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Summary  
The Single Cell App is a cloud-based application that allows visualisation and 

comparison of scRNA-seq data and is scalable according to use. Users upload their 

own or publicly available scRNA-seq datasets after pre-processing to be visualised 

using a web browser. The data can be viewed in two colour modes, Cluster - 

representing cell identity, and Values – level of expression, and data queried using 

keyword or gene identification number(s). Using the app to compare four different 

studies we determined that some genes frequently used as cell-type markers are in 

fact study specific. Phosphate transporter and hormone response genes were 

exemplary investigated with the app. This showed that the apparent cell specific 

expression of PHO1;H3 differed between GFP-tagging and scRNA-seq studies. Some 

phosphate transporter genes were induced by protoplasting, they retained cell 

specificity, indicating that cell specific stress responses (i.e. protoplasting). 

Examination of the cell specificity of hormone response genes revealed that 132 

hormone responsive genes display restricted expression and that the jasmonate 

response gene TIFY8 is expressed in endodermal cells which differs from previous 

reports. It also appears that JAZ repressors have cell-type specific functions. These 

differences, identified using the Single Cell App, highlight the need for resources to 

enable researchers to find common and different patterns of cell specific gene 

expression. Thus, the Single Cell App enables researchers to form new hypothesis, 

perform comparative studies, allows for easy re-use of data for this emerging 

technology to provide novel avenues to crop improvement. 
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Introduction 

The ever-increasing throughput, declining cost per-sample and growing diversity of 

gene expression analysis methods has resulted in massive public repositories of freely 

accessible transcriptome data (Zhang et al., 2020). A variety of tools are available that 

provide user-friendly data access and interrogation to those plant biologists who are 

not experts in bioinformatics or primary data processing. However, these 

predominantly serve the most common and more established techniques, such as bulk 

RNA-seq or microarray analysis of whole organs. Single cell RNA sequencing 

(scRNA-seq) has emerged more recently as an extremely powerful technique to 

investigate the functions of individual cells and cell-types. Beyond visualisation, in 

recent years scRNA-seq has been applied to several plant species, generating 

valuable resources for the researchers to explore plant genomics at the single cell 

level (Denyer et al., 2019; Jean-Baptiste et al., 2019; Liu et al., 2021; Ryu et al., 2019; 

Xu et al., 2021; Zhang et al., 2021). However, these data are typically stored in a text-

based format that must be processed and visualized for users to explore it. This 

creates a significant challenge for those plant scientists with limited computational 

experience, limiting data reuse.  

Beyond visualisation there is a need for researchers to be able to compare different 

datasets of their choice, to design new experiments, to compare studies and to define 

cell specific genes using the parameters of their choice. While the publicly available 

RNA-seq and scRNA-seq repositories provide a valuable resource for a re-use of raw 

data, making them more accessible allows for their thorough investigation by experts 

in their field but with limited bioinformatics background. For RNA-seq data this is 

achieved by a variety of databases that have emerged in the last 20 years. The Bio-

Analytic Resource for Plant Biology (BAR) and Genevestigator are notable examples 

of providing a repository and analytical tools to compare RNASeq data (Toufighi et al., 

2005; Zimmermann et al., 2004). However, these visualisation tools are not 

compatible with highly dimensional and large data sets created by scRNA-seq, where 

expression of thousands of genes is measured in thousands of cells. This issue will 

only become more challenging as the cost will decrease over time. Furthermore, most 

plant biologists are not bioinformatics experts and are unlikely to be able to rapidly 

learn how to analyse scRNA-seq data with the currently available command line tools. 
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This creates a significant obstacle to accessing and re-using public data. Moreover, 

substantial computing hardware is required to store and process scRNA-seq data, 

which costs tens to hundreds of thousands of dollars to acquire. When re-analysis is 

likely to be a short-term project, and not a continuous or ongoing requirement, it is 

difficult to justify such a substantial capital investment.  

Tools have been developed to overcome these obstacles such as SC1 (Moussa and 

Mandoiu, 2021), Single Cell Explorer (Feng et al., 2019) and alona (Franzen and 

Bjorkegren, 2020). However, each of these has some disadvantages. For example, 

SC1 is not currently able to process plant scRNA-seq data. Single Cell Explorer needs 

to be installed on a Linux server by the users. Moreover, these tools primarily focus 

on scRNA-seq data processing whilst providing limited data visualization functions. 

Genevestigator has established a single-cell RNA-seq portal but is restricted to 

animal/human studies.  

One of the central questions in single cell analyses is the identification of marker genes 

to determine cell types (Shaw et al., 2021). Stress responses diminish cell-specific 

signatures which impedes cell type assignment as shown for Arabidopsis roots (Jean-

Baptiste et al., 2019). Similarly, in a study examining tissue specificity of gene 

expression in Arabidopsis leaves the tissue specific expression decreased with 

applications of chemicals that mimicked adverse growth conditions (i.e. oxidative 

stress) or hormones (Berkowitz et al., 2021). Hence it is difficult for non-expert 

researchers to test the robustness of marker genes defined by earlier studies, and to 

evaluate how consistent they may be under different conditions. Additionally, the 

increasing application of genomics to non-model systems means that the capability to 

define marker genes will be needed for a variety of plants species, as well as tools 

that allow researchers to compare markers between studies and species. 

PlantscRNAdb has compiled scRNA-seq datasets from plants and defined 26 326 

marker genes of 128 different cell types from four plant species (Shaw et al., 2021). 

This is apparently high number shows the diversity and difference in approaches to 

defining marker genes. Researchers need to be able adjust the parameters to define 

marker genes to include new knowledge and allow discovery. Parameters set too strict 

or too lenient might mean that results are missed or meaningless.  
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To address this challenge we developed the Single Cell App. This tool focuses on 

interactive visualization of user-processed or public scRNA-seq data. All data storage 

and processing are conducted using a Microsoft Azure cloud-based platform, 

removing the necessity for users to purchase costly compute hardware. The app 

provides a web-based user-friendly graphical interface, making it appropriate for plant 

scientists who are not bioinformatics experts. Additionally, by providing these tools 

within an app, they can be rapidly and easily deployed and updated within a user’s 

institutional environment, greatly reducing challenges around installation and software 

maintenance. Overall, this cloud-based approach can scale readily dependent upon 

the needs of individuals or institutions. The Single Cell App can be obtained for local 

installation at (http://Single-Cell-Visualisation.loomesoftware.com). 
 

Results 
Overview of the single cell app 
The Single Cell App is designed to provide an easily accessible environment for users 

new to scRNA-seq to explore data. It enables users to visualize cell expression 

profiles. The app is deployed within the user’s host institution IT infrastructure and 

once established, users connect over the internet using a web browser via a custom 

web address (URL) that can be associated with any institutional domain. This is 

achieved using the Loome Platform (https://www.loomesoftware.com/index) and 

Microsoft Active Directory. 

There are three main screens in Single Cell App interface once the App is 

installed – Upload Experiment, Experiment Analysis and Experiment Status (Fig.1). 

Upload Experiment provides the functionality to upload gene expression data, 

clustering and gene ontology (GO) information and metadata associated with the data 

so that it can be identified as part of an experiment. Experiment Analysis provides the 

visualisation of the data for experiments that have been uploaded (Fig. 1), with rich 

controls to search, filter and modify the data that is being visualised. The user can also 

export the data being visualised in GO slim or comma-separated values (CSV) format.  
 
Utility of the single cell app 
Users can upload experiments once the app has been installed on their own server by 

using the Upload Experiment function. Three data tables in CSV format are required 

to upload an experiment; 1) a gene expression matrix, 2) a meta information table 
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describing each cell and 3) a GO slim file for the species of study. In the gene 

expression matrix, the first column is the gene ID and other columns are the unique 

cell barcode, the values represent the expression of each gene in each cell. The meta 

information table provides the three-dimensional coordinates from clustering analysis 

(e.g. T-SNE, UMAP), cell identity and other experimental information for each cell. The 

GO slim file contains the annotation of each gene. An example of these data tables 

has been provided in Supplemental Table 1-3. Notably, the system is species agnostic 

so long as all three files relate to the same species and use consistent nomenclature.  

 

The main strength of our app is providing scRNA-seq data visualization with various 

interactive functions. Users can select different uploaded experiments from the drop-

down list and examine the related meta information. The app provides a search 

function based on gene id and/or GO annotation, which allows users to explore and 

discover genes of their interest (Fig. 1C). For instance, one can search genes 

associated with phosphate-related biological processes by providing “phosphate” in 

the “Search GO_SLIM” box and then select an associated gene in the “Search 

GeneID” box. One can also search a gene of interest from the search box directly. 

Cells can be filtered based on the expression level of a searched gene, with cells 

above or below user-selected threshold masked. Moreover, the app provides two 

colour modes (Cluster and Values) to display the cells. In Cluster mode the colour 

represents cell identity (Cluster number) while in the Values mode colour indicates the 

expression level of cells (Fig. 1B). The app also provides a three-dimensional 

visualization of the cell clustering (Fig. 1D) and selection of cells based on datasets 

(Fig. 1E) or cluster identity (Fig. 1F).  

 

Characterising variation of four public Arabidopsis root scRNA-seq datasets 
Roots provide an ideal tissue for analysing cell heterogeneity because high-quality 

ground-truth datasets exist in which all root cell types have been carefully identified, 

purified and analysed transcriptomically (Drapek et al., 2017; Shahan et al., 2021). 

Moreover, root development is very well characterised and roots are easily accessible 

and amenable to single-cell processing methods (Shahan et al., 2021). Several 

scRNA-seq studies have been performed in Arabidopsis root using the Columbia-0 

(Col-0) genotype and three mutants in that background (Ryu et al., 2019; Jean-

Baptiste et al., 2019; Shulse et al., 2019; Denyer et al., 2019). Heterogeneity of cellular 
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responses to environmental stimuli such as high temperature and sucrose supply were 

also profiled in two studies (Jean-Baptiste et al., 2019; Shulse et al., 2019). These 

have greatly advanced our knowledge about spatiotemporal trajectories of plant root 

development. To maximize the usage of these public available datasets and cross-

validate results from different studies, we integrated four public Arabidopsis root 

scRNA-seq datasets and visualized the results in our Single Cell app (Supplemental 

Table 4; (see data processing methods in Experimental procedures) (Jean-Baptiste et 

al., 2019; Ryu et al., 2019; Shulse et al., 2019; Denyer et al., 2019). By integrated 

analysis and visualization, we were able to compare the results of these studies and 

understand more about experimental variation when working with a single genotype. 

 

 

We examined variation between different root single cell experiments performed on 

the same genotype under similar conditions. Cell-type (i.e. cluster) specific marker 

genes identified in one of the root experiments were used to assign cell identities to 

the cell clusters identified in our integrated analysis of the four experiments (Fig. 2, 

Supplemental Table 5; (Denyer et al., 2019)). Our analysis revealed that some marker 

genes are specific across studies – for example, pericycle/phloem (CLE26, NTL, 

NAT7, HCA2, FAF4). However, looking at the studies individually for the same genes 

indicated that there is still variation in the extent of expression (Fig. 3). FAF4 is defined 

as a good marker for pericycle/phloem on the basis of the data taken from Jean-

Baptiste et al., (2019), but not based on the data from Shulse et al., (2019). For 

protoxylem, At1g14190 and UGD1 are markers based on all the studies and for 

trichoblasts GH9C1 and At1g07795 appear quite robust, although notably GH9C1 is 

also consistently found in the meristematic xylem, and undefined in the study of Shulse 

et al., (2019). When all datasets are integrated and analysed together, we observed 

that previously defined atrichoblast markers are in fact also found in columella, the 

quiescent centre (QC), cortex, meristematic xylem and trichoblast. Likewise, the 

cortex marker TBL41 is found in meristematic xylem, atrichoblast, trichoblast. 

Although atrichoblast marker genes were highly expressed in atrichoblast clusters (0, 

12), they were also expressed in other cell types such as columella and trichoblast, 

which is consistent with a previous report (Denyer et al., 2019). 
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We also discovered three clusters (1,9,11) in our integrated analysis of all datasets 

that could not be assigned to a cell type because none of the known marker genes 

were expressed specifically in these clusters. These analyses reveal that while the 

concept of marker genes is useful for biological interpretation of individual studies, 

markers may vary across different experiments. This does not invalidate individual 

studies, rather it suggests that subtle differences in growth conditions cause some 

variation that become apparent when a larger set of studies is analysed. The ability to 

compare studies and look at them together using our app is valuable in designing 

future experiments and forming hypotheses. The ability to identify cell specific 

promoters benefits from combining many studies, but understanding variation 

between individual studies is also beneficial before proceeding with experimental 

studies. 

 
Mining expression profiles of phosphate transporters using the Single Cell 
App 
Phosphate (Pi) is an important macro nutrient for plant growth and development. Pi 

transporters (PHTs) play a critical role in Pi uptake from the environment and 

translocation between organs, cell types or organelles. (Hamburger et al., 2002; 

Muchhal et al., 1996; Mudge et al., 2002; Shin et al., 2004). Five PHT families (PHT1 

to PHT5) with different subcellular localisation have been characterized in plant based 

on phylogenetic analysis (Irigoyen et al., 2011; Mudge et al., 2002; Versaw and 

Harrison, 2002; Wang et al., 2017); (Zhu et al., 2012). PHOSPHATE1 (PHO1) is a Pi 

exporter which is responsible for loading Pi into the xylem vessels (Hamburger et al., 

2002). In addition, 10 PHO1 homologs (PHO1;H1 to PHO1;H10) have been identified 

in Arabidopsis (Wang et al., 2004). While many studies have been performed to 

decipher the functions of the Pi transporters, a comprehensive spatial expression 

profile of the Pi transporters is limited (Hamburger et al., 2002; Khan et al., 2014; 

Mudge et al., 2002; Shin et al., 2004; Stefanovic et al., 2007). Thus, we examined the 

expression of all known genes (32 genes) from PHT and PHO1 families in the 

integrated Arabidopsis root dataset (Fig. 4, Supplemental Table 6). Out of the 32 

genes, only 20 genes passed the quality control (see data source and processing)(Fig. 

4). Consistent with a previous report (Mudge et al., 2002), PHT1;1 is strongly 

expressed in trichoblast, where Pi is taken up from the soil (Fig. 4A, 4C, Supplemental 

Table 6). We also found PHT1;1 is highly expressed in cortex, confirming an additional 
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role of PHT1;1 in transporting Pi from epidermis into the central cylinder of the root  

(Karthikeyan et al., 2002) (Fig. 4A & 4CSupplemental Table 6). PHO1 was the first 

characterized gene in this family and is mainly expressed in stelar cells including the 

pericycle and xylem parenchyma cells, which is in agreement with our results (Figure 

4C) (Hamburger et al., 2002). So far only PHO1;H1 was shown to complement the 

PHO1 loss-of-function mutant, while the function of other PHO1 homologs remains 

unknown (Stefanovic et al., 2007). Seven PHO1 family genes (PHO1, PHO1;H1, 

PHO1;H2, PHO1;H4, PHO1;H5, PHO1;H7, PHO1;H10) are induced by protoplasting 

(Denyer et al., 2019), while only PHO1, PHO1;H1, PHO1;H3 and PHO1;H10 passed 

the quality control in our study. Interestingly, in contrast to a previous study which 

reported PHO1;H3 is expressed in root vascular cylinder (Khan et al., 2014), we found 

PHO1;H3 is mainly expressed in the endodermis (Fig. 4B, 4C). Given endodermal 

cells have thick cell walls restricting water or ion transport through this layer to the 

symplastic pathway. Therefore PHO1;H3 might also facilitate Pi transport from cortex 

into stelar cells through the endodermis. These significant differences between studies 

with respect to cell-type specific Pi transporters expression highlight the potential for 

comparative approaches enabled by our app to prompt further hypothesis-driven 

experiments.  

 

Characterising single cell expression patterns of plant hormone genes in the 
Arabidopsis root 
Plant hormones regulate plant growth, development and stress responses (Kumar, 

2013; Santner et al., 2009). Essentially all plant hormones are involved in root 

development in some manner (Fu and Harberd, 2003; Kumar, 2013; Qin et al., 2019) 

(Staswick et al., 1992; Yang et al., 2017; Zhao et al., 2014; McAdam et al., 2016; 

Ruzicka et al., 2007; Tian et al., 2009). Hormonal signalling operates in a cell and 

tissue specific manner, which is critical to enable the unique functions and responses 

of individual cell types (Novak et al., 2017). However, there has been little 

transcriptomic analysis of the expression patterns of plant hormone signalling genes 

at the level of individual cells. The advent of single cell gene expression technologies 

allows us to investigate this. 

 

To characterize the single cell expression profiles of plant hormone related genes, we 

examined the expression of 685 marker genes of seven hormones from previous 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.10.09.463793doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.09.463793
http://creativecommons.org/licenses/by-nc-nd/4.0/


studies; auxin (63 genes), abscisic acid (311), brassinolide (6), cytokinins (14), 

ethylene (3), gibberellic acid (9) and JA (279) (Birnbaum et al., 2003; Nemhauser et 

al., 2006; Zander et al., 2020). We computed a measure of cell-specific expression 

using the tissue-specificity metric tau in order to understand what proportion of 

hormone marker genes were expressed in specific cell-types (Yanai et al., 2005). For 

each gene, the average expression of all cells from the same cell type was used to 

calculate the expression level in this cell type. The tau value was computed using 

these average expression levels from different cell types. The tau metric ranges from 

0 to 1, with values >0.85 indicating tissue/cluster-specific expression and values <0.15 

indicative of very broad expression. One hundred and forty marker genes had tau 

values >0.85, with all hormones represented (Supplemental Table 7). The distribution 

of tau values was skewed toward the upper end of the range, centered around 0.75, 

indicating that most hormone marker genes were expressed in a subset of clusters 

rather than broadly and in the fashion of housekeeping genes (Fig. 5A).  

 

We focused our analysis on core components of the JA transcriptional regulatory 

mechanism because the promoters of the MYC2, 3, 4 transcription factors drive cell-

specific reporter expression in roots (Gasperini et al., 2015). Though we observed 

some variation between cell-types in the scRNA-seq datasets, these transcription 

factors were expressed relatively broadly, suggesting differences in experimental 

conditions or the approaches employed may contribute to changed expression 

domains. We reasoned that other JA components may behave similarly and examined 

expression of MYC2, 3, 4, the JAZ repressors and other related factors (Fig. 5B). 

NINJA was expressed broadly across root cell-types, consistent with the previously 

reported behaviour of its promoter (Gasperini et al., 2015). We observed that only one 

component, TIFY8, exceeded the tau threshold of 0.85, which indicated cluster-

specific expression in the endodermis cluster 14. TIFY8 interacts with proteins that 

regulate root meristem initiation and this expression pattern perhaps reflects the 

participation of the endodermis in lateral root formation (Cuellar Perez et al., 2014; 

Torres-Martinez et al., 2019). There was, however, clear variation across clusters in 

both expression level and proportion of cells expressing other JA transcriptional 

regulators for those components which did not exceed the tau threshold. For example, 

expression of JAZ repressors was generally lower in columella, QC and meristematic 

xylem clusters. Expression of JAZ5 was highest in endodermis, pericycle/phloem and 
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protoxylem clusters, whilst JAZ6 expression was highest in cortex cluster 16. These 

results likely indicate that JAZ repressors have cell-type specific functions in gene 

expression regulation in the root, potentially explaining why the JAZ/TIFY family is 

relatively large.  

 

 
Discussion 
scRNA-seq has been used by plant scientists since 2013 and related publications 

have dramatically increased recently due to the advent of droplet-based scRNA-seq 

technologies (Chen et al., 2021). While the increasing number of scRNA-seq studies 

has advanced our knowledge about plant cell heterogeneity, mining public data is 

challenging for researchers with limited computational expertise. In this study, we 

developed Single Cell App, a web-based platform for scRNA-seq data visualization. 

Unlike other online scRNA-seq tools which focus on data processing, our Single Cell 

App provides a user-friendly data visualization interface (Feng et al., 2019; Franzen 

and Bjorkegren, 2020; Mädler et al., 2020). In addition to a common gene-based 

search function, Single Cell App also provides a function-based search option which 

is useful for users to examine expression of genes related to a specific biological 

process. We also presented an integrated Arabidopsis root dataset from four 

publications (Ryu et al., 2019; Shulse et al., 2019; Jean-Baptiste et al., 2019; Denyer 

et al., 2019), showing the utility of the Single Cell App to define hypotheses for 

experimental testing. Together with the Single Cell App, public datasets provide a 

powerful resource for researchers who wish to examine gene expression in a single 

cell resolution. 

 

In our study, we annotated cell clusters from an integrated, multi-experiment root 

scRNA-seq dataset using well-characterized cell marker genes. We identified similar 

patterns of cell identity to previous studies (Fig. 2) (Ryu et al., 2019; Shulse et al., 

2019; Jean-Baptiste et al., 2019; Denyer et al., 2019). Unexpectedly, we found that 

the specificity of some marker genes varied between studies, with some genes 

expressed in different cell types compared to previous publications. PHO1;H3 was 

reported to specifically express in stele while it is mainly expressed in endodermis in 

this study (Fig. 4B, 4C), (Khan et al., 2014). These differences may result from different 
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environmental stimuli or growth stages between studies. For example, stele-specific 

expression of PHO1;H3 was detected in plants grown in an zinc deficient environment 

while data analysed here was obtained from seedlings supplied with sufficient 

nutrients (Khan et al., 2014). Indeed, cell heterogeneity in response to environmental 

stimuli has been previously reported (Berkowitz et al., 2021; Jean-Baptiste et al., 2019; 

Shulse et al., 2019). We also observed here that a variety of genes encoding 

phosphate transporters were induced by protoplasting, which would normally be 

discarded in analysis. However, these genes were still expressed in a cell specific 

manner (Fig. 4C). Likewise with the analysis of hormone response genes it 

demonstrated that many genes are expressed in a cell enriched manner, indicating 

that data from whole organ studies that make interpretation of signalling and functional 

pathways, may need to be re-examined as all the genes are not expressed in the same 

cell. Thus, these ‘pathways’ may not exist in any one cell suggesting heterogeneity in 

cell transcriptomes. Quantitative imaging of single cell transcriptional dynamics in 

plant cells have demonstrated that there are large differences between neighbouring 

cells, that is consistent with the conclusion that we have reached here with the 

comparison cell specific transcriptomes (Alamos et al., 2021; Hani et al., 2021).   

  

In conclusion due to differences in growth conditions and cell heterogeneity in 

transcriptional dynamics it is important that different studies looking at cell specific 

transcriptomes can be readily compared. This will allow a synergistic use of the data 

and prompt hypothesis and discovery-based experiments that will give greater insight 

into cell specific function and heterogeneity. 
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Methods 
 
Single cell app architecture 
The architecture of the Single Cell app uses the Microsoft Azure public clouds 

(Supplemental Figure 1). It is primarily based on Platform as a Service (PaaS) and 

Software as a Service (SaaS) solution. This provides automatic scalability, such that 

when additional storage or compute resources are required to perform an analysis or 

visualisation, the cloud backend will automatically make those resources available to 

the app, within a set of specified parameters. It also allows easy deployment via the 

Loome platform. Users connect to the Single Cell app over the internet using a web 

browser, after typing a custom web address (URL) that can be associated with an 

institutional domain. The web interface for the Single Cell application presents the 

users with two main areas: 1) Upload Experiment: provides the functionality to upload 

an expression matrix, a coordinates files, a GO slim file, and metadata associated with 

the data so that it can be identified as part of an experiment. 2) Experiment Analysis: 

provides the visualisation of the data for experiments that have been previously 

uploaded, with rich controls to search, filter and modify the data that is being 

visualised. The user can also export the data being visualised, in GO slim format or 

comma-separated values (CSV). When a user uploads new experiment data, this data 

is processed by the Loome Integrate agent and stored in the Application and 

Visualisation Databases. The agent runs in a small Docker container instance, and 

uses cloud blob storage to maintain logs and state. All the application components are 

contained within a resource group, which is a container that holds related resources 

for an Azure solution. This resource group also provides consolidated cost analysis 

and the ability to assign budgets and alerts, based on usage.  
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Table 1. The specifications for components are shown.  
 

Component Type Specifications 

App Services App Service Plan Auto-scaling from 1 to 3 instances, 

based on CPU utilisation. S1 pricing 

tier. 

Visualisation 
Web app 

App Service Managed by App Services. Includes 

custom domain for the Single Cell 

App. 

File Uploader 
Web app 

App Service Managed by App Services. 

SQL Server SQL Server Logical SQL server. Automatic 

tuning and transparent data 

encryption. 

Application 
Database 

SQL Database Serverless, Gen5, 16 vCores 

Visualisation 
Database 

SQL Database General Purpose. S1 pricing tier. 

Loome Integrate 
agent 

Azure Container 

Instance 

Linux, 1 instance, 2 vCores, 8 GiB 

memory 

Storage blob Storage account General Purpose v1 

 

 

Data sources and processing 
To prepare the root single cell data for visualization we downloaded the raw count data 

from the respective GEO repositories (Supplemental Table 4). Note that TAIR10 

genome were used to generate the raw count data across the four public data by the 

authors (Ryu et al., 2019; Shulse et al., 2019;  Jean-Baptiste et al., 2019; Denyer et 

al., 2019). It is first necessary to process the raw data and best practice for doing so 

has been well-reviewed elsewhere (Shaw et al., 2021). Our approach was to use 

Seurat for down-stream data processing, including quality control, data normalization, 

identification of highly variable features, dimensional reduction and cell clustering 

(Version 3.2.2) (Stuart et al., 2019). In brief, to discard low quality cells, cells 

expressing less than 800 genes or 3000 unique molecule identifiers were filtered out. 
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Cells with more than 20% mitochondrial sequences were also removed to exclude 

dead cells. Genes expressed in less than 30 cells were also dismissed. After filtering, 

21557 expressed genes across 16213 cells were retained. The raw count data were 

normalized using SCTransform and different datasets were integrated using Seurat 

(Version 3.2.2, (Stuart et al., 2019; Hafemeister and Satija, 2019)). Dimensionality 

reduction was performed on the normalized data using principle component analysis 

followed by Uniform Manifold Approximation and Projection (UMAP) to visualize the 

data structure. Cell clusters were characterized using the function ‘FindClusters’ from 

Seurat package with ‘‘resolution = 0.6’’, resulting 21 cell clusters (Fig. 2). Gene 

expression is affected by the protoplast isolation that is used during plant single cell 

sample preparation, which might bias cell clustering. To remove this potential bias, we 

excluded protoplast-induced genes identified by Denyer et al., (2019) in dimensionality 

reduction and cell clustering step. The expression matrix, UMAP with three 

components and the GO annotation of Arabidopsis were uploaded into the Single Cell 

App for the interactive data exploration. 

 

Calculation of cell/cluster specificity index (tau) 
The metric tau was used as an index of cluster-specific expression. It was computed 

as previously described (Yanai et al., 2005). The average expression of an individual 

gene was calculated across all cells from the same cell type. The tau value was then 

computed using these average expression levels from the different cell types. 
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Figure legends 
 
Figure 1. Screenshot of the Single Cell Browser Layout. 
(A) Meta information of the selected experiment. Clicking the “View Experiment 

Details” will provide more information about the experiment. 

(B) Color mode of displaying data and filtering cells based on gene expression level. 

In Cluster mode, each color represents a cell cluster while in Values mode, the color 

represents the expression level of a searched gene. Cells can be filtered by dragging 

the Expression Value range bar. 

(C) Search tab. Genes can be searched based on the Gene Ontology or gene id. 

(D) Three dimensions of the UMAP clustering. Each dot represents a cell. 

(E) Check box for dataset selection, this can be used for showing cells from specified 

dataset. 

(F) Cluster legend. Each color represents a cluster, the number shows the cluster id. 

Clicking each cluster will hide/show the cells from this cluster. 
 

Figure 2. Cell Heterogeneity in Arabidopsis Root. 
(A) Visualization of 21 cell clusters using UMAP. Dots, individual cells; n = 16,213 

cells; color, cell clusters. 

(B) Expression pattern of representative cluster-specific marker genes. Dot diameter, 

proportion of cluster cells expressing a given gene. Color, mean expression across 

cells in that cluster. QC: quiescent centre. The full names of selected genes are given 

in Supplemental Table 1 

 

Figure 3. Expression of known cell-specific marker genes across four studies. 
Expression of cell-type marker genes in different cell clusters (left axis) and cell types 

(right axis) across four studies. While most cell-specific marker genes are conserved 

across different studies, variations of expression percentage of some marker genes 

were observed (red box). Dot diameter indicates the proportion of cluster cells 

expressing a given gene. Color indicates different studies. QC: quiescent centre. 
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Figure 4. Visualization of expression of phosphate transporters in different cell 
types. 
(A) and (B), Single Cell App screenshot of for expression of PHT1;1 (A) and PHO1;H3 

(B) across used studies Cells with less than 5 and 3 reads were filtered out for PHT1;1 

and PHO1;H3, respectively. PHT1;1 is mainly expressed in trichoblast, atrichoblast 

and cortex; PHO1;H3 is mainly expressed in endodermis. 

(C), Expression of expressed phosphate transporters across the four indicated 

studies. Clusters of cells highly expressing PHT1;1 and PHO1;H3 are represented by 

light blue boxes. Expression percentage of PHT1;1 in cluster 12 from Jean et al. (2019) 

was less than the other three studies. Protoplasting-induced genes are highlighted in 

red text. Although induced by protoplast isolation, PHT1;4 and PHO1 are still 

expressed cell-specifically (red boxes), with PHT1;4 expressed in cortex and 

atrichoblast, and PHO1 expressed in pericycle/phloem. 

 

Figure 5. Expression of hormone marker genes in different cell types. 
(A) Distribution of tau values for 643 known hormone marker genes in the combined 

root scRNA-seq dataset. The average expression of all cells from the same cell type 

was calculated. This was then used to calculate a tau value across all cell clusters. 

Dark grey bars highlight tissue-specific values of tau > 0.85, which indicates high 

cluster specificity. Amongst the 643 detected genes, 132 have cell specific expression 

(Supplemental Table 7).  

 

(B) Expression of 23 JA marker genes in different cell types. TIFY8 is the only of these 

with tau > 0.85 and is expressed specifically expressed in the endodermis. 

 

Supplemental Figure 1. The architecture of the Single Cell App. 
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Figure 1. Screenshot of the Single Cell Browser Layout.

(A) Meta information of the selected experiment. Clicking the “View Experiment Details” will provide 
more information about the experiment.
(B) Color mode of displaying data and filtering cells based on gene expression level. In Cluster 
mode, each color represents a cell cluster while in Values mode, the color represents the expression 
level of a searched gene. Cells can be filtered by dragging the Expression Value range bar.
(C) Search tab. Genes can be searched based on the Gene Ontology or gene id.
(D) Three dimension of the UMAP clustering. Each dot represents a cell.
(E) Check box for dataset selection, this can be used for showing cells from specified dataset.
(F) Cluster legend. Each color represents a cluster, the number shows the cluster id. Clicking each 
cluster will hide/show the cells from this cluster.
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Figure 2. Cell Heterogeneity in Arabidopsis Root.

(A) Visualization of 21 cell clusters using UMAP. Dots, individual cells; n = 16,213 cells; color, 
cell clusters.
(B) Expression pattern of representative cluster-specific marker genes. Dot diameter, proportion 
of cluster cells expressing a given gene. Color, mean expression across cells in that cluster. QC: 
quiescent centre. The full names of selected genes are given in Supplemental Table 1.
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Figure 3. Expression of known cell-specific marker genes across four studies.

Expression of cell-type marker genes in different cell clusters (left axis) and cell types (right axis)  
across four studies. While most cell-specific marker genes are conserved across different 
studies, variations of expression percentage of some marker genes were observed (red box). 
Dot diameter indicates the proportionof cluster cells expressing a given gene. Color indicates 
different studies. QC: quiescent center.
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Figure 4. Visualization of expression of phosphate transporters in different cell types.

(A) and (B), Screenshot of expression of PHT1;1 (A) and PHO1;H3 (B) across all studies from 
Single Cell App. Cells with less than 5 and 3 reads were filtered out for PHT1;1 and PHO1;H3, 
respectively. PHT1;1 is mainly expressed in trichoblast, atrichoblast and cortex; PHO1;H3 is 
mainly expressed in endodermis.
(C), Expression of expressed phosphate transpoters across four studies. Clusters highly 
expressing PHT1;1 and PHO1;H3 were highlighted with lightblue boxes. Expression percentage 
of PHT1;1 in cluster 12 from Jean et al. (2019) was less than the other three studies. 
Protoplasting-induced genes were marked as red text. Althought induced by protoplast isolation, 
PHT1;4 and PHO1 still show cell-specific expression pattern (red boxes) with PHT1;4 specificlly 
expressed in cortex and atrichoblast, PHO1 specificly expressed in pericycle/pholem.
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Figure 5. Expression of hormone marker genes in different cell types.

(A) Distribution of tau values for 643 known hormone marker genes in the combined root 
scRNA-seq dataset. The average expression of all cells from the same cell type was calculated. 
This was then used to calculate a tau value across all cell clusters. Dark grey bars highlight 
tissue-specific values of tau > 0.85, which indicates high cluster specificity. Amongst the 643 
detected genes, 132 have cell specific expression (Supplemental Table 7). 

(B) Expression of 23 JA marker genes in different cell types. TIFY8 is the only of these with tau > 
0.85 and is expressed specifically expressed in the endodermis.
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Supplemental Figure 1. The architecture of the Single Cell app. 
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