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More species than ever before are at risk of extinction due to anthropogenic habitat loss and
climate change. But even species that are not threatened have seen reductions in their
populations and geographic ranges, likely impacting their genetic diversity. Although preserving
genetic diversity is a key conservation target to maintain the adaptability of species, we lack
predictive tools and global estimates of genetic diversity loss across ecosystems. By bridging
biodiversity and population genetics theories, we introduce the first mathematical framework to
understand the loss of naturally occurring DNA mutations within a species—what we call
genetic diversity extinction. Analyzing genome-wide variation data of 10,126 geo-tagged
individuals from 19 plant and animal species, we show that genome-wide diversity follows a
power law with geographic area, which can predict genetic diversity decay in simulated spatial
extinctions. Given pre-21* century values of ecosystem transformations, we estimate that over
10% of genetic diversity may be extinct, already surpassing the United Nations targets for
genetic preservation. These estimated losses could rapidly increase with advancing climate
change and habitat destruction, highlighting the need for new forecasting tools that assist in the
rapid implementation of policies to protect genetic resources.
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Anthropogenic habitat loss and climate change (/, 2) are putting approximately one million species
(25% of all species) at risk of extinction (3). One thousand species are already documented as extinct
(1, 2). However, it has been estimated that an even larger fraction—47% —of plant and animal species
have lost part of their geographic range (4, 5). Though this might seem inconsequential compared to
losing an entire species, this range loss detrimentally impacts genetic diversity. Genetic diversity
dictates a species' ability to adapt to new environments (6—8), so its loss can spiral into a feedback
loop where diversity loss further increases the risk of complete species extinction (9, /0). Because of
these damaging consequences, and as population declines outpace mutation replenishment making
these diversity losses effectively irreversible, we term this “genetic diversity extinction”.

Although genetic diversity is recognized by scientists as a key dimension of biodiversity (17),
it has been overlooked in conservation plans of international policy groups. Only in 2021 did the
United Nations’ Convention of Biological Diversity propose to preserve at least 90% of all species'
genetic diversity (/2, 13). Although meta-analyses of empirical genetic markers in animals through
time are emerging (/4—16), scalable approaches to estimate genetic diversity extinction across species
do not yet exist, impairing prioritization and evaluation of conservation targets. Here, we introduce a
framework to estimate global genetic diversity extinction by bridging biodiversity theory with
population genetics, and by combining global ecosystem transformations with new genomic datasets.

The first studies that predicted biodiversity reductions in the 1990s and 2000s projected
species extinctions due to habitat loss and climate change using the relationship of biodiversity with
geographic area— termed the Species-Area Relationship (SAR) (/7) (see Supplementary Materials
[SM] I for a review of mathematical models). In this framework, ecosystems with a larger area (4)
harbor a larger number of species (S), and the more a study area is extended, the more species are
found. The SAR has been empirically shown to follow a power law, S = 4% It scales consistently
across continents and ecosystems (/&), with a higher z characterizing speciose and highly spatially
structured ecosystems. Conversely, given estimates of decreasing ecosystem areas over time (4,; >
A)), Thomas et al. (/9) proposed rough estimates of the percentage of species extinctions in the 21*
century ranging from 15 to 37% —though this may be an oversimplification it has become a common
tool for policy groups including the Intergovernmental Science-Policy Platform on Biodiversity and
Ecosystem Services (IPBES) (3). However, despite the similarities between species' distributions
within an ecosystem and the distribution of individual DNA mutations within the same species, there
have been no attempts to describe the extent of genetic diversity extinction using an analogous
“Mutations-Area Relationship”.

Defining the Mutations-Area Relationship

Genetic mutations, defined here as DNA nucleotide variants appearing in individuals of a species (e.g.
ACGGGTA vs ACGGATA), typically remain low frequency in a population, though a few become
prevalent through stochastic genetic drift and natural selection (27, 28). As the “commonness of
rarity” principle for species abundances is a key statistical condition that led to the power law
relationship of the SAR, we thus hypothesized that if mutations follow the same rarity principle, the
genetic equivalent should exist, namely the Mutations-Area Relationship (MAR). Therefore, we
examined the rarity of mutations using 11,769,920 biallelic genetic variants of the Arabidopsis
thaliana 1001 genomes dataset (Fig. 1A) (20) by fitting several common models of species
abundances (21) to the distribution of mutation frequencies (q), termed the Site Frequency Spectrum
in population genetics (Fig. 1A inset, SM I1.1). The canonical L-shaped probability distribution (//g)
of this spectrum fit this data well (R? = 0.998), though Preston’s species abundance log-normal model
achieved the best AIC value with R = 0.999 (SM I11.1, Table SIIL1, Table IV.1). This showcases
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the similarities of abundance distributions of mutations within species and species within ecosystems,
suggesting they may behave similarly in their relationship to geographic area (21, 22).
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Fig. 1 | Mutations across a population follow a log-normal abundance distribution and a power law with range area. (1)
Distribution of mutation frequencies in 1,001 Arabidopsis thaliana plants using a Site Frequency Spectrum histogram (grey
inset) and a Whittakers rank abundance curve plot, and the fitted models of common species abundance functions. (B)
Density of individuals projected in a IxI degree latitude/longitude map of Europe and exemplary subsample areas of
different sizes. (C) The Mutations-Area Relationship (MAR) in log-log space built from subsamples of 10,000 mutations in A.
thaliana in (B) using 10 replicates of every possible size of square areas randomly placed in space. (D) A metric of adaptive
capacity loss during extinction in (E-F). Using Genome Wide Associations (GWA) to estimate effects of mutation on fitness
in different rainfall conditions, water use efficiency [wue], flowering time, seed dormancy, plant growth rate, and plant size.
Plotted are the fraction loss of the summed squared effects (Y.a’) of 10,000 mutations from the top 1% tails of effects. We also
plot the fraction of gene-coding alleles (yellow). (E) Percentage of extinction of total genetic diversity (grey) from stochastic
simulations of extinction in (F), and theoretical model projections (red) of genetic diversity extinction using the MAR. (F)
Cartoon of several possible range contractions simulated by progressively removing grid cells following different
hypothesized spatial extinction patterns.
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To define a metric for measuring how genetic diversity within a species increases with
geographic area, we constructed the MAR by subsampling different regions of the native range of
Arabidopsis thaliana using over one thousand geo-tagged genomes (Fig. 1B). As a metric of genetic
diversity, we modelled the number of mutations (M) in space (number of segregating sites) consistent
with the species-centric approach of SAR, which uses species richness as the metric of biodiversity
(SM 1L.2). The MAR followed the power law relationship M = cA® with a scaling value z,,,; = 0.324
(CI95% = 0.238-0.41) (Fig. 1C). This scaling is robust to different methods of subsampling areas, the
effects of non-random spatial patterns, random area sampling, fully nested outward or inward
sampling (/8), raster area calculations, raster grid resolution (~10-1,000 km side cell size), and is
adjusted for limited sample sizes (SM 111.3, 11.3.2, Fig. SII1.3-6, Tables SII1.2-7).

To test the generality of the MAR, we leveraged genomic datasets of hundreds to thousands of
individuals of the same species across large geographic areas (Table 1, SM IV). We assembled
datasets of 10,126 individuals of 19 plant and animal species, ranging from 1,522 to 88,332,015
naturally occurring mutations per species, covering a geographic area ranging from 0.03 to 115
million km?. Similar values to 4. thaliana’s z,,; were recovered for these diverse species (mean z,,,z
scaled = 0.24, median = 0.23, IQR = 0.18, Table 1, SM 1V, Fig. SIV.1, Table SIV.1-2). Theoretical
derivations show that z,,,; is a consequence of fundamental evolutionary and ecological forces
(mutation rate, dispersal, selection) and should range from 0-1, depending on the strength of
population structure (SM 1L.3, see Fig SIL7 for its relationship with isolation-by-distance). These
predictions were confirmed by spatial population genetics coalescent and individual-based simulations
in 2D and continuous space (SM IL.3), as well as with mainland-island community assembly
simulations according to the Universal Neutral Theory of Biodiversity (UNTB) (SM V). Naturally,
each species has a different total genetic diversity—which can vary substantially due to
species-specific traits such as census size, mating system, genome size and structure, etc. (23)—but
the relationship of genetic diversity with sample area within a species’ geographic range appears
relatively consistent across species.

Finally, to predict the effect of species’ range contractions on genetic diversity, we applied the
MAR to estimate genetic diversity extinction. We set up several scenarios of range contraction in A.
thaliana by removing map grid cells in silico (Fig. 1F). Our simulations included local extinction in
the warmest regions within a species range, which may rapidly become the least hospitable with
climate change (4, 24). Other simulations represent additional scenarios, such as random local
population extinction representing deforestation scattered across large continents (Fig. 1F-E). The
MAR-based predictions of genetic extinction, using [/-(/-4/A,,’, conservatively followed the
simulated local extinctions in 4. thaliana (R’ = 0.87) (SM 111.4). Our model can predict a simulated
local extinction using the z,,; value of another species or the average z,,; across species given that
the z,,z estimates were robust and relatively consistent across species, and no association was found
between z,,,; and different ecology, mating systems, home continents, etc. (Table 1, Table SIV.3-4).
These results are encouraging both because a typical z,,; = 0.2-0.3 may be predictive of genetic
diversity extinction in range-reduced species that lack genomic information and because any scaling
z < ] given our predictive equation implies that the genetic diversity loss is slower than area loss.

Since genetic diversity is ultimately created by spontaneous DNA errors passed onto offspring
every generation, the loss of genetic diversity may seem reversible. However, the recovery of genetic
diversity through natural mutagenesis is extremely slow (57), especially when restricting to mutations
affecting adaptation. Simulating a species undergoing "only" a 5-10% area extinction, it would take at
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least ~140-520 generations to recover its original genetic diversity (2,100-7,800 years for a
fast-growing tree or medium-lifespan mammal), although for most simulations, recovery virtually
never happened over millennia (see SM 11.4-5, Fig. SI1.8, SM I11.6).

Table 1 |The Mutations-Area Relationship across diverse species

Summary statistics of individuals sampled broadly across species distributions, sequencing method and mutations studied,
and convex hull area extent of all samples within a species. Mutations Area Relationship (MAR) parameters, which capture
how spatially restricted mutations area, including a scaled correction for low sampling genomic effort. Area that needs to be
kept for a species to maintain 90% of its genetic diversity, using the per-species MAR value estimates. Area predictions are
not provided for threatened species, as these have likely already lost substantial genetic diversity and require protection of

their full geographic range (Fig. 2).

Species N \Y Ao MAR MAR scaled Min area o,
Method Km’x10° z [C195%)] z* [CI95%)] %
Arabidopsis thaliana 1,135 (1,001)* 11,769,920 W 27.34 0.324 (0.238-0.41) 0.312(0.305 - 0.32) 71-78
Arabidopsis lyrata 108 17,813,817 W 2.79 0.236 (0.218-0.254) 0.151 (0.137-0.165) 50-66
Amaranthus tuberculatus 162 (155) 1,033,443 W 0.80 0.109 (0.081-0.136) 0.142 (0.136-0.149) 48-65
@ Eucalyptus melliodora" 275 (36)" 9,378 GBS 0.95 0.466 (0.394-0.538) 0.403 (0.398-0.407) 77-82
W Yucca brevifolia™ 290 10,695 GBS 1.21 0.128 (0.109-0.147) 0.049 (0.037-0.062) -
Mimulus guttatus 521 (286)* 1,522 GBS 25.14 0.274 (0.259-0.29) 0.231(0.221-0.241) 63-73
(- Panicum virgatum 732 (576)" 33,905,044 W 6.29 0.232 (0.211-0.252) 0.126 (0.116-0.136) 43-63
¢ Panicum hallii 591 45,589 W 2.19 0.68 (0.546-0.813) 0.652 (0.559-0.746) 85-88
& Pinus contorta 929 32,449 GC 0.89 0.015 (0.014-0.016) - -
& Pinus torreyana 242 478,238 GBS 0.03 0.236 (0.19-0.282) 0.105 (0.099-0.11) -
& Populus trichocarpa 882 28,342,826 W iL117) 0.275 (0.218-0.332) 0.165 (0.155-0.176) 53-67
#< Anopheles gambiae 1142 (29) 52,525,957 W 19.96 0.214 (0.164-0.264) 0.122(0.111-0.132) 42-62
-\ Acropora millepora 253 (12) 17,931,448 W 0.03 0.246 (0.209-0.283) 0.287 (0.28-0.294) 69-77
# Drosophila melanogaster 271% 5,019 W 115.21 0.437 (0.397-0.477) 0.325 (0.314-0.336) 72-79
% Setophaga petechia 219 (199)¢ 349,014 GBS/GC 7.03 0.214 (0.174-0.254)  0.074 (0.047-0.102) 24-54
Peromyscus maniculatus 80 (78)& 14,076 GBS 22.61 0.488 (0.264-0.713) 0.683 (0.615-0.751) 86-88
¥ Dicerorhinus sumatrensis® 16 8,870,513 W 3.33 0.412 (0.369-0.456) 0.127 (0.11-0.144) -
& Canis lupus 349 (230)" 1,517,226 W 19.10 0.256 (0.232-0.28) 0.184 (0.175-0.193) 56-70
* Homo sapiens 2504 (24) 88,332,015 W 80.76 0.431 (0.347-0.514) 0.281 (0.23-0.332) -

“Only individuals in the native range were used for the analyses.

4Only individuals with available coordinates or matching IDs were used for analyses.

%Numbers indicate pools of flies used for Pool-Sequencing.
"Number of geographically separated populations, as multiple individuals were collected per population.

SGPS locations unknown, MAR calculated with area equal number of individuals.

"Only natural populations were used, excluding breeds, landraces, and cultivars.

" Reported zy,, calculated assuming number of individuals equals area. Computations using raster areas provided noisy estimates, see Table SV.1. As these
estimates were not reliable or different from zero, they were not used for extinction calculations.

Acronyms: W = whole-genome re-sequencing or discovery SNP calling. GBS = genotyping by sequencing of biallelic SNP markers. GC = Genotyping Chip;
logN = log Normal distribution. logS = log Series distribution. Wei = Weibull distribution. CR = Red List Critically Endangered. VU= Red List Vulnerable.
CA= Included in the California Endangered Species Act.

Estimating the global magnitude of genetic diversity extinction

Using the MAR, we estimated the average global genetic diversity extinction caused by pre-21*
century land transformations. Although accurate species-specific geographic area reduction data in the
last centuries are scarce, we leveraged global land cover transformations from primary ecosystems to
urban or cropland systems (3, 25) (Table SV.1). Using the average scaled z,,,z (Table SIV.2), several
global averages of Earth’s land transformation for present day (38% from (25), 34% from (26), and
43-50% from (27)), we estimated a global genetic diversity extinction across per species between
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10-16%. While these estimates may correctly approximate central values across species in an
ecosystem, we expect variation in the extent of loss across species ranging from 0 to 100% (Fig.
SV.4). One cause of this variation is the heterogeneity in land cover transformations across
ecosystems; for example, more pristine high altitude systems have only lost 0.3% of their area, while
highly managed temperate forests and woodlands have lost 67% (Fig. 2, Table SV.1-5).

Another cause for the variability in genetic extinction among species (even within the same
ecosystem) may be their differential geographic ranges and abundances, life histories, or conservation
risk factors. We gathered data from species red-listed by the International Union for Conservation of
Nature (IUCN) (7), which evaluates recent population or area reduction in £10 years / 3 generations
to place assessed species in different threat categories using several thresholds. Assuming an average
Zyug Can capture general patterns, we translate these category thresholds into genetic diversity
extinction (see SM V, Table SV.4). Vulnerable species that have lost at least 30% of their populations
may have experienced >9% of genetic diversity extinction, endangered species that have lost over
50% of their populations should have incurred >16% of genetic diversity extinction, and critically
endangered species with over 80% area reduction likely suffered >33% of genetic diversity extinction
(Fig. 2B).
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Fig. 2 | The parameter space of genetic diversity extinction compared to pre-21" century ecosystem
transformations and endangered species categories. (A) Possible values of two key parameters, z scaling of the
Mutations-Area Relationship (MAR) and % of area reduction of a species geographic range (as a proxy of entire
ecosystem transformation). The theoretical % of genetic diversity extinction (grey gradient) is represented as
filled color, with isolines in white. Estimates of z,,.z from Table 1 are vertical orange lines with semi-transparent
C195% boxes. (B) Percentage of transformed ecosystem area from the Millennium Ecosystem Assessment (25)
are represented by light blue arrows, from the Intergovernmental Science-Policy Panel for Biodiversity and
Ecosystem Services (IPBES) (26) are dark blue arrows, and from the Land Use Harmonization 2 dataset (27)
are in dark purple. (C) The minimum criterion value of population or geographic distribution loss to be
classified in each category of the IUCN's red list are indicated with pink arrows. The number of plant species
included in each category is shown as box sizes (1).

How does genetic diversity extinction impact species’ adaptability?

To quantitatively understand how MAR relates to the loss of adaptive capacity, we leveraged the
extensive knowledge of the effect of mutations in ecologically relevant traits in 4. thaliana from
Genome-Wide Associations (GWA) (Fig. 1E, SM III). Again conducting spatial warm edge
extinction simulations, we tracked metrics of adaptive capacity, including the total sum of effects of
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remaining mutations (Ya?), the additive genetic variance [V, =Y p(I-p)a’], and the loss of
nonsynonymous mutations. Although determining the effect of mutations is technically challenging
(28, 29) to impossible with environmental or genomic context change (28, 30), our simplistic analyses
suggest these potentially adaptive alleles may be lost more slowly than neutral genetic diversity (Fig.
1C, SM 11.3.4.). Therefore, the loss of adaptive mutations may lag behind the extinction of neutral
mutations—and additive variance may even temporarily increase due to bottlenecks (37) (Fig
SIII.10)— then sharply collapse in late stages of the whole-species extinction event (32) (Fig. 1C, Fig
SIL.6).

To achieve the recently-published target of the United Nations to protect “at least 90% of
genetic diversity within all species” (13), it will be necessary to aggressively plan for early protection
of populations from different geographic enclaves. Here, we developed the Mutations-Area
Relationship (MAR)—the first mathematical framework to forecast genetic diversity extinction with
shrinking geographic species ranges. The MAR contrasts with existing studies on the risk of losing
entire species by focusing on quantifying the magnitude and dynamics of genetic diversity extinction
likely ongoing in the majority of species. The MAR demonstrates that even with conservative
estimates, substantial area protection will be needed to meet the UN’s Sustainable Goal A. For
vulnerable or critically endangered species we have likely already failed.

Supplementary Materials are available in this Google Drive link

Data availability. The analyzed datasets are publicly available or were shared by authors upon
request (see Supplementary Materials). Code and intermediate data are available at
https://github.com/moiexpositoalonsolab/mar <tobepushed>.
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I. Background on species biodiversity and biogeography
I.1 Theoretical models of biodiversity

Studies in biogeography have modeled the species-area relationship with several functions. Below we
summarize the different approaches using an example of richness of S = 100 species, with variable
abundance or area, A.

We may visualize the different area or abundance of species as a frequency histogram (Fig.
SI. 1, Preston plot), with x-axis: logarithm of abundance bins (historically log2 as a rough
approximation to the natural logarithm), and y-axis: number of species at given abundance.
Alternatively, as a rank-abundance diagram (Fig. SI. 1, Whittaker plot): x-axis: species list, ranked in
order of descending abundance (i.e. from common to rare), and y-axis: logarithm of % relative
abundance.

Preston Whittaker
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Fig. SL1| Example of typical plots used for species abundance curve studies

Due to their strong skew, Species Abundance Curves are often plotted using the Preston plot (left) where the x axis represents
bins of log2 abundances (also referred to as octaves), or using the Whittaker plot (right) where the x axis is the rank of each
species in a dataset and y axis the species’ relative abundance.

Over the years

1.1.2. Niche apportionment approaches

A series of theoretical deterministic and stochastic "niche apportionment models" have been put
forward (summarized in (Hubbell, 2001) or (Tokeshi, 1990, 1993)).

The Motomura (1932) geometric series suggests that each species that arrives takes half the
area. The first would take 50%, the second 50% of 50%, and so forth, which can be expressed as:

P =0.5"

Similarly, one can imagine that as a species colonizes a habitat, it takes up a fraction different than
50%. This gives a geometric series with parameters k£ which can be written as

P=k(1— k)1

Other geometric series-related models include stochasticity, where k& instead of being a fixed
parameter it is a random uniform variable and there is a k; each time 7 a new species arrives to the
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ecosystem. The "dominance preemption" model draws from 50-100% at any new arrival of a species,
the random fraction model draws from 0-100%. Then the abundance of a species depends on the
stochastic process of previous f'= ...i-1 species arriving first:

EIPIPy, .. P ki) = ki x (1- 5524 Py)

Another approach is the broken stick by MacArthur (MacArthur, 1957), which theorized a habitat is
broken into S-/ places at random, which creates S fractions of an area. Then the relative area of a
species is:

EP]= (30t

I.1.2. Niche statistical approaches of species sampling

Differently from niche partitioning functions, statistical approaches such as the log-series from Fisher
(Fisher, Corbet and Williams, 1943) and log-normal from Preston (Preston, 1962) are probability
distributions, and approach modeling in a conceptually different way: they model the sampling
process of species collections given an underlying relative abundance (see below).

Statistical-based derivations began with Fisher (Fisher, Corbet and Williams, 1943), with the
log-series distribution. It assumes that species abundances in the community are independent
identically distributed variables, sampling is a Poisson process, sampling is done with replacement, or
the fraction sampled is small enough to approximate a sample with replacement. Here,

_ N
where 7 is a constant Z € [0, 1] related to the sample dataset (typically close to 1), ¥ = a+N
, and « is a new constant term (ecosystem-specific) that is used as a measure of biodiversity. Fisher
proposed the number of species could be estimated as:

S:axlog(l+%).

Finally, Preston (Preston, 1948) posed that the skewness of previous proposals is due to lack
of sampling. With little data, common species are collected sooner, but with more abundant sampling,
the rarest species are also well-sampled and have abundances well above 0. Preston then proposed that
the octaves (bins of doubling abundance) follow a normal distribution, making the raw abundance
log-normal distributed. Given S0 is the number of species in the model octave of abundance and a
variance composite of the log-Normal o2, the number of species per abundance (octave) bin R

(=log(n)) is:
Sk = Soe_R2/202 )

The Unified Neutral Theory of Biodiversity (UNTB) by Hubbell (Hubbell, 2001) takes a
stochastic approach of a community with immigrants, extinctions, and speciation in continuous
dynamics. Interestingly, the UNTB's key parameter, 6, coincides with Fisher's a, as the log-series is a
limiting case of UNTB. Hubbell's discovery was that a=2J,v, where Jm is the size of the external
metacommunity that provides migrants of species to the focal community, and v is the speciation rate.
Alonso and McKane (Alonso and McKane, 2004) derived the so-called Metacommunity Zero-Sum
Multinomial (MZSM) distribution from the UNTB. In practice, both distributions have
almost-identical fits (lines completely overlapping in Fig. SI. 2 below).
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Five niche partitioning or statistical models shown in a Whittaker plot. The different models expect different levels of
evenness in abundance across the species in the community, from the lowest (geometric series) to the highest (log-normal).

1.2 Metric of species diversity

Although a number of metrics exist to measure species diversity, such as the Shannon index,

r_ S . ) . . . . . .
H' = -3, Pilogh; (with Pi the relative proportions of species abundances) or Fisher's
non-dimensional o parameter, the study of species abundances and area relationships has focused on
species richness S, that is, the total number of species in a given location or area.

1.3 Biogeography of species and extinction.
SAD and SAR connection

Due to many species being rare, it is expected that as researchers sample an area, the most common
species will be sampled first, and as the area studied increases, more and more species will be
discovered. This is thought to happen following a power law relationship, where the number of
species in that area S, increases with the sampled area A, with scaling z (slope in a log-log plot), and
with a constant c:

SAR(A) = Sq = cA*

Preston (1962) derived theoretically that from a log-normal series, one would expect z=0.27,
under a number of assumptions (Fig. SI. 3). This has been empirically shown to be close to reality
(1962; Storch, Keil and Jetz, 2012), although there is some variation across ecosystems and spatial
scales.
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Fig. S1.3 | Example of a Species-Area Relationship in Galapagos Islands

Classic species richness dataset from the Galapagos Islands (Preston, 1962). It depicts species richness as a function of
island area in a log-log plot

1.4 Estimating extinction of species from the species area relationship
The first estimates of species extinction used the SAR relationship. Given a reduction of ecosystem
area, 4, by an area of a (Pimm et al., 1995; Thomas et al., 2004). If these areas, as well as the SAR

scaling, z, are known, then one can predict the number of species in the future as:

Show — Stut = CAflOW - CAfut,

although we are normally interested in the fraction of species that will go extinct.

I Snow_sfut — _ CAfut — _ Afut z
Xs - Snow - 1 CA;ZIOW - 1 Anow .

I1. Population genetics models and the site frequency spectrum.
I1I.1 The Wright-Fisher model and the site frequency spectrum

The Site Frequency Spectrum (SFS) in population genetics theory is remarkably similar to the Species
Abundance Relationship. In fact, Fisher himself (Fisher, 1931) also proposed that mutation
abundances should follow a logarithmic series, with the number of mutations of a given abundance, 7,
being inverse to their frequency category ¢:

M, = ct

(s}

Rearranging terms, one can see this is a constrained version of the log-series Probability Mass
Function (PMF), which Fisher also proposed for the distribution of species abundances (Fisher,
Corbet and Williams, 1943). Below, one can graphically see the similarities (Fig. SII. 1):
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Fig. SII.1 | Similarity between the Species Abundance Distribution and the Site Frequency Spectrum
Left is the Probability Mass Function of the log-series (p=0.999), middle is the SF'S (N=100, c=1), and right is
the log-series-based abundance of species (alpha=100, N=10000).

Keeping the abundance, n, constant (and low), when the number of individuals N — oo, we

1,%=

N
know that the constant = from Fisher's SAD approaches Nta L. Then, we can rewrite the

number of species at any given abundance (S») as:

N
(2"
n

1

=a =c

S, =«

S|

= M,

1 k

So both have the same form as the log series PMF: (k) = In(1-p) T when P = 1. In the
next section we will see that the constants of the SAD and the SFS are proportional to species and
mutation diversity, although the Site Frequency Spectrum (SFS) is a specific case of SAD. One can
also see that because the constant in the SFS is the population scaled mutation rate, ¢ = 6 = Nepu,
Fisher's a = 6 for large N.

I1.2 Metrics of genetic diversity

In population genetics, multiple measurements of genetic diversity have been put forward. The most
straightforward is the allelic richness, also number of mutations, or also called the number of
segregating sites. Segregating sites, M, is the direct equivalent of the species richness, S, and it
depends on the number of samples used and length of DNA sequence explored (Note we use the
non-standard notation, M, as the standard in population genetics is S but this is already in use for
species richness. We then use M for mutations and S for species). This metric can also be thought of as
the area under the curve of the SFS. Two other metrics that describe the SFS but that aim to be
sequence-length- and individual independent are Watterson's Theta, w , and Nucleotide diversity, 7,
(also called 0x). These two metrics of diversity are identical at population equilibrium and are
estimates of 4Neu (when the SFS follows a 1/q relationship), with effective population size Ne and
per-generation mutation rate u, whereas they differ in non-equilibrium demographics, under natural
selection, or under other behaviors not considered in the Wright-Fisher neutral model, such as
different mating systems (Hahn, 2018).

First, m is described as:

S titn—i)M;
==

and Ow as:
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n—1
r M.
Ow = 722:,1 -
Zi:11 1/1,

where Z?:ll 1/1 is the n-1" Harmonic number, which serves to scale the segregating sites
based on the assumption that the abundance of mutations follows a 1/q SFS. The diversity metrics 7
and 6w are both functions of the SFS, as opposed to Fisher's a from the Species Abundance
Distribution, which is a parameter that changes the shape of the distribution.

Although often m is reported as a typical measure of genetic diversity of a species, since it
can be calculated for a single genome and it captures the process of inbreeding of a population
(Buffalo, 2021), classic literature relating germplasm management for conservation and breeding has
advocated for allelic richness (Marshal and Brown, 1975).

I1.3 Spatial genetics and the mutations-area relationship (MAR)

Since its inception, a number of concepts in population genetics have dealt with genetic variation
structuring in space. Already in 1943, Sewall Wright proposed that populations sampled further apart
geographically must differ more in allele frequency due to more independent drift (Wright, 1943),
leading to the commonly used correlation between geographic distance and the metric of
differentiation Fst. Most prominently, the use of correlation in the accumulation of mutations of
populations that are geographically close or share evolutionary history has been uncovered using
dimensionality reduction approaches such as PCA (Novembre and Stephens, 2008). Others have
discretized space into populations and used process-based models with explicit individuals of a
population and their genomes. The latter, so-called Wright-Fisher population process and its reverse
the Coalescent, have allowed inferences of population sizes across time and migration rates across
space (Li and Durbin, 2011; Petkova, Novembre and Stephens, 2016). Despite these enormous
advances in understanding spatial genetic structures, surprisingly little quantitative work has been
done to parametrize the loss of genetic diversity by direct loss of habitat.

Because of the abundance of rare mutations in populations, it is straightforward to think that
the more area and individuals sampled, the more segregating sites will be found. Analogous to the
Species Area Relationship (SAR), S=cA4*, we should thus be able to estimate the equivalent scaling for
a mutations-area relationship (MAR):

M=cA’,

with a scaling z = z,,z, which corresponds to the slope of best fit in a log-log-plot of 4 and M
for a given species. (Other functions are often fit empirically for SAR datasets, which we explore later
in section 11.2. We work with the power law because of its historical use, mathematical convenience,
and because other more complicated functions only improved fitting marginally, see Table SIII.2).

This differs from other efforts to understand the number of segregating sites or heterozygosity
differences across species that differ in their total census size or geographic distribution (see section
I1.6). The MAR instead is built within a species, as its ultimate aim is to relate the number of
mutations left in a species as it loses spatial populations.

Below we derive what are the expectations of MAR taking two opposite scenarios of neutral
population evolution, and study how many segregating sites or mutations M are discovered with
increasing area in the simulations. We further test the scenario of meta-populations in space with
varying migration rates and neutral or natural selection processes.

I1.3.1 Panmictic population
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The expected number of mutations, M, is a constant that depends on the mutation rate, x, and the
expected total branch length of the population genealogy, L, with M=ulL. Under the coalescent, the
total branch length is equal to the number of lineages or individuals sampled from the population, 7,
times the time of the genealogy during which there are such lineages, 7, plus n-1 times the time in the
genealogy with such number of lineages, and so forth:

L=nT,+ (n—1)Th_1+..+2Ts
Under the coalescent,

BIE] =

and thus:

E[L] = nyfey + (n— 1) ey + -

B

which simplifies to

E[L] = 2Ne(;i5 + 725 + .. +1) = 2NcH,
where H,, is the (n-1)th harmonic number. Finally, following the Taylor expansion
approximation of the harmonic number:

H, =~ +log(n) + %—i—O(nﬁlz) ~ v +log(n) + %

which we can further approximate as:
E[L] =~ 2N.log(n — 1)+ ¢

Therefore, assuming a constant mutation rate and effective population size (N,) under
panmixia, M grows like log(n). In such a case, a log-log plot (typical power law plot) does not display
a linear relationship, and the slope is asymptotic to z — 0 for N — . On the other hand, with low
values of x (area or individuals sampled close to 0), the slope z,,, will be incorrectly high. We can
show this effect trivially by studying the local derivative of the function log,,(M) = log,,(log(N)). The
local slope of that function is an approximation of our z,,,; parameter. This can be locally estimated at
any given point N by taking the derivative:

dlogo(log(N)) _ 1
d(logy(N)) logy(N) log(10) .

The implication of this nonlinear function is that if we sampled only few individuals or areas
of a species (e.g., n=100), even if this species was completely panmictic we would expect a non-zero
Zyur- We can roughly approximate z,,,; by the local slope of the number in the midpoint of the graph,
e.g., for =100 we look at the slope at n=50, and obtain 1/(log,y(50) x log(10))= 0.256. Therefore,
with small sample sizes, this parameter will not be helpful to understand whether a species behaves
panmictically or is limited by migration, which may be problematic for estimates of extinction later.
We can visualize our expectation of the z,,, under panmixia plotting the first derivative above (Fig.
SII.2). Because—as we will show below—we do expect a power law relationship under a
migration-limited scenario, z,,,, should theoretically not change with sample size. The graphical study
of the (non-)linearity of the log-log plots between the number of mutations and area sampled should
be diagnostic to this problem (We see for instance that Pinus contorta has a highly non-linear
relationship, likely due to the use of ascertained intermediate frequency markers instead of
genome-wide data, Fig. SIV.1).
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Finally, we used msprime (Kelleher, Etheridge and McVean, 2016) to corroborate this finding
(zuar being constant with respect to sample size) with simulations, simulating 1600 demes in a 40x40
grid of demes or populations of N=N,=1000 that are completely panmictic (universal gene flow or
dispersal, so this is equivalent to a single panmictic deme). We observed the z,,,, for t=100...10,000
generations in /og,, increments. After this time, we sample n=1.../00 individuals in increasingly large
groups of adjacent demes. The range of estimates of z,,, in these simulations was 0.07-0.15.

Fig. SII.2 indicates that the minimum average z,,,z even under panmixia would continuously
increase with lower numbers of individuals of a species sampled. This is due to the fact that the site
frequency spectrum is not fully sampled with small numbers of individuals. Therefore, we devised an
approach to rescale z,,z
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For increasing numbers of individuals sampled, we plot the expected mean z, under two theoretical trends of a

migration-limited (green) and a panmictic (purple) species (Purple dots indicate averages from SLiM simulations under
panmixia to confirm the theoretical trend based on the derivative approach above). In black, zy,z and 95% Confidence
Interval of species analyzed in section IV are plotted (see section for details).

I1.3.2 Scaling zy;,r for low sampling and low census size

Let z,,,, = E[zyuz | n, panmixia], be the expected value of z,,; of a panmictic species given
that we only have small sampling of n. Although theoretically z,,,; should approach 0, with small
samples it can be upwardly biased. In order to force the possible values of z,,, to range 0-1 despite
small sample sizes, we can scale it as:

Znaive scaled — (ZMAR - Zpan-r) / (I_Zpan-n)'
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In words, this moves the purple line in Fig. SIL.2 to zero, stretching the space above it
accordingly.

Most species have census sizes that large that z,,,; should indeed approach 0 under panmixia,
so we should correct the sample estimate z,,,z to range 0-1. However, some species have such low
census size N that even if we sample all individuals of a species, the sample size will still be small. In
those cases, we should not scale z,,; to range 0-1, but rather scale it from z,,,y - I, where z,,, y =
E[zyur | N, panmixia] is the expected value of z,,,; given a census size N (plants or animals living in
the wild). The updated scaling approach for both census and sample size would then be:

Zscaled (I_Zpan—N) (ZMAR - Zpan—n) / (]'Zpan—n) + Zpan—N~

Note that this scaled estimate must be conservative because while we adjust the minimum z
for the average value expected for low sample sizes, we do not adjust for the maximum possible z,
which only under very extraordinary theoretical conditions can be z=1, namely under an unrealistic
complete disconnection of populations by gene flow (see below). Because deriving the maximum z
would require more biological knowledge of the species’ demography, landscape connectivity,
genome structure, etc., and because we rather create conservatie estimates, we do not create further
scaling approaches.

I1.3.3 Meta-populations in space

A more realistic simulation than a panmictic population is that of the same 40x40 deme grid where
migration can happen between adjacent demes. This migration rate can be changed to understand the
effect of population structure and migration on z,,,. Under no migration (or very low migration), we
expect the mutations in two distinct populations (and thus their SFS) to be (almost) completely
independent. Hence, when explored demes are doubled (&, doubles), we discover twice as many
mutations. In this case, the number of mutations should scale linearly with the area, so we expect the
following to be true: M=A4, log(M) = log(4), and z,,,=1. Our analyses under different sampling
schemes, and with different numbers of “burn-in generations” (generations since a single deme
colonized the full 40x40 space) confirm that z,,,, approaches 1 in the limit of high migration (see Table
SII.1 and Fig. SII.3). Different from the panmictic situation, as we increase the sampled area, we not
only increase n but also N..
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Fig. SI1.3 | msprime 2D deme simulations and the mutations-area relationship

Simulations with different burn-in and migration rates under neutrality, and their corresponding zmar.
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Table SII.1 | msprime population genetic simulations in 2D.

Simulations summarized by grouping ranges of the resulting z,,, parameters. The average parameters of the simulations
with similar z,, EW provided. (Acronyms: Nemt = product of effective population size, migration rate, and simulated

generations).
ZMAR Samples/deme Generations Migration rate N,mt

0.2 +/-0.05 2.4 50001.7 0.0271675 5000044.23
0.3 +/-0.05 20.25 70003 0.0561655 7000075.77
0.4 +/-0.05 26.5714286 13057.4286 0.04450857 1305497.96
0.5 +/-0.05 12.9230769 121759.462 0.04017769 752221.743
0.6 +/-0.05 15.6111111 3218.77778 0.045735 321174.768
0.7 +/-0.05 35.6842105 35034.8421 0.03395895 143791.614
0.8 +/-0.05 35.030303 15655.1212 0.03055818 58023.5539
0.9 +/-0.05 36.5806452 3057.12903 0.0253029 15290.4081

1+/-0.05 42.0140845 13625.4085 0.00861178 1798.36141

These simulations corroborated that we can recover z,,; values ranging between 0-1 just
varying migration and burn-in generation parameters. We found that it was both the time of the system
to reach an equilibrium as well as the migration rate that determined z,,;. In the future, it will be
interesting to study different non-equilibrium scenarios to better understand how genetic drift, gene
flow, and different landscape structures may shape the zy .

I1.3.4 Meta-populations in space with local adaptation

In order to simulate local adaptation, we use the individual-based simulation software SLiM (Haller
and Messer, 2019) following the approach of (Booker, Yeaman and Whitlock, 2021). These
simulations were set up for 196 demes arranged in a 14 x 14 grid. Each grid cell contains a population
of N=1000 and has an environment attribute, e, which varied spatially from the lower-left to the
upper-right corners (approx. -7 < e < 7). 12 locations in the genome were allowed to be under
directional natural selection. The selection coefficient was fixed for a simulation, and grid runs were
conducted with 0<s<0.05, but this selection would vary based on the environmental selection value of
a grid cell, according to e x s. Therefore, these alleles are antagonistic pleiotropic. Selected mutations
across the 12 loci in the genome behaved additively (e.g. if an individual in grid cell i had two of the
selected mutations, fitness would be w=1/+2s x ¢;). The migration rate varied from one individual in a
billion (1x10?), to one individual every ten (1x10"). Finally, the mutation rate was set to 10™®
mutations/bp/generation and the recombination rate to 107 crossovers/bp/generation.
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Fig S11.4 | SLiM population genetic simulations in 2D with selection and local adaptation

Simulations were carried out with different combinations of migration rates and strength of antagonistic
pleiotropic selection at 12 QTLs. (A) Marginal relationship between z,,,z with the strength of spatially-varying
selection s. (B) Marginal relationship between z,,,z with the migration rate m.

These results, together with individual-based simulations, corroborate what we had observed
with Coalescent simulations, i.e. that z,,, is lowest with a high migration rate. The simulations also
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appear to show a negative effect of selection on z,,; . Generating a linear model fitting migration rate
and selection and their interaction to understand what factors explain the scaling coefficient: z,,,, ~
log;s(m) + s + log,(m)xs we confirm that both had a significant effect, and that selection
significantly reduces z,,; (Fig. SIL.4, see below summary table SII.2). This may seem
counterintuitive, as one may expect that locally-adaptive mutations are rare and will be localized only
to where they are adaptive. More work is necessary to understand the signatures that spatially-varying
natural selection (and its different types) create on z,,,, but we can think that under migration limited
scenarios (where z approaches 1) adaptive alleles and their linked mutations permeate faster to similar
neighbor environments than neutral alleles.

mar-Dy migration rate and strength of spatially-varying selection

Linear Model summary table

Estimate  Std. Error t value Pr(=|t])

(Intercept) 03385022 0.0469174  7.214859  0.0000001
loglO(mig)  -0.0419733 0.0085804 -4.891792 0.0000407
s -4.6934926  1.6290184 -2.881178 0.0076725
loglO(mig)s -0.4998393 0.2426463 -2.059950 0.0491621

I1.3.5. Meta-populations in space with purifying selection

To understand the effect of purifying selection on z,,,; we also ran 2D simulations with a fraction of
the genome allowed to be globally-deleterious (i.e. independent of the spatially-varying environment).
We simulated an increasingly strong purifying selection (|s| range from 0.0 to 0.1), simulating roughly
that 29% of the genome of Arabidopsis is coding (arabidopsis.org) and mutations can be deleterious.
We also varied the degree of recombination. Following our expectation, with stronger purifying
selection deleterious mutations are pushed to lower allele frequencies, stopping their geographic
spread, which increases z,,,;. Recombination rate appears to have a minor role on z,,; (Fig SIL5).
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Fig SI1.5 | SLiM population genetic simulations in 2D with purifying selection.

Simulations were carried out with varying strengths of purifying selection (|s| range from 0.0 to 0.1) at coding positions,
representing about 29% of the genome. Different values of recombination rate were also used in all pairwise combinations
with |s|.

I1.3.6 Continuous-space non-Wright-Fisher models

In order to confirm z,,; generality in highly realistic conditions and its behaviour through the
extinction process (I1.4), we set up SLiM simulations using continuous space and non Wright-Fisher
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dynamics. These are highly customizable and we chose parameters that involved the least assumptions
and lead to realistic F, across populations: dispersal kernel, local mate choice, spatial competition, age
structure of population, local carrying capacity (github repo with scripts in preparation). Fitness, and
thus selection, was modeled as a polygenic trait under stabilizing selection, and we kept track of
variants that affected fitness during simulations. We ran simulations forward-in-time for 2,000
generations and distributed neutral mutations on the tree-sequence encoding of the data (Kelleher et
al., 2018). After that, the geographic distribution of the species experienced impacts as expected
during global change: every generation a 0.001 of one edge of the species distribution got its carrying
capacity reduced to 0. This meant that over 1,000 generations the whole species would disappear
(note that this is a reasonable fraction of area reduction given the estimates of yearly deforestation and
habitat change in section V).

Throughout these realistic simulations, at different timepoints before extinction we tracked
important parameters such as Va (which corroborated the temporary inflation observed in section
IIL.5) or z,, itself, which appeared to decrease as (Fig SII.2)
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Fig. SI1.6 | Continuous space SLiM population genetic simulations

At ten timepoints prior to final extinction, 1,000 individuals were sampled randomly in continuous space to quantify diversity
extinction (dark red). The prediction of MAR (light red) using the starting zyr Seemed to follow the real trend accurately
(dark red), indicating that even if Zyag varies during the extinction process, it is relevant to understand genetic extinction by
area reduction. We also tracked metrics of population structure (zysr, Fy ) and a proxy of adaptive capacity (Va), which
showed qualitatively similar patterns as the GWA-based trends (Fig I11.10).

I1.3.7 Connection with isolation-by-distance

Ultimately, z,, is a complex integrator of evolutionary forces acting in space (mutation, migration,
drift, selection) and captures how structured the distribution of a species' mutations is. Although the
isolation-by-distance pattern conceptually resembles z,,, we have found no obvious analytical
expression that relates both. Note that F, is defined based on heterozygosity or 7, instead of the
number of segregating sites (i.e., mutations M). For instance, using Hudson's estimator (Hudson,
Slatkin and Maddison, 1992) to compute Fst across a set of populations we calculate F,, = I- (n,,/ &),
where x, is the diversity or heterozygosity within a population and 7, is the same parameter calculated
for the meta-population. Plotting F, of a metapopulation by the distance of the farthest demes shows
the typical non-linear trend of isolation-by-distance, which shows that very close populations have
similar allele frequencies whereas populations further away drift apart. A challenge of Fst is that it
requires pre-defining discrete populations, which is straightforward in stepping-stone simulations but
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hard in real data. Comparing average F,, of our 14x14 spatial demes and z,,,;, we see that the two
parameters correlate (Fig. SII.7C). However, it appears that for low values of F,, z,, captures more
variation across the simulations (Fig. SII.7). These patterns were also confirmed in continuous space
simulations (not shown).
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Fig SII.7 | SLiM population genetic simulations in 2D comparing Fst and Zyz.

Neutral SLiM simulations with different degrees of migration. (4) Hudson's Fst across populations with different area
subsamples. Following the expectation of the isolation-by-distance pattern, as the distance between the farthest demes in the
subsample increases, Fst becomes larger and saturates at large distances. (B) The Mutations-Area-Relationship. (C)
Comparison between Fst and zy,,

I1.4 The extinction of mutations in space

Having fit the MAR relationship as a function of area, and having estimated z,,,;, we can use this
relationship to project the number of mutations (genetic diversity) lost as the geographic distribution
(A) of a species is reduced by a due to habitat loss or climate change following equation:

B MAR(A—a) A4, \*
Xu=1- S = 1- (45)

In the case of a single panmictic population, and again assuming A~N, the loss of area 4 by a
(and fraction of area extinct x=a/4), would cause a minor damage, from: M, ; = log(4); to: M,=
log(1-x) + log(4); which is also expected from the z,,, framework as z,,; = 0 for panmixia. A
substantial loss of genetic diversity in this case only happens when population extinction is almost
complete. This is of course not the case in highly structured populations, which is the other extreme
scenario with z,,; = I, where the fraction loss of geographic area directly translates to the same
fraction loss of genetic diversity.
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Reality should be in between the panmictic and fully-migration-limited cases. With
combinations of environmental selection, non-equilibrium demography, and long-range dispersal, we
may get intermediate z,,, values, and it will be empirical estimates that can inform us how much may
be lost (Section IIL.3).

I1.5 Recovery of genetic diversity after a bottleneck
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Fig. SIL.8 | 2D stepping-stone msprime simulations with extinction of a fraction of the population and recovery
(4) Recovery of genetic diversity (number mutations) after extinction of a fraction of the population. (B) Recovery of genetic
diversity after instantaneous extinction of a fraction of the population and consecutive repopulation.

The intuition that rapid recovery of genetic diversity may be possible is likely flawed. While
genetic recovery may be faster than speciation rates, which are on the order of millions of years, the
time for a set of populations that went through a simulation burn-in of 1,000 generations (not yet in
diversity equilibrium), and that suffer an instantaneous 5% extinction of area and an instantaneous
recovery (e.g., through reforestation) would range from 20-90 generations. This number of
generations for long-lived species would translate into centuries or millennia of recovery without
further impacts. About 49% of simulations — including every simulation that reached equilibrium
(burnin generations >10,000) — have a recovery time of more than a thousand generations.

I1.6 Similar attempts to describe a genetic analog of the Species-Area Relationship and
related work

Although the Mutations-Area Relationship, to our knowledge, has never been empirically tested to
follow a power law, nor formally derived through population genetics, here we want to highlight some
similar concepts and their differences:

Campos, Oliveira, and Rosa (2010) created a customized simulator of species adapting in a
heterogeneous landscape, with mutations with fitness effects depending on the environment
epistatically interacting with other mutations. To study genetic differentiation with area, they used
average pairwise differences (unscaled heterozygosity or 0 ) as a metric of speciation. Although there
are no barriers to cross-species hybridization, the authors indicate that the parameter space of habitat
heterogeneity and their reproduction scheme make genetically-different individuals effectively
isolated. Then, the authors built a power law Species-Area Relationship with their genetic proxy of
species diversity that recovered typical zg, values.

Fan and colleagues (2019) attempted to describe the differences in genetic diversity across
bird species with different geographic distribution ranges. They focused on heterozygosity, although
in their paper they also tested allelic richness (the equivalent of our metric of number of mutations or
segregating sites used here too). The data analyzed are microsatellites from various studies, known to
be ascertained to be variable and thus would not be expected to follow the 1/q probability distribution
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of the SFS. Then the authors fit the relationship between phylogenetically-corrected geographic
distribution range area (x) and body-size corrected heterozygosity or allelic richness. They found that
the best-fitting relationship was a Monod equation. Although they tested a power law, their scaling
was z=0.01 for heterozygosity and z=0.05 for allelic richness, as expected due to the ascertained SFS
characteristic of microsatellite markers. The authors called this the Genetic Diversity Area
Relationship (GAR). We note this is a different relationship to what we describe here for two reasons:
(1) it focuses on heterozygosity or highly-variable sites rather than the number of segregating sites
genome-wide, (2) it quantifies a spatial relationship across all species and their different geographic
ranges rather than a relationship for each species. Therefore, it is hard (or not impossible) to derive the
empirical GAR from Fan et al. from population genetics models, nor does the GAR informs about
species-specific genetic diversity-area relationships.

Finally, while not explicitly aiming at describing a genetic diversity-area relationship, Buffalo
(2021) revisited a paradox in population genetics that levels of heterozygosity, z, are fairly consistent
across species relative to their effective (N,) or census (N,) population sizes. The aim of their paper is
to study whether linked selection can explain the lack of a relationship between 7 = 4N, u (where y is
the mutation rate). By using a species range-based estimate to approximate population size, and
correcting both diversity and population size by phylogenetic signal, the paper built a relationship that
resembles the genetic diversity-area relationship from Fan et al. The 95% confidence intervals of the
scaling parameter in a log-log plot relationship between 7 and approximate population size (z
equivalent) from a phylogenetic mixed-effect model was: 0.03-0.11.

I1.7 Notes on conservation genetics state-of-the-art

The literature of population genetic applications to conservation is extremely rich, since a series of
foundational papers of Lande and Lynch was published in the 1990s. These focused on the processes
that occur when populations become too small: Small populations can accumulate more deleterious
alleles due to elevated genetic drift (Lande, 1993, 1995; Lynch and Lande, 1998). Declining or
fragmented populations increase inbreeding and thus demographic depression (Franklin and
Frankham, 1998; Kyriazis, Wayne and Lohmueller, 2020; Kardos ef al., 2021), due to strong recessive
deleterious mutations (Kyriazis, Wayne and Lohmueller, 2020) and excessive mutational load (Willi,
2013). We consider this work as extremely illuminating and inspiring, and an important downstream
process in the extinction trajectory. The purpose of our work, however, is understanding the process of
loss of genetic variation, whether it is adaptive, neutral, or deleterious, which happens when species
lose area (both endangered or non-endangered). Further, MAR is a scaling relationship that is
phenomenological, and forward-in-time predictions do not incorporate the feedbacks that occur during
population size reduction such as the mentioned above. Our work, however, fills a technical gap that
could have important consequences to current United Nations’ Convention on Biological Diversity
agreement and its Sustainable Development Goals, which recently proposed to preserve 90% of
genetic diversity within each and all species (Diaz et al., 2020).
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III. Testing the mutation area relationship theory with the 1001 Arabidopsis
Genomes.

We begin testing the idea of a general mutations-area relationship using the extensive sampling of the
model plant species Arabidopsis thaliana and the 1001 Arabidopsis Genomes Project (1001 Genomes
Consortium, 2016). This section will serve as a case study to explore different approaches and biases
when building MAR to then apply the learned lessons across species (section IV).

ITI.1 The Site Frequency Spectrum of the 1001 Arabidopsis Genomes.

We began analyzing the frequency distribution of 11,769,920 biallelic genetic variants (i.e.,
mutations), which is typically called the Site Frequency Spectrum (SFS) in population genetics.
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Fig. SIII.1 | Mutation abundance study in A. thaliana.
(4) Site Frequency Spectrum (SFS). (B) Preston plot of mutation abundances. (C) Whittaker plot of mutation rank

abundances.

To showcase the similarities to the Species Abundance Distributions (SAD), we use the
Whittaker plot of mutation rank abundance (Fig. SIII.2) suggests a log-normal of S-shape may be the
best fitting model (Table SIII.1). For a review listing many popular models, see (McGill et al., 2006),
and for implementation details of 13 SAD models see the thorough manual of R package SADS
(Prado, Miranda and Chalom, 2018). As we shall see later, the log-normal distribution seems to be the
best fit across species.
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Fig. SII1.2 | Fit of mutation abundance study in A. thaliana with different SAD models
Representative models from Table SIII.1 are plotted along with the observed frequency of 11,769,920 mutations

Table SIII.1 | AIC values for model fit of common species distribution curves.
For each SAD model, the degrees of freedom and the delta AIC compared to the top model are reported.

Model dAIC df
log-Normal 0 2
Poisson 7204.37509 2
Geometric 44267.5475 1
Weibull 45872.3678 2
Gamma 48805.6065 2
Borken Stick 49076.4368 0
UNTB (MTZSM) 168434.181 1
log-Series 168434.726 1

I11.2 Building the Mutations-Area Relationship

In the following, we explain how the area was estimated that was used to compute z,,, on real world
data. In short, we used a grid on the world map, with samples placed on the map based on their
geo-coordinates of origin (Fig. 1). We first create square spatial subsamples of the Arabidopsis
thaliana geographic distribution (Fig. 1, Fig. SII.4) and quantify diversity M as the total segregating
sites. Excluding zeros, these two variables are fed to the sars power function from the R SARS
package (Matthews et al., 2019).

Although the power law Mutations-Area Relationship was already theoretically motivated
(I1.3), here we also fit different types of functions typically applied to the Species-Area Relationship.
Doing this, we reach the conclusion that multiple models perform very similarly, and the classic
power law is among the top models, see Table SIII.2. Although small marginal fitting accuracy could
be achieved with other models, for mathematical convenience and historical continuity, we use the
power law for later sections and the study of MAR across species (Sections IV and V).

Table SIII.2 | Different SAR curves fit to mutations.
We fit 20 different functions and calculated the variance explained (R2), Pearson's r, and Spearman's rho

Model R2 r rho

Asymptotic regression 0.21825683 0.46717965 0.53510077
Beta-P cumulative 0.22012799 0.46917799 0.53374757
Chapman Richards 0 NA NA

Cumulative Weibull 3 par. 0.21929646 0.468291 0.53374757
Cumulative Weibull 4 par. ~ 0.21930145 0.46829633 0.53374757
Extended Power model 1 0.21833611 0.46726449 0.53026812
Extended Power model 2 0.21682584 0.46564561 0.53462775
Gompertz 0.16393078 0.40488366 0.45964364
Heleg(Logistic) 0.21929721 0.4682918 0.53531975
Kobayashi 0.22228406 0.47147011 0.53526975
Linear model 0.19579007 0.44248171 0.53510077
Logarithmic 0.20280401 0.45033767 0.53430311
Logistic(Standard) 0.22536996 0.47473146 0.53549765
Monod 0.22500999 0.47435217 0.53579276
Negative exponential 0.22801633 0.47751055 0.53447179
Persistence function 1 0.21929612  0.46829063 0.53501182

Persistence function 2 0.21760028 0.46647645 0.53409266
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Power 0.21929556  0.46829004 0.53543785
PowerR 0.21753225 0.46640353 0.53493321
Rational function 0.22072491 0.46981369 0.53451874

Because in the species literature it is recommended to only quantify richness of endemic
species (He and Hubbell, 2011), we also count segregating sites that are private to the area subsample,
creating the equivalent Endemic-Mutation Area relationship (EMAR) (He and Hubbell, 2011). The
MAR slope and 95% Confidence Interval was z = 0.324 (0.238 - 0.41), while the EMAR was z =
1.241 (1.208 - 1.274). Interestingly, the endemics-area relationship of z = 1 resembles that of endemic
species, whereas the total mutation relationship with area is above that of species relationships, which
typically follows the canonical z~ 0.2 — 0.4.

We must note that EMAR, the genetic analogy of the Endemic-(species)-Area Relationship
(EAR) may not be that meaningful when analyzing genomic data (we did not find a way to
theoretically motivate it in section II), and later we see it overestimates extinction in our simulations
(Fig SIIL.7)

Table SIII.3 | Mutations-Area Relationship (MAR).

Fit values in a log-log power function between area sampled and mutations discovered.

Estimate  Std. Error t value P 2.5% 97.5% nls.Est. nls.2.5% nls.97.5%

c 494.565432 135.6314588 3.646392 0.0003138 223.3025141 765.8283493 4945531270 278.1107276 822.829918
z 0323727  0.0430277 7.523681 0.0000000 0.2376715 0.4097824 0.3237367 0.2430303  0.413162

Fitted values in a log-log power function between area sampled and endemic mutations discovered.

Estimate  Std. Error t value P 2.5% 97.5% nls.Est. nls.2.5% nls.97.5%

c 0.0001001 0.0000231 4.337758 1.98e-05 0.0000539 0.0001463 0.0001001 0.0000635 0.0001555
z 12411831 0.0165268 75.101442 0.00e+00 1.2081296 1.2742366 1.2412125 1.2096087 1.2737927
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Fig. SIIL3 | Mutation Area and Endemic-Mutation Area Relationships in A. thaliana.

Dividing A. thaliana native distribution into a I degree lat/long grid, square areas with 1 degree side-length to 36 degrees
side-length were randomly placed (n=100 for each size) across the distribution, and genetic diversity metrics were computed
to produce the (A) Mutations-Area Relationship and (B) Endemic-Mutations Area relationship.
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I11.3 Testing numerical artifacts

We wondered whether MAR estimates may be affected by some numerical artifacts in our software
pipeline (available at https://github.com/moiexpositoalonsolab/mar). For instance, real world data may
have uneven sampling in space, the spatial resolution of GPS-tagged samples may vary, projection of
samples into gridded maps may have limited resolution, software pipelines may produce biased
estimates, etc. To test this, we conducted several experiments:

Lower bound of the method for z,,,,; Our first experiment when building the MAR aimed to
make sure that bias in the spatial sampling or genome sequencing would produce an artificially large
zyur  When the relationship should approach zero. We then took a permutation and simulation
approach, where the SNPs in the A. thaliana dataset were shuffled across individuals. The same
number of mutations, samples, and geographic locations were kept but the MAR relationship should
be null. This exercise confirmed we get a value approaching zero: z=0.033, (-0.095 - 0.162) (Table 1,
Table SIILS).

Table SIIL.5 | MAR built with different area calculations and grid sizes

Grid resolution Zuar [C195%] Zuar| C195%]

(deg.) (cell area) (total area)

A=N 0.431 (0.423 - 0.439) NA

0.1 0.435 (0.424 - 0.446) 0.367 (0.281 - 0.454)
0.25 0.454 (0.449 - 0.459) 0.422 (0.376 - 0.467)
0.5 0.488 (0.465 - 0.511) 0.352 (0.152 - 0.551)
1 0.543 (0.529 - 0.558) 0.389 (0.295 - 0.483)
2.5 0.644 (0.6 - 0.688) 0.388 (0.251 - 0.526)
5 0.617 (0.205 - 1.029) 0.403 (-0.204 - 1.011)

Grid sizes, area calculations, and non-random spatial sampling. In order to streamline
geospatial operations, we implemented the MAR relationship calculations in this project using R
raster objects (van Etten, 2012). This required projecting the collected samples of a species and the
observations of any given mutation into a world map (i.e., each mutation's geographic distribution).
Necessarily, in order to be able to assign areas to sets of samples or mutations on the map, the
projection requires the choice of a grid size. The larger the grid size (e.g., lower spatial resolution), the
faster the spatial operations can be performed computationally. Further, for larger grid sizes, we
expect the slope of MAR to be more influenced by larger-scale patterns, while for smaller grid sizes,
the MAR will be influenced by smaller-scale patterns. To test this, we repeated the subsampling of A.
thaliana distribution with grid sizes ranging 0.1 degrees latitude/longitude (roughly 10km side-length
in temperate regions) to 10 degrees (roughly 1,000 km side-length). The estimates were roughly
consistent between 0.4-0.6, which resembles that of species in ecosystems (Storch, Keil and Jetz,
2012), including that at larger geographic scales (row in Table SIIL.5 for large grid size values), the z
appears to be steeper (e.g. 0.6).

Because we often have sparse samples of individuals in space, we devised two strategies to
calculate areas during the subsampling of MAR (see cartoon in Fig. SIII.4): (A) the total square area
of the minimum and maximum latitude/longitude values of all the samples analyzed. That is, simply
the area of the red box in the figure. (B) the sum of areas of grid cells that contain at least one sample.
That is, the sum of the grey squares within the red box in the figure. In addition, we also calculated
the MAR relationship assuming the total area is equal to the number of individuals (4=N), which
should be equivalent to very high grid resolution.
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Table SIIL.5 values suggest there is a dependency of z,,, with the grid size when areas are
calculated as the sum of grid cells with at least one sample. Our intuition for this pattern is that lower
resolution grids (e.g., 5 degrees side) lead to some grid cells having many samples, which would
increase the number of mutations discovered when discovering the area. On the other hand, the
calculation of z,,; using the total area does not seem to affect the z,,,; estimate; however, because
large areas often do not have samples (limiting the potential to find new mutations), it creates a higher
variance in the estimate of z,,; (see confidence intervals in Table SIIL.5 and Fig. SIIL.5). Here, we
favored consistency of z at the expense of broader, more conservative confidence intervals. All the
estimates reported below and in the main text therefore use the total area approach.
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Map of mock samples of a species projected into a raster. Grey scale indicates the number of samples per grid cell. Red
boxes exemplify the process of spatial subsampling of increasing area to build the MAR relationship. Two example grid sizes
were created for illustrative purposes: (4) Small grid size or high spatial resolution. (B) Large grid size or low spatial
resolution.
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(4) Using total area, (B) using grid cell sum with at least one sample.

Geographic subsampling strategy (inwards, outwards, random). It has been indicated that
the way the Species-Area Relationship (SAR) and Endemics-Area Relationship (EAR) are created
may create differences in the scaling parameter z. The plots and estimates above were produced by


https://doi.org/10.1101/2021.10.13.464000
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.13.464000; this version posted October 15, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

randomly placing boxes of different size or area across the distribution of the species. Often, however,
either discovery of species or extinction happen in certain patterns. For instance, we often imagine
sampling an ecosystem concentrically outwards from a focal point, whereas we may think of the
extinction process of species area reductions being concentrically inwards (He and Hubbell, 2011).
Because these patterns seem of importance, we also calculated the MAR and EMAR outwards from
the latitude and longitude median of all the samples in the map, moving outwardly until the map is
filled. Likewise, the inward pattern is conducted in an inverse manner. See Fig. 1F of the main article
for examples of further patterns.
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Fig. SIIL.6 | MAR and EMAR in Arabidopsis thaliana using outward and inward sampling.

Dividing A. thaliana native distribution in 1 degree lat/long grid, a square area of 1 degree was placed at the median of the
sampling range and was expanded iteratively by 1 degree lat/long until all the area of the distribution was covered. (A-B)
MAR and EMAR using a typical outward sampling. (C-D) MAR and EMAR using an inward sampling. The latter may not be
a common process of sample collection, but it is common for extinction progress.

Table SI11.6 | Outward and inward MAR and EMAR
The MAR and EMAR relationship computed with inward or outward nested subsampling, calculating area only as those cells
with samples.

Relationship z

MAR outwards 0.444 (0.412 - 0.476)
EMAR outwards 1.086 (0.982 - 1.189)
MAR inwards 0.561 (0.524 - 0.597)

EMAR inwards 1.295 (1.192 - 1.399)



https://paperpile.com/c/sLHqeA/1i0H
https://doi.org/10.1101/2021.10.13.464000
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.13.464000; this version posted October 15, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Incomplete sampling of the species. To check whether the relationship holds with few
individuals of a species or limited geographic distributions, we compared the species-wide MAR with
that of subset populations. Downsampling the native distribution of 4. thaliana to a region within
North-East Spain (-2.00-4.25 degrees East, 36.52—42.97 degrees North), or to a region within
Germany (2.69-13.73 degrees East, 50.0-52.0 degrees North), and using only 1,000 SNPs, we
recovered z,,z= 0.423(0.233-0.614) for Spain and 0.525(0.242-0.807) for Germany, which were close
to the estimate based on the whole distribution (Table 1). This result is reassuring in that if migratory
patterns are relatively homogeneous, one may be able to estimate this parameter from a subset of the
species.

Number of genome-wide SNPs used. To check whether different numbers of SNPs used for
the analyses would lead to different z,,;, we conducted analyses with random subsets consisting of
100, 1,000, 10,000, and 1,000,000 SNPs, replicated 3 times. Estimates were tightly around the mean
0.5301 with a coefficient of variation of 0.0372348 in z,,z.

Locally-adaptive variants. We then aimed to understand the effect of utilizing SNPs that
appear to be related to adaptation. To study this, we utilized an outdoor climate-manipulated
experiment that recorded fitness data (survivorship and reproduction output of seeds) for 517
Arabidopsis thaliana ecotypes part of the 1001 Genomes set in 8 environments (Exposito-Alonso,
2019). We devised two sets of alleles: 10,000 that were negatively correlated with fitness in a
Genome-Wide Association across 8 different environments, and 10,000 alleles that were associated
positively with fitness in one environment but negatively in another (antagonistic pleiotropic). The
MAR relationship was computed as before and compared to the original random (putatively neutral)
set of alleles from the previous sections (Table SIII.7). Although we see a trend that locally-adaptive
alleles have a slightly higher z, estimates overlap. The effects seen here of having smaller z for
adaptive alleles than neutral variation could, however, be due to top GWA SNPs often being
ascertained to higher frequency than background SNPS.

Table SIIL.7 | MAR for putatively neutral, deleterious, and locally adaptive alleles in Arabidopsis thaliana

SNP set z

neutral 0.324 (0.238 - 0.41)
globally-deleterious 0.209 (0.13 - 0.288)
locally-adaptive 0.291 (0.217 - 0.365)
globally-positive 0.234 (0.137 - 0.332)

I11.4 Local extinction in Arabidopsis

Using the MAR framework, we can make projections of extinction of mutations (or its inverse, the
remaining genetic diversity. By doing this, the known intuition is that with z >/ (as from EMAR) the
decrease of diversity is much faster than the decrease of habitat, but with z < / (as from MAR), there
is a (desirable) slower dynamics of genetic extinction. In the latter, despite habitats disappearing,
reservoirs of mutations distributed across different locations enable conservation of certain variation.
To study which one is more likely and to observe the stochastic nature of extinction, we simulated in
silico extinction of map cells from the Arabidopsis map (Fig. 1) and directly estimated from the
genome matrix of remaining individuals the remaining genetic diversity. These simulations were
implemented to capture different hypothesized patterns of extinction (see main text). All, however,
agree with the more hopeful estimate of z,,; = 0.25.
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To study the fit of the extinction predictions based on MAR relationships and the results from

extinction simulations, we calculated a pseudo-R’ based on the squared differences between the

2 _ 1 _ SSres _ ) )
predicted line and the “observed” extinction as: RE=1= 3 This results in a high fit R*=0.872

of the MAR, built from random samples of distribution areas, while the EMAR had a poor fit due to
overestimation of extinction: R’=-0.710 (negative values indicate predictions are worse than the mean
of the data).

I11.5 Potential impacts of genetic extinction in adaptability

Mutations may differ in evolutionary relevance (Rockman, 2012), but the methods described here to
estimate genomic diversity loss are agnostic to these. To use the exact analog of species richness, here
each mutation counts to the total genetic diversity, whether or not they create a novel morphological
or physiological trait, are advantageous in an environment, are neutral, or even semi-lethal. Indeed,
analyses expect the majority of mutations to be neutral, i.e. they do not have any cellular,
morphological or physiological effect, but while they may be neutral in the present, they could be the
key of evolutionary novelty in future environments, as expected in evolutionary rescue theory (Orr
and Unckless, 2014). Alternatively, deleterious mutations may be found at lower frequency (Simons e?
al., 2018). Many factors, including the architecture of traits under selection, the natural selective
forces applied by spatially-varying environments, and others, may play a role in dictating what genetic
variation may be most relevant to strategies of assisted migration and rescue of threatened
populations, and since often this will be unknown (but see (Kyriazis, Wayne and Lohmueller, 2020)),
it would be crucial to use genome-wide variation in conservation (Kyriazis, Wayne and Lohmueller,
2020; Kardos et al., 2021).

Although likely imperfect, Genome-Wide Associations could help to understand the relevance
of mutations in different frequency classes in model organisms such as Arabidopsis thaliana. Fig.
SIIL.7 shows the site frequency spectrum and a metric of the "total accumulated effect in fitness" of
the alleles in every bin. Effect sizes were retrieved from GWA on lifetime fitness of 515 ecotypes in
outdoor experiments (Exposito-Alonso et al., 2019). The average effect size across 8 fitness GWA
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from 8 experimental combinations were used: high/low precipitation, high/low latitude of outdoor
stations, and high/low plant density. This exercise showcases the phenomenon that low frequency
variants often have strong effect sizes, which is expected under a stabilizing selection quantitative
model (Simons et al., 2018). Because low frequency alleles will be the first to be lost during a
bottleneck (as would happen with the rapid extinction of populations of a species), we may expect to
lose variants that are related to fitness and thus potentially lose diversity that could be advantageous in
some environments.

To further build intuition on the progress of extinction in relation to genetic diversity that is
not neutral, we repeated warm edge extinction simulations with several subsets of alleles: randomly
selected SNPs, SNPs that were associated positively in 2 environments (low precipitation Spain and
high precipitation Germany) (labeled globally positive), and SNPs that were associated positively in
one environment and negatively in the other (labeled antagonistic pleiotropic or putatively
locally-adaptive). This Fig. SIIL.8 supports our intuition that although these alleles may have slower
extinction dynamics than neutral variants due to a high frequency and z,,; , certain extinction
patterns can actually lead to rapid extinction of potentially-adaptive genetic diversity. The complexity
of these patterns, together with the evolutionary feedback created by lowering genetic standing
variation that affects fitness, make the inference of adaptive capacity loss even more difficult than just
inferring the extinction of genetic diversity itself.
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Grey bars represent the site frequency spectrum (scaled for visualization purposes). The black dots represent the mean
absolute effects of alleles as estimated from GWAs with 515 accessions scored for fitness traits in 8 outdoor experiments.
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I11.6 Case study of a massive natural bottleneck

A recent colonization of North America by Arabidopsis thaliana can help us understand the recovery
of genetic variation. Whole-genome sequencing of 100 specimens of North American A. thaliana
indicates that it migrated from its native range of Europe to North America in the 17th century, and
began spreading across the continent from a genetically-homogeneous population (Exposito-Alonso et
al., 2018). Despite ideal conditions to re-gain genetic diversity—a continental population expansion
aided by human travel (Seebens et al., 2015, 2017)—only ~8,000 new mutations were detected
through spontaneous accumulation, equivalent to only ~0.067% of the species-wide native genetic
diversity. Because most of these mutations are at very low frequency, as expected during population
expansion, the scaling of genetic diversity with area is approximately 1 ( z,z = 1.025 [CI95%: 0.878
- 1.173]).
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IV. The mutations-area parameters for diverse species

Every dataset was retrieved online either from the published article in the form of VCF or fastq files,
or provided by the study authors upon request. All datasets were first transformed into PLINK files
using PLINK v1.9 (Purcell et al., 2007). For computational efficiency, and since we showed random
subsampling does not appear to affect calculations of z,, (Section III.3), we conducted all analyses
with up to 10,000 randomly selected SNPs for each species sampled genome-wide, or in the largest
chromosome for those species with large genomes. We aim to use mostly unfiltered SNP datasets to
avoid ascertainment biased toward intermediate frequency SNPs, and therefore we did not apply a
MATF filter for any analyses. By default, PLINK transforms SNP matrices into biallelic (if multiallelic,
it takes the two most common alleles). Although the preservation of structural genetic variation may
also be relevant and may have important consequences in adaptation (Mérot ef al., 2020), we do not
expect dramatic differences in their scaling relationship compared to biallelic SNPs, as their SFS are
relatively similar (Structural variants may show a skew to lower frequency, resulting in steeper zz.
By excluding those, our analyses may be conservative). In order to properly characterize the
geographic distribution of a mutation using all available geo-tagged individuals, we filtered for
genotyping rate (plink --geno), and the final value is reported per dataset.

Species-specific details for dataset processing or homogenization are described below.

- The 1001 Arabidopsis Genomes Consortium (1001 Genomes Consortium, 2016) generated a
WGS Illumina sequencing dataset of Arabidopsis thaliana comprising 1,135 individuals and
11,769,920 SNPs. These included recently colonized regions such as North America or Japan.
Analyses of z,,r were calculated only for the native range, which comprises most of the
species diversity (>99%) and 1001 individuals. For computational efficiency, we conducted
analyses using randomly sampled SNPs from chromosome 1, as we did not observe any
difference when sampling from other chromosomes. Targeted analyses of geographic
subregions such as 50 individuals from the distribution core (Germany) or 50 individuals
from the warm edge (Spain), or a recently colonized area with 100 individuals from North
America, were conducted to understand the stability of the z,,, estimate as well as to
understand how z,,; behaves in very recent populations.

- Lucek & Willi (Lucek and Willi, 2021) recently published a dataset of WGS Illumina
sequencing 108 Arabidopsis Ilyrata individuals from North America, which the authors
directly shared as a VCF. We retrieved the latitude/longitude data from the supplemental
material. We applied a genotyping rate filter ending with a dataset of 0.955431 genotyping
rate. 10,000 SNPs were subsetted at random from the genome-wide data.

- Kreiner et al. (Kreiner et al., 2019) WGS Illumina sequenced 165 individuals of Amaranthus
tuberculatus. 155 individuals contained latitude and longitude information and were kept for
the analyses. The genotyping rate was 0.98162 and we subsetted randomly 10,000 SNPs.

- Supple et al. (Supple et al, 2018) generated a dataset of Eucalyptus melliodora of 275
individuals from 36 broadly distributed populations. The dataset was produced by Illumina
sequence Genotyping by Sequencing (GBS) libraries digested with ApeKI as in Elshire et al.
(2011). The authors provided the dataset in PLINK format. Genotyping rate was 0.769807 but
we did not apply a further filter to avoid reducing the total number of variants. We conducted
analyses with all 9378 SNPs. The genotyping rate in this dataset is likely not problematic as
the total number of GPS locations is 36, with multiple individuals sampled closely. This
sampling scheme probably allows to characterize an allele's distribution correctly despite the
lower genotyping rate.

- Vallejo-Marin et al. (Vallejo-Marin et al., 2021)(2021) generated a GBS dataset of 521
Mimulus plants, with 286 samples being Mimulus guttatus from its native distribution.
Libraries for Genotyping-By-Sequencing were prepared with Pstl enzyme as described in
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Twyford & Friedman (2015) and sequenced using Illumina. The authors provided the dataset
in VCF format. After applying a filtering for missingness, we ended up with a genotyping rate
0f 0.904192 and 1,498 SNPs, which were used for the analyses.

- Lovell & MacQueen (Lovell et al., 2021)(2021) generated a WGS Illumina sequencing
dataset of Switchgrass, Panicum virgatum, of a collection of 732 individuals and 33,905,044
variants. 576 individuals were from natural collections and had latitude/longitude data. The
dataset contains also other collections such as cultivars, which were not used to build the
MAR. The genotyping rate was 0.976393 and analyses were conducted with 10,000 SNPs
drawn from the largest chromosome.

- MacLachlan et al. (MacLachlan et al., 2021)(2021) generated a SNP chip dataset of Pinus
contorta comprising 929 trees with latitude and longitude information and 32,449 SNPs.
Genotyping was conducted with the AdapTree lodgepole pine Affymetrix Axiom 50,298 SNP
array and data was provided in the supplemental material of the paper along with custom
scripts to parse the data. These were transformed into PLINK. The genotyping rate was
0.959146, and analyses were conducted with 10,000 randomly drawn SNPs. The fact that this
dataset was created with ascertained SNPs likely generates a frequency bias. In Fig. SIV.1,
one can see that this may be a problem to calculate z,,;, as the mutations~area graph appears
nonlinear and rapidly saturates. This can happen if SNPs are common variants, as they are
discovered immediately with very few samples.

- Tuskan et al. (Tuskan et al., no date)(2015) WGS Illumina sequenced 882 Populus
trichocarpa trees. The dataset includes 28,342,826 SNPs. The authors provided the dataset as
a VCF along with latitude/longitude coordinates. This dataset was downsampled to the first
chromosome. The genotyping rate was 0.921191, and 10,000 SNPs were randomly sampled
for analyses.

- The Anopheles gambiae 1000 Genomes Consortium (Anopheles gambiae 1000 Genomes
Consortium et al., 2017) (Phase 2) produced Whole-Genome Illumina sequencing data for
1142 wild-caught mosquitoes of Anopheles gambiae. The data is available through
https://www.malariagen.net/data as VCF and latitude/longitude coordinate files. The VCF was
filtered for genotyping rate ending up at a 0.998895 rate. For efficiency, 10,000
randomly-selected SNPs from the VCF of the largest chromosome 2L were used for analyses
downstream.

- Fuller et al. (Fuller et al., 2020) WGS Illumina sequenced 253 coral individuals of Acropora
millepora in 12 reefs. The dataset was downloaded as fastq files from the published online
material, and SNPs were called as described in the supplemental material ending with
17,931,448, which were filtered to achieve a genotyping rate of 0.935709 for a total of 2,512
SNPs, which were used in the analyses.

- Ruegg et al. (2021, https:/github.com/erigande/ruegg-et-al-wifl-genoscape) generated a
dataset of 219 songbirds Setophaga petechia, for which 199 could be matched with
geographci coordinates. SNPs were ascertained from several publications using RAD seq and
Fluidigm 96.96 IFC described in the repository, from which data was retrieved. A total of
349,014 SNPs were parsed using their custom scripts and we transformed them into PLINK
files. A genotyping rate filter was applied ending with a 0.96061 rate and 195,700 SNPs.

- Kingsley et al. (Kingsley et al., 2017) produced a dataset of 80 Peromyscus maniculatus
deermice, for which 78 could be matched with geographic locations. The SNP dataset was
produced using MY-select capture followed by Illumina sequencing (see publication for
details). Links to the dataset were provided in the supplemental material. The dataset was
already in PLINK format, including a total of 14,076 variants which were filtered to achieve a
genotyping rate of 0.940411 for 2,946 SNPs, which were used in subsequent analyses.
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- Smeds et al. (Smeds et al., 2021)(2021) produced a WGS Illumina sequencing dataset and
combined it with pre-existing datasets (see publication) for a total of 349 local dog breeds and
wolves, of which 230 were Canis lupus from natural populations. A VCF was provided by the
authors, which was transformed into a PLINK file, with a total of 1,517,226 SNPs, and a
genotyping rate of 100%. A sample of 10,000 SNPs was randomly selected for subsequent
analyses. Individuals were not precisely geo-tagged, but countries of origin were reported.
The average latitude/longitude of the country of collection was used. This dataset is not ideal
for z,,z as calculations are based on only 5 distinct geographic locations. Instead, in the
main text, we ended up presenting the results from a second dataset of 107 geo-tagged grey
wolves from Schweizer et al.(Schweizer et al., 2016) capturing and resequencing 1040 genes.
This provided us with 13,092 SNPs at 0.993061 calling rate, and a better geographic
resolution.

- The 1000 Genome Consortium (1000 Genomes Project Consortium et al., 2015) created WGS
INlumina sequencing for over 2,504 humans and 24 unique geographic locations. We
downloaded chromosome 1 from http:/ftp.1000genomes.ebi.ac.uk/voll/ftp/datacollections/

1000G2504highcoverage/working/20190425NYGCGATK/ and gathered the population
locations from https://www.internationalgenome.org/data-portal/population. To conduct

analyses, we subsampled 10,000 SNPs at genotping rate 0.991069.

- Palacio-Mejia (Palacio-Mejia et al., 2021) used WGS for 591 Panicum hallii individuals to
sequence at low coverage, producing 45,589 SNPs. Because stringent filters of calling rates
would lead to very small SNP sets, we settled on a genotyping rate of 0.825824 for 242
variants, all of which were used for downstream analyses. The authors shared an unfiltered
VCF.

- Royer et al. (Royer, Streisfeld and Smith, 2016) produced a SNP dataset using RAD-Seq
based Genotyping-By-Sequencing of 290 Yucca brevifolia (Joshua Tree) individuals. A total
of 10,695 SNPs with a genotyping rate of 0.897501 were used for the analyses. The data was

available at Dryad https://datadryad.org/stash/dataset/d0i%253A10.5061%252Fdryad.7pj4t

- Kapun et al. (Kapun et al, 2021) produced a WGS dataset of pooled Drosophila
melanogaster, sequencing ~80 pooled individuals from each of 271 populations as part of the
European "Drosophila Evolution over Space and Time" (DEST) project. A total of 5,019
shared SNPs with a genotyping rate of 0.937697 were used for analyses. The dataset was
available through https://dest.bio/.

- Di Santo et al. (Di Santo et al., 2021) studied the highly-threatened species Pinus torreyana.
They used Genotyping-by-Sequencing of 242 individuals of the last remaining populations
and shared the data directly with us. From a total set of 166,564 SNPs with a genotyping rate
0f 0.964632, 10,000 were randomly selected for our analyses.

- von Seth et al. (von Seth et al., 2021) studied the highly-threatened species Dicerorhinus
sumatrensis. They used Illumina WGS of 16 individuals of the last remaining populations and
shared the data directly with us. In total, this comprises a set of 8,870,513 SNPs, with a
genotyping rate of 0.854862, which we did not further filter due to the small number of
individuals. For computational efficiency we selected 10,000 SNPs from the largest
chromosome.

Information and results per species are gathered in Table 1 and its extended version, Table SIV.1, and
the average z,,,, across species are provided in Table SIV.2.
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For each species we plot (left) the map of sample density in space and the Mutations-Area Relationship. Acronyms
correspond to the species names as first letter of genus and first letter (or second if redundancy exists) of the epitope (e.g.
Ath = Arabidopsis thaliana).

Table SIV.1 | The mutations-area relationship across species. Extended Table 1

The Mutations-Area Relationship (MAR) fit with Area = Individuals and the scaled version. In the main text areas to protect
90% of genetic diversity per species are provided given the scaled z*. Here, we also provide the average estimated area
based on % of grid cells per species to be transformed from 2015 to 2050 using the LUFF dataset, the area where at least

10% of grid will be transformed, and the genetic extinction equivalents to those area transformations.

Species (study) SFS MAR (A=N) MAR scaled LUH? LUH? LUH? LUH?
mod [4A4IC] zy [C195%] z* [CI195%] change >10% extinct >10%
‘50 change <50 extinct
‘50 ‘50

Arabidopsis thaliana  10gN (85.8) 0.431(0.423-0.439)  0.312(0.305-0.32)  4.58 13.54 1.12 3.43
Arabidopsis lyrata logN (9592.4) 0.254(0.238-0.27)  0.15(0.136-0.165)  0.79 2.64 0.19 0.64

tuberculatus AmaranhisiogN (7317.5) 0244 (0.237-0251) 0 142(0135-0.148) o 113 119 279

melliodora" FucabPtiogy (157.5) 0.531 (0.526 - 0.536)  0-402(0:397-0406) 5 ¢, 7.77 093 192

W Yucca brevifolia® IogN( 33300) 141 (0.128-0.155)  0.049 (0.037-0.062) (74 0 018 0

o Mimulus guttatus logN (580.8) 0.342 (0.331-0.353)  0.231(0.221-0.241)  3.78 NA 0.92 NA

& Panicum virgatum logN (8345.2)  0.226 (0.215-0.237)  0.126 (0.116-0.136) ~ 8.07 27.65 2 7.47

& Panicum hallii logN (86) 0.805 (0.702 - 0.908)  0.651 (0.558-0.744)  3.78 11.36 092 285

& Pinus contorta Wei (19413.7) 0.019 (0.018-0.02) - 1.95 5.54 0.47 1.36

& Pinus torreyana®™ logN(766156)  0.239 (0.232 - 0.245)  0.105 (0.099-0.11)  25.4 NA 679  NA

& Populus trichocarpa  logS (0) 0.268 (0.257 - 0.28) 0.164 (0.154-0.175)  4.68 17.28 1.14 4.45

#€ Anopheles gambiae logS (0) 0.221(0.209 - 0.233)  0.121 (0.11-0.132) 9.95 21.96 2.48 5.78

¥ Acropora millepora 108N (452.3) 0.403 (0.395-0.41)  0.287(0.28-0.293) 72,73 84.69 2679 3626

mﬁelanogaster Drosophiliiogn(33300) 0.445 (0433 - 0.458)  0324(0.313-0336) o NA 023 NA

% Setophaga petechia ~ Wei (640401.9) 0169 (0.139 - 0.199)  0.074 (0.047-0.101)  5.55 15.14 136 3.86

maniculatus Feromseitiogn (1449.7) 0.844 (0.769 - 0.919) 068 (0:613-0.748) 5 ;) 13.68 138 347

sz‘;natrensism Drcerorhintsy, (107864.2) 0.474 (0.449 - 0.498) 0.123(0.106-0.14) 0.25 NA 0.06 NA

X Canis lupus logN (85.8) 0.29 (0.28 - 0.301) 0.183 (0.174-0.193)  0.23 NA 006 NA

. Homo sapiens logN (9592.4) 0.395 (0.339 - 0.451)  0.28 (0.229-0.331)  28.81 40.13 7.83 11.58

Extended acronyms:
logN: log Normal distribution. logS: log Series distribution. Wei: Weibull distribution.

Table SIV.2 | Mean z),, across species.

We selected those species that did not show artifacts in Fig. SIV.1 or whose Zyr overlapped with 0 to calculate a
species-wide mean. These species were A. thaliana, A. lyrata, A. tuberculatus, E. melliodora, M. guttatus, P. virgatum, P.
trichocarpa, A. millepora, S. petechia, and P. maculatus

TMAR Zuar (A=N)  Zyug scaled
mean 0.30 0.36 0.25
median 0.26 0.34 0.23
IQR 0.12 0.19 0.19

Although we could not see any obvious patterns relating z,,,, with certain groups of species
(Table 1), we wondered whether any life history trait of the species analyzed could explain the
variation we observed (see Table SIV.3 of traits). An ANOVA did not show any significant
relationship. Because we know theoretically this parameter must be related to the degree of dispersal
ability of genotypes of a species relative to the whole species geographic range, we expect traits
involved in determining these to be good predictors. Future work should be necessary to validate this,
as the sample size (n=19) may not permit enough power to detect these expected patterns.
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Table SIV.3 | Traits, life history, and other characteristics of the analyzed species.

Known
Species RedList Decline Kingdom Reproduction Pollination Mobility AreaRange
Arabidopsis thaliana NO NO Plantac  Selfing Selfing Sessile  27337467.4
Arabidopsis lyrata NO NO Plantae ~ Outcrossing Vector Sessile  2791301.4
Amaranthus
tuberculatus LC NO Plantac  Outcrossing Vector Sessile  804124.8
Eucalyptus melliodora VU NO Plantae ~ Outcrossing Wind Sessile  948699.3
Yucca brevifolia LC YES Plantaec  Outcrossing Vector Sessile  1213454.4
Mimulus guttatus LC NO Plantae ~ Outcrossing  Vector Sessile  25138310.6
Panicum virgatum LC NO Plantae  Outcrossing Wind Sessile  6291400.2
Panicum hallii NO NO Plantae ~ Outcrossing Wind Sessile  2188807.4
Pinus contorta LC NO Plantae ~ Outcrossing Wind Sessile  886182.2
Pinus torreyana CR YES Plantae  Outcrossing Wind Sessile  30781.95
Populus trichocarpa LC NO Plantae  Outcrossing Wind Sessile  1119664.1
Drosophila
melanogaster NO NO Animalia Outcrossing Activemating Fly 115208408
Anopheles gambiae  NO NO Animalia Outcrossing Activemating Fly 19959809.9
Acropora millepora  NT YES Animalia Outcrossing Activemating  Fly 26725.9
Setophaga petechia LC NO Animalia Outcrossing Activemating Fly 7027395.2
Peromyscus
maniculatus LC NO Animalia Outcrossing Activemating Mobile 22609152.6
Dicerorhinus
sumatrensis CR YES Animalia Outcrossing Activemating Mobile 3335605.58
Canis lupus LC NO Animalia Outcrossing Activemating Mobile 19102403.5
Homo sapiens NA NA NA NA NA NA 80763121.8

Table SIV:4 | Association of traits, life history, and other characteristics with zy;p.

Acronyms: NO=not assessed but likely non-threatened, LC=low concern, VU=vulnerable, CR=critically endangered

Df Sum Sq Mean Sq F value Pr(>F)
RedList 4 0.0952396 0.0238099 0.5580988 0.7040464
KnownDecline 1 0.0275537 0.0275537 0.6458527 0.4580865
Kingdom 1 0.0011684 0.0011684 0.0273876  0.8750400
Reproduction 1 0.0003238 0.0003238 0.0075890 0.9339612
Pollination 1 0.0375975 0.0375975 0.8812784 0.3909509
Mobility 1 0.1600627 0.1600627 3.7518370 0.1104995
AreaRange 1 0.0174745 0.0174745 0.4095989 0.5503439
Residuals 5 0.2133125 0.0426625 NA NA
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V. An estimate of global genetic diversity extinction
Using the approach described in section 1.4, we generated a number of estimates either per ecosystem

or per species. All estimates below tried to be conservative, and thus we always used the scaled z,,,
values (section 11.3.2.)

V.1 Estimates of ecosystem area losses

Table SV.1 | Millennium Ecosystem Assessment land cover transformation.
Source: https://www.millenniumassessment.org

Area (million Area transformed
Ecoystem km2) Earth surface (%) Protected areas (%) (%)
MARINE 349.3 68.6 0.3 NA
COASTAL 17.2 4.1 7.0 NA
COASTAL 6.0 41 4.0 11.00
TERRESTRIAL
COASTAL MARINE 11.2 22 9.0 NA
INLAND WATER 10.3 7.0 12.0 11.00
FOREST/WOODLAND 419 284 10.0 42.00
FOREST/WOODLAND 233 158 11.0 34.00
TROPICAL
FOREST/WOODLAND 6.2 42 16.0 67.00
TEMPERATE
FOREST/WOODLAND 12.4 84 4.0 25.00
BOREAL
DRYLAND 59.9 40.6 7.0 18.00
DRYLAND 9.6 65 11.0 1.00
HYPERARID
DRYLAND ARID 153 104 6.0 5.00
DRYLAND SEMIARID 223 153 6.0 25.00
DRYLAND SUBHUMID 12.7 8.6 7.0 35.00
ISLAND 7.1 4.8 17.0 17.00
ISLAND STATES 4.7 32 18.0 21.00
MOUNTAINS 35.8 243 14.0 12.00
MOUNTAINS 300-1000 13.0 88 11.0 13.00
MOUNTAINS 1000-2500 11.3 7.7 14.0 13.00
MOUNTAINS 2500-4500 9.6 6.5 18.0 6.00
MOUNTAINS 1.8 12 22.0 0.30
4500PLUS
POLAR 23.0 156 42.0 0.38
CULTIVATED 353 239 6.0 47.00
CULTIVATED 0.1 0.1 4.0 11.00
PASTURE
CULTIVATED 8.3 57 4.0 62.00
CROPLAND
CULTIVATED MIXED 269 182 6.0 43.00
URBAN 3.6 24 0.0 100.00
GLOBAL 510.0 NA 4.0 38.00

Ecosystem transformation has been tracked over the decades. We extracted ecosystem
transformations from the Millennium Ecosystem Assessment (Millennium Ecosystem Assessment,
2005), which estimated ecosystem transformations from presumably native systems to cultivated or
urban areas by GLC2000 land cover dataset (Table SV.1). The forest/woodland is calculated as
percentage change between potential vegetation from WWF ecoregions to the current actual
forest/woodland areas from GLC2000. These provide bulk ecosystem reductions, not for a given
species, but may be a good proxy for an average across species.
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Source: https://ipbes.net

Region Area (million MSA (%) MSA (%) 2010 MSA (%) 2010 MSA (%) 2050
km?2) 2010 SSP2 SSP1 SSP3
North America 20 65 56 NA NA
Central and South America 18 65 53 NA NA
Middle East and Northern 11 81 77 NA NA
Africa
Sub-Saharan Africa 24 70 56 NA NA
Western and Central 6 37 29 NA NA
Europe
Russian region and Central 21 73 65 NA NA
Asia
South Asia 5 44 35 NA NA
China region 11 56 49 NA NA
Southeast Asia 7 55 43 NA NA
Japan, Korea and Oceania 8 71 57 NA NA
Polar 2 96 91 NA NA
World 132 66 56 62 54

The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services
(IPBES) recently used a PBL satellite products from the Netherlands Environmental Assessment
Agency (https://www.pbl.nl/en/nature-and-biodiversity) to study the % of area ecosystem
transformation in the world. This provides an updated estimate to the Millennium Assessment as well
as projections under several Shared Socioeconomic Pathways (1-3) for 2050. These were reported per
region as of 2010, and for projections to 2050 (scenario SSP2). Instead of direct area, the metric is a
composite of land use information to predict Mean Species Abundance (MSA), a measure of the size
of populations of wild organisms as a percentage of their inferred abundance in their natural state (%
MSA).

A global transformation metric can also be captured by the most updated land use
transformation data, the Land Use Harmonization 2 (release v2e for 2015-2011 and release v2h for
baseline 1850-2015) (Hurtt er al., 2020). Basecline transformation of primary ecosystems was
calculated subtracting the total area covered by primary forest (primf) and primary non-forest (primn)
variables between year 1850 layer (roughly pre-industrial baseline) and the present, 2015, as /-A4,y;5 /
A 50 (Table SV.3). Analyses that use projections to mid-21* century were conducted similarly as in
(Theodoridis, Rahbek and Nogues-Bravo, 2021), summing over all transitions from primary forest
(primf), primary non-forest (primn), secondary forest (secdf) and secondary non forest (secdn) lands
to any other category for all years within the 2015-2050 period (see Table SIV.1).

Table SV.3 | Land Use Harmonization 2 from 1850 to 2015
Source: https://luh.umd.edu/data.shtml

Area %

Primary forest transformed 43

Primary non-forest transformed 50
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Finally, we searched for timely estimates of forest reduction (based on vegetation cover)
reported in the Global Forest Watch website: https://www.globalforestwatch.org/dashboards/global/
(accessed June 2021). From 2002 to 2020, there has been a global tree cover loss of 10%, with an
annual tree cover loss of 0.6-1.1%.

Although these are not direct area transformations, we also used the [UCN Red List resource
(https://www.iucnredlist.org, Table SIV.3 shows status of the species analyzed here), which includes
guides to categorize species as vulnerable, endangered, critically endangered, and extinct, and has
conducted extensive assessments across thousands of species (Table SV.4).

Tuble SV4| IUCN Red Li ies of extinction risk and number of speci

Source: www.iucnredlist.org, January 2021

TUCN Red List

Category Description Criterion of area reduction (>%) # species assessed
EX Extinct 100 164
CR Critically Endangered 80 4674
EN Endangered 50 8593
vu Vulnerable 30 8459
NC No concern (all other) 0 32237

V.2 A global estimate of genetic extinction

Taking the estimates and standard error of z,,,; across species, and the world's reduction of ecosystems
we can calculate the fraction of genetic diversity reduction following the extinction MAR equation
(section 11.4), giving a range of estimates (Table SV.5).

Table SV.5 | Estimates of average expected genetic extinction for different ecosystems.

Assuming ecosystem transformation approximately translates into average species distribution reduction, and using the
ranges of zyuz from Table 1 of the main text, we project the average genetic extinction using the Mutations Area
Relationship.

System Area transformed Genetic extinction Genetic extinction Genetic extinction
(%) % (mean 7 based) % (min z based) % (max z based)
COASTAL TERRESTRIAL 11 3 0.9 7.7
INLAND WATER 11 3 0.9 7.7
FOREST/WOODLAND 42 13.5 4 31.1
FOREST/WOODLAND 34
TROPICAL 10.5 3 24.7
FOREST/WOODLAND 67
TEMPERATE 255 7.9 53.1
FOREST/WOODLAND 25
BOREAL 7.4 2.1 17.8
DRYLAND 18 5.1 1.5 12.7
DRYLAND HYPERARID 1 0.3 0.1 0.7
DRYLAND ARID 5 1.4 0.4 3.4
DRYLAND SEMIARID 25 7.4 2.1 17.8
DRYLAND SUBHUMID 35 10.8 3.2 255
ISLAND 17 4.8 1.4 11.9
MOUNTAINS 12 3.3 0.9 8.4
MOUNTAINS 300-1000 13 3.6 1 9.1
MOUNTAINS 1000-2500 13 3.6 1 9.1
MOUNTAINS 2500-4500 6 1.6 0.5 4.1
MOUNTAINS 4500+ 0.3 0.1 0 0.2
POLAR 0.4 0.1 0 0.3

GLOBAL 38 11.9 3.5 27.9
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Using the Land Use Harmonized 2 dataset, we also create per-species predictions based on the
% transformation of each of the sampled regions per species (Table SV.1). An important approach in
the future

Utilizing tree cover from the Global Forest Watch, which estimates 0.6-1.1% of
transformation per year across Canada, United States and Australia, an extrapolation of extinction to
50 years for tree species will correspond to 5.36-9.86% genetic extinction.

Assuming that the calculated z,,,; estimates are representative of plant species, we conducted
an experiment to create a distribution of % of genetic extinction in threatened species. We then used
the number of species in each IUCN category (Table SV.4) for a total of 54,127 plant species. For
plant species, one of the evaluation criteria of percentage of population loss likely translates faithfully
to area reduction in the species. The proportion of species per category then gives a discrete
probability distribution of the ranges of percentage of area loss: P(0-29%)=0.596 P(30-49%)=0.156,
P(50-79%)=0.159, P(80-99%)=0.086, P(99%-100%)=0.003). Using a simulation-based sampling
approach, we drew 350,000 random area reductions 4,/ 4,; from the previous distribution and a z,,z
from the mean and variance of our estimates from Table 1 for plants. These were plugged into the
extinction equation (Section I1.4) to calculate the percentage of genetic extinction of these 350,000
random draws. The resulting distribution had a median and interquartile range of: : 16.73 % [7.38-
30.57].
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Fig. SV.1| The parameter space of genetic diversity extinction, extended

(4) The theoretical space of genetic diversity extinction. z,,z values (using area, unscaled for samples, differently from Fig
2) computed for species analyzed here are marked as orange vertical lines, with confidence intervals as orange shading.
Blue horizontal lines correspond to ecosystem transformations from the Millennium Assessment (light blue) and IPBES
Assessment (dark blue) (B) The distribution of percentage of area transformed across ecosystems, with averages per
ecosystem marked in the distribution as well as horizontal lines in (4). (C) The number of species of each of the [IUCN
categories and the most optimistic range of area or abundance reduction for each of the category brackets.

V.3 Community ecology simulations and MAR

To test whether intermediate levels of MAR would be expected across species in entire ecosystems,
we conducted community assembly simulations of ~100-500 species following the Neutral Theory of
Biodiversity (Hubbell, 2001; Mérot et al., 2020) and coalescent simulations (Kelleher, Etheridge and
McVean, 2016) using the software MESS (Overcast et al, 2020). These simulations are
computationally demanding and could not run in a complete 2D spatial grid. Instead, they were
simulated in a mainland-island system, with islands of increasing areas. The community forms by
species colonizing an empty island according to Hubbell's Unified Neutral Theory of Biodiversity and
Biogeography (UNTB), where all species are equally likely to colonize and persist in the local
community. Continued colonization and migration to the local community continues to bring in new
species that may or may not survive, while also continuously bringing in individuals of species
already in the local community. The community assembly process ends when the community has
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reached an equilibrium denoted as the balance between local extinction and new species dispersing
into the area (Hubbell 2001). Once the forward-time process has ended, we simulate the coalescent
history of each species backward in time. For this, MESS considers the population size, divergence
time, and migration rates of the meta and local communities. These coalescent simulations provide us
with genetic data and ultimately diversity estimates for each species in the community.

We simulated 100 MESS communities, and for each community the size of the local
community was varied from 1K to 100K. We varied the size of communities to emulate variation in
area occupied by a given community because we assume as the number of individuals in a community
increases from 1,000 to 100,000, so does the area occupied. All other parameters were kept consistent
across each of these community simulations, and most remained at their default value. The parameters
changed were the length of the sequences simulated for the coalescent-based simulations, which was
fixed at 10,000 bp, and the migration rate, which was fixed at 0.01.

The simulation output was used to then compute a single zg,, for the system as S=c4**¥, and
one z,,, for each species in the same way, M=cA™. This resulted in a distribution of z,,,, from Fig.
SV.2. This confirmed that we can recover typical zg,; and z,,; values from completely stochastic
neutral yet spatially structured systems such as species in communities and mutations in populations
of a species.
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Fig. SV.2 | 2 yyun calculated from MESS eco-evolutionary simulations

Using the MESS framework of a mainland-island model with different island sizes, zyz per species is recovered. The
stochastic nature of the simulations results in each species having different abundances and migration histories that change
the scaling value. Values over 1 are likely noisy estimates.

V.4 The nested species and genetic extinction process

Finally, we worried that our estimates of V.2 would be mistaken as overestimates. In fact, we believe
these may be underestimated. Recent policy proposals for the United Nations’ Sustainability Goals
emphasize that the target of protecting 90% of species genetic diversity for all species cannot leave
the already-extinct species behind (Diaz et al., 2020) (That is, one cannot protect 90% of species and
leave 10% to become extinct to meet this goal). This clearly exemplifies a problem in conservation
biology that what researchers can study is (most of the time) what has escaped extinction, and
therefore if we do not account for extinct species in our overall estimates of genetic extinction we may
naively think ecosystems have not suffered genetic extinction (i.e. in the extreme scenario, an
ecosystem that has lost but one abundant species may not really appear genetically eroded if such
species is in good shape).
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We then created spatial simulations in R where 1,000 species are distributed in 100x100 grid
cells following a UNTB abundance distribution and then proceeded with an edge extinction of the
ecosystem (see Fig. SV.3 for a cartoon).
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An ecosystem with multiple species within it (left), distributed in space, with few species broadly distributed and many
narrowly distributed. Moving one level of biological organization lower, mutations within species (right) are also spatially
distributed with many narrowly distributed. As extinction happens (red line moving bottom to top), all species below the red
line go extinct, but only the mutations within species 1 below the line go extinct, while mutations above the line remain.
Species 3 has already become extinct, and therefore also all the mutations within it.

Two extreme types of distributions of species can be imagined: species are randomly placed
in space, or species are found mostly in perfectly contiguous ranges (We ended up using as an
example a simulation with 85% of the individuals of a species found in a core square continuous
distribution and 15% found outside that core in fragmented observations, as this scenario produced the
canonical SAR of z~0.3). Spatial structure interestingly creates two extreme distributions of area
reductions across species (Fig. SV.4): random placement of cell habitats essentially show that the
average area reduction per ecosystem is followed by most species, while autocorrelated placement of
cell habitats create a U distribution in area reductions, where at the beginning of the extinction process
most species have not experienced any impact (Fig. SV4.B left) but at the end of ecosystem reduction
virtually all species are already extinct (Note we may be at the beginning of SV4.B process given the
data from IUCN, Fig 2.C).
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Two ecosystems of 100x100 cells with 1000 species. Species are either randomly distributed in cells (A) or spatially
autocorrelated with occupying mostly contiguous cells (B). As the extinction process wiped out part of the ecosystem
(snapshots are provided at 5%, 50%, and 95%), the area loss per species is tracked. In (A) the average area lost per species
is roughly the total reduction of the ecosystem, whereas in (B) the distribution is U shaped (note the log-scaled y-axis). While
in (B) the mean area lost in the distribution correctly captures the area loss of the ecosystem, per species losses are highly
uneven.

We ended up following up the more realistic autocorrelated scenario. With a latitudinal
sweeping extinction of the ecosystem, we then aimed to track the percentage of genetic extinction per
species i. For extant species this would follow the MAR relationship (section 11.4), with an assumed
constant z,,,; = 0.3 for simplicity. For extinct species (100% of their area reduced), we considered

genetic diversity extinction was 100%. The compound total genetic extinction would then just be the
sum of those X7ot = 2,00 Xi| (Of course, in reality species may vary in their genome-wide diversity

average, and we could for instance use Watterson’s ©w (see section I1.2) to scale PP OwiXi),
Interestingly, if we calculate the z of the slope of compound genetic extinction across species it is
much larger than MAR or SAR alone: 0.6 (Fig. SV.5).
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Fig. SV.5 | Numeric simulation of nested genetic extinction.

(4) Simulating the extinction of an ecosystem with 1,000 species that follow a log-normal species abundance curve.
Extinction of the ecosystem creates a curve of species extinction z~0.3 (grey). Likewise, each species trajectory (light red, 15
species drawn randomly) follows a simulated z);z~0.3 extinction as they lose area. Because species' distributions are
smaller than the whole ecosystem, those distributed closer to the start of the extinction front lose area first, while those
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distributed farthest from the extinction front only lose area when the ecosystem is almost wiped out. Because genetic
diversity loss is both due to complete extinction of species as well as area reduction of extant species, the compound
extinction curve (red) follows the faster extinction dynamics. (B) Holding zs,z=0.3 constant, and varying z,, .z shows that the
compound genetic extinction across species is close to the sum of both z slopes, but it saturates at ca. 0.85 (grey dotted lines
show Zyur + Zsur)-

V.5 Ongoing efforts in characterizing genetic diversity loss

There are many global calls to start monitoring genetic diversity (Hoban et al. 2021) in standard ways
to maximize genetic information in germplasms (LLockwood et al. 2007), and ancient DNA techniques
in combination to historical specimens can enable large temporal screens of genomics (Lang et al.
2018), but to our knowledge only two studies have tried to meta-analyze public datasets to empirically
estimate genetic diversity loss across species:

Recently (Leigh et al., 2019) gathered genetic diversity estimates mostly of animals in studies
where the same population had been sampled in the past and in the present (7 years (439 SD) or 27
generations (£44 SD). Eighty-eight estimates were based on microsatellite markers, nine on single
nucleotide polymorphisms, and two on restriction enzyme-based markers. The authors quantified a
5.4%—6.5% (£18.8% SD) decline in genetic diversity from present vs historic samples. The MAR
estimates of genetic diversity loss fall well within this range, and appear consistent with the order of
magnitude quantified using the MAR relationship. Estimates, however, are not directly comparable to
the MAR forecasting, for multiple reasons: (1) Leigh et al. used mostly microsatellites (which are
intendedly ascertained to be highly variable and thus should not follow the neutral SFS nor MAR). (2)
Because this empirical quantification intends to track the same population over time to understand
genetic diversity decline, whereas MAR studies the genetic diversity decline by the loss of
populations. This could make samples biased toward populations in environments experiencing little
change over the sampled time periods; for example, commercially important fish made up 31% of the
populations sampled. The exclusion of taxa experiencing habitat loss may have led to a conservative
estimate of genetic diversity reduction. The pattern observed by Leigh and colleagues may be related
to the feedback effect that losing other populations or gene flow among populations could create in
the focal population equilibrium (see section VI, reasons for underestimation).

A second study found no significant trends between the current amount of human impact in a
given area and the diversity in the mitochondrial cytochrome ¢ oxidase subunit I (COI) gene of a wide
variety of bird, fish, insect, and mammal species (Millette et al., 2020). The lack of signal of this
study could be due to the gene studied (Paz-Vinas et al., 2021), which is under purifying selection
(Pentinsaari et al 2016), and then may not capture genome-wide neutral diversity (Kardos et al.,
2021). Rather than a temporal study, Millette et al’s resembles a sensitivity analysis, where one may
expect areas that have been more disturbed historically by humans will have lower levels of genetic
diversity.

We are positive that empirical studies like these will be important in the future to validate MAR
projections, especially temporal studies like Leigh et al., once new ecosystem-wide genomic resources
become more and more available new whole-genome datasets (Lewin ef al., 2018; Meyer et al., 2019;
Shaffer and Toffelmier, 2020)
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VI. Limitations and outlook

In this last section we discuss some potential limitations of an inherently simple scaling law, and what
approaches could be used to address those and improve genetic extinction projections.

V1.1 Reasons for overestimations

Many researchers have proposed that SAR likely overestimates extinction (He and Hubbell, 2011;
Rahbek and Colwell, 2011). For instance:

- Ignoring that a diversity-area relationship can be defined outwards, inwards, or focusing on
endemisms can have an impact (He and Hubbell, 2011; Rahbek and Colwell, 2011; Storch,
Keil and Jetz, 2012). To address this, we confirmed relative consistency between inward,
outward, and random placement MAR, and proposed that the EMAR may not be that
appropriate to study extinction (or at least does not agree with our simulation).

- Species may persist in altered habitats, like some animals are known to do (Pereira and Daily,
2006). We have focused some of the estimates in this study on plants, but further extensions
could be applied as described by Pereira and Daily (Pereira and Daily, 2006) in the future.

- SAR is not a mechanistic model (Harte, Smith and Storch, 2009). We have derived its ranges
of possible values and averages analytically and are beginning to understand how
evolutionary forces shape MAR. Realistic simulations can help understand in a process-based
framework how populations (and their MAR) react to extinction (continuous space
simulations with progressive area reductions appear to fit well with the MAR predictions
before extinction, section I11.2.6).

- There is a scale dependence in the SAR slope (Storch, Keil and Jetz, 2012). Since power laws
are typically fit with large-scale datasets and used to predict local scale extinctions,
predictions could be overestimated.

V1.2 Reasons for underestimations

While the simplicity of power laws to make predictions of extinction may lead to overestimations,
there are also reasons to believe MAR would underestimate extinction.

- The use of ascertained genetic markers underestimates z,,, and therefore the degree of
genetic extinction with area shrinkage. This is clear in the pre-selected-only marker dataset of
Pinus contorta (Fig. SI1.2), but (Lockwood, Richards and Volk, 2007)

- The use of z,,, that scales down for minimum average z,,,; >0 for small sample sizes but
assumes maximum average z,,r can be 1 (section 11.3.2). This would effectively lead to
smaller z,,,», and thus underestimation of extinction.

- When species shrink in area, the effective population size of the remaining population
decreases, increasing drift and moving towards a lower diversity equilibrium. This reactive
process is not captured by the phenomenological MAR relationship.

- Although sequencing methods have an error rate that misreads true nucleotide sequences, this
rate is typically extremely low (many sequencing projects described here used Illumina HiSeq
series, which has a 0.112% error rate, or about 1 misread nucleotide in 1000). This could
intuitively lead to overestimates in mutations in space but in fact, the mis-reading of DNA
ends up causing an underestimation. This is because bioinformatic software that transforms
raw data into SNP variant tables errs towards the conservative direction, often not calling
mutations that have been observed very few times, and thus likely under-representing rare
mutations (Czech and Exposito-Alonso, 2021).

- The nested extinction (section V.3).

V1.3 Final notes
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Ultimately, to make accurate predictions of genetic extinction and increased extinction risk of whole
species, very detailed data per species will be required: census sizes, genome size, migration in
meta-populations, mating system, detailed maps of genetic makeups, and finescale area
transformations. This could enable mechanistic models projected forward-in-time such as discussed in
section I1.3.6. The production of new genomic datasets across entire ecosystems should further help
create maps of genetic diversity at high resolution to track losses (Parks et al., 2013; Miraldo et al.,
2016; Li et al., 2021).

Our aim in this work has been to try to be as conservative as possible in extinction estimates
(using area calculations that produce lower z,,,; values, scaling them for low sample bias, using lower
estimates of ecosystem transformation, etc.). However we run into the danger of under-estimating
extinction. As described in V.4. with

Even if
to then sharply collapse in late stages of the whole-species extinction event (Ehrlich and Walker,
1998)

In the meantime, we believe MAR is a quantitative and scalable first-approximation of
genetic extinction that would just require accurate understanding of abundance or area reductions and
minimal information about population structure or mating/dispersal/range relationships. Given that
scaling relationships are already applied by conservation policy (IPBES, 2019), and given that
assumptions and limitations are understood, we expect MAR to become a relevant tool to project a
dimension of biodiversity so far mostly invisible or unaddressable in large conservation projections.
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