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Abstract 45 

Subject motion during fMRI can affect our ability to accurately measure signals of interest. In 46 
recent years, frame censoring—that is, statistically excluding motion-contaminated data within 47 
the general linear model using nuisance regressors—has appeared in several task-based fMRI 48 
studies as a mitigation strategy. However, there have been few systematic investigations 49 
quantifying its efficacy. In the present study, we compared the performance of frame censoring 50 
to several other common motion correction approaches for task-based fMRI using open data 51 
and reproducible workflows. We analyzed eight datasets available on OpenNeuro.org 52 
representing eleven distinct tasks in child, adolescent, and adult participants. Performance was 53 
quantified using maximum t-values in group analyses, and ROI-based mean activation and split-54 
half reliability in single subjects. We compared frame censoring to the use of 6 and 24 canonical 55 
motion regressors, wavelet despiking, robust weighted least squares, and untrained ICA-based 56 
denoising. Thresholds used to identify censored frames were based on both motion estimates 57 
(FD) and image intensity changes (DVARS). Relative to standard motion regressors, we found 58 
consistent improvements for modest amounts of frame censoring (e.g., 1–2% data loss), 59 
although these gains were frequently comparable to what could be achieved using other 60 
techniques. Importantly, no single approach consistently outperformed the others across all 61 
datasets and tasks. These findings suggest that although frame censoring can improve results, 62 
the choice of a motion mitigation strategy depends on the dataset and the outcome metric of 63 
interest.  64 

  65 
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Introduction 66 

Obtaining high-quality neuroimaging data depends on minimizing artifacts. Although 67 
advancements in hardware and pulse sequence design have reduced many types of noise 68 
inherent to functional MRI, other sources remain (Bianciardi et al., 2009). One prominent 69 
challenge is artifacts caused by subject head motion. Among other effects, head motion 70 
changes the part of the brain sampled by a particular voxel and can introduce changes in signal 71 
intensity through interactions with the magnetic field, which add noise to the data and make it 72 
harder to identify signals of interest. 73 

The effects of head motion have received recent scrutiny in the context of resting state 74 
functional connectivity. Because motion-related artifacts occur in many voxels simultaneously, 75 
they can introduce correlations in fMRI time series that are unrelated to BOLD activity, leading 76 
to inaccurate estimates of functional connectivity (Power et al., 2015; Satterthwaite et al., 2019). 77 
However, spurious activation is also of concern in task-based functional neuroimaging. Rigid 78 
body realignment—a mainstay of fMRI analysis for decades—goes some way towards 79 
improving correspondence across images (Ashburner and Friston, 2004), but does not remove 80 
extraneous signal components introduced by movement (Friston et al., 1996). A common 81 
approach for mitigating motion-related artifacts is to include the 6 realignment parameters 82 
(translation and rotation around the X, Y, and Z axes) as nuisance regressors in first-level 83 
models. 84 

Alternatively, several data-driven strategies have been developed to reduce the 85 
influence of high-motion scans on estimated activations. Wavelet decomposition identifies 86 
artifacts by exploiting their non-stationarity across different temporal scales (Patel et al., 2014). 87 
The method has been applied in resting state studies but is also applicable to task-based data. 88 
Independent component analysis (Pruim et al., 2015) identifies artifacts based on the spatial 89 
distribution of shared variance. In robust weighted least squares (Diedrichsen and Shadmehr, 90 
2005), a two-pass modeling procedure is used to produce a collection of nuisance regressors 91 
which are then included in the final analysis to weight frames by the inverse of their variance 92 
(that is, downweighting frames with high error).  93 

An alternative motion correction strategy is “scrubbing” or “frame censoring” (Lemieux et 94 
al., 2007; Siegel et al., 2014). In this approach, bad scans are identified and excluded from 95 
statistical analysis. One approach is to do so by modeling them in the general linear model 96 
using nuisance regressors (i.e. “scan-nulling regressors” or “one-hot encoding”). Although frame 97 
censoring has received considerable interest in resting state fMRI over the past several years 98 
(Power et al., 2012; Gratton et al., 2020a), it has not seen widespread use in the task-based 99 
fMRI literature. Censoring approaches involve some effective data loss, in that censored frames 100 
do not contribute to the task-related parameter estimates, and that columns introduced to the 101 
design matrix to perform censoring reduce the available degrees of freedom. Choosing an 102 
appropriate metric and associated threshold for identifying bad scans can also be challenging. 103 
Thus, additional information over what threshold should be used for identifying bad frames—and 104 
relatedly, how much data is lost vs. retained—is necessary to make informed decisions. 105 

Although several published studies comparing differing correction strategies exist  106 
(Ardekani et al., 2001; Oakes et al., 2005; Johnstone et al., 2006), a drawback of prior work is 107 
that evaluation was often limited to a single dataset (see Supplemental Table 1). The degree to 108 
which an optimal strategy for one dataset generalizes to other acquisition schemes, tasks, or 109 
populations is not clear. With the increased public availability of neuroimaging datasets 110 
(Poldrack et al., 2013; Markiewicz et al., 2021), the possibility of evaluating motion correction 111 
approaches across a range of data has become more feasible.  112 

In the present work, we sought to compare the performance of identical pipelines on a 113 
diverse selection of tasks, using data from different sites, scanners, and subject pools.  114 
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Although our primary interest was frame censoring, we considered seven different motion-115 
correction approaches: 116 

1. six canonical head motion estimates (RP6) 117 
2. 24-term expansions of head motion estimates (RP24) 118 
3. wavelet despiking (WDS) 119 
4. robust weighted least squares (rWLS) 120 
5. untrained independent component analysis (ICA)  121 
6. frame censoring based on frame displacement (FD) 122 
7. frame censoring based on variance differentiation (DVARS) 123 

This list is not exhaustive but representative of approaches that are currently used and feasible 124 
to include in an automated processing pipeline.  125 

Because it is impossible to determine a “ground truth” result with which to compare the 126 
effectiveness of these approaches, we instead considered three complementary outcome 127 
metrics: 1) the maximum group t-statistic both across the whole-brain and in a region-of-interest 128 
relevant to the task; 2) the average parameter estimates from within the same ROI (that is, 129 
effect size); and 3) the degree of test-retest consistency exhibited by subject-level parametric 130 
maps. These metrics are simple to define yet functionally meaningful, and can be applied to 131 
data from almost any fMRI study. 132 

Methods 133 

Datasets 134 
We analyzed eight studies obtained from OpenNeuro (Markiewicz et al., 2021), several of which 135 
included multiple tasks or multiple participant groups. As such, the eight selected studies 136 
provided a total of 15 datasets. The selection process was informal, but studies given priority 137 
included 1) a clearly-defined task, 2) a sufficient number of subjects to allow second-level 138 
modeling, 3) sufficient data to make test-retest evaluation possible, and 4) a publication 139 
associated with the data describing a result to which we could compare our own analysis.  140 

A summary of the eight datasets selected is shown in Table 1 (acquisition details 141 
provided in Supplemental Table 2). Additional information, including task details, 142 
modeling/contrast descriptions compiled from publication(s) associated with a given study, and 143 
any data irregularities encountered during analysis, is provided in the Supplemental Materials. 144 

Analysis 145 
Analysis was performed using Automatic Analysis version 5.4.0 (Cusack et al., 2015) (RRID: 146 
SCR_003560), which scripted a combination of SPM12 (Wellcome Trust Centre for 147 
Neuroimaging) version 7487 (RRID: SCR_007037) and FMRIB Software Library (FSL; FMRIB 148 
Analysis Group; (Jenkinson et al., 2012) version 6.0.1 (RRID: SCR_002823). BrainWavelet 149 
Toolbox v2.0 (Patel et al., 2014) was used for wavelet despiking, and rWLS version 4.0 150 
(Diedrichsen and Shadmehr, 2005) for robust weighted least squares. Analysis scripts used in 151 
the study are available at https://osf.io/n5v3w/. 152 

To the extent possible, we used the same preprocessing pipeline for all datasets (Figure 153 
1a). Briefly, structural and functional images were translated to the center of the scanned 154 
volume and the first four frames of each session were removed in functional images to allow for 155 
signal stabilization. This was followed by bias correction of the structural image, realignment, 156 
coregistration of the functional and structural images, normalization into MNI space using a 157 
unified segmentation approach (Ashburner and Friston, 2005) resampled at 2 mm, and 158 
smoothing of the functional images using an 8 mm FWHM Gaussian kernel.  159 
 160 
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Table 1. Summary of datasets analyzed  

Dataset Reference Task Age 
group* 

# 
subs 

FD 
(median ± SD) 

 frames 
per 

subject 
ds000102 Kelly et al.  

(2008) 
flanker YA 22 0.11 ± 0.12 284 

ds000107 Duncan et al.  
(2009) 

1-back YA 43 0.08 ± 0.14 323 

ds000114 Gorgolewski et al. 
(2013a) 

motor (lips) YA 10 0.14 ± 0.16 360 

  covert verb YA 10 0.11 ± 0.11 338 

  overt word YA 10 0.13 ± 0.12 144 

  line bisection YA 9 0.13 ± 0.18 468 

ds000228 Richardson et al. 
(2018) 

movie viewing C 122 0.21 ± 0.93 164 

   YA 33 0.18 ± 0.27 164 

ds001497 Lewis-Peacock and 
Postle (2008) 

face perception YA 10 0.11 ± 0.12 1146 

ds001534 Courtney et al.  
(2018) 

food images YA 42 0.10 ± 0.16 552 

ds001748 Fynes-Clinton et al. 
(2019) 

memory retrieval C 21 0.16 ± 0.36 438 

   T 20 0.12 ± 0.17 438 

   YA 21 0.08 ± 0.17 438 

ds002382 Rogers et al.  
(2020) 

word recognition YA 29 0.14 ± 0.35 710 

   OA 32 0.30 ± 0.34 710 

Note: * OA = older adults; YA = young adults; T = teens; C = children 161 
 162 
Functional images were corrected for motion artifacts using each of the following 163 

approaches: 1) inclusion of six canonical motion estimates in the first-level model as nuisance 164 
regressors, 2) inclusion of 24 nuisance regressors based on a second-order expansion of the 165 
motion estimates and first derivatives, 3) wavelet despiking, 4) robust weighted least squares, 5) 166 
ICA denoising, 6) frame censoring based on framewise displacement (FD) or 7) differential 167 
variance (DVARS) thresholding (FD/DVARS thresholding is described below). 168 

Statistical modeling was performed in SPM in all motion correction approaches. First-169 
level modeling included a contrast of interest described in a publication associated with the 170 
dataset for evaluation, followed by second-level analysis to produce group-level statistical maps. 171 
All first- and second-level t-maps were thresholded at a voxelwise threshold of p < 0.001 172 
(uncorrected). 173 

Minor pipeline modifications were required for robust weighted least squares, wavelet 174 
despiking, and ICA denoising. As recommended by developers of the rWLS toolbox, 175 
unsmoothed data was used for variance estimation and contrast maps were smoothed after 176 
modeling. For wavelet despiking, functional images were rescaled to a whole-brain median of 177 
1000 across all frames prior to processing. The default toolbox settings (wavelet: d4, threshold: 178 
10, boundary: reflection, chain search: moderate, scale number: liberal) were used. Finally, ICA-179 
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based denoising was implemented using ICA-AROMA (Pruim et al., 2015) with additional 180 
processing steps performed within FSL. Briefly, the unsmoothed coregistered functional image 181 
was demeaned, detrended, smoothed, and then nonlinearly warped to the FSL 2 mm MNI152 182 
template using FNIRT. The normalized functional image was then passed to AROMA for 183 
denoising.  184 

 185 

 
Figure 1. Schematic of processing pipeline and outcome measures. (a) Summary of 
preprocessing and model steps in common and differing across motion correction strategies. 
(b) Following statistical modeling, outcomes are summarized in mean parameter estimates 
and Dice overlap of thresholded single-subject maps (top) and maximum t-value from the 
group analysis (bottom). 

Evaluation of Motion Correction Performance 186 
Three measures were used to quantify the performance of each motion correction strategy, 187 
illustrated in Figure 1b: 1) maximum t-value, 2) effect size, and 3) subject replicability. In the 188 
first measure, the maximum t-value occurring in the group level parametric map was extracted 189 
both at the whole-brain level and also within a region-of-interest relevant to the task. The effect 190 
size was quantified as the mean of all voxels within the ROI for each subject using the first-level 191 
beta maps. To evaluate subject replicability, session data were treated as a test-retest paradigm 192 
(the first session versus the second session in studies having fewer than three sessions; even-193 
numbered versus odd-numbered sessions otherwise). Replicability was quantified as the Dice 194 
coefficient of thresholded first-level t-maps (0.001, uncorrected) in each subject (restricted to the 195 
ROI). 196 
 197 
FD and DVARS Thresholding 198 
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Motion correction approaches based on frame censoring required quantification of motion 199 
artifacts which could then be subjected to thresholding. Both framewise displacement (FD) and 200 
differential variance (DVARS) were used. Framewise displacement was calculated as the sum 201 
of the six head motion estimates obtained from realignment, with a dimensional conversion of 202 
the three rotations assuming the head is a 50 mm sphere (Power et al., 2012). DVARS was 203 
calculated as the root-mean-squared of the time difference in the BOLD signal calculated across 204 
the entire brain (Smyser et al., 2011). As shown in Figure 2A, both metrics closely tracked 205 
artifacts apparent in voxel intensities and also each other. Although FD and DVARS in a given 206 
session tended to be correlated (Figure 2B), they were not identical and could exhibit slightly 207 
different time courses and relative peak amplitudes. As such, we explored the use of both 208 
measures. 209 

Thresholds were determined by calculating FD and DVARS across all sessions in all 210 
subjects, which allowed values to be identified that resulted in 1%, 2%, 5%, 10%, and 20% 211 
frame violations across the entire dataset (Figure 2C). We adopted this strategy rather than 212 
using a fixed value of FD or DVARS for several reasons. First, FD and DVARS magnitudes 213 
change with the TR of the data, because the TR is the sampling rate (for a given movement, 214 
sampling more rapidly will give smaller FD values, even though the total motion is the same). 215 
Secondly, different calculations of FD provide different values (Jenkinson et al., 2002; Power et 216 
al., 2012; Van Dijk et al., 2012), and thus any absolute threshold would necessarily be metric-217 
specific. Finally, datasets differ in their tasks and populations, and we anticipated that a 218 
constant threshold would not be suitable for all datasets. We, therefore, employed the frame-219 
percent thresholding strategy in order to obtain an informative range of results in all studies 220 
examined. Because the threshold is chosen to limit data loss in the whole group, it allows high-221 
motion subjects to have more frames censored than low-motion subjects, which was one of our 222 
primary goals.  223 

The threshold values that resulted from percent data loss targeting in these datasets are 224 
shown in Supplemental Figure 1. 225 

 226 
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Figure 2. Calculation of frame censoring thresholds. (a) Example grayplot (Power, 2017) showing 
500 random gray matter voxels (single subject data from ds001534). DVARS and FD for this 
session are plotted above. Spikes in the metrics can be used to identify frames contaminated by 
artifacts. (b) DVARS and FD are correlated but exhibit differing amplitudes and time courses. As 
such, the use of both was explored. (c) The collection of metric values (here shown for DVARS) 
used for frame censoring was determined by plotting frameloss for each subject as a function of 
threshold (thin blue traces). Interpolation of the mean response (thick black trace) then provided 
estimates of metric values corresponding to a target data loss of 1%, 2%, 5%, 10%, or 20%. Box 
plot (inset) summarizes the resulting data loss across all subjects at each threshold (box: 25-75% 
percentiles; crosses: >3 SD outliers). 

 227 
To impose frame censoring, first-level modeling was repeated for each threshold with a delta 228 
function (i.e. a scan-nulling regressor) included in the design matrix at the location of each 229 
violation, which effectively removes the contribution of the targeted frame from the analysis. 230 
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Region of Interest Definition 231 
A task-relevant ROI for each study/task was defined in one of three ways: 1) a 5-mm sphere (or 232 
spheres) centered at coordinates reported in a publication associated with the dataset, 2) a 233 
whole-brain Z-mask generated by a task-relevant search term (e.g., "incongruent task") in 234 
NeuroQuery (Dockès et al., 2020) and thresholded z > 3, or 3) a binarized tissue probability 235 
map in the SPM Anatomy Toolbox (Eickhoff et al., 2005) for a task-relevant brain structure or 236 
anatomical region (e.g., "V2").  237 

Results 238 

Performance of the motion correction strategies organized by dataset is shown in Figure 3. 239 
Each panel includes a representative second-level thresholded t-map at the upper left (p < 240 
0.001, uncorrected) using the "RP6'' approach (six canonical motion parameters included as 241 
nuisance regressors). A contrast descriptor is given below the map. The ROI used for 242 
evaluation is shown at lower left with the source listed under the rendered image;  “NQ” 243 
indicates search term from NeuroQuery (Dockès et al., 2020); all other labels indicate either an 244 
Anatomy Toolbox tissue probability map (Eickhoff et al., 2005) or a 5 mm sphere. Additional 245 
details on ROI definition used in each analysis are provided in the Supplemental Materials.  246 

These results show there is substantial variability in motion correction approaches, with 247 
performance depending both on the data under consideration and the chosen performance 248 
metric. However, some general trends are apparent. Wavelet despiking tended to offer the best 249 
maximum t-value in both the whole-brain and ROI-constrained evaluation, with robust weighted 250 
least squares also exhibiting good performance (note the ROI-restricted maximum t-value, 251 
shown in filled bars, are superimposed on the whole-brain results, shown in open bars in Figure 252 
3 due to space restrictions). Conversely, ICA gave consistently poorer results although it offered 253 
the best maximum t-value in the ds000114 covert verb task. Performance of FD and DVARS 254 
frame censoring were highly variable, with the application of increasingly stringent thresholds 255 
improving performance in some datasets while decreasing it in others. A somewhat consistent 256 
behavior is a loss of performance at the highest (20%) FD or DVARS threshold. As a rule, frame 257 
censoring performed better than RP6 and RP24 motion correction, although RP6 is competitive 258 
(if not optimal) in both ds000107 and ds001748. 259 

 260 
 261 
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Figure 3.  Summary of denoising algorithm performance for all datasets examined in the 
study. Each panel includes a representative thresholded group t-map at left (p=0.001, 
uncorrected) for the given contrast with the ROI used for evaluation plotted below. At center, 
ROI-restricted maximum t-values are superimposed on whole-brain results for each denoising 
approach. Plots at right show individual-subject mean ROI effect size (top) and Dice 
coefficient for a split-half test-retest evaluation (bottom). Datasets that did not permit test-
retest evaluation are noted "n/a." The horizontal dotted line in a given plot indicates RP6 
results for reference. 

  264 
The mean effect size shown in these results is largely insensitive to the selected motion 265 

correction approach. The two exceptions are wavelet despiking and ICA, which produced 266 
consistently smaller values than the other approaches. This may reflect suboptimal parameter 267 
selection in these algorithms (see Discussion). Robust weighted least squares offered 268 
competitive results in all datasets and notably superior results in ds002382 and the ds000114 269 
overt word task. FD and DVARS frame censoring neither improved nor degraded results 270 
regardless of threshold, producing a mean effect size indistinguishable from both the RP6 and 271 
RP24 approaches save for a few isolated individual subjects. 272 

The test-retest results also demonstrate a great deal of variability. The Dice coefficients 273 
exhibit substantial inter-subject differences, resulting in a mean performance that is similar 274 
across all motion correction strategies. However, excluding ds000102, ds001534, and the 275 
ds000114 line bisection task which provide an uninformative test-retest quantification, some 276 
trends can be identified. There is a detectable decrease in both the FD and DVARS frame 277 
censoring results, especially at 20% thresholding. In general, all differences are minor, save for 278 
ICA which performs notably better in the ds000114 motor task and notably worse in ds001487.  279 

A summary of these results is shown in Figure 4a, in which average values of the four 280 
performance metrics are plotted for all 15 datasets/tasks. Several of the trends noted above 281 
remain apparent. Wavelet despiking gives the largest whole-brain maximum t-value. Robust 282 
weighted least squares resulted in the best ROI-constrained performance. Light-to-moderate 283 
frame censoring results in improvement which then declines as more aggressive thresholding is 284 
applied. Robust weighted least squares produces the largest average effect size. Wavelet 285 
despiking and ICA produce poor results as measured by this metric. Finally, the averaged Dice 286 
coefficient is less than 0.5 in all datasets. A decline of FD and DVARS frame censoring 287 
performance with increasing threshold is apparent. However, all of the test-retest results exhibit 288 
substantial variability (error bars denote +1 SD in the maximum t-value plot; +/- 1 SD in ROI 289 
mean effect size and Dice). 290 

 291 
 292 
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Figure 4. (a) Whole-brain and ROI-restricted maximum t-values (left), mean effect size (upper 
right) and test-retest Dice coefficient (lower right) averaged across all datasets. A value of 1 
indicates equivalent performance to the “standard” RP6 approach. (b) Motion correction 
performance summarized as the proportion of datasets a given approach gave the best (top 
row) or worst (bottom) results as measured by the four performance metrics. 

 293 
An alternate summary of algorithm performance is presented in Figure 4b, in which the 294 

best and worst performer measured by each metric was identified in each of the 15 datasets 295 
and the resulting proportions plotted as pie charts. The trends and variability evident in the 296 
grand averages are also apparent in these data. Robust weighted least squares offered best 297 
performance on many datasets and worst performance on none. Wavelet despiking gave the 298 
best maximum t-value in about half (whole-brain) or one quarter (ROI-restricted) of the studies, 299 
but the worst ROI mean effect size in over half. ICA denoising was often the worst performer, 300 
yet gave best results across all four metrics in at least one dataset. Frame censoring performed 301 
roughly equally well (or equally poorly) using either FD or DVARS, with one notable result being 302 
FD was never the worst performer for effect size. Finally, the performance of the RP6 and RP24 303 
approaches are middling, producing best or worse maximum t-value  on only one or two 304 
datasets and, with one exception, never producing best nor worst ROI mean or test-retest 305 
results. 306 

Discussion 307 

We explored the performance of a variety of approaches to correcting motion-related artifacts in 308 
task-based fMRI. The studies examined represent a broad range of task domains, including 309 
sensory, motor, language, memory, and other cognitive functions, with participants varying in 310 
age, sex, and other characteristics. Although we set out expecting to find converging evidence 311 
for an optimal strategy, instead our results demonstrate that the performance of motion 312 
correction approaches depends on both the data and the outcome of interest. We review our 313 
selected metrics below—whole-brain and ROI-restricted maximum t-value, mean effect size, 314 
and test-retest repeatability—followed by some general comments on each motion correction 315 
approach.  316 
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Comparing outcome metrics 317 
The use of whole-brain maximum t-value measured in group-level statistical maps has the 318 
advantage that it requires few assumptions about the data or the expected pattern of activity. 319 
However, we did not observe a consistent pattern regarding which motion correction approach 320 
optimized the whole-brain maximum t-value. Disparity was even evident between different 321 
participant groups within a given study. For example, wavelet despiking had the highest whole-322 
brain t statistic in ds0001748 in teens but RP6 offered better performance in adults.  323 

In addition to whole-brain statistics, we examined maximum t-values within a selected 324 
region of interest. Our rationale for doing so was that researchers interested in task-based 325 
effects frequently have prior intuitions about where the most informative results are localized. A 326 
potential downside of this approach is the need to specify an ROI to examine. We found that 327 
motion correction approaches can exhibit substantially different whole-brain and ROI-restricted 328 
performance. In the ds000114 overt word task, for example, RP6 offered best performance 329 
within the motor cortex but poor performance in a whole-brain evaluation. Furthermore, frame 330 
censoring performance improved in some datasets but degraded in others as more stringent 331 
thresholding was applied. Obviously, a challenge inherent in such an evaluation is the actual 332 
ROI selection. Although we believe our choices are sensible, selection of a different ROI set 333 
may well result in a different overall view of performance.  334 

To complement these group-level measures, we also considered two single-subject 335 
metrics: mean effect size and test-retest repeatability measured by Dice overlap in thresholded t 336 
maps. Effect size permits an examination of parameter estimates, and our use of averaging 337 
offers a direct and simple quantification. However, with the exceptions of wavelet despiking and 338 
aggressive frame censoring (revisited below), we observed that effect size was largely 339 
insensitive to the choice of motion correction strategy, although less than the variability 340 
observed in maximum t-value. This suggests the main effect of different motion correction 341 
approaches is a differential reduction in model error variance. If parameter estimation is the 342 
primary result of interest, then the choice of motion correction strategy may not be critical. 343 

The test-retest evaluation was perhaps the least helpful result, with the performance of 344 
all motion correction approaches essentially indistinguishable under this metric. Although the 345 
outcome is disappointing, it should be noted that many of the studies included here were not 346 
designed to include a split-half repeatability analysis. It may be that more data per subject may 347 
be needed for this metric to be informative. In that sense, our analyses speak to the general 348 
challenges of obtaining reliable single-subject data in fMRI (Smith et al., 2005; Bennett and 349 
Miller, 2010; Gorgolewski et al., 2013b; Elliott et al., 2020), at least under conventional scanning 350 
protocols (Gratton et al., 2020b). Investigators of resting state fMRI have confronted a similar 351 
issue, and recommendations have appeared in the resting state fMRI literature outlining the 352 
minimal scan time required for reproducible results (Birn et al., 2013; Laumann et al., 2015). 353 
Perhaps an analogous standard might be possible for task-based fMRI, although any guideline 354 
would necessarily require the cognitive complexity of the task under investigation to be 355 
considered.  356 

Comparing Motion Correction Approaches 357 
No single denoising approach exhibited optimal performance on all datasets and all metrics. 358 
Algorithm performance did not appear to be systematically related to the nature of the task, 359 
acquisition parameters, nor any feature of the data that could be identified.  360 

Interestingly, computationally-intensive approaches did not necessarily perform better 361 
than basic corrective measures. For some datasets, including six motion estimates as 362 
continuous nuisance regressors—a standard approach used in functional imaging for 363 
decades—could perform as well or better than more sophisticated algorithms that have 364 
emerged in recent years. Increasing the head motion estimate from a 6- to a 24-parameter 365 
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expansion led to an improvement in some data but degraded results in others. Although such 366 
results are rather counterintuitive, we can provide a few observations, even if these data do not 367 
currently permit conclusive recommendations. 368 

Two motion correction approaches that showed generally strong performance were 369 
wavelet despiking (WDS) and robust weighted least squares (rWLS). Together, these 370 
approaches offered best performance in approximately half of the datasets across all 371 
performance metrics (Figure 4). Additionally, in no evaluation did rWLS produce the worst 372 
results. In a statistical sense, robust weighted least squares might be seen as an optimal 373 
solution, in that it uses the error in the model to re-weight time points, reducing the influence of 374 
motion on parameter estimates. However, we also found that other motion correction strategies 375 
supplied similar, or superior, performance in several instances. One reason might be that rWLS 376 
linearly weights time points inversely related to their variance. To the degree that motion 377 
artifacts include a nonlinear component, linear weighting may not adequately (or at least, not 378 
optimally) remove all of the artifact. 379 

In contrast to good performance of wavelet despiking as measured by maximum t-value, 380 
it gave notably low scores on mean effect size. However, this finding may simply reflect data 381 
scaling specific to the WDS implementation. It should also be noted the WDS toolbox offers 20 382 
wavelets, and additional options that control algorithm behavior such as thresholding and chain 383 
search selection. The results obtained here are what can be expected using the default settings 384 
recommended by the toolbox developers, which includes a median 1000 rescaling of the 385 
functional data (and hence the lower effect size). Thus, numeric comparison to other 386 
approaches (that do not include rescaling) are problematic. It also may be possible to improve 387 
performance–including obtaining effect sizes concomitant with other motion correction 388 
approaches if that is judged critical by tuning the algorithm, although it is unclear how that 389 
process could be automated. 390 

One unexpected result was the relatively poor performance of ICA denoising. Although 391 
individual exceptions exist, the approach produced consistently low scores on all evaluation 392 
metrics. However, ICA denoising was implemented here using FSL’s ICA-AROMA. This 393 
package was selected because it does not require classifier training. More sophisticated ICA 394 
denoising tools such as MELODIC or ICA-FIX involve a visual review of training data to 395 
generate a set of noise classifiers based on the temporal, spatial, and frequency characteristics 396 
of identified artifacts (Salimi-Khorshidi et al., 2014; Griffanti et al., 2017). These options were not 397 
considered here because we sought to evaluate tools for motion correction that could be 398 
implemented in an automated pipeline. The potential of ICA for denoising task-based data 399 
should not be dismissed; rather, our results only indicate that the use of untrained ICA is 400 
probably suboptimal compared to other options, many of which are also less computationally 401 
intensive. 402 

Frame censoring has appeared in several recent task-based studies (O’Hearn et al., 403 
2016; Bakkour et al., 2017; Davis et al., 2017). In fact, it was an experience with frame 404 
censoring in the analysis of in-scanner speech production (Rogers et al., 2020) that motivated 405 
our interest in comparing motion correction approaches. We found that modest levels of frame 406 
censoring (e.g., 2–5% data loss) revealed a regional activation in high-motion subjects that 407 
appeared in low-motion subjects but was not apparent when standard (RP6) motion 408 
compensation was used. This suggested that use of a discrete rather than a continuous 409 
nuisance regressor may better preserve task variance in some applications. However, a more 410 
nuanced picture emerges from the present results, which suggest frame censoring is neither 411 
universally superior to nor worse than RP6. One possibility is that frame censoring performance 412 
involves a complex interaction between data quantity and quality. As each censored frame 413 
introduces an additional regressor to the design matrix, eventually the reduction in error 414 
variance may be overwhelmed by a loss of model degrees of freedom. This is anecdotally 415 
supported by a decline in many of the metric results observed here at the most stringent FD or 416 
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DVARS thresholds, an effect that was even more pronounced when 40% maximal censoring 417 
was explored in pilot work (data not shown). A prerequisite to improving frame censoring 418 
performance in future work would be to quantify this tradeoff. 419 

One might argue that frame censoring should be based on a selected fixed threshold 420 
rather than a targeted percent data loss. The present results offer only mixed support for such a 421 
position. We investigated applying a fixed FD threshold of 0.9 to these data (Supplemental 422 
Figure 1). This value was used by Siegel and colleagues (2014) in their exploration of frame 423 
censoring and has since been used in published functional studies (e.g., Davis et al., 2017). In 424 
most of the datasets considered here, a 0.9 FD threshold would have resulted in less than 1% 425 
of frames being censored. This would be a reasonable amount of data loss, and might lead to 426 
some improvements compared to a standard RP6 approach (although we did not test this 427 
directly). However, ds000228/adults, ds001748/teens, and ds002382/YA would have incurred a 428 
1-2% data loss, ds001748/child and ds002382/OA approximately 5% data loss, and 429 
ds000228/child approximately 13% data loss. These outcomes do not correspond to the best 430 
performance obtained across all approaches. Whole-brain or ROI-constrained maximum-t 431 
metrics peak at these values in some, but not all, datasets. Mean effect size and Dice 432 
coefficients add little to the evaluation as they appear largely insensitive to frame censoring 433 
thresholds in this range. Taken together, these results suggest there is no single threshold value 434 
that will optimize frame censoring for all applications. 435 

Finally, it should be noted that we have focused on retrospective correction—that is,  436 
strategies for dealing with motion in existing data. A complementary approach would be to 437 
reduce head motion during acquisition. Protocols have been developed that offer promise to 438 
reduce subject motion, including movie viewing (Greene et al., 2018), custom head molds 439 
(Power et al., 2019), and providing feedback to participants (Dosenbach et al., 2017; Krause et 440 
al., 2019). However, these have not yet been widely adopted, nor are all compatible with task-441 
based fMRI. With increasing awareness of the challenges caused by participant motion, 442 
perhaps greater interest in motion reduction (as opposed to mitigation) will follow. 443 

Clearly, the present results do not identify unequivocal guidelines to select a motion 444 
correction strategy. Given the variability observed across datasets, with identical processing 445 
pipelines, exploring multiple strategies in a given dataset may be the best way of reducing 446 
motion artifacts, adding another set of parameters to an already large space of possible 447 
analyses (Carp, 2012; Poldrack et al., 2017; Botvinik-Nezer et al., 2020). Our results suggest 448 
that—frustratingly—no single motion correction strategy will give optimal results on every metric 449 
in every study, and that choices require considering both the nature of the specific data of 450 
interest and the most relevant outcome measure. 451 
 452 
 453 

    454 
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