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Abstract 

Trait stability of measures is an essential requirement for individual differences research. 

Functional MRI has been increasingly used in studies that rely on the assumption of trait 

stability, such as attempts to relate task related brain activation to individual differences in 

behavior and psychopathology. However, recent research using adult samples has questioned the 

trait stability of task-fMRI measures, as assessed by test-retest correlations. To date, little is 

known about trait stability of task fMRI in children. Here, we examined within-session reliability 

and longitudinal stability of task-fMRI using data from the Adolescent Brain Cognitive 

Development (ABCD) Study using its tasks focused on reward processing, response inhibition, 

and working memory. We also evaluated the effects of factors potentially affecting reliability 

and stability. Reliability and stability [quantified via an intraclass correlation (ICC) that focuses 

on rank consistency] was poor in virtually all brain regions, with an average ICC of .078 and 

.054 for short (within-session) and long-term (between-session) ICCs, respectively, in regions of 

interest (ROIs) historically-recruited by the tasks. ICC values in ROIs did not exceed the ‘poor’ 

cut-off of .4, and in fact rarely exceeded .2 (only 5.9%). Motion had a pronounced effect on 

estimated ICCs, with the lowest motion quartile of participants having a mean reliability/stability 

three times higher (albeit still ‘poor’) than the highest motion quartile. Regions with stronger 

activation tended to show higher ICCs, with the absolute value of activity and reliability/stability 

correlating at .53. Across regions, the magnitude of age-related longitudinal (between-session) 

changes positively correlated with the longitudinal stability of individual differences, which 

suggests developmental change was not necessarily responsible for poor stability. Poor reliability 

and stability of task-fMRI, particularly in children, diminishes potential utility of fMRI data due 

to a drastic reduction of effect sizes and, consequently, statistical power for the detection of 
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brain-behavior associations. This essential issue needs to be addressed through optimization of 

preprocessing pipelines and data denoising methods.   
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Introduction 

 Task-based functional magnetic resonance imaging (fMRI) has become a leading 

methodological approach in cognitive neuroscience. While initial application of fMRI focused on 

group-level effects such as average differences in regional brain activation between different 

stimuli, more recently fMRI has been increasingly applied to individual differences research 

such as across-subject correlation between task-related brain activation and other variables such 

as genetic markers, behavioral and cognitive performance, psychological traits, and 

psychopathology. Much of this research critically relies on the assumption that the magnitude of 

task-related regional activation is a stable trait-like measure, with individual differences between 

subjects prevailing over within-subject fluctuations between testing occasions, which is often 

quantified by test-retest reliability (intraclass correlation).1 

However, recent studies have shown generally poor test-retest reliability of task-fMRI 

measures (Elliott et al., 2020; Herting, et al., 2018; Noble et al., 2021). Importantly, 

reproducibility of group-averaged patterns of activation can still be high despite poor stability of 

intra-individual differences in the magnitude of activation (Chaarani et al., 2021; Herting et al., 

2018), since averaging reduces error variance, as prescribed by basic statistical theory. In the 

most representative study to date, Elliott et al. (2020) performed a meta-analysis of 56 test-retest 

reliability studies using various sensory, motor, and cognitive tasks, finding an average reliability 

of .397. Task specific average reliability [limiting to studies that reported all reliabilities 

                                                           

1
 It is important to distinguish between measures intended to capture a stable trait-like attribute versus measures 

that may be heavily influenced by state effects (such as attention, caffeine level, hydration, previous night sleep 

quality, current anxiety level, etc). A measure could in principle have a high test-retest reliability if measured in a 

consistent and well-controlled subject state, yet empirically appear to have a low reliability because possible state 

influences are either not controlled, or the relevant state influences affecting the measurement are simply 

unknown. While it is highly valuable from a scientific perspective to study the effect of state on both within- and 

between-subject variance (and thus reliability), a measure that is only reliable under limited, state-specific 

conditions is by-definition not a stable “trait-like” measure. 
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calculated, though most were region of interest (ROI), only and not whole brain] ranged from a 

low of -.02 for an implicit memory encoding task (Brandt et al., 2013) to a high of .87 for a pain 

stimulation task (Taylor et al., 2009). All studies surveyed in Elliott et al. (2020) had sample 

sizes under 60 subjects, most subjects were adults, and test-retest intervals were all under six 

months, with most under one month. Moderator analyses did not identify significant differences 

in reliabilities when comparing task type, event vs block design, scan duration, intertrial interval 

length, or clinical vs non-clinical sample, but did find lower reliabilities in subcortical relative to 

cortical brain regions. In a recent review, Noble et al., (2021) identified factors that tend to lead 

to higher test-retest reliability: shorter test-retest intervals, simple compared to complex tasks, 

brain regions with stronger activation, cortical regions rather than subcortical, and non-clinical 

populations. Recent studies in our lab examining the factors affecting test-retest reliability in 

brain recruitment by risk-taking and response inhibition tasks found that reliability increased 

with shorter interscan intervals, increasing scan duration, in ROI relative to general brain search 

space, and with lower subject movement, though the use of the denoising via multirun spatial 

ICA (Glasser et al, 2018) plus FIX (Salimi-Khorshidi et al., 2014) ameliorated the negative 

impact of increased subject movement (Korucuoglu et al., 2021). 

A major implication of poor reliability for research relying on individual differences is 

diminished measured effect sizes and statistical power for detecting associations with other 

variables, or diminished ability to detect changes over time in longitudinal or treatment studies 

(Elliott et al., 2020). Detecting small effects requires large samples, which is especially 

problematic for MRI research, given the high cost of assessments (Dick et al., 2021).  

Most previous studies of test-retest stability of task-fMRI were conducted in adult 

samples, and evidence for temporal stability of individual differences in task-fMRI in children is 
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scarce (Herting et al., 2018), despite the widespread use of task-fMRI in developmental research 

in pediatric samples. Stability of individual differences is particularly important for longitudinal 

studies that aim to establish prospective associations between developmental changes in task-

related brain activations and behavior. As one of the primary goals of much of developmental 

psychiatric imaging research is to track how neurofunctional development is associated with 

future onset and course of mental disorders and substance use (Bjork et al., 2018; Feldstein 

Ewing et al., 2018; Giedd et al., 2008; Volkow et al., 2018), knowing what neurofunctional 

variables show stable individual differences is critical. Systematic age-related changes due to 

development do not necessarily preclude test-retest stability of individual differences, provided it 

is operationalized as rank-order stability, such as with the “consistency” ICC(3,1) (Shrout and 

Fleiss, 1979). However, individual variation in the rate of developmental changes will result in 

decreases in longitudinal test-retest stability because it would alter rank-ordering between 

individuals. 

The Adolescent Brain Cognitive DevelopmentSM (ABCD) Study is an ongoing 

longitudinal project examining the neuropsychological development of ~12,000 individuals nine 

to ten-year-olds at enrollment from 21 sites across the United States of America through 

adolescence (Casey et al., 2018). The ABCD Study(C) protocol included three fMRI tasks 

focused on neurocognitive constructs deemed essential for the understanding of adolescent 

development: response inhibition (Stop Signal Task; SST), reward anticipation and processing 

(Monetary Incentive Delay; MID), and working memory (nBack; Casey et al., 2018). However, 

reliability of brain activations elicited by these tasks in the ABCD data has not been established. 

The recent 3.0 release of ABCD data contains fMRI data for two longitudinal fMRI assessments 

conducted two years apart (baseline and the first follow-up), and each of these sessions has two 
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approximately five-minute runs for each task. This enables test-retest reliability assessment at 

two time scales. 

Our goal was to examine both within-session, between-run reliability (which is analogous 

to split-half internal consistency reliability in psychometrics; Heale and Twycross, 2015) and 

between-session longitudinal stability of regional brain activations elicited in the three ABCD 

fMRI tasks. This information is essential to evaluate potential utility of the task fMRI data for 

predictive and inter-individual association analyses, as well as to evaluate potential effects of 

different region- and subject-level factors on reliability such as relevance of the brain region to 

the targeted neurocognitive construct, the magnitude of activation, amount of in-scanner 

movement, and sex. Additionally, an important factor that may affect within-session reliability is 

change in task-related BOLD responses over the course of the session (possibly reflecting task 

habituation, sensitization, or restructuring of activity as the task proceeds due to factors like task 

learning, automation, and attention). These factors can be measured by computing within-session 

change in activation, and can reduce reliability if the degree of change is inconsistent across 

individuals. For example, a previous study reported significant habituation of amygdala 

activation to emotional faces over a 4.5 min task; furthermore, the rate of decrease had a 

reliability of ~.5 (Plichta et al., 2014), far exceeding the reliability of the activity itself (.16 for 

the left amygdala, -.02 for the right; Plichta et al., 2012).  

Our approach is not wholly analogous to most fMRI reliability studies (surveyed in 

Elliott et al., 2020). While we are using the same intraclass correlation analysis approach as other 

researchers, the intervals between the scans being compared differ (no interval or two years vs. 

one day to six months). Moreover, the two-year span of ABCD is occurring across a major 

period of brain development across adolescence. Our between-session analyses may thus be 
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subject to developmental effects that could make a task appear less reliable than reliability 

analyses using a short test-retest interval or a similarly-long interval between points in adulthood 

that would presumably be less impacted by developmental differences. For this reason we are 

hesitant to label the between-session intraclass correlation results as test-retest reliability and 

instead prefer the term longitudinal stability (note that the consistency intraclass correlation 

measure used here allows for group level differences; reliability does not decrease if everyone 

changes in the same direction and to the same extent).  

 We hypothesized that both within-session reliability and longitudinal stability would be 

poor on average, given previous research for the MID, SST, and nBack (Blokland et al., 2017; 

Caceres et al., 2009; Fleissbach et al., 2010; Holiga et al., 2018; Korucuoglu et al., 2021; Plichta 

et al., 2012; Schlagenhauf et al., 2008; Zanto et al., 2014), with within-session ICCs potentially 

negatively impacted by variable within-session change across individuals. Of note, fractionating 

the events of a event-related task that requires multiple runs in order to attain enough events to 

model, such as the MID task, may result in tepid and unreliable activation in each run singly, if 

the number of events of a given trial type (e.g. reward/loss magnitude) dips below a critical non-

linear inflection point of events needed within a single run to yield a reliable activation given a 

certain n of subjects (Chen et al., 2021).  

We also predicted that stability ICCs would be potentially negatively impacted by the 

long retest interval (Noble et al., 2021) and developmental change between sessions. 

Nonetheless, it is important to empirically establish the reliability and stability of the ABCD task 

fMRI data, and if these are indeed generally poor, assess how poor ICCs will affect results. It is 

also important to investigate some of the factors that may influence ICCs, as a way to understand 

potential avenues for maximizing ICCs. In that regard, we expected ROIs to have modestly 
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higher ICCs than regions with lesser task relevance and by extension less consistent incidence of 

activation in the literature. We expected within-session reliability to increase with age, as 

movement decreases with age in developmental samples (Engelhardt et al., 2017) and movement 

is a considerable source of additional variance in imaging research (Bright and Murphy, 2017; 

Diedrichsen and Shadmehr, 2005). Consistent with our previous findings in an adult sample 

(Korucuoglu et al., 2020; Korucuoglu et al., 2021), we expected more active regions to be 

modestly more reliable. As developmental change typically occurs at different times and rates 

(Marceau et al., 2011) and the pubertal hormones associated with development are also related to 

functional activity in reward, emotional processing, and cognition processes targeted by the 

imaging tasks (Dai and Scherf, 2019), we expected regions that exhibit greater mean longitudinal 

change to also have lower longitudinal stability (i.e., a negative correlation of between-session 

change with between-session ICCs) as it seems likely (although not certain) that regions with 

greater mean longitudinal change will concurrently be more likely to have changes in rank-order 

between individuals over that interval given the variance in onset and speed of change, and thus 

lower ICCs. We also expect that activation estimated from larger regions is less susceptible to 

noise (though this assumes the region is filled with consistent activity), and therefore expect 

larger regions to be more reliable relative to smaller regions.  
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Methods 

 Participants 

 The individuals and data used for our study come from the ABCD Study’s “Curated 

Annual Release 3.0” (https://nda.nih.gov; NDA Study 901; DOI 10.15154/1519007). This data 

release includes two sessions worth of imaging data (structural, task fMRI, and resting state 

fMRI), with 10,432 individuals in the baseline session (having structural scans that passed 

ABCD’s pre- and postprocessing quality control and fMRI scanning fields that covered the 

participant’s brain), and approximately half of them (n=5,205) having processed data available 

from their first follow-up visit (on average two years later). Task fMRI data was required to pass 

ABCD’s quality control recommended inclusion flag2, leaving 7730 to 8737 individuals, 

depending on task, within the baseline session [mean (SD) age = 9.94 (0.63), 51% male across 

tasks] and 4264 to 4438 individuals at first follow-up [11.93 (0.64) years old, 53% male] (Table 

1). Participants were recruited primarily through school systems with the aim of reflecting 

American diversity in sex, urbanicity, race and ethnicity, and socioeconomic status (Garavan et 

al., 2018). Informed assent was gathered for ABCD participants and consent from their parents 

or guardians. All procedures were approved by the central ABCD Institutional Review Board 

(IRB) and/or the IRB for the local scanning site. 

[Insert Table 1] 

ABCD Study: Data, Processing and Task Description 

                                                           

2
 Variables imgincl_{mid,nback,sst}_include of the abcd_ingincl01 instrument. See “ABCD 

Release 3.0 release notes”, available at https:/nda.nih.gov/edit_collection.html?id=2573  
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Each of the three fMRI tasks collected by ABCD consist of two approximately five-

minute consecutive runs. The released task-activation data were processed through ABCD’s 

“Data Analysis, Informatics and Resource Center” (DAIRC) image processing pipeline (Hagler 

et al., 2019), which includes motion correction and frame censoring by degree of movement, 

correction for susceptibility-induced distortions, functional-structural coregistration, activity 

normalization, and activity sampling onto the cortical surface, carried out using FreeSurfer 

(Fischl et al., 2002), FSL (Jenkinson et al., 2012), and AFNI (Cox, 1996). Imaging data quality 

and task performance were evaluated by ABCD’s DAIRC as part of quality control. Based on 

their evaluation, at baseline, 26% of MID, 34% of nBack, and 32% of SST scans failed quality 

control; at follow-up those percentages were 22%, 21%, and 25%, respectively. A breakdown of 

the number of subjects who passed the ABCD’s quality control measures is available in Table 1. 

Poor behavioral performance and insufficient fMRI frames appear to be the main causes of 

participant exclusion for both sessions. The ABCD Release 3.0 data provides estimated 

activation betas for each run and modeled contrast included in the task general linear model, for 

cortical parcels in the gyrus-defined Desikan-Killiany parcellation (68 parcels, Desikan et al., 

2006) and a more granular gyrus- and sulcus-defined Destrieux parcellation (148 parcels, 

Destrieux et al., 2010), as well as for thirty subcortical structures based on the FreeSurfer 

segmentations (Fischl et al., 2002). These approaches use the individual’s own structural data to 

derive the boundaries of these different regions, rather than applying a generic common space 

labelled atlas.  

The ABCD fMRI task battery includes the Monetary Incentive Delay (MID), Stop-Signal 

(SST), and nBack tasks (Casey et al., 2018). The MID task is designed to elicit functional 

activity when people are anticipating and experiencing different magnitudes of reward and loss. 
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The SST is designed to elicit response inhibition and error monitoring activity by asking 

participants to respond quickly to a “Go” cue, unless it is followed by a second “Stop” cue that 

prompts participants to cancel their response. The Emotional nBack is designed to elicit brain 

activations related to working memory, with a value-added probe of social information 

processing by showing participants blocks of images of places or emotional or neutral faces. The 

task requires participants to determine whether the current image matches a static target (0-back 

condition) or the image that occurred 2 images back (2-back condition). These tasks were 

implemented by ABCD because brain signatures of reward anticipation, response inhibition, 

error processing, and working memory change considerably during adolescence (Blakemore et 

al., 2010; Sheffield Morris et al., 2018) and have important implications for risk of substance use 

and psychopathology (Bjork et al., 2017; Giedd et al., 2008). For more information about these 

tasks, see the Supplemental Methods Expanded Task Description section or Casey et al. (2018). 

Data Analysis 

Within-session reliability was calculate with the ICC(3,2) formula and longitudinal 

stability with the ICC(3,1) formula (Supplementary Methods Reliability Formulae section; 

McGraw and Wong, 1996; Shrout and Fleiss, 1979) using the ‘icc’ command in R’s IRR 

package (Gamer et al, 2019). Both are “consistency” measures of reliability, which focus on the 

relative stability of values. The ICC(3,2) model estimates reliability for the average of the two 

inputs (i.e., the estimated reliability one would achieve using the full 10 minutes of data), which 

is appropriate since we assume that researchers will almost always use both runs of within-

session task data in their analyses. Conversely, we used ICC(3,1) for estimating longitudinal 

stability, since sessions are again the “basic level” at which analyses will be conducted with 

ABCD data. Cicchetti (1994) provides guidelines marking reliabilities below .4 as poor, .4-.59 as 
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fair, .6-.74 as good, and .75-1.0 as excellent. Note that negative ICC estimates are possible for 

the sum-of-squares based estimator in the ‘irr’ package; negative ICCs were kept as is (i.e., not 

dropped or set to zero) to avoid an upward biasing of results. Analyses examining longitudinal 

stability, change between-session, and activity for each session used beta values provided in the 

ABCD Release 3.0 that were already averaged across both runs, weighted by the number of 

retained frames in each run. All other analyses used run-specific beta values from the ABCD 

Release 3.0.  

Significance of functional activity for each contrast was calculated as a one-sample t-test 

against a null-hypothesis of 0. Differences in activity between sessions (activity at follow-up 

minus baseline) and within-session (activity in run 2 minus run 1) was tested using a paired t-

test, reported as Cohen’s D effect sizes (mean of the pairwise differences divided by standard 

deviation of the pairwise differences), and thresholded for significance (p < .05) after a false 

discovery rate (FDR) correction for multiple comparisons across the number of regions (but not 

across contrasts or tasks). This correction was done on the combined Destrieux parcels and 

FreeSurfer subcortical structures. We only report data from the Destrieux parcellation and the 

FreeSurfer subcortical segmentation in the main text. The Desikan-Killiany reliability, stability, 

activity, and change values were calculated and are reported in the Supplementary Materials, but 

were not used for any statistical analyses, as the more granular Destrieux parcellation allows for 

better localized estimates of reliability, stability, activity, and change. Subcortical structures 

analyzed were limited to those with gray matter, excluding ventricles and white matter, leaving 

19 structures [left and right hemisphere accumbens, amygdala, caudate, cerebellum cortex, 

hippocampus, pallidum, putamen, thalamus, and ventral diencephalon, plus the brainstem (which 

contains both gray and white matter)]. 95% confidence intervals for the reliability, stability, 
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activity, and change analyses are provided in the Supplementary Materials Data Output. The 

variance components used to calculate consistency ICCs, namely MSR (the variance across each 

individual’s average value) and MSE (the error/residual variance) were calculated to better 

understand what factors were responsible for differences in within-session reliability for each 

session. The formulae for the variance components and ICCs can be found in the Supplemental 

Reliability Formulae section.  

The initial ABCD quality controlled (QC) sample was the basis for the creation of three 

additional samples that were used to examine the effects of statistical approaches to data 

cleaning, namely outlier removal (QC+OR), motion regression (using the framewise 

displacement variable3) followed by outlier removal (QC+MV+OR), and rank normalization 

(QC+Rank). These samples were compared in paired-t tests. For more details, see the Data 

Cleaning section of the Supplement.  

Within-session reliability, longitudinal stability, activity, and change statistics for each 

contrast and sample were converted into CIFTI ‘pscalar’ (parcellated scalar; Glasser et al., 2013) 

format for display and data dissemination purposes. Data is available on BALSA at 

https://balsa.wustl.edu/study/7qMqX. Maps of significant activity and change were created for 

only the QC and outlier removed (QC+OR) samples, as the movement regression (QC+MV+OR) 

and rank normalization (QC+Rank) approaches both mean center the data, rendering the 

computation of activity and change in those samples moot. Region and contrast specific 

reliability, stability, activity, and change values are also provided as supplemental tables. The R 

code used to generate the datasets, reliability, stability, activity, change, and ICC components are 
                                                           

3 tfmri_{mid,nback,sst}_{all,run1,run2}_beta_mean.motion using the harmonized “DEAP” variable name, as 
specified in the “21. abcd_3.0_mapping.csv” file in the ABCD Release 3.0 release notes, which also provides the 

mapping to the NDA instrument and corresponding NDA variable name in which the mean framewise 

displacement values can be located. 
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provided as supplements. All subsequent analyses comparing reliability, stability, activity, and 

change were performed using SPSS v27 (IBM Corp, 2020).  

Reliability, Stability, Activity, and Change 

 Regions of Interest 

As our primary analysis we examined if the regions most consistently recruited by the 

cognitive demands of each specific task in previous research were more reliable, stable, 

significantly more active, or subject to greater within or between-session change. To this end, of 

the total 26 contrasts (10 MID, 9 nBack, 7 SST) included in the processing of the ABCD Release 

3.0 data, we identified ROIs for eight targeted contrasts by taking the peak and secondary peak4 

points from meta-analyses that report a priori important regions for each process targeted by the 

task/contrast, converting to Montreal Neurological Institute (MNI) coordinates if necessary using 

the converter included with GingerALE version 3.0.2 (Eickhoff et al., 2011), and identifying the 

Destrieux parcel or subcortical structure in which this coordinate fell. The same approach was 

used by Korucuoglu et al (2021). This is not an ideal approach as the parcels/structures are 

originally generated based on an individual’s specific anatomy and some variation in location 

within MNI space can be expected, but is reasonable given that the meta-analyses themselves 

report results in a common (MNI or Talairach) space. The targeted contrasts and their associated 

meta-analyses are as follows: MID (Supplemental Figure 1): anticipation of reward (large and 

small reward trials admixed) vs neutral, anticipation of loss (large and small loss trials admixed) 

vs neutral, and reward vs missed-reward feedback, positive vs neutral from Oldham et al. (2018); 

nBack (Supplemental Figure 2): 2- vs 0-back from Yaple et al. (2018), face vs place, and 

                                                           

4 A part of a large cluster with activity higher than its surrounding voxels that is not the highest point in the entire 
cluster. 
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emotional face vs neutral face contrasts, both in Muller et al. (2018); SST (Supplemental Figure 

3): correct stop vs correct go from Swick et al. (2011) and incorrect stop vs correct go from Neta 

et al., (2015). There were a total of 57 unique regions (35 ignoring laterality) across the 8 

contrasts. Between 7 and 20 ROIs were identified for each contrast, with 20 regions appearing in 

at least 2 contrasts. See Supplementary Table 1 for a list of ROIs by contrast.  

 ROI vs Non-ROI Comparison 

The resulting ROIs can be considered to represent the regions that meta-analyses have 

established as among the most “task relevant” for the principal domains (i.e., contrasts) targeted 

by each task. To examine the impact of this “task relevance”, for each of reliability, stability, 

activity, and change (both within and between-session), we directly compared the ROI results 

with the remaining regions (“non-ROIs”, i.e., rest of the brain) for each of the 8 contrasts, using 

an independent sample t-test. We used an FDR correction across the number of contrasts, but the 

analyses for reliability, stability, activity, and change were each treated independently.  

 Whole Brain 

As it is debatable what regions should be considered ROIs, and since, to the best of our 

knowledge, meta-analyses to guide selection of ROIs were unavailable for 18 of the 26 contrasts, 

unbiased, whole-brain analyses were also conducted for all contrasts. Whole brain analyses also 

included four condition vs baseline contrasts while the ROI analyses were restricted solely to 

condition vs condition contrasts. 

Movement Quartile Comparison Analyses 

To examine the effects of in-scanner movement on ICCs, the QC sample was first 

subdivided into four subgroups based on quartiles of mean framewise displacement, then 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463750doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463750


framewise displacement was regressed from beta values (within quartile), and finally outliers 

greater than 3 standard deviations from the mean were removed (within quartile recursively, until 

no new additional outliers were identified). Reliabilities and stabilities were computed separately 

for each movement quartile. Each quartile’s regional values were compared against each other 

quartile for each ICC measure using paired t-tests. Comparisons surviving an FDR correction for 

the number of quartile comparisons (6) for a reliability/stability measure multiplied by the 

number of contrasts were reported in the form of the average difference between quartiles. This 

was done for both ROIs from the 8 targeted contrasts, and at the whole brain level across all 

contrasts. Further details can be found in the Supplemental Movement Quartile Samples section. 

Analyses of Age-Related Change in Reliability  

Within-session reliabilities of the baseline and follow-up sessions were compared to 

examine how age affects reliability. Within-session reliability at the contrast-level at baseline 

and follow-up were compared (follow-up minus baseline) to each other in paired-t tests using 

whole brain data from the QC+OR sample (the movement quartile analyses used the QC sample 

as outlier distributions would likely vary across movement quartile but not intersession interval 

quartile/decile). Contrasts with a significant difference in reliability across regions after an FDR 

correction for number of contrasts are reported in the form of the average change in reliability 

across regions from baseline to follow-up. Similar paired t-tests were computed for the variance 

components that are used to calculate within-session reliability, to examine the contribution of 

the separate ‘MSR’ and ‘MSE’ components to the age-related difference in the within-session 

reliabilities. 

Post-Hoc Analyses of Correlates of Reliability and Stability 
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Reliability and stability were correlated with the absolute value of activity and change, 

regional volume, and with each other to establish what relationships exist between these 

measures. A more detailed overview of these methods can be found in the Supplemental 

Methods’ ICC’s Association with Activity, Change, Volume, and other ICCs section. Post-hoc 

analyses of the following topics were also explored: differences in ICCs between occipital and 

non-occipital regions; differences in ICCs between condition vs condition contrasts and the 

relevant condition vs baseline contrasts; sex differences in ICCs; differences in stability 

computed separately for run 1, run 2, and the averaged data (of both runs); comparison of within- 

and between-session change; the longitudinal stability of within-session change; the between-

session change in behavioral variables that may be associated with change in within-session 

reliability; differences in ICCs by length of intersession interval; and similarities in individual 

activity across condition vs baseline contrasts, since high correlation of activity across different 

condition vs baseline contrasts has been found to be associated with poor reliability in the 

composite condition vs condition contrasts (Infantolino et al., 2018). The methods, rationale and 

interpretation of each of those analyses are described in the Supplemental Methods Data 

Cleaning and Analyses sections.  
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Results 

Reliability, Stability, Activity, and Change in ROIs 

Mean reliability and stability in ROIs, averaged across the targeted contrasts for all 3 

tasks in the full “QC” sample, was .069 (SD=.075) for within-session reliability at baseline, .088 

(.089) for within-session reliability at follow-up, and .054 (.052) for longitudinal stability (Figure 

1A). All ROI reliabilities and stabilities were poor (i.e., < .4). In the QC sample, only 0.62% of 

ROIs had reliabilities or stabilities over .3 while only 5.9% had reliabilities or stabilities over .2. 

These poor ICCs occurred despite the fact that the ROIs were indeed generally activated at the 

group level by their respective tasks (Figure 1C) – 100 of 108 ROIs were statistically “active” 

(after FDR correction) at baseline and 96 were active at follow-up, with an average (absolute 

value) Cohen’s D of 0.228 (0.157) at baseline and 0.253 (0.167) at follow-up. An appreciable 

percentage of ROI ICC estimates were negative, with 15.7% negative within-session reliabilities 

at baseline, 13.9% within-session reliabilities at follow-up, and 12% negative for longitudinal 

stability. ROIs were also subject to statistically significant change in activation (Figure 1D), but 

only in 69 ROIs within-session at baseline, 35 ROIs within-session at follow-up, and 27 ROIs 

between-session. 

[Insert Figure 1] 

Data cleaning slightly increased mean ICCs (though average values remained poor) from 

.070 (.074) for the QC sample (mean (SD) across ICCs) to .092 (.076) for QC+OR, to .091 

(.076) for QC+MV+OR, and to .093 (.075) for QC+Rank. While these increases in mean ICCs 

were small, they occurred consistently, such that the increase was highly significant (all p values 

from paired t-tests comparing data cleaning types to QC sample < .001, Cohen’s D for paired 
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comparisons of QC vs QC+OR sample: -0.370; vs QC+MV+OR: -0.349; vs QC+Rank = -0.437; 

Figure 1A).  

A much bigger impact was observed by subsetting participants into different movement 

quartiles, where mean ICCs in ROIs was more than three times higher in the lowest movement 

group [1st quartile; average (SD) across ICCs of .156 (.120)] compared to the highest movement 

group (4th quartile; .044 (.070); paired comparison significance p < .001; 1st-4th Cohen’s D = 

0.958; Figure 1B). Nonetheless, mean ICCs even of the lowest motion quartile remained well 

within the ‘poor’ range. Mean and standard deviations for ROIs by contrast and sample can be 

found in Supplementary Table 2. Analyses comparing reliabilities and stabilities to each other, to 

the absolute value of activity, and absolute value of within- and between session change (using 

values derived from the QC+OR data) found significant positive correlations for all analyses 

(Table 2). Notably, within-session reliability and longitudinal stability were correlated at greater 

than .80 (across regions, see Supplemental Figure 4B for the 2 vs 0-back correlations of 

reliability and stability), indicating that more reliable regions tended to be more reliable, 

regardless of when assessed. More modest correlations (.410-.583) were observed between 

reliabilities and stabilities with the absolute value of activity and between-session change, while 

the correlations between ICCs with the absolute value of within-session change were weaker, 

though still significant (.231-.435). These results show that more reliable and stable regions tend 

to also be more active, as hypothesized, but also more subject to change, in contrast to what we 

hypothesized. 

[Insert Table 2] 

The preceding analysis used mean ICCs across a priori defined ROIs as a way to broadly 

summarize our findings. However, the different tasks and contrasts are targeting different aspects 
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of functional processing and it is natural to wonder if ICCs may be higher in particular contrasts. 

Thus, analyses were repeated at the contrast level. Mean ICCs (across the ROIs for each 

contrast) was highest in the 2 vs 0-back contrast [mean (SD) ICC for within-session reliability at 

baseline: .113 (.077); for reliability at follow-up: .160 (.070); longitudinal stability: .103 (.053)] 

and was lowest in the emotion vs neutral face contrast [ICC for within-session reliability at 

baseline: .053 (.074); for reliability at follow-up: .009 (.041); and for longitudinal stability: .014 

(.033)]. Contrast specific comparisons of the 1st and 4th movement quartiles generally confirmed 

our finding of higher ICCs in the lowest movement quartile for the individual contrasts, with a 

significant difference in 19 of 24 comparisons (Table 3). 

[Insert Table 3] 

Comparison of ROIs and Non-ROIs 

Reliability and stability values in ROIs were not significantly higher than reliability and 

stability in non-ROIs, regardless of data cleaning method (Figure 1A), even though post hoc 

comparisons found ROIs were significantly more active (independent sample t-tests comparing 

one sample Cohen’s D values, mu=0, of ROIs vs non-ROIs using the QC+OR sample; baseline: 

Cohen’s D 0.576, p = .001; follow-up: Cohen’s D 0.628, p < .001, Figure 1C). ROIs were subject 

to greater within-session change at baseline before and after data cleaning and between-session, 

though the between-session differences were only observed after removing outliers (Figure 1D).  

Contrast specific analyses found significantly greater ICCs in ROIs relative to non-ROIs 

only for the 2 vs 0-back contrast of the nBack (Supplemental Figure 5 shows contrast specific 

bar graphs). Greater absolute value of activity in ROIs relative to non-ROIs was observed in 

most contrasts at both sessions (10 of 16 analyses, Supplemental Figure 6). Greater absolute 
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value of change in ROIs relative to non-ROIs was found only between-sessions in the 2 vs 0-

back and incorrect stop vs correct go contrasts (Supplemental Figure 7). Table 4 details the mean 

differences between ROIs and non-ROIs when significant differences were observed. 

[Insert Table 4] 

 Whole Brain Analyses 

Since meta-analyses to guide ROI selection were not available for most (18 of 26) of the 

provided ABCD task contrasts, and since what qualifies as a “region of interest” is partly 

subjective, whole brain analyses were also performed for all contrasts. Using the QC sample, 

across all regions and contrasts mean (SD) reliability and stability was .087 (.120) for within-

session reliability at baseline, .091 (.130) for within-session reliability at follow-up, and .061 

(.080) for longitudinal stability. Contrast and sample specific mean (SD) ICCs can be found in 

Supplemental Table 3. Figure 2 (top) shows the mean reliability and stability for each region 

(across all available 26 contrasts). Occipital ICCs tend to be higher than other brain regions, 

while frontal and temporal polar regions lower to the point that average values were often 

negative. Figure 2 (bottom) shows histograms of ICCs in ROIs, non-ROIs, and ICCs in condition 

vs baseline contrasts. The histograms show that ROIs have similar distributions to non-ROIs and 

that the high end of the distribution is primarily regions from contrast vs baseline contrasts. 

Using all participants that passed QC, the percentage of ICC values that were negative were 

18.4% for within-session reliability at baseline, 19.4% for within-session reliability at follow-up, 

and 12.3% for longitudinal stability. This far exceeds the percentage of ICCs that were in the fair 

or higher (> .4) range (2.4% for within-session reliability at baseline, 2.5% for within-session 

reliability at follow-up, and 0.9% for longitudinal stability). Complete data (and figures) for 

reliability and stability per parcel by data cleaning and ICC type (within-session at baseline and 
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follow-up and longitudinal stability) can be found on BALSA at 

https://balsa.wustl.edu/study/7qMqX. 

[Insert Figure 2] 

The data cleaning comparison applied to the whole brain analysis found that removing 

outliers again slightly increased mean ICCs – from a mean (SD) of .080 (.113) for the QC 

sample to .102 (.117) for QC+OR (p < .001); see Supplemental section Effect of Data Cleaning 

and Supplemental Table 4 for a comparison of ICCs by data cleaning approaches. Scatterplots 

comparing region specific ICCs in the 2 vs 0-back contrast before and after outlier removal 

showed that ICCs were greater in the QC+OR sample relative to the QC sample in most regions 

(130, 146, and 161 of 167 total regions for within-session reliability at baseline, within-session 

reliability at follow-up, and longitudinal stability, respectively; Supplemental Figure 4). 

Post hoc analyses identified higher reliabilities and stabilities in certain regions and 

contrasts. The following comparisons are based on the QC+OR sample since outlier removal is a 

common step in data-analysis. ICCs in occipital regions were higher (ICC=.155 (.166)) than in 

the rest of the brain (ICC=.091 (.100)) and ICCs in condition vs baseline contrasts (ICC=.293 

(.149)) were higher than condition vs condition contrasts (ICC=.068 (.066)). For more 

information, see Supplemental Table 5 for contrast specific occipital results, Supplemental Table 

6 for a comparison of condition vs baseline contrasts with the condition vs condition contrasts 

they are associated with, and sections Occipital vs Non-Occipital Comparisons and Reliability 

and Stability in ‘Condition vs Baseline’ vs ‘Condition vs Condition’ Contrasts.  

Movement Quartile Comparison Analyses 
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 A comparison of reliabilities and stabilities computed separately in each of the movement 

quartiles showed significantly higher ICCs in the quartiles with less movement. Figure 1B shows 

the average ICCs for ROIs by quartile. For the whole brain, the average reliability increased 

from .048 for the 4th (highest) movement quartile to .172 for the 1st (lowest) movement quartile 

within the baseline session (� = .124), from .068 to .172 within the follow-up session (� = 

.104), and longitudinal stability increased from .041 to .122 (� = .081). Increasing ICCs with 

less movement was observed in 67 of 78 analyses when comparing 1st to 4th quartiles in paired 

t-tests, though a minority (6) were significantly less reliable or stable with less movement. Figure 

3 shows similar results for the mean ICC across the whole brain, but separated into each of the 

26 contrasts provided by ABCD. Those results show that the nBack task had the contrasts with 

the highest ICCs. Maps of the ICCs for the 2 vs 0-back contrast are shown for all movement 

quartiles in Figure 4. This figure demonstrates decreasing ICCs with increasing movement and 

greater reliability within-session at follow-up (when participants were older) relative to the 

baseline session. Table 3 provides the mean values and their differences for the 1st and 4th 

quartile by contrast for ROIs. A whole brain comparison of ICCs and their components across 

quartiles for each of the 26 contrasts is provided in Supplemental Tables 7 and 8. Complete data 

for regional reliability and stability by movement quartile are available on BALSA at 

https://balsa.wustl.edu/study/7qMqX. 

[Insert Figures 3 and 4] 

 Analyses of Age-Related Change in Within-Session Reliability  

Paired comparisons of the within-session reliability measures and their variance 

components, based on whole brain values from the QC+OR sample, demonstrated significant 

differences between baseline and 2-year follow-up sessions, possibly due to the age difference (2 
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years) between them. Mean within-session reliability across all regions significantly increased 

from baseline to follow-up in most contrasts (15 of 26; average difference across those 15 

contrasts of 0.017, with Cohen’s D effect size across them of 0.483). This effect remained in post 

hoc analyses regressing for movement (reliabilities within-session at follow-up > within-session 

at baseline, paired t-statistic = 19.23, p < .001, Cohen’s D = 0.292). The reliability variance 

components related to inter-individual variance (MSR) and error (MSE) both significantly 

decreased between sessions in most contrasts (MSR: 21 of 26 contrasts; MSE: 23 of 26), with the 

degree of this decrease being greater in MSE than MSR in the majority of contrasts (18 of 26 

contrasts). See Supplementary Table 9 for contrast specific comparison of within-session 

reliabilities by session and Supplementary Table 10 for a comparison of between session change 

in the variance components used to calculate reliability. A scatterplot comparing within-session 

reliability at baseline and follow-up for the 2 vs 0-back contrast based on the QC+OR sample can 

be found in Supplemental Figure 4D. 

High Reliability and Stability Regions and Contrasts 

The results observed so far, examining ROI and whole brain ICCs, suggest that the 

ABCD task fMRI data is largely unreliable and unstable within-subject. However, certain 

contrasts and regions of course had higher ICCs than the averages reported above. Using the 1st 

movement quartile sample from the follow-up (within) session reliability (the sample/session 

with the highest average ICC at .172), 7.0% of the total (26 contrasts by 167 regions) had a 

reliability between .4 and .59 (fair), 2.3% had reliabilities between .6 and .75 (good), and 0.9% 

had reliabilities between .75 and 1 (excellent; Cicchetti, 1994), with reliability highest in the left 

transverse posterior collateral sulcus in the 2-back vs baseline contrast at .899. It is worth noting 

that 83.4% of these regions with fair to excellent reliability occur in condition vs baseline 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463750doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463750


contrasts which generally do not isolate specific aspects of functional processing. Further, 30.5% 

of these contrasts/regions (with ICC > 0.4) occurred within occipital cortex5, despite being only 

17.9% of regions. Only 1.8% (8 of 446) contrasts/regions with reliability > .4 are ROIs (2 vs 0-

back’s bilateral intraparietal and posterior transverse sulcus, left inferior precentral sulcus, and 

left superior precentral sulcus; and face vs place’s bilateral lateral fusiform gyrus, right inferior 

occipital gyrus and sulcus, and left middle occipital gyrus, all values in the fair range). Within-

session reliabilities and stabilities for primary samples/quartiles can be found (and conveniently 

sorted/filtered) in Supplementary - ICC Output, while full results can be found in Supplementary 

- Full Output. 

 Other Factors Affecting Reliability and Stability 

 A number of additional analyses were conducted to better understand possible 

associations between ICCs and other factors. These analyses used whole brain data from the 

QC+OR samples unless otherwise noted in the Supplementary Methods. There was no 

significant relationship between reliability or stability and volume of the ROI or non-ROI parcel. 

See the Supplemental Results’ Association Between ICCs and Task-Related Activation, Age-

Related Change, Region Volume, and other Types of ICCs section for more detailed results 

examining the association of ICCs with other statistics. Supplemental Table 11 contains contrast 

specific correlations of ICCs with other statistics; Supplemental Table 9 contains contrast 

specific results detailing the relationship between different reliability and stability measures; and 

Supplemental Table 10 contains contrast specific comparisons of the differences in variance 

components used to calculate within-session reliability, compared between baseline and follow-

                                                           

5
 Occipital regions are defined as Destrieux parcels with ‘_oc_’ or ‘_occipital_’ in their names as well as the 

calcarine and cuneus. 
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up sessions. Sex differences in ICCs were observed, but whether males or females were more 

reliabile or stable was not consistent across contrasts (See Supplemental Table 12 for a whole 

brain, contrast specific comparison of sex differences and the Development and Sex section of 

the Supplemental Results).  

Variation in habituation may have also degraded reliability in that longitudinal stability 

was higher in the first run relative to the second of tasks. Moreover, in some MID anticipation 

contrasts and emotional nBack contrasts, stability based on the first run of data was higher than 

stability based on the combined runs (Supplemental Table 13 and Comparison of Longitudinal 

Stabilities by Runs section of the Supplemental). Within-session change was generally greater 

than between-session change (Supplemental Table 14, Supplemental Figure 8 shows significant 

within- and between-session change). The amount of within- and between-session change was 

itself not stable, with average longitudinal stabilities across all parcels and contrasts of .013 for 

within-session change (Supplemental Table 15) and .039 for between-session change 

(Supplemental Table 16, see Longitudinal Stability of and Association of Change Within and 

Between Session section of the Supplemental for more detailed analysis of the stability of within 

and between session change). Behaviorally, movement increased within-session and decreased 

between. Performance on all tasks increased between sessions (See Change in Movement and 

Task Performance section of the Supplemental). Age interval analyses found that reliability and 

stability were significantly different depending on intersession interval grouping, but not always 

in the same direction (Supplemental Tables 17 and 18 and Intersession Interval section of the 

Supplemental). Overall, analyses suggested that greater interval was associated with higher 

longitudinal stabilities, and oddly, higher within-session reliability, even in the baseline session 

when such differences should be irrelevant. Comparisons of activity between related condition vs 
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baseline contrasts from the nBack task found modest correlations between activity that were 

related to ICCs in the face vs place contrast, but not the 2 vs 0-back. For more information, see 

the Condition vs Baseline Contrast Correlations section of the Supplement.  
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Discussion 

1. Poor Overall Within-Session Reliability and Longitudinal Stability 

Our main finding was that within-session reliability and longitudinal stability of 

individual differences in task-related brain activation was consistently poor for all three ABCD 

tasks. Data cleaning approaches like outlier removal, movement regression, and rank 

normalization significantly increased reliability and stability, but by a small, seemingly 

inconsequential amount (average change of less than .025). While the finding of poor within-

session reliability and longitudinal stability in the ABCD task fMRI data did not come as a 

surprise, given the mounting evidence for generally lackluster reliability of task-fMRI in mostly 

adult samples (Elliott et al., 2020; Herting et al., 2018; Noble et al, 2021), the present estimates 

are far below the .397 average reliability of task-fMRI activation estimated in the meta-analysis 

by Elliott et al. (2020). The question then arises, what factors could contribute to this particularly 

disappointing outcome? Previous reliability studies largely involved adult participants who will 

likely move less in the scanner and used shorter retest intervals relative to the between session 

analyses (within-session analyses would presumably be subject to habituation/automation/task-

reorganization effects that would diminish over a few weeks; Spohrs et al., 2018). Although 

average ICCs in the ABCD task fMRI data is poor overall and thus subject to a “floor effect”, 

with limited variability of ICC values across tasks, contrasts, and brain regions, we have 

examined these and other factors as potential determinants of reliability and stability. Some 

sample/contrast combinations had values in the fair to excellent range, however these typically 

occurred in the condition vs baseline contrasts where activity is not specific to task relevant 

processing and in the low movement quartile samples. Moreover, the highest reliabilities and 

stabilities were also in occipital lobe, raising the possibility that non-specific responses to 
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actionable visual stimuli are what is most reliable and stable. While the large ABCD sample size 

means there is still sufficient power to identify effects with only a quarter of the sample, 

movement itself is frequently associated with measures of interest (e.g., fluid intelligence, 

externalizing behavior, adiposity; Hodgson et al., 2017; Lukoff et al., 2020; Siegel et al., 2017) 

and limiting analyses to only low movement samples may therefore lead to a biased sample with 

results that are not representative of the general population. 

2. Factors affecting reliability and longitudinal stability 

2.1 In-scanner movement 

To examine the effect of movement on reliability and stability, participants were 

separated into quartiles based on movement and ICCs were calculated separately for each 

quartile. The comparison of ICCs between movement quartiles showed that the lowest quartile 

(the least moving participants) had an average reliability/stability of .155 while the highest 

movement quartile average was nearly a third of that value at .053. Although both ICC values are 

in the “poor” range, this significant difference indicates that efforts to mitigate the impact of 

movement (including frame censoring and motion parameter regression at the preprocessing 

stage, as well as excluding subjects with high movement) did not fully control for the effect of 

movement on ICCs. Decreased ICCs due to movement may be the result of either subthreshold 

movement artifacts distorting activity or a loss of data due to dropping noisy frames. Frame 

removal diminishes the amount of data available for analysis, which can reduce the precision of 

activation estimates and negatively affect ICCs, resulting in a trade-off between data quality and 

quantity. Though this cannot be addressed using the released computed data, reprocessing ABCD 

data with different movement thresholds or removing an equal number of frames from low 

moving subjects (to match frame removal rates from high moving subjects) may better establish 
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how movement affects ICCs. As amount of movement (mean framewise displacement) and 

number of dropped frames are almost fully confounded (r = .97 in the MID task), we cannot say 

whether the loss of data or subthreshold movement effects in the retained frames are responsible 

for the poorer ICCs in high movement quartiles. More generally, our finding of a strong effect of 

our movement quartiles on ICCs calls for approaches to reduce the impact of movement. Data 

driven noise removal (ICA-FIX, Salimi-Khorshidi et al., 2014) has been found to increase 

reliability in high moving adult participants, though by only .06-.08 (Korucuoglu et al., 2021). 

Given  substantially stronger impact of movement on reliability in children, this approach may 

potentially lead to larger ICC gains in children, including ABCD data.  

2.2. The length of retest interval and age-related changes 

Poor longitudinal stability in the ABCD task fMRI data, consisting of children aged 9-10 

at baseline, could conceivably result from a large intertest interval (two years), during which 

significant age-related changes can be expected. However, the present findings do not support 

this hypothesis. First, within-session reliability was also poor for all three tasks. Also, within-

session reliability significantly predicted longitudinal stability in most contrasts. While within-

session reliability could conceivably be poor and not affect longitudinal stability (if each 

individual’s within-session change was consistent for both sessions, a measure could be stable 

between-session and unreliable within), this was not the case, as within-session change was 

found to be unstable (average ICC = 0.013). Further analysis and discussion of the impact of 

within-session change can be found in the Supplemental Within-Session Change section. 

Contrary to our expectation, we found a positive, rather than negative, relationship 

between longitudinal stability and the extent of age-related changes in task-related activation. 

This finding can be explained by two factors. First, the ICC(3,1) indicates “consistency” 
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reliability, i.e., stability of individual differences in terms of relative rank-order of individuals, 

rather than unchangeability of absolute values (Shrout and Fleiss, 1979). Consistency reliability 

is not affected by systematic changes of values between measurements due to factors like 

developmental changes, unless the extent of these changes varies across individuals, in which 

case reliability would be diminished. Since previous studies have reported sex differences in the 

rate of development (Gur and Gur, 2016), we examined stability separately by sex, but did not 

find consistent effects of sex on stability. Discussion of sex differences can be found in the 

Supplemental Development and Sex section. Second, statistical power to detect significant 

changes over time in repeated measures designs, such as age-related changes, increases as a 

function of test-retest reliability (Rochon, 1991; Vonesh, 1986). Measurements with low test-

retest reliability are noisy, and random variance can mask systematic between-session changes, if 

any. Consequently, in our analysis age-related changes could be best detected for measures that 

show at least some longitudinal stability. 

Finally, comparing groups based on low or high intersession interval did not find that 

shorter intervals were associated with higher stabilities (rather stability was generally higher with 

longer intervals). Overall then, our analyses do not find support for developmental change as the 

cause of poor stability in the ABCD sample. 

2.3. Task design and specific contrasts 

Overall, reliability and stability were substantially higher for the working memory 

contrasts, although they were still in the poor range. These task differences may be related to the 

use of an adaptive procedure to equalize performance across subjects in the MID and SST tasks, 

which could also attenuate individual differences in task-related brain activation. 
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Within tasks, there were differences in reliability and stability between specific contrasts, 

which was most evident for nBack task (because reliability for MID and SST was close to zero, 

there was too little variability to examine differences across contrasts within those tasks). 

Contrasts between active condition and baseline consistently showed higher reliabilities and 

stabilities than contrasts between two active conditions (e.g., greater reliability and stability of 2-

back vs baseline compared with 2-back vs 0-back). This is consistent with psychometric and 

neurofunctional evidence (Caruso, 2004; Infantolino et al., 2018) that contrast (difference) scores 

typically show lower reliability than their constituent measures because error variances of both 

constituents contribute to the error variance of the difference score and activity is highly 

correlated for condition vs baseline contrasts. For fMRI measures, this results in a trade-off 

between reliability or stability and validity of activation metrics. For example, an activation 

elicited by emotional faces relative to baseline shows higher ICCs than activation of emotional 

faces relative to neutral faces (which is totally unreliable in the ABCD data). Similarly, Baranger 

et al. (2021) recently demonstrated using a number-guessing reward task that reward activation 

contrasted with baseline had greater reliability than reward contrasted directly with loss. 

However, contrasts with baseline lack specificity because they may include activation elicited by 

emotional content as well as nonspecific activation that can be attributed to any outcome 

regardless of semantic content, and even activation that is common to visual stimuli in general, 

resulting in poor discriminant validity. 

2.4. Regions of Interest 

We expected ROIs to be more reliable and stable than other brain regions because task 

fMRI is specifically intended to activate certain regions engaged in particular cognitive 

processes, and it seems reasonable that individual differences in the degree of activation under 
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task performance would be more consistent over time than regions that are not task-engaged and 

whose activity may fluctuate more (e.g., due to subject state). Indeed, this premise has been 

fundamental to the whole task fMRI endeavor. However, contrary to this expectation, our 

analyses show that, except for the 2 vs 0-back contrast of the nBack, a priori ROIs are not more 

reliable or stable than the rest of the brain. Furthermore, across tasks, higher ICCs were observed 

largely in occipital regions that are generally of limited interest in the context of neurocognitive 

constructs targeted by the tasks used in the ABCD Study. Reliability, and stability were also 

significantly correlated with the absolute value of activity in most contrasts. This was most 

prominent in the face vs place contrast of the nBack (correlations between .78-.81), with most of 

these relationships having a correlation in the range of .4-.5. This is inconsistent with our finding 

of greater activity in ROIs relative to non-ROIs but not accompanying greater ICCs in ROIs for 

most contrasts. A possible explanation is that the effect of activity on ICCs was not strong 

enough to manifest as greater ICCs in ROIs relative to non-ROIs. A different approach to 

identifying ROIs (e.g., data driven relative to based on published meta-analyses) may have given 

different results. 

3. Implications of Low Reliability in the ABCD Task fMRI Data 

The main (and certainly unwelcome) conclusion from the present analysis is that poor 

reliability and stability of child task fMRI activity in the MID, nBack, and SST calls into 

question their suitability for most analyses focused on individual differences, as well as any 

analyses that rely on the assumption (explicit or implicit) that brain activation measures represent 

reliable and stable trait-like variables. Such studies include correlations between brain activations 

and individual differences in behavior or psychopathology (particularly, prospective longitudinal 

brain-behavior associations), within-subject analyses of longitudinal changes, genetic 
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associations, effects of individual differences in environmental exposures, and many other 

research designs. Reliability imposes the upper limit on the measurable correlation between 

variables (Nunnally et al., 1970; Vul et al., 2009), and traits with low reliability or stability 

cannot produce high correlations with other traits, even other highly reliable or stable ones. The 

very large sample size of the ABCD study affords enough statistical power to detect significant 

correlations even with low-reliability/stability traits. However, these correlations will predictably 

be very low, though that does not mean they are not predictive insights into biological 

mechanisms (Dick et al., 2021). 

Since ABCD is an ongoing longitudinal study, a question arises whether there is a 

possibility that poor reliability and stability found in the present analysis is related to the 

participants’ young age, and thus whether, in subsequent longitudinal waves, ICCs will improve. 

Some evidence supports this expectation. We found that within-session reliability increased from 

baseline to follow-up for most contrasts, albeit by a small amount. Part of this increase is likely 

due to movement-related effects, since movement decreased between sessions. However, the 

overall increase over two years was small, with the largest increase in average whole-brain 

contrast wide reliability being .061. Nevertheless, one can reasonably expect at least some 

improvement of ICCs with age, at least until the propensity to move in the scanner stabilizes 

(around the mid-teenage years; Satterthwaite et al., 2012). Our recent study of test-retest 

reliability of the ABCD SST task in a sample of young adults showed fair and even good 

reliability for some contrasts/ROIs, though using a different preprocessing pipeline and 

parcellation (Korucuoglu et al., 2021).  

Another parsimonious account of the lackluster ICCs found here (as well as an account 

for the slight improvement with age from baseline to follow-up) is simply the relatively 
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lackluster task engagement of children compared to adults. This has been evidenced not only by 

decreases in trial-to-trial reaction time variability from childhood to adulthood in signal detection 

tasks (Tamnes et al., 2012), but also evidenced in developmental pupillometry studies, wherein 

for example, task-demand-elicited noradrenergic activation (indexed by pupil dilation) waned 

during memory encoding in children, while remaining active in adults (Johnson et al., 2014), 

resulting in poorer recall in children. It stands to reason that as ABCD participants mature into 

more consistent and unflagging task engagement, this will entail deeper and more consistent 

encoding of task information, that would lend itself to greater reliability and stability. 

Researchers using ABCD task-fMRI data are strongly urged to select variables that show 

at least some trait stability and evaluate the upper boundary of expected correlations or effect 

sizes for other analyses. For example, attenuation of observed correlation between two variables 

can be easily estimated if reliabilities or stabilities of both variables are known with the formula 

rObservedA,ObservedB=rA,B
*sqrt(ICCA*ICCB) where rA,B is the “true” correlation between two 

constructs (Nunnally, 1970); in the ABCD sample, longitudinal stability of variables can be 

readily computed using data from subsequent assessment waves. However, reporting “reliability 

adjusted” correlations is generally inadvisable as the measurement errors responsible for low 

reliability or stability can be correlated between variables and applying the above formula can 

bias results, erroneously increasing or decreasing “true” correlations (Saccenti et al., 2020). For 

cognitive neuroscience research outside of ABCD, we suggest that establishing and reporting 

test-retest reliability and stability of task-fMRI phenotypes is imperative for planning studies and 

publishing results. In particular, computations of statistical power should account for imperfect 

reliability of task-fMRI data, because poor reliability leads to the reduction of the measured 

effect size and, consequently, increases the sample size needed (Baugh, 2002). Post hoc power 
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analyses (calculated with the pwr.r.test R function; Champley, 2018) examining the sample sizes 

needed to find a significant correlation between a variable with a reliability of .8 and a true 

correlation of .3 with variables with reliabilities of .099, .123, and .072 (the average reliabilities 

within-session at baseline, at follow-up, and the average longitudinal stability for ROIs from the 

QC+OR sample), found that samples would need to be 1099, 884, and 1511 participants, 

respectively. While far below the sample available for the ABCD Study, this greatly exceeds the 

average sample size for fMRI studies (Poldrack et al., 2017) and is consistent with research 

finding that large samples are needed to find a consistent correlation between imaging data and 

other variables (Marek et al., in press).  

The preponderance of small effects in imaging research that would necessarily result 

from poor ICCs is one of the reasons large, consortium-scale studies like the ABCD are needed 

(Dick et al., 2021). As the statistical approaches to increasing ICCs addressed here had small 

effects that did not increase reliabilities or stabilities out of the ‘poor’ range, developmental task 

fMRI researchers may need to plan studies around the limitation of poor task reliability. As 

restricting analyses to low movement groups tripled ICCs relative to high movement, a greater 

emphasis on accounting for movement, either through participant training or processing, may be 

warranted. Neglecting the reliability and stability challenges in task fMRI research may result in 

further proliferation of small sample, underpowered studies and dissemination of spurious, false 

positive and non-replicable findings that undermine the credibility of cognitive neuroscience 

research relying on task-fMRI data.  

Our results do not necessarily mean that task fMRI activity is inherently unreliable or 

unstable. It remains unknown how much the reliability of task fMRI could be increased by 

acquiring more data per individual, although the resting-state literature suggests that the gains 
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could be substantial (Birn et al., 2013; Gordon et al., 2017) if the challenges regarding learning 

and adaptation effects in task performance can be managed. Also, the task data released by the 

ABCD Study reflects only one approach to task fMRI processing and processing approaches can 

vary substantially, as do subsequent results, even when using the same data (Botvinik-Nezer et 

al., 2020). Identifying processing approaches that promote reliable and stable individual level 

data is vital to identifying reproducible individual differences in functional activity. Cohort (e.g., 

age) effects may also be a profound factor in the current results. For example, we have reported 

that SST task activity in young adults has fair to good reliability while using the same scanner, 

task design, and scan acquisition parameters as the ABCD Study, but processed using a different 

pipeline (though also with a shorter intersession interval of ~6 months; Korucuoglu et al., 2021). 

While an increase in reliability with age is expected (due to less motion), we cannot definitively 

say that this was the source of the higher reliability in that study, since there were processing 

differences as well, including the use of the Human Connectome Project pipelines (Glasser et al., 

2013) and parcellation using a more functionally relevant multi-modal parcellation (Glasser et 

al., 2016). Notably, ICA-FIX (Glasser et al, 2018; Salimi-Khorshidi et al., 2014) was able to 

increase reliability in subjects with high movement (Korucuoglu et al., 2021), albeit to a small 

extent (average increase in ICC of .06). Ultimately, alternate approaches to processing ABCD 

data and accounting for noise and movement may result in more reliable data. 

Limitations 

These analyses are not without limitations. Reliability values will be influenced by 

differences in within-session change while stability will be influenced by between-session 

change/development that cannot be fully accounted for given the way the data was processed for 

public release (i.e., whole run beta values rather than a more granular analysis of possible 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463750doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463750


temporal effects, such as minute by minute or even block by block estimates). Also, the number 

of sessions available (2) is currently a limitation, as more advanced statistical approaches to 

modelling and accounting for individual differences in change are not available with only two 

sessions of data (e.g., mixed effects modelling of nonlinear trajectories, Herting et al., 2018). It 

may be the case that reliability/stability using these tasks in this age group would improve with a 

brief enough intersession interval to avoid developmental differences but long enough to avoid 

task reorganization/habituation effects, but we cannot establish that with the present data. Meta-

analyses were only available for 8 contrasts, so ROIs were not identified for the remaining 18 of 

26 released contrasts. We investigated reliability in a univariate framework, and it is possible that 

more multivariate-oriented analyses will have higher reliability (Kragel et al., 2020), although 

this remains to be established. Last, data was only available for structurally-based parcellations. 

However, functionally derived parcellations are likely to be more relevant and may be 

accompanied by increased reliability and stability.  

Conclusions 

 Overall, reliability and stability of task-fMRI data in the ABCD sample was poor. 

Movement decreases ICCs, but even selecting only the lowest movement quartile for analysis 

didn’t raise average reliability or stability out of the poor range. ICCs were only very minimally 

improved by the investigated data cleaning approaches. Reliability and stability were generally 

not better in ROIs relative to the rest of the brain. ICCs tended to be best in working memory 

related and condition vs baseline contrasts. Decreases in movement with age may somewhat 

increase ICCs in later ABCD assessment waves. Future ABCD scanning and processing may 

benefit from a more aggressive approach to controlling movement. For the amount of task fMRI 

data collected in the current study (~ 10 min per participant), the MID and SST tasks, and to a 
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lesser extent the nBack task as well, may not be practical for other studies examining childhood 

development unless they can obtain sample sizes in the 1500+ range. 
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Tables 

Participants with usable data by task and session and number of participants passing QC criteria 

  Baseline Follow-Up 
MID nBack SST MID nBack SST 

Sample 
(Male) 

8737 
(4397) 

7730 
(3956) 

8034 
(4071) 

4426 
(2353) 

4438 
(2333) 

4264 
(2228) 

Age (SD) 9.93 
(0.63) 

9.96 
(0.63) 

9.94 
(0.63) 

11.93 
(0.64) 

11.93 
(0.63) 

11.93 
(0.63) 

Performance 8871 7841 8259 4870 4497 4358 
fMRI 8996 8768 8861 4556 4517 4492 
E-Prime 9496 9278 9403 4785 4725 4749 
Series 9533 9335 9241 4895 4846 4867 
 

Table 1: Number of usable participants for each task at each session with mean and standard deviation of their ages, the number that 

are male, and the number passing different quality control criteria. Sample (Male): Sample size for each task at each session; () 

number male; Age (SD): Mean (Standard Deviation) age for each session and task, Performance: Participants with sufficient 

behavioral performance, fMRI: Participants with sufficient frames of fMRI data, E-Prime: Participants with matching E-prime and 

imaging timing, Series: Participants with a usable series of data. 
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Correlation between reliability, stability, |activity|, and |change| in ROIs 

Statistic 

ICC |Activity| |Change| 
Within 
Baseline 

Within 
Follow-Up 

Stability Baseline Follow-Up Within 
Baseline 

Within 
Follow-Up 

Between 

IC
C

 Within Baseline - 0.879 0.817 0.590 - 0.290 - 0.417 
Within Follow-Up 0.879 - 0.802 - 0.583 - 0.231 0.571 
Between 0.817 0.802 - 0.443 0.503 0.435 0.302 0.410 

 

Table 2: Pearson correlations between ICCs, the absolute value of activity, and the absolute value of change, within and between-

session using results from the QC+OR analyses. All correlations significant after an FDR correction for number of comparisons. 
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ICCs in the 1st and 4th movement quartile for ROIs 

  
Task 

  
Contrast 

Within Baseline ICCs Within Follow-Up ICCs Stability ICCs 
1st 4th Difference 1st 4th Difference 1st 4th Difference 

MID Anticipation loss vs neutral 0.096 0.037 0.059 0.110 0.081 0.029 0.068 0.060 0.008 
MID Anticipation reward vs neutral 0.176 0.040 0.136 0.168 0.085 0.083 0.119 0.036 0.082 
MID Reward positive vs negative feedback 0.171 0.099 0.072 0.156 0.090 0.066 0.076 -0.016 0.092 
nBack 2 back vs 0 back 0.343 0.086 0.257 0.396 0.164 0.232 0.240 0.098 0.142 
nBack Emotion vs neutral face -0.020 0.024 -0.044 0.027 0.004 0.023 0.005 -0.010 0.015 
nBack Face vs place 0.180 0.076 0.104 0.210 0.045 0.165 0.169 0.014 0.155 
SST Correct stop vs correct go 0.224 -0.036 0.260 0.163 0.039 0.124 0.142 0.015 0.127 
SST Incorrect stop vs correct go 0.265 0.051 0.214 0.228 0.106 0.122 0.186 0.059 0.127 
 

Table 3: Mean for the 1st and 4th movement quartiles for ROIs and their difference, separated by contrast. 1st: mean ICC for the 

lowest movement quartile; 4th: mean ICC for the highest movement quartile. All bolded Difference results were significant after an 

FDR correction for the number of contrasts done separately on each ICC type. 
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Comparison of reliability, stability, activity, and change between ROIs and non-ROIs 

  ICC |Activity| |Change| % Active % Change   
N 
ROI 

Task Contrast W/ 
BL 

W/ 
FU 

Stability BL FU W/ 
BL 

W/ 
FU 

Between BL FU W/ 
BL 

W/ 
FU 

Between 

MID Anticipation 
loss vs 
neutral 

- - - - - - - - 92% 92% 67% 83% 0% 12 

MID Anticipation 
reward vs 
neutral 

- - - 0.06 - - - - 100% 83% 78% 50% 11% 18 

MID Reward 
positive vs 
negative 
feedback 

- - - 0.19 0.14 - - - 100% 100% 50% 63% 75% 8 

nBack 2 back vs 0 
back 

0.07 0.10 0.06 - 0.23 - - 0.09 100% 100% 57% 57% 86% 7 

nBack Emotion vs 
neutral face 

- - - 0.04 0.04 - - - 85% 85% 69% 46% 0% 13 

nBack Face vs 
place 

- - - - - - - - 85% 85% 85% 55% 0% 20 

SST Correct stop 
vs correct go 

- - - 0.21 0.22 - - - 100% 100% 65% 30% 45% 20 

SST Incorrect 
stop vs 
correct go 

- - - 0.20 0.19 - - 0.03 90% 100% 90% 60% 70% 10 

 

Table 4: Mean differences between reliability, stability, the absolute value of activity, and the absolute value of within and between 

session change between ROIs and non-ROIs. All results significant after an FDR correction for multiple comparisons for number of 
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contrasts with identified regions of interest. W/ - Within session, BL – Baseline session, FU – Follow-Up session, ICC - Intraclass 

Correlation Coefficient, % - Percent of ROIs with significant activity or change, |Activity| - One sample (mu=0) analyses, |Change| - 

Paired analysis.  
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Figure Captions 

Figure 1: A comparison of average reliabilities, stabilities (A and B), absolute values of activities 

(C), and absolute values of within- and between-session changes (D) for ROIs (blue) and non-

ROIs (green). Data was cleaned using different data-cleaning approaches (A) and also separated 

into movement quartiles (B) to assess the impact of those factors on reliability and stability. 

Comparisons between ROIs and non-ROIs that were significantly different in independent 

sample t-tests (not adjusted for multiple comparisons) are marked with an asterisk. QC: all data 

that passed ABCD’s quality control; QC+OR: QC sample with outliers removed; QC+MV+OR: 

QC sample with movement regressed and then outliers removed; QC+Rank: QC sample with 

rank normalization. Activity and change analyses are available only for QC and QC+OR as the 

movement regression and rank normalization processes demean the data, making meaningful 

between region comparisons impossible. ROI: Regions of Interest, N-ROI: Non-ROI. 

Figure 2: Top: Task fMRI reliability and stability by region, averaged across all 26 contrasts 

released by the ABCD. Mean ICC values at or below 0 in gray. Bottom: Histograms of 

reliabilities across all contrasts and regions. Blue: ICCs from ROIs for the 8 condition vs 

condition contrasts for which meta-analyses to guide ROI identification were available; green: 

ICCs from non-ROIs; red: ICCs from condition vs baseline contrasts; orange: ICCs from the 

remaining (18) condition vs condition contrasts (for which meta-analyses to guide ROI 

identification were not available). ROI: Regions of Interest. N-ROI: Non-ROI. CvsB: Condition 

vs baseline. All data based on the QC sample. 

Figure 3: Task, contrast, and reliability/stability measure specific reliability/stability for each 

movement quartile, averaged across all regions from the whole brain analysis. MID: Monetary 

incentive delay task, nBack: Emotional nBack task, SST: Stop signal task. W: Within-session. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463750doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463750


Bars: 1 standard deviation. Ant: Anticipation, Bk: Back, Cor: Correct, Em: Emotion, Fb: 

Feedback, Fc: Face, Fix: Fixation, Inc: Incorrect, Lrg: Large, Ls: Loss, N: Neutral, Neg: 

Negative, Pl: Place, Pos: Positive, Rw: Reward, Sm: Small, St: Stop. 

Figure 4: Destrieux parcellation cortical ICCs for each movement quartile (1st = lowest, 4th = 

highest movement) for the nBack 2 vs 0-back contrast. ICC values at or below 0 in gray. ROIs 

outlined in green. 
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