plants are able to recognize pathogens through cell 50 

surface-localized pattern recognition receptors (PRRs). PRRs are able to perceive 51 

broadly conserved pathogen-associated molecular patterns (PAMPs), as well as 52 

damage-associated molecular patterns (DAMPs) that are host plant-derived molecules 53 

generated during pathogen invasion or cell damage. PAMPs and DAMPs include 54 

proteins, lipids, carbohydrates, and nucleic acids. Direct or indirect PAMPs/DAMPs 55 
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perception by PRRs induce pattern triggered-immunity (PTI), which includes both local 56 

and systemic immune responses (Boutrot & Zipfel, 2017).  57 

To counteract plant immune systems, pathogens have evolved secreted proteins, 58 

referred to as effectors, that inhibit host immune responses and allow pathogens to 59 

establish infection (Win et al., 2012). However, some effectors or their functions are 60 

recognized by host PRRs and induce immune responses. For example, the presence of 61 

Avr2, an effector protein of Cladosporium fluvum, is indirectly recognized by Cf-2, a 62 

PRR of tomato, and induces an immune response. Avr2 is secreted out from C. fluvum 63 

into the host apoplastic region, binds to Rcr3, a host plant-derived protease, and inhibits 64 

its enzymatic activity. Tomato indirectly senses Avr2 probably by detecting the 65 

modification of Rcr3 via Cf-2 and induces an immune response to inhibit C. fluvum 66 

infection (Dixon et al., 2000; Rooney et al., 2005; Tang et al., 2017). Thus, effectors 67 

can cause both positive and negative effects on the establishment of infection. However, 68 

the mechanistic diversity of effector recognition by host PRRs is largely unknown. 69 

Colletotrichum species are fungal pathogens that cause anthracnose disease on 70 

a variety of plants including economically important crops, fruits, and vegetables (Dean 71 

et al., 2012; Cannon et al., 2012). Most Colletotrichum species adopt a hemibiotroph 72 

lifestyle, consisting of an early biotrophic phase with no visible symptoms and a later 73 

necrotrophic phase associated with host cell death. Due to the agricultural and scientific 74 

importance of Colletotrichum species, genome sequencing of these fungi has been 75 

performed (O’Connell et al., 2012; Gan et al., 2013, 2016, 2021; Baroncelli et al., 2014, 76 

2016; Hacquard et al., 2016; Tsushima et al., 2019).  77 

Several Colletotrichum effectors have been identified. For example, NIS1 78 

from Colletotrichum orbiculare, a causal agent of Cucurbitaceae anthracnose disease, 79 

suppresses PTI by inhibiting plant immunity-related kinases (Yoshino et al., 2012; 80 

Irieda et al., 2019). For other instances, the homologous effectors CoDN3 from C. 81 

orbiculare and ChEC3 from Colletotrichum higginsianum, a pathogen that causes 82 

anthracnose disease on Brassicaceae plants, suppress plant cell death induced by NIS1 83 

and NLP1, respectively, when they are expressed together in N. benthamiana (Yoshino 84 

et al., 2012; Kleemann et al., 2012). Recently, a highly conserved Colletotrichum 85 

effector candidate that induces host nuclear expansion and cell death was identified 86 
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(Tsushima et al., 2021). However, Colletotrichum effectors such that induce an immune 87 

response in the host plant have not been reported. 88 

Recently, there has been an increasing number of reports on RNAs in the 89 

apoplast, an interface of plant-fungal interactions. In Arabidopsis thaliana, apoplastic 90 

fluid contains diverse small and long-noncoding RNAs (Baldrich et al., 2019; Karimi et 91 

al., 2021). In addition, small RNAs are exchanged between host plants and colonizing 92 

organisms, such as parasitic plants or microbes (Weiberg et al., 2013; Wang et al., 93 

2016; Zhang et al., 2016; Shahid et al., 2018; Cai et al., 2018). Thus, apoplast may 94 

serve a place of communications between the different organisms. However, the nature 95 

and roles of RNAs in the apoplast in plant-microbe interactions are still open questions. 96 

Here, we show that C. orbiculare ribonuclease effectors potentiate host 97 

immune responses in their catalytic residue-dependent manner. By comparing the 98 

genomes of two different Colletotrichum species, we identified 21 conserved effector 99 

candidates that are expressed upon infection. Among these, secreted ribonuclease 1 100 

(SRN1) and the close homolog SRN2 were found as cell death-inducing effectors when 101 

transiently expressed in N. benthamiana. Interestingly, however, neither SRN1 nor 102 

SRN2 induced cell death in Cucumis sativus, an original host of C. orbiculare from 103 

which the strain was isolated. Instead, SRN1 and SRN2 potentiated host immune 104 

responses; C. orbiculare srn1 srn2 double deletion mutants showed increased virulence 105 

on C. sativus. Importantly, the potentiation of host immunity requires ribonuclease 106 

catalytic residues as well as the signal peptide, implying that SRNs cleave RNAs in the 107 

apoplast and are detected by the host. Consistent with this scenario, biochemical 108 

analysis revealed that SRN1 is a single-stranded RNA (ssRNA) specific ribonuclease, 109 

cleaving at guanosine and leaving a 3′-end phosphate. Collectively, our data suggest 110 

that the enzymatic nature of SRN1 secreted from a phytopathogenic fungus can be 111 

recognized by the host cell to drive plant immunity. Our study reveals a novel aspect of 112 

plant-microbe interaction mediated by specific single-stranded ribonuclease effectors. 113 

 114 

Materials and Methods 115 

Identification of conserved effector candidates 116 

Conserved effector candidates among C. orbiculare and C. higginsianum were 117 

identified as described in Fig. 1a. Orthologs of C. orbiculare secreted proteins were 118 
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identified in C. higginsianum (O’Connell et al., 2012) by performing a BLASTp search 119 

(E-value cut-off 1E-9). Hits were further filtered by searching for evidence of 120 

expression in C. higginsianum orthologs according to expression sequence tag (EST) 121 

data (Takahara et al., 2009), removing hits that were annotated with the keywords 122 

glycosylphosphatidylinositol (GPI), membrane, mitochondrial or cytochrome, and 123 

retaining sequences that encoded proteins of less than 350 amino acids. To identify 124 

genes with potential roles in infection, only the highest scoring BLASTp hits of C. 125 

orbiculare genes that had previously been shown to be up-regulated in planta (Gan et 126 

al., 2013) were selected (Supporting Information Table S1). 127 

 128 

Identification of PF00545 ribonucleases from diverse fungi 129 

Hmmscan was run against the Pfam 27.0 database using the default settings to identify 130 

proteins with the PF00545 ribonuclease domain (Finn et al., 2014; Eddy, 2011). 131 

Searches were run against 32 genomes from diverse fungi (Supporting Information 132 

Table S2) (Goffeau et al., 1996; Galagan et al., 2003; Loftus et al., 2005; Dean et al., 133 

2005; Kämper et al., 2006; Cuomo et al., 2007; Espagne et al., 2008; Coleman et al., 134 

2009; Martin et al., 2010; Spanu et al., 2010; Rouxel et al., 2011; Kubicek et al., 2011; 135 

Duplessis et al., 2011; Goodwin et al., 2011; Klosterman et al., 2011; Amselem et al., 136 

2011; Yang et al., 2011; Berka et al., 2011; Arnaud et al., 2012; O’Connell et al., 2012; 137 

Gan et al., 2013, 2016, 2017; Blanco-Ulate et al., 2013; Cissé et al., 2013; Tisserant et 138 

al., 2013; Baroncelli et al., 2014; Hu et al., 2014; Gazis et al., 2016; Zampounis et al., 139 

2016). 140 

Proteins identified with the PF00545 domain were aligned by MAFFT and 141 

trimmed using trimAl (Katoh et al., 2002; Capella-Gutiérrez et al., 2009) using the 142 

default automated settings in both programs. The trimmed alignment was then used to 143 

construct a maximum likelihood tree with RAxML using the PROTAUTOGAMMA 144 

setting and 1,000 bootstrap replicates (Stamatakis, 2006). The conservation of active 145 

sites was assessed by checking for residues corresponding to Aspergillus oryzae 146 

ribonuclease T1 (RNase T1) Y64, H66, E84, R103, and H118 in the conserved domain 147 

cd00606 (NCBI’s conserved domain database) (Marchler-Bauer et al., 2017). 148 

To generate the fungal species phylogenetic tree, single copy gene families 149 

were identified by orthoMCL (Li et al., 2003) from the 32 fungi analyzed using 150 
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all-vs-all BLASTp with a cut-off E-value of 1E-5 and an inflation value of 1.5. 151 

Sequences from individual gene families were aligned using MAFFT and trimmed 152 

using trimAl (Katoh et al., 2002; Capella-Gutiérrez et al., 2009) as described above. 153 

Then, trimmed alignments from the 501 single copy gene families identified were 154 

concatenated resulting in a dataset of 227,412 sites. The concatenated alignment was 155 

used for RAxML analysis which was carried out as described above. Rhizophagus 156 

irregularis was set as the root using FigTree v1.4.2 (Rambaut, Andrew) in the best 157 

estimated tree, which was then converted to an ultrametric chronogram using r8s 158 

version 1.8 (Sanderson, 2003) using the Langley-Fitch molecular clock model. 159 

Previously estimated divergence times of 443–695 million years ago (mya) for 160 

Pezizomycotina-Saccharomycotina, 400-583 mya for the Pezizomycotina crown group, 161 

267-430 mya for the Leotiomycetes-Sordariomycetes, 207-339 mya for 162 

Sordariomycetes, 487-773 mya for the Ascomycete crown (Beimforde et al., 2014) and 163 

47 mya for the divergence between C. graminicola and C. higginsianum (O’Connell et 164 

al., 2012) were used to calibrate the tree. The phylogenetic trees generated were 165 

visualized in the interactive Tree of Life (Letunic & Bork, 2016). 166 

 167 

Prediction of SRN homologs in 22 Colletotrichum species 168 

Using amino acid sequences of C. orbiculare SRN1, SRN2, SRN3.1, SRN3.2, and 169 

SRN4 as queries, genomes of 22 Colletotrichum species were searched by Exonerate 170 

version 2.2 software. Proteins lacking signal peptides predicted by SignalP 4.1 software 171 

(Petersen et al., 2011) were removed. The sequences were aligned using Molecular 172 

Evolutionary Genetics Analysis (Mega) Version 7.0 (Kumar et al., 2016). The 173 

phylogenetic tree of the SRN homologs was then drawn using the same software. 174 

 175 

Plant growth conditions 176 

N. benthamiana plants were grown in a mixture of equal amounts of Supermix A 177 

(Sakata Seed Corp.) and vermiculite in 8 cm TO poly-pots (Tokai Agri System) under 178 

16 h light:8 h dark conditions at 25 ˚C. C. sativus strain Suyo (Sakata Seed Corp.) 179 

plants were grown in the same soil mix and incubated under 10 h light: 14 h dark 180 

conditions at 24 ˚C. 181 

 182 
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Plasmids 183 

Plasmids used in this study are listed in Supporting Information Table S3. The method 184 

for plasmid construction is described in Supporting Information Method S1. Primers 185 

used in this study are listed in Supporting Information Table S4. 186 

 187 

Transient gene expression in N. benthamiana and C. sativus 188 

Agrobacterium-mediated transient gene expression was performed following the 189 

previously described method with modifications (Chen et al., 2021). The 190 

Agrobacterium tumefaciens GV3101 and GV2260 strains were used. GV2260 strains 191 

were transformed with both pBBRgabT (Nonaka et al., 2017) and pEAQ-based 192 

plasmids (Sainsbury et al., 2009). The Agrobacterium culture was washed and 193 

resuspended in infiltration solution (10 mM MES pH 5.6, 10 mM MgCl2, and 150 µM 194 

acetosyringone). Infiltration solutions were at a density of O.D. 600 = 0.3. Each 195 

infiltration solution was infiltrated into 4-5 week-old N. benthamiana leaves or 6-9 196 

day-old cotyledons of C. sativus using 1 ml syringes (TERUMO). An ultraviolet lamp 197 

MODEL B-100AP (UVP) was used for UV illumination. Photographs were taken using 198 

an EOS Kiss X6i (Canon). For UV illuminated leaves, a Y2 Professional Multi Coated 199 

Camera Lens Filter (Kenko) was used. 200 

 201 

RNA isolation, cDNA synthesis, and RT-qPCR 202 

For obtaining vegetative hyphae (VH), C. orbiculare wild-type strain 104-T (MAFF 203 

240422) was cultured on potato dextrose agar (PDA) medium (Nissui) then transferred 204 

onto potato dextrose (BD) liquid media and incubated for 3 days at 25 ˚C in the dark. 205 

For obtaining conidia, C. orbiculare hyphae were inoculated onto PDA media and 206 

incubated at 25 ˚C under black light blue light (10 h light: 14 h dark) for 6 days. 207 

Conidia were then suspended in water, filtered and collected by centrifugation. For one, 208 

three, and seven days post-inoculation (dpi), 1 × 106 conidia ml-1 C. orbiculare conidia 209 

in 0.02% Silwet L-77 (Bio Medical Science) were inoculated onto the abaxial side of C. 210 

sativus cotyledons at 10 days post-germination (dpg) using a brush. Peeled epidermal 211 

cells were used for 1 and 3 dpi samples. Whole leaf tissues were used for 7 dpi samples. 212 

Three independent biological replicates were prepared for each sample.  213 
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For fungal biomass measurements, leaf disks were collected from C. sativus 214 

cotyledons infected with fungi at 88 hours post-inoculation (hpi) (as described in Fungal 215 

inoculation section) using a cork borer (4 mm diameter). Each sample consisted of at 216 

least six leaf disks from at least six leaves. Six replicates were prepared for each sample. 217 

All samples were transferred into 2-ml steel-top tubes, frozen using liquid nitrogen, and 218 

stored at -80 ˚C until RNA isolation. Total RNA isolation, DNA removal, cDNA 219 

synthesis and real-time quantitative PCR (RT-qPCR) reactions were performed as 220 

previously described (Kumakura et al., 2019) with slight modifications. First strand 221 

cDNA synthesis was performed with the ReverTra Ace qPCR RT Kit (TOYOBO) using 222 

the included primer mix, as well as gene-specific primers (listed in Supporting 223 

Information Table S4). Primer pairs used for RT-qPCR are also listed in Supporting 224 

Information Table S4. 225 

 226 

Fungal transformation and inoculation 227 

The methods for fungal transformation and fungal inoculation are described in 228 

Supporting Information Method S2 and S3, respectively. 229 

 230 

Sequence alignment of SRNs 231 

Amino acid sequences were aligned using CLC Genomics Workbench8 (CLC Bio). All 232 

coding sequences of C. orbiculare SRNs used in this report were cloned from C. 233 

orbiculare cDNAs and sequenced for verification. 234 

 235 

Measurement of oxidative burst from leaf disks 236 

To detect chitin-induced reactive oxygen species (ROS) bursts, eight leaf disks were 237 

collected from C. sativus leaves using a cork borer (4 mm diameter) (Kai industries Co., 238 

Ltd.). Leaf disks were floated for more than 10 h on sterile water in 96-well microplates 239 

(655075, Greiner Bio-One), then the water was substituted by a solution containing 10 240 

mg ml-1 horseradish peroxidase (Sigma), 1 µM L-012 (Wako), and 10 µM chitin 241 

heptose (Oligo Tech). Luminescence was measured for 30 min using a TriStar2 LB942 242 

multi-plate reader (Berthold) (Kadota et al., 2018). 243 

 244 

Immunoblotting 245 
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The method for immunoblotting is described in Supporting Information Method S4. 246 

 247 

Protein deglycosylation enzyme treatment 248 

Proteins isolated from N. benthamiana using the method described in the 249 

immunoblotting section were treated with Protein Deglycosylation Mix II (New 250 

England BioLabs) following the manufacturer’s protocol. Then, Samples were mixed 251 

with SDS-Laemmli buffer and analyzed by immunoblot. 252 

 253 

Recombinant protein expression and purification 254 

The method for immunoblotting is described in Supporting Information Method S5. 255 

 256 

In vitro RNase assay 257 

RNA substrates used in this study are shown in Fig. 6a, 6b, and Supplementary 258 

Information Fig. S7c. As ssRNA substrates, AG10 259 

(5′-AGAGAGAGAGAGAGAGAGAG-3′), UC10 260 

(5′-UCUCUCUCUCUCUCUCUCUC-3′), ssRNA1 261 

(5 ́-AUCAUGCAUCAUCAUCAUCA-3 ́), ssRNA2 262 

(5 ́-AUCAUCAUCAGUCAUCAUCA-3 ́), ssRNA3 263 

(5 ́-AUCAUCAUCAUCAUCGAUCA-3 ́), ssRNA4 264 

(5 ́-UCGCGUUGAUUACCCUGUUAUCCCUAGUGUACAU-3 ́) were chemically 265 

synthesized with fluorescein (FAM) addition at their 5′ end by Hokkaido System 266 

Science Co., Ltd. As a double-stranded RNA (dsRNA) substrate, dsRNA4 was prepared 267 

as following. ssRNA4 and chemically synthesized ssRNA 268 

(5 ́-AUGUACACUAGGGAUAACAGGGUAAUCAACGCGA-3 ́) which is 269 

complementary to ssRNA4 were mixed in buffer (20 mM Tris-HCl pH7.5, 150 mM 270 

NaCl, 1 mM DTT, and 2 mM MgCl2). The mixture was incubated at 95 ˚C for 5 min 271 

and then at room temperature for 30 min, resulting in dsRNA4. 272 

For in vitro RNase assay, recombinant proteins or commercially available 273 

RNase T1 (Thermo Fisher Scientific) were mixed with 0.5 pmol substrate RNAs in 10 274 

µl RNase reaction buffer with EDTA (20 mM Tris-HCl pH7.5, 150 mM NaCl, 1 mM 275 

DTT, and 5 mM EDTA) or 10 µl RNase reaction buffer with MgCl2 (20 mM Tris-HCl 276 

pH7.5, 150 mM NaCl, 1 mM DTT, and 5 mM MgCl2). The reaction was incubated for 277 
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30 min at 25 ˚C, then mixed with an equal volume of 2×RNA loading buffer [95% (v 278 

v-1) formamide, 0.025% (w v-1) SDS, and 0.5 mM EDTA], incubated 95 ˚C for 3 min, 279 

and cooled on ice for 1 min. The reaction was separated by 15% denaturing acrylamide 280 

urea gel electrophoresis. Signals of FAM labelled RNAs were detected using PharosFX 281 

(Bio-Rad) imaging systems. 282 

 283 

Linker ligation of RNAs 284 

Linker ligation of RNAs was performed as previously described (Mito et al., 2020). 285 

Details are in Supporting Information Method S6. 286 

 287 

Results 288 

Prediction of Colletotrichum conserved effectors and identification of a cell 289 

death-inducing effector in N. benthamiana 290 

To survey conserved effectors in the Colletotrichum genus, we reasoned that the 291 

candidates should be secreted to interact with host plant, conserved in the genus, and 292 

highly expressed during infection. Considering these criteria, we compared protein 293 

sequences from C. orbiculare and C. higginsianum, belonging to the orbiculare and 294 

destructivum species complexes, respectively. A total of 21 small secreted orthologous 295 

proteins, with evidence of up-regulation both in C. higginsianum and C. orbiculare 296 

during infection (Takahara et al., 2009; Gan et al., 2013), were selected as effector 297 

candidates conserved in the two pathogens (Fig. 1a, Supporting Information Table S1). 298 

 Among them, we found that one of the C. orbiculare effector 299 

candidates induced cell death (Fig. 1b) when expressed transiently in N. benthamiana. 300 

The gene that induced cell death (Locus tag: Cob_v010174) was named SECRETED 301 

RIBONUCLEASE 1 (SRN1), due to the presence of the ribonuclease domain (Pfam 302 

database: PF00545, NCBI’s conserved domain database: cd00606) and the signal peptide 303 

sequence (Fig. 1c). The C. orbiculare genome is predicted to encode three other 304 

SRN1-like genes and we therefore termed them as SRN2, SRN3 and SRN4 (Supporting 305 

Information Fig. S1a, Table S6). By cloning the coding sequences from the cDNA of C. 306 

orbiculare we found that each gene transcript had a single isoform except for SRN3, 307 

which had two different isoforms (denoted as SRN3.1 and SRN3.2) (Fig. 1c).  308 
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 309 
Figure 1. Identification of conserved Colletotrichum effectors that induce cell death 310 

in N. benthamiana  311 

(a) Effector prediction pipeline in C. orbiculare and C. higginsianum. (b) N. 312 

benthamiana leaf expressing C. orbiculare SRN1 using the Agrobacterium-mediated 313 

transient gene expression system. The pGWB2 binary vector was used. An 314 

Agrobacterium strain transformed with an empty vector was used for control. 315 

Photographs were taken at 6 days post-inoculation (dpi). The bottom image was taken 316 

under ultraviolet illumination to visualize plant cell death in green with 317 

autofluorescence. (c) Schematics of C. orbiculare SRN proteins. Yellow and blue boxes 318 

represent the signal peptides and RNase domains, respectively, that are conserved 319 

among SRN homologs. a. a. represents number of amino acids. (d) Cell death 320 

phenotypes of SRN1, SRN2, SRN3.1, SRN3.2, and SRN4 expressed as in (b). (e) 321 

PF00545 ribonuclease domain-containing proteins are highly conserved in fungi. 322 

Numbers of PF00545 ribonuclease domain-containing proteins in different fungi. 323 

Divergence dates were estimated based on a maximum likelihood tree constructed from 324 

501 single copy genes in all the analyzed fungi using the program r8s. 325 

(a) (b)

Control SRN1
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SRN1, SRN2, and SRN4 had five conserved ribonuclease catalytic residues inside their 326 

ribonuclease domains, while SRN3.1 and SRN3.2 contained only the first three 327 

(Supporting Information Fig. S1b) (Nishikawa et al., 1987; Noguchi et al., 1995; 328 

Marchler-Bauer et al., 2017). 329 

To test the functional resemblance with SRN1, cell death induced by SRN2, 330 

SRN3.1, SRN3.2, and SRN4 expressions was monitored in N. benthamiana. Like SRN1, 331 

SRN2 induced cell death, while SRN3.1, SRN3.2 and SRN4 did not (Fig. 1d). Since the 332 

insufficient expression may hamper the conclusion, we harnessed the pEAQ-HT vector, 333 

which enables higher expression of proteins (Sainsbury et al., 2009). In this system, in 334 

addition to SRN1 and SRN2, SRN4 also induced cell death in N. benthamiana 335 

(Supporting Information Fig. S2a). The proteins with C-terminal HA tag did not impact 336 

on the cell death induced by SRN1, SRN2, and SRN4 (Supporting Information Fig. S2b). 337 

We note that SRN3.1-HA weakly induced cell death in this high-expression system, 338 

while SRN3.2-HA did not, despite its expression being confirmed by immunoblot 339 

analysis (Supporting Information Fig. S2c). 340 

 341 

SRN homologs are conserved in all 22 Colletotrichum species tested 342 

To analyze the conservation of SRN1, we surveyed the PF00545 ribonuclease domain in 343 

the Pfam database (Finn et al., 2014) because SRN1 encodes the domain. Genes 344 

encoding PF00545 domains were conserved in bacteria and fungi, especially in 345 

Ascomycota, but not in plants and animals (Pfam 34.0) (Mistry et al., 2021) (Fig. 1e, 2), 346 

suggesting that PF00545 is the microorganisms specific domain. In fungi, all 26 347 

Pezizomycotina species tested were predicted to encode proteins with the PF00545 348 

domain. However, most species belonging to the Glomeromycota and Basidiomycota 349 

did not have the PF00545 domain, except for Ustilago maydis, a causal agent of corn 350 

smut. 351 

To confirm if SRNs are conserved in the Colletotrichum genus, the genomes 352 

of 22 available Colletotrichum species (Supporting Information Table S7) were 353 

surveyed for the presence of SRN homolog-encoding sequences. Full-length amino acid 354 

sequences of C. orbiculare SRN1, SRN2, SRN3.1, SRN3.2, and SRN4 were used to 355 

query the whole genome sequences of the 22 species. All species tested had at least two 356 

SRN homologs (Supporting Information Table S7). 357 
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 358 

 359 

Figure 2. Phylogenetic relationship between fungal ribonuclease proteins 360 

Maximum likelihood tree of sequences associated with the PF00545 ribonuclease 361 

domain in 32 different fungi drawn using the RAxML software. Grey circles on 362 

branches indicate branches with more than 50% bootstrap support values out of 1000 363 

replicates. Black squares indicate conservation of five residues that are important for the 364 

ribonuclease catalytic activity. Red circles indicate the presence of a signal peptide 365 

according to the analysis by SignalP4.0. 366 

367 
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Based on the sequence similarity, the SRN homologs were classified into three groups 368 

named SRN1/3, SRN2, and SRN4. All 22 species had homologs belonging to the 369 

SRN1/3 and SRN2 groups, but only species from the gloeosporioides and orbiculare 370 

species complexes had the SRN4 group genes (Supporting Information Table S7). All 371 

species from the same species complex had the same composition of SRN homologs, 372 

except for the spaethianum species complex (Supporting Information Table S7). 373 

 374 

Cell death by SRNs is not observed in C. sativus, an original host of C. orbiculare 375 

The SRN-mediated cell death observed in N. benthamiana led us to test the same 376 

phenotype in C. sativus (cucumber), an original host of C. orbiculare. To set out the 377 

protein expression in cucumber, we applied an Agrobacterium-mediated transient gene 378 

expression system established in melon (Chen et al., 2021) with several modifications. 379 

Here we used A. tumefaciens GV2260 strain which has the enhanced T-DNA 380 

translocation activity in certain plant species through expressing gabT gene (Nonaka et 381 

al., 2017). Indeed, this system allowed to accumulate GFP protein (as a marker protein) 382 

in fluorescence imaging (Supporting Information Fig. S3a) and in immunoblot 383 

(Supporting Information Fig. S3b). Harnessing this setup, we expressed C. orbicualre 384 

SRNs in C. sativus. Contrary to our expectation by N. benthamiana experiments, none 385 

of the SRN constructs induced detectable cell death on C. sativus cotyledons despite the 386 

detection of protein expression from these constructs (Fig. 3a, b). 387 

 388 

SRN1 and SRN2 enhance chitin-triggered ROS bursts in C. sativus 389 

Given the tolerance to ectopic SRN expression in C. sativus, we were intrigued by the 390 

SRN genes expression profiles during C. orbiculare infection. RT-qPCR analysis 391 

revealed that all SRNs, except for SRN3.1 and SRN3.2, were strongly induced during 392 

infection compared to VH, non-inoculated fungal cells, especially at 1 dpi (Fig. 3c), 393 

implying that these effectors are likely to be involved in plant-fungi interaction at the 394 

early biotrophic phase. The upregulation of SRNs at 1 dpi prompted us to test if SRNs 395 

impact on plant immune responses in C. sativus. For this purpose, we monitored ROS 396 

bursts, a typical PTI response, triggered by chitin treatment (Torres et al., 2006). As 397 

shown in Supporting Information Fig. S4, chitin treatment strongly induced ROS bursts 398 

in C. sativus cotyledons.  399 
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 400 

Figure 3. Expression of C. orbiculare SRNs on C. sativus leaves 401 

(a) C. sativus cotyledons expressing HA-tagged SRNs using the 402 

Agrobacterium-mediated transient gene expression system. Photographs were taken at 5 403 

dpi. Suspensions of Agrobacteria were infiltrated throughout the leaves. (b) 404 

Immunoblot analysis of proteins isolated from C. sativus cotyledons expressing SRNs. 405 

Total proteins were extracted at 5 dpi. The estimated molecular weight of each protein 406 

is as follows; SRN1-HA: 17.1 kDa, SRN2-HA: 22.9 kDa, SRN3.1-HA: 17.5 kDa, 407 

SRN3.2-HA: 14.8 kDa, SRN4-HA: 21.9 kDa. Anti-HA antibody (Roche) was used to 408 

detect tagged proteins. Coomassie-stained Rubisco large subunit (RBCL) proteins were 409 

used as loading controls. (c) Levels of SRNs transcripts during different infection stages 410 

of C. orbiculare were quantified using RT-qPCR. Total RNA was isolated from 411 

vegetative hyphae (VH) grown in vitro, conidia, and infected C. sativus leaves at 1, 3, 412 

and 7 dpi. To compare the number of transcripts from each gene, the copy number of 413 

each transcript was calculated using the standard curve drawn for the plasmid harboring 414 

the sequence of each transcript. Copy numbers were relative to the constitutively 415 

expressed C. orbiculare ribosomal protein L5 gene (Cob_v012718). Three biological 416 

replicates and two technical replicates were analyzed. Data represent mean ±SE. 417 
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Next, we examined the chitin-triggered ROS bursts in C. sativus cotyledons expressing 420 

either SRN1-HA, SRN2-HA, SRN3.1-HA, SRN3.2-HA, or SRN4-HA (Fig. 4a). 421 

Remarkably, SRN1-HA and SRN2-HA significantly enhanced chitin-triggered ROS 422 

bursts compared to GFP controls. On the other hand, SRN3.1-HA, SRN3.2-HA, and 423 

SRN4-HA did not, despite the detectable proteins accumulated (Fig. 4b). These data 424 

indicated that SRN1 and SRN2 leads to immune responses in host plants. 425 

 426 

Enhancement of PTI by SRN1/2 requires their catalytic residues and signal 427 

peptides 428 

A previous report shows that two histidine residues (H40 and H92) are required for the 429 

ribonuclease catalytic activity of A. oryzae RNase T1, a homolog of SRNs (Nishikawa 430 

et al., 1987). To test whether histidine-dependent ribonuclease catalytic activity is 431 

involved in the ROS burst enhancement, we mutated the histidine residues of SRN1 432 

corresponding to those of A. oryzae, H63 and H114, to alanine (SRN1H63A/H114A). 433 

Strikingly, the substitution abolished the SRN1-mediated ROS bursts (Fig. 4c). We also 434 

noticed that the single mutation of H114 alone reduced the enhancement of 435 

chitin-triggered ROS bursts (Fig. 4c). The similar double mutations (H92A and H130A) 436 

and single mutation (H130A) in SRN2 showed the same trends (Fig. 4e). Overall, we 437 

concluded that the ribonuclease catalytic residues of SRN1 and SRN2 are required for 438 

the enhancement of chitin-triggered ROS bursts. 439 

 Next, we assessed the effect of the signal peptide of SRN1 by deleting the 440 

sequence (SRN1ΔSP). The signal peptide-deleted SRN1 and SRN2 did not enhance 441 

chitin-triggered ROS bursts (Fig. 4c). These data suggest that the enhancement of the 442 

chitin-triggered response requires SRN1 and SRN2 to be external to the host cell, 443 

probably in the apoplastic region. We note that none of the loss of ROS burst 444 

enhancement by substitutions could be explained by the abrogation of protein 445 

expression (Fig. 4d and 4f). 446 

The SRN proteins expressed in our setup were predicted to be modified 447 

post-translationally because all showed multiple bands larger than expected in 448 

immunoblots (Fig. 3b). Given that signal peptide-dependency for the mobility shift (Fig. 449 

4d), one plausible post-translational modification is glycosylation.  450 
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 451 
Figure 4. SRN1 and SRN2 expression potentiates chitin-triggered ROS bursts in C. 452 

sativus leaves 453 
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(a) Enhancement of chitin-triggered ROS bursts was observed in C. sativus cotyledons 454 

expressing SRN1-HA and SRN2-HA. Oxidative bursts were elicited by chitin (10 µM). 455 

Total photon counts were the sum of RLUs (relative light units) for a 30 min 456 

measurement. Three independent experiments showed similar results. Data represent 457 

mean ±SE (n=3). (b) Expression of SRN1-HA, SRN2-HA, SRN3.1-HA, SRN3.2-HA, 458 

and SRN4-HA proteins in C. sativus was confirmed by immunoblot analysis. Details of 459 

the analysis are the same as for the immunoblot in Fig. 3b. (c) Ribonuclease catalytic 460 

residues and the signal peptide of SRN1 are required for the chitin-triggered ROS burst 461 

enhancement. The H114 ribonuclease catalytic residue of SRN1 was mutated in 462 

SRN1H114A-HA. Both H63 and H114 ribonuclease catalytic residues of SRN1 were 463 

mutated in SRN1H63A/H114A-HA. The predicted signal peptide of SRN1 was deleted in 464 

SRN1ΔSP-HA. Experiments were performed as described in (a). Data represent mean 465 

±SE (n=3). (d) Protein expression from the wild-type and mutated series of SRN1 466 

(SRN1-HA, SRN1H114A-HA, SRN1H63A/H114A-HA, and SRN1ΔSP-HA) was confirmed by 467 

immunoblot analysis. The estimated molecular weight of each protein is as follows; 468 

SRN1-HA, SRN1H114A-HA and SRN1H63A/H114A-HA: 17.1 kDa, SRN1ΔSP-HA: 15.5 kDa. 469 

(e) Ribonuclease catalytic residues and the signal peptide of SRN2 were required for the 470 

chitin-triggered ROS burst enhancement. The H130 ribonuclease catalytic residue of 471 

SRN2 was mutated in SRN2H130A-HA. Both H75 and H130 ribonuclease catalytic 472 

residues of SRN2 were mutated in SRN2H75A/H130A-HA. The predicted signal peptide of 473 

SRN2 was deleted in SRN2ΔSP-HA. Experiments were performed as described in (a). 474 

Data represent mean ±SE (n=3). (f) Expression of wild-type and mutated series of 475 

SRN2 (SRN2-HA, SRN2H130A-HA, SRN2H75A/H130A-HA, and SRN2ΔSP-HA) was 476 

confirmed by immunoblot analysis. The estimated molecular weight of each protein is 477 

as follows; SRN2-HA, SRN2H130A-HA, and SRN2H75A/H130A-HA: 22.9 kDa, 478 

SRN2ΔSP-HA: 21.2 kDa. ** indicates p < 0.01 (t-test) (a, c, e). Anti-HA antibody was 479 

used to detect HA-tagged proteins (b, d, f). Coomassie-stained RBCL proteins were 480 

used as loading controls (b, d, f). 481 

482 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 13, 2021. ; https://doi.org/10.1101/2021.10.13.464185doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.13.464185
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kumakura et al. 

 19 

Therefore, we predicted the glycosylation sites of SRNs using the NetNGlyc 1.0 server 483 

(Gupta & Brunak, 2002) and found that SRN1, SRN3.1, SRN3.2, and SRN4 have one 484 

potential glycosylated site each, while SRN2 has two. To assess whether glycosylation 485 

affects the function of SRNs, we mutated the predicted glycosylation sites (N101 and 486 

N143) of SRN2, as a representative of the SRNs, creating SRN2N101Q/N143Q (Supporting 487 

Information Fig. S5a). As expected, this substitution constricted into a single protein 488 

band in immunoblot (Supporting Information Fig. S5b). Moreover, the treatment by 489 

deglycosylation enzyme reduced the intensity of the two bands in original SRN2 and 490 

generated a lower band, which was the same size as SRN2N101Q/N143Q (Supporting 491 

Information Fig. S5c). However, irrespective of the glycosylation, we observed the 492 

immunity response by SRN2; SRN2N101Q/N143Q induced chitin-triggered ROS bursts at 493 

the same level as the wild-type SRN2 in C. sativus (Supporting Information Fig. S5d-f) 494 

without any visible phenotype (Supporting Information Fig. S5g). In summary, these 495 

data suggest that the glycosylation of SRN2 does not affect its enhancement of 496 

chitin-triggered ROS bursts when expressed in C. sativus. 497 

 498 

Chitin-triggered MPK phosphorylation and PTI marker gene expression are 499 

enhanced by SRN1 or SRN2 in C. sativus 500 

As the signaling pathways activated by PAMP perception include the activation of the 501 

mitogen-activated protein kinases, MPK3, MPK4, and MPK6 in Arabidopsis (Asai et 502 

al., 2002; Ichimura et al., 2006), we assessed the effect of SRN1 and SRN2 on 503 

chitin-triggered MPK phosphorylation in C. sativus (Fig. 5a, b). Indeed, SRN1 and 504 

SRN2 expression enhanced phosphorylation of MPKs (p44/42) upon chitin treatment, 505 

whereas the catalytically dead mutants (SRN1H63A/H114A and SRN2H75A/H130A) did not. 506 

It is well known that downstream events after activation of the MPK signaling 507 

cascade by PAMPs include transcriptional up-regulation of certain defense-related 508 

genes, such as FRK1, NHL10, CYP82, and PHI1 in Arabidopsis (Wan et al., 2008). 509 

Therefore, we analyzed the expression of a set of C. sativus homologs of these PTI 510 

marker genes. We found that the expression of the C. sativus FRK1 and NHL10 511 

homologs, CsFRK1 and CsNHL10, was strongly induced 30 min after chitin treatment 512 

(Supporting Information Fig. S6). Importantly, these mRNAs were further induced by 513 

wild-type SRN1 and SRN2, but not by the catalytic mutants (Fig. 5c, d).  514 
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 515 
 516 

Figure 5. PTI potentiation by SRN1 and SRN2 expression in C. sativus  517 

(a) Chitin-treated C. sativus cells expressing SRN1-HA showed enhanced MPKs 518 

phosphorylation. C. sativus cotyledons treated with chitin for 0 and 5 min were used. 519 

GFP, SRN1-HA, or SRN1H63A/H114A-HA were expressed in C. sativus cotyledons by an 520 

Agrobacterium-mediated transient gene expression system. Upper panel: 521 

phosphorylation of MPKs was detected using anti-phospho-p44/42 MAPK antibody. 522 

Lower panel: anti-HA antibody was used. Coomassie-stained RBCL proteins were used 523 

as loading controls. Similar results were obtained from independent three experiments. 524 

ns indicates a non-specific band. Asterisks indicate MPKs of C. sativus. (b) SRN1-HA 525 

expression induced PTI marker gene accumulation in C. sativus cells, as for SRN1-HA 526 

in panel (a). (b, d) Accumulation of CsNHL10 and CsFRK1 transcripts was quantified 527 

by RT-qPCR. CsCYC was used as endogenous control as established in a previous 528 

report (Liang et al., 2018). Primers used are listed in Supporting Information Table S3. 529 

Different lower-case letters indicate significant differences (p < 0.05, Tukey HSD). 530 

Data represent mean ±SE (n=3). Two independent experiments showed similar results. 531 

(c) Chitin-treated C. sativus cells expressing SRN2-HA showed enhanced MPKs 532 

phosphorylation. The experiment was performed as described in (a). (d) SRN2-HA 533 

expression induced PTI marker gene accumulation in C. sativus cells. The experiment 534 

was performed as described in (b). 535 
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We note that even in the absence of chitin, SRN1 and SRN2 could lead CsNHL10 and 537 

CsFRK1 expression, suggesting the synergistic effects. Overall, these results indicates 538 

that SRN1 and SRN2 potentiate PTI responses in a catalytic residue-dependent manner. 539 

 540 

SRN1 cleaves ssRNAs at guanosine residues and leaves 3′-phosphates at 5′ 541 

fragments 542 

To test an enzymatic activity of SRN1 in vitro, we utilized Pichia pastoris, which can 543 

secrete the recombinant protein outside the cell by secretion signal, α-factor (Brake et 544 

al., 1984). Here we substituted intrinsic signal peptide of SRN1 with the α-factor. 545 

Indeed, P. pastoris successfully expressed SRN1ΔSP fused with α-factor at their 546 

N-terminus, however, the amount did not reach enough level for further biochemical 547 

use (data not shown), maybe due to cell toxicity. Therefore, a mutation, H63A, which 548 

could weaken the potential ribonuclease activity and cell toxicity was introduced into 549 

SRN1. H63 corresponds to H58 of A. oryzae RNase T1, and it has been reported that 550 

the ribonuclease activity is still detected and the substrate specificity is not affected 551 

when the mutation is introduced (Nishikawa et al., 1987). Indeed, sufficient amounts of 552 

SRN1H63A/ΔSP protein were obtained for subsequent biochemical analyses. In addition to 553 

the single mutant, we isolated the double mutant (SRN1H63A/H114A/ΔSP) as a catalytically 554 

dead control. 555 

Given that SRN1 homolog RNase T1 cleaves RNAs at guanosine residues 556 

specifically (Nishikawa et al., 1987), we reasoned that SRN1 may have the same 557 

nucleotide specificity. To test this possibility, we use two different ssRNAs as 558 

substrates: adenine/guanine-repeated polypurine RNA (AG10) and 559 

uracil/cytosine-repeated polypyrimidine RNA (UC10), conjugated with fluorescein 560 

(FAM) at their 5′ ends (Fig. 6a top). Indeed, SRN1H63A/ΔSP digested AG10 but not UC10, 561 

indicating its nucleotide specificity toward. In contrast, the catalytically dead 562 

SRN1H63A/H114A/ΔSP could not cleave the AG10 (Fig. 6a bottom). This reaction did not 563 

require Mg ions, which is a key cofactor for a subset of RNases (Fig. 6a, Supporting 564 

Information Fig. S7a). Titration of enzyme amount allowed us to track the reaction 565 

intermediates, which corresponds to nine fragments of AG10 (Supporting Information 566 

Fig. S7b), suggesting that SRN1 mediated endoribonucleolytic cleavage at adenosine or 567 

guanosine residues, but not both. 568 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 13, 2021. ; https://doi.org/10.1101/2021.10.13.464185doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.13.464185
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kumakura et al. 

 22 

 569 
  570 

Figure 6. SRN1 cleaves ssRNAs at guanosine residues in vitro 571 

(a) SRN1H63A/ΔSP cleaved AG10, but did not UC10. In vitro RNase assays were 572 

performed with recombinant proteins produced by P. pastoris (SRN1H63A/ΔSP and 573 

SRN1H63A/H114A/ΔSP), and chemically synthesized substrate ssRNAs (AG10 and UC10) 574 

labelled with fluorescein (FAM), at their 5′-termini. (b) SRN1H63A/ΔSP cleaves ssRNAs 575 

at guanosine residues. ssRNA1, ssRNA2, and ssRNA3 have one guanosine residue, 576 

respectively, at different sites. ssRNA1, ssRNA2 and ssRNA3 are labelled with FAM at 577 

their 5′-termini. (c) Schematics of ssRNA dephosphorylation and linker ligation for (d). 578 

T4 PNK dephosphorylate 3′ end of ssRNA. T4 RNA ligase 2 conjugates the 3′-hydroxyl 579 

end of ssRNA with the pre-adenylated ssDNA linker. (d) 3′ end of cleaved ssRNA by 580 

SRN1H63A/ΔSP possesses phosphate. ssRNA2 cleaved by SRN1H63A/ΔSP was ligated with 581 

the pre-adenylated ssDNA only when the fragment was pre-treated with T4 PNK. 582 
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Thus, we tested whether SRN1 cleaves RNAs at guanosine residue using 585 

RNA substrates that only possess single guanosine but different positions (Fig. 6b, 586 

ssRNA1, ssRNA2, and ssRNA3). According to the position of the guanosine, 587 

SRN1H63A/ΔSP generated short, middle, and long RNA fragments from ssRNA1, ssRNA2, 588 

and ssRNA3, respectively, showing that SRN1H63A/ΔSP cleaves RNA at guanosine (Fig. 589 

6b). We also tested whether SRN1 cleaves double stranded (ds) RNAs (Supplementary 590 

Information Fig. S7c, dsRNA4). Although un-annealed single strand RNA (ssRNA4) 591 

was cleaved by SRN1H63A/ΔSP as expected, dsRNA4 was tolerate (Supplementary 592 

Information Fig. S7c). Thus, we concluded that SRN1 is a single-stranded 593 

RNA-specific endoribonuclease that cleaves at guanosine. 594 

Considering that endonucleolytic cleavage by RNase T1 results in 3′-end 595 

phosphate at the 5′ RNA fragment (Nishikawa et al., 1987), we further investigated the 596 

molecular form of the cleaved end by SRN1. For this purpose, we harnessed the 597 

ligation-based assay; 3′ phosphate hampers the ligation to 3′ DNA fragment by T4 RNA 598 

ligase 2, whereas 3′ hydroxy group is susceptible to the reaction (Fig. 6c). As expected, 599 

the RNA (ssRNA2) that has a 3′-hydroxyl end was ligated (Fig. 6d, left panel). In 600 

contrast, the RNase T1-cleaved RNA could not engage in this ligation reaction unless 601 

the 3′ end is dephosphorylated by T4 polynucleotide kinase (PNK) (Fig. 6d, middle 602 

panel). Similarly, SRN1H63A/ΔSP generated RNAs in the 3′-end form that could be ligated 603 

only after T4 PNK treatment (Fig. 6d, right panel). The striking correspondence of the 604 

substrate specificity (single stranded guanosine) (Fig. 6b), metal ion independency (Fig. 605 

6a and Supporting Information Fig. S7a), and 3′-end phosphate in the cleaved product 606 

(Fig. 6d) showed that SRN1 functionally resembles RNase T1 (Nishikawa et al., 1987). 607 

 608 

The srn1 srn2 double mutant strains show increased invasion and relative fungal 609 

biomass in planta 610 

To assess the biological relevance of our findings, we established srn1, srn2, and srn1 611 

srn2 double knockout mutants and performed infection assays. We measured the 612 

invasion ratio, the percentage of successful infection hyphae per appressorium (Fig. 7a), 613 

at the early infection stage when the expression of SRN1 and SRN2 is induced (Fig. 3c). 614 

The invasion ratios were significantly increased in the two independent srn1 srn2 615 

double mutant strains (Fig. 7b).  616 
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 617 

 Figure 7. C. orbiculare srn1 srn2 mutants showed increased virulence 618 

(a) Example of lack of invasive hypha (top) and invasive hypha (bottom) formation 619 

from C. orbiculare appressoria. Red arrowheads indicate appressoria. Invasive hypha 620 

from successfully invaded appressoria were observed in the bottom panel. C. sativus 621 

cotyledons inoculated with C. orbiculare were trypan blue stained in both panels. Scale 622 

bars represent 25 µm. (b and d) Invasion ratio of a series of srn mutants on C. sativus 623 

cotyledons at 60 hpi. Leaves were inoculated with 5 µl of conidial suspensions at 1 × 624 

105 conidia ml-1. Each boxplot includes six to eight replicates. Each replicate was 625 

calculated using at least 50 appressoria. The box contains data within 1st and 3rd 626 

quartiles. *, **, and ns indicate p < 0.05, p < 0.01, and not significant compared to C. 627 

orbiculare WT, respectively (t-test). (c) Fungal biomass during infection was quantified 628 

by RT-qPCR. A section of the ribosomal protein L5 transcript of C. orbiculare and a 629 

section of the CsCYC transcript of C. sativus were used for quantification. Primers used 630 

are listed in Supporting Information Table S4. Total RNAs were extracted from 631 
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cotyledons inoculated either with C. orbiculare wild type or two srn1 srn2 mutant 632 

strains at 88 hpi. * indicates p < 0.05 (t-test) compared to C. orbiculare WT. Data 633 

represent mean ±SE (n=6). (e) Overexpression of SRN2 in srn1 srn2 reduced the 634 

increased invasion ratio of the srn1 srn2 mutant. Tef promoter-driven SRN2 or 635 

SRN2H75A/H130A were expressed in the srn1 srn2#1 mutant. The invasion ratio was 636 

measured using the same method as described in (b, d). Different lower-case letters 637 

indicate significant differences (p < 0.05, Tukey HSD). 638 

 639 

In contrast, the srn1 and srn2 single mutants did not significantly alter the invasion 640 

ratios (Fig. 7d), suggesting the redundant functions of SRN1 and SRN2.  641 

To further ensure the role of SRNs in infection, we overexpressed SRN2 in 642 

srn1 srn2 double knockout strain. Here, ectopic SRN2 was expressed by the promoter of 643 

Aureobasidium pullulans TRANSLATION ELONGATION FACTOR (Tef) 644 

(Wymelenberg et al., 1997). Indeed, the overexpression of SRN2 in the double 645 

knockout cells (denoted as Tef::SRN2 in srn1 srn2#1 and #2) showed decreased 646 

invasion ratios compared to the parental double knockout mutant (srn1 srn2#1) (Fig. 647 

7e). In contrast, catalytic inactive SRN2 (Tef::SRN2H75A/H130A in srn1 srn2) could not 648 

complement the phenotype (Fig. 7e), suggesting the ribonuclease catalytic residues or 649 

activity are monitored by host to drive the immunity. 650 

We also assessed the relative fungal biomass levels, which was probed by C. 651 

orbiculare transcripts (especially ribosome protein L5), during infection on C. sativus 652 

leaves. Consistent with the invasion ratios, srn1 srn2 double mutants showed 653 

significantly increased fungal biomass (Fig. 7c). Collectively, our data indicates that 654 

SRN1 and SRN2 in C. sativus enhance defense responses of the host plant to this fungi. 655 

 656 

Discussion 657 

Plants often perceive the presence of pathogens by recognizing molecules or the 658 

enzymatic activities of proteins originating from pathogens. Here, we report that C. 659 

orbiculare ribonuclease effectors, SRN1 and SRN2, potentiate typical PTI responses of 660 

C. sativus in a manner that is dependent on their catalytic residues and signal peptides. 661 

Our genetic analysis revealed that the srn1 srn2 double mutants showed increased 662 

invasion ratios and relative fungal biomass (Fig. 7b, c), suggesting that SRN1 and 663 

SRN2 can be detrimental to the pathogen. Consistent with this notion, expression of 664 
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SRN1 and SRN2 in C. sativus enhanced chitin-triggered ROS bursts (Fig. 4a) and MPK 665 

phosphorylation (Fig. 5a, b), as well as PTI marker gene expression (Fig. 5c, d). As 666 

these effects require catalytic residues and the signal peptides of SRN1 and SRN2, their 667 

enzymatic activity is likely to be recognized in the outside of the host cells (Fig. 4c, e), 668 

most probably in its apoplastic region. In line with this, in vitro analysis revealed that 669 

SRN1 recombinant proteins have an endoribonuclease activity that specifically cleaves 670 

ssRNAs at guanosine producing oligonucleotides with 3′ phosphate. 671 

The action of SRN1 and SRN2 is apparently different from that of three 672 

ribonuclease-type effectors reported previously. Firstly, Zt6 from Zymoseptoria tritici is 673 

reported to be a host cell death-inducing effector by degrading rRNA in the host cells 674 

(Kettles et al., 2018). In contrast, SRN1 and SNR2 did not induce cell death in their 675 

host, C. sativus. In the N. benthamiana expression system, SRN2 induced cell death but 676 

their full cell death activity required signal peptide (Supporting Information Fig. S8), 677 

indicating that the effector targets are likely to be apoplastic RNAs, rather than cellular 678 

(r)RNA in the host. Secondly, CSEP0064/BEC1054, one of the 27 Blumeria graminis 679 

ribonuclease-like effectors that lack catalytic active residues, acts as a virulence factor 680 

inside the host cells (Pedersen et al., 2012; Pliego et al., 2013). More recently, 681 

Pennington et al. (2019) showed that CSEP0064/BEC1054 binds nucleic acids and 682 

inhibits the degradation of host rRNA induced by plant endogenous 683 

ribosome-inactivating proteins (RIPs) (Pennington et al., 2019). Based on these findings, 684 

Pennington et al. (2019) proposed that CSEP0064/BEC1054 is a pseudoenzyme that 685 

interacts with host ribosomes and inhibits the action of RIPs. Thirdly, AvrPm2, another 686 

ribonuclease-like protein of B. graminis, is recognized by the barley nucleotide-binding, 687 

leucine-rich repeat receptor (NLR) protein, Pm2 in the host cell (Praz et al., 2016), 688 

suggesting that AvrPm2 is a cytoplasmic effector that causes hypersensitive cell death 689 

triggered by an NLR. Thus, these three effectors are all predicted to be cytoplasmic 690 

effectors and are thus different from SRNs. 691 

Host-specific cell death (only found in N. benthamiana but not in C. sativus) by 692 

SRNs expression remains an open question. One plausible explanation is that N. 693 

benthamiana encodes an as yet unidentified PRR that is able to trigger cell death upon 694 

direct or indirect detection of SRNs. Such cell death-inducing PRRs have been known 695 

in several species including potato and rice (Song et al., 1995; Du et al., 2015). In this 696 
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scenario, it is also possible that C. sativus may encode a similar PRR that can detect the 697 

activity of SRN1 and SRN2 in the apoplast but potentiate PTI without causing cell death. 698 

As both signal peptides and catalytic residues of SRN1 and SRN2 are required for the 699 

full cell death activity in N. benthamiana and for PTI potentiation in C. sativus, it is 700 

possible that SRN1 and SRN2 cleaves RNAs in the apoplast and the resulting RNA 701 

molecules trigger immune responses via a PRR. In Arabidopsis, virus-derived dsRNAs 702 

induce PTI responses via SERK1, a receptor like kinase (Niehl et al., 2016). In addition, 703 

bacterial RNAs also induce immune responses in Arabidopsis when infiltrated into 704 

leaves (Lee et al., 2016). Thus, plants may be able to perceive certain RNA molecules 705 

in the apoplast. If RNAs are derived from host plants, these molecules may serve as 706 

DAMPs to indirectly detect invasive pathogens secreting specific RNases in the 707 

apoplast. This is a plausible case for SRNs, which are guanosine-specific single-strand 708 

endoribonucleases leaving 3′ phosphate, as plants normally do not encode RNases with 709 

this specificity. In mammals, PRRs such as Toll-like receptor (TLR) 3 and TLR7 can 710 

detect virus-derived dsRNA and ssRNAs, respectively (Takeuchi & Akira, 2010; 711 

Alexopoulou et al., 2001; Diebold & Brencicova, 2013). Isolation of such plant PRRs in 712 

the future will help to clarify the similarities and differences between the ways plants 713 

and animals recognize RNA molecules. 714 

Why did all the Colletotrichum species we investigated encode SRN proteins? 715 

Although we did not detect a virulence function of SRN1 and SRN2 in our pathosystem, 716 

these proteins should provide biological advantage to the pathogen. For example, the 717 

function of these proteins is possibly manipulation of the local microbial community, as 718 

shown for Zt6 (Kettles et al., 2018; Snelders et al., 2018). Alternatively, SRNs target 719 

their own secreted RNAs. Fungal pathogens, such as Botrytis cinerea, can secrete small 720 

RNAs as effectors suppressing host immune responses (Weiberg et al., 2013). Thus, 721 

SRNs could be used to process such RNAs, which may serve as PAMPs when the host 722 

contains corresponding PRRs. However, if this is the case, it is difficult to explain why 723 

transient expression of SRNs in the host in the absence of a pathogen can induce 724 

immune responses. In addition, if SRNs are involved in the production of pathogen 725 

RNA effectors, the knockout phenotype is predicted to reduce virulence. However, the 726 

phenotype we observed was gain of virulence (Fig. 7). Another possibility is that SRNs 727 

target host apoplastic RNAs. A. thaliana apoplastic fluid contains both sRNAs and 728 
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lncRNAs associated with proteins (Karimi et al., 2021). sRNAs of host plants were also 729 

detected in Verticillium dahliae and could down-regulate virulence-related genes 730 

(Zhang et al., 2016). Thus, such host-derived defensive apoplastic RNAs can be 731 

potential targets of SRNs. In this scenario, degrading host RNAs should increase 732 

pathogen virulence per se. Such virulence effects of SRNs may be observed in a host 733 

that is not able to detect the ribonuclease activity of SRNs. The identification of the 734 

target RNAs of SRNs will further clarify RNA-mediated plant-microbe interactions. 735 
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