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Abstract  

LC3 (Light Chain 3) is a key player of autophagy, a major stress-responsive proteolysis 

pathway promoting cellular homeostasis. It coordinates the formation and maturation of 

autophagosomes and recruits cargo to be further degraded upon autophagosome-lysosome 

fusion. To orchestrate its functions, LC3 binds to multiple proteins from the autophagosomes’ 

inner and outer membranes, but the full extent of these interactions is not known. Moreover, 

LC3 has been increasingly reported in other cellular locations than the autophagosome, with 

cellular outcome not fully understood and not all related to autophagy. Furthermore, novel 

functions of LC3 as well as autophagy can occur in cells growing in a normal medium thus in 

non-stressed conditions. A better knowledge of the molecule in proximity to LC3 in normal 

growth conditions will improve the understanding of LC3 function in autophagy and in other 

cell biology function. Using an APEX2 based proteomic approach, we have detected 407 

proteins in proximity to the well-characterised LC3B isoform in non-stress conditions. These 

include known and novel LC3B proximity proteins, associated with various cell localisation and 

biological functions. Sixty-nine of these proteins contain a putative LIR (LC3 Interacting 

Region) including 41 not reported associated to autophagy. Several APEX2 hits were 

validated by co-immunoprecipitation and co-immunofluorescence. This study uncovers the 

LC3B global interactome and reveals novel LC3B interactors, irrespective of LC3B localisation 

and function. This knowledge could be exploited to better understand the role of LC3B in 

autophagy and non-autophagy cellular processes.  
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Introduction 

LC3B (Light Chain 3B), or MAP1LC3B (Microtubule-Associated Proteins 1A/1B light chain 

3B), is the best-studied member of the seven protein-family LC3/GABARAP, and a homologue 

of yeast ATG8 (Autophagy Related 8) (1). The three isoforms LC3 A, B and C (hereafter LC3 

when reporting on general functions or according to cited literature), are 17kDa proteins which 

localise on autophagosomes, the double membrane vesicles involved in the execution of 

macro-autophagy (hereafter, autophagy), a major intracellular proteolysis pathway (2). 

Autophagosome-lysosome fusion leads to the degradation of cytoplasmic material 

sequestered in the autophagosomes (3), releasing amino-acids for recycling and re-use by 

the cells (4). Autophagy is induced in response to stress, such as during infection by a 

pathogen, deprivation of nutrients or hypoxia, thereby promoting cell survival. However, if 

stress persists autophagy can lead to cell death. Cells can also display basal autophagy, 

allowing the clearance of long-lived proteins, damaged organelles and protein aggregates (5, 

6). Autophagy is often upregulated in cancer cells (7, 8) and has been proposed to play a dual 

role in cancer: tumour suppressor in the early stages of tumorigenesis but pro-survival in 

advanced tumours (9). 

LC3 is required for autophagosome formation and has been considered an 

autophagosome marker (10, 11). Autophagosome biogenesis (12) begins on the isolation 

membrane, or phagophore, with the assembly of a pre-initiation complex consisting of ULK1, 

FIP200, ATG101 and ATG13, which leads to activation of the VPS34/BECLIN1 PI3K Class III 

complex. Subsequent production of PI(3)P on the phagophore and binding of proteins such 

as WIPI2B leads to the recruitment of ATG16L1, which complexes with ATG5 and ATG12, 

forming a scaffold to attach LC3 to the forming autophagosome (13). For this to occur, LC3 is 

cleaved by ATG4B to generate LC3-I (cytosolic), capable of binding to ATG7, followed by 

transfer to ATG3. Finally, the ATG5-ATG12-ATG16L1 complex allows the covalent 

conjugation of LC3-I to phosphatidylethanolamine (PE), leading to LC3 lipidation, or the 

conversion of LC3-I to LC3-II (14, 15), which is required for autophagosome elongation and 

closure (16, 17). 
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LC3 is localised to the inner and outer membranes of the forming and mature 

autophagosome where it interacts with many proteins. This is often through the presence of a 

hydrophobic LC3 interacting region (LIR) (18–20). From the inner membrane, LC3 selectively 

recruits autophagic cargo into the autophagosome, binding the LIR of cargo receptors such 

as p62/SQSTM (21, 22), called selective autophagy. LC3 on the outer membrane of the 

autophagosome interacts with LIR-containing core autophagy machinery proteins such as 

ATG1/ULK1 (23), or proteins from the endolysosomal trafficking pathway such as FYVE and 

coiled-coil-domain-containing protein 1 (FYCO1) (21). This allows autophagosomes to traffic 

along microtubules and fuse with endocytic vesicles (autophagosome maturation), leading to 

the formation of degradative autolysosomes and autophagy (24, 25).  

Non-conventional and non-autophagic functions of LC3 have also been increasingly 

reported (26). These can alter processes associated with membrane biology including the 

regulation of ER function (27, 28), secretion and exocytosis (29–34) and the non-canonical 

autophagy pathway LC3-Associated Phagocytosis (LAP) (35), which enables pathogen entry. 

LC3-positive vesicles may also play the role of signalling platforms (36–39). Non-autophagic 

functions of LC3 which do not appear related to membrane biology include the regulation of 

viral or bacterial replication (40, 41) and release (42) and pathogen control (43). The soluble 

form of LC3, LC3-I, is part of slowly diffusing high molecular weight complexes localised in the 

cytoplasm and the nucleus (44–46) but their function is poorly understood. Furthermore, LC3 

was recently shown to conjugate to proteins (“LC3-ylation”) akin to ubiquitination (47), 

although only few candidate LC3-ylated proteins have been identified to date.  

Despite the profound involvement of LC3 in cellular processes, autophagy-related or not, 

many of them remain poorly characterised. Consistent with this, the full repertoire of proteins 

interacting with LC3 is not known. Here we systematically defined the LC3B interactome by 

performing an enzymatic proximity tagging approach using an engineered ascorbate 

peroxidase, APEX2 (48, 49). We used HeLa cells stably transfected with an APEX2- and GFP- 

tagged LC3B construct (or the control GFP-LC3B) and cultured them in normal growth 

conditions. Our study has confirmed many proteins previously reported to be partners of LC3B 
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and/or present in autophagosomes, including proteins with putative LIR. It has further revealed 

novel LC3B proximal proteins such as GAPD1 and eIF2D.  
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Results 

APEX2-GFP-LC3B labels autophagosomes in HeLa cells 

 To determine the proteins adjacent to LC3B, we used an APEX2 (Ascorbate 

Peroxidase 2) proximity labelling approach, originally developed by Rhee et al. (50). We 

generated HeLa cells stably expressing the APEX2-GFP-LC3B or GFP-LC3B construct (Fig. 

1A) as shown by western blot (Fig. 1B). The localisation of APEX2-GFP-LC3B was 

investigated by confocal microscopy. Several LC3B puncta were easily detected in cells 

without any treatment (Fig. 1C top panel). Their number was greatly increased upon a three 

hour treatment with the V-ATPase inhibitor Bafilomycin A1, which impairs lysosomal 

acidification, leading to an accumulation of autophagosomes (51). LC3B puncta were slightly 

increased upon treatment with Torin 1, which inhibits mTOR activity, confirming that the 

APEX2-GFP-LC3B construct allows an increased formation of autophagosomes and an intact 

autophagic flux (52). Treatment with both drugs led to an increase of LC3B-positive puncta 

and clear colocalisation with the late endosome/lysosomal marker LAMP1, indicating an 

autophagosome accumulation (Fig. 1C).  

In the presence of H2O2, APEX2 peroxidase tags triggers the polymerization of the 

peroxidase substrate, 3,3′-diaminobenzidine (DAB), into a localised precipitate that gives 

transmission electron microscopy (TEM) contrast after treatment with OsO4. This allows 

imaging of cellular compartments, with a very good preservation of ultrastructure and a tighter 

localisation of the TEM stain than with horseradish peroxidase (HRP) (53). Such staining was 

observed in HeLa APEX2-GFP-LC3B cells following these treatments. Higher magnification 

electron micrographs revealed that structures positive for APEX2-GFP-LC3B share features 

of autophagosomes, including double membranes and engulfed cytoplasmic content (Fig. 

1D). 

These results confirm that APEX2-GFP-LC3B specifically labels autophagosomes. 

Such an approach would likely be useful to improve the ultrastructural imaging of 

autophagosomes and could be used for proximity proteome profiling. 
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APEX2 workflow and validation of the method 

 Fig. 2A illustrates the workflow of our study aimed at determining the LC3B proximity 

proteome. HeLa APEX2-GFP-LC3B and HeLa GFP-LC3B cells, cultured for 24 hours in full 

medium (containing 10% FBS), were treated with biotin phenol for 30 minutes and H2O2 for 1 

minute, allowing APEX2 to generate biotin-phenoxyl radicals that covalently tag proximal 

endogenous proteins within 20 nm (49) (Fig. 2A panel 1). The technique was validated in two 

ways, both by immunofluorescence microscopy and by western blot (Fig. 2A panel 2). 

Confocal microscopy analysis detected streptavidin-546 punctate labelling in HeLa APEX2-

GFP-LC3B cells treated with biotin phenol but only in the presence of H2O2. Importantly, 

strepatvidin-546 puncta colocalised with or were in proximity to LC3B puncta (Fig. 2B). 

Biotinylated proteins were pulled-down with neutravidin and detected by western blot using 

streptavidin-HRP. Treatment with H2O2 increased the amount of biotinylated protein in HeLa 

APEX2-GFP-LC3B cells but not in HeLa GFP-LC3B cells (Fig. 2C). Panels 3 and 4 in Fig. 

2A summarise the approach for the larger scale proximity proteomics experiment and hit 

validation, described in the next figures. 

 

APEX2 experiment: 407 positive hits were detected in proximity to LC3B 

We scaled up the experiment in order to detect the proteins proximal to LC3B. Both 

cell lines were incubated with biotin phenol for 30 minutes and H2O2 for 1 minute. HeLa GFP-

LC3B cells were used as a negative control for the APEX2 reaction. Following the reaction, 

cells were lysed and biotinylated proteins were isolated with a neutravidin pull-down. Before 

mass spectrometry analysis, the enrichment of biotinylated proteins in the lysates subjected 

to the neutravidin pull-down were verified by western blot using the streptavidin-HRP and an 

LC3B antibody. A much more intense smear of biotinylated proteins (Fig. 3A) and LC3B (Fig. 

3B) was detected in HeLa APEX2-GFP-LC3B compared to HeLa GFP-LC3B.  

The samples were processed for an on-bead digest and subsequently analysed by 

liquid chromatography tandem mass spectrometry (LC-MS/MS). Four experiments were 

performed (see details in Methods). Proteins were considered to be hits when they met the 
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following criteria in at least two independent experiments, comparing results obtained with 

HeLa APEX2-GFP-LC3B versus HeLa GFP-LC3B: log2fold >1, MASCOT score >50, >2 

peptides identified and unadjusted p-Value <0.05 (see Methods). Such analyses detected 407 

proteins in proximity (distance less than 20 nm) to APEX2-GFP-LC3B, with 237 of these 

having an FDR <0.25. Eighty-four percent of the hits were found in the four experiments and 

97% were found in at least three experiments, demonstrating the reproducibility and 

robustness of our results (Fig. 3CD).  

 

The 407 LC3B proximity proteins cover a broad range of pathways and cell localisations  

We ran a gene ontology (GO) analysis to identify the subcellular localisation of the 407 

hits. We selected the GO terms with a p-Value <0.05 and grouped the hits into seven 

categories: cytoplasm/cytosol, cytoskeleton/cell junction, centrosome/spindle, 

endosome/trafficking, nucleus, endoplasmic reticulum (ER)/Golgi apparatus and pre-

autophagosome/autophagosome (Fig. 4A and Figs. S1 and S2).  

Using DAVID Bioinformatics Resources 6.8 (https://david.ncifcrf.gov/ (54, 55)) to 

interrogate the KEGG pathways, followed by manual annotations using PubMed 

(https://pubmed.ncbi.nlm.nih.gov/) and UniProt (https://www.uniprot.org/ (56)), we determined 

that the 407 identified proteins are involved in a broad range of cellular pathways. These 

include “Endocytosis, trafficking, ubiquitination or proteasome”, “RNA related proteins”, “Cell 

cycle, mitosis and cytokinesis” and “Autophagy” (Figs. 4B and S3). 

To determine which pathways were significantly enriched, we ran a “biological 

processes” GO analysis of the 407 hits. A subset of 109 proteins were enriched in 18 

“biological processes” GO terms, with an FDR <0.1 and a fold enrichment >2.5 (Figs. 4C and 

S4). We organized these 18 GOs into the four following categories: membrane trafficking 

(36.8% of the hits), actin cytoskeleton organization (19.1%), antigen processing and 

presentation of exogenous peptide antigen via MHC class II (11.8%) and cell cycle/mitosis 

(44.1%) (Figs. 4D and S5). 
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To identify high confidence proximal proteins, we presented all 407 hits in a volcano 

plot, showing statistical significance (FDR score or p-Value) versus magnitude of change (fold 

change) between proteins detected in proximity to APEX2-GFP-LC3B and GFP-LC3B. 

Proximity proteins represented in these plots have a Mascot score >50, >2 peptides and a 

FDR score <0.05 (Fig. 4E) or p-Value <0.05 (Fig. S6B). Eighty-eight proximity proteins were 

detected (Fig. S6A). 

 

Thirty-four percent of the LC3B proximity proteins are already related to autophagy 

To validate our approach, we investigated which of the 407 LC3B proximity proteins 

have already been reported to play a role in autophagy or to be associated to the 

autophagosome and/or LC3.  

This was determined through bioinformatic DAVID Pathway and GO localisation 

analyses (14 hits, Figs. 5A in yellow circle and S8) and through literature research of the 

high confidence hits revealed by the volcano plot representation (35 hits, Figs. 5A in green 

circle and S8). Further hits were found to overlap with four previous proteomic studies aiming 

at detecting proteins present in autophagosomes (Dengjel J. et al. (57), Mancias J. D. et al. 

(58), Gao W. et al. (59), Le Guerroué F. et al. (60)). In these studies, cells were treated in 

various ways to induce accumulation of autophagosomes. Quantitative proteomics was 

performed from purified autophagosomes (fractionation or immuno-purification) (57–59) or 

following an APEX2-GFP-LC3B pull-down from inside autophagosomes only (60). One 

hundred forty-eight of our 407 hits overlapped with at least one of these proteomic studies, 

including 68 further reported to play a role in autophagy or in its regulation (Figs. 5 in grey 

circle, S7 and S8). A literature search determined 41 additional hits related to autophagy that 

were not found with the above-cited methods (Figs. 5A inside red circle and S8).  

We further interrogated the iLIR database (https://ilir.warwick.ac.uk (18)), containing 

all the putative canonical LIR-containing proteins identified in silico in the proteomes of eight 

model organisms, using the iLIR server (http://repeat.biol.ucy.ac.cy/iLIR/ (61)). Sixty-nine of 

our 407 hits were found in the iLIR database. Twenty-eight of these have a reported role in 
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autophagy (Figs. 5A inside blue circle, S8 and S9), including 13 hits shown to associate 

(through co-immunoprecipitation or GST pull-down experiments) or colocalise with LC3B: 

ATG16L1 (A16L1), BAG6, BIRC6, CLU, EGFR, FKBP8, FYCO1, LRBA, NCOR1, SQSTM, 

TAX1BP1 (TAXB1), TBC1D5 (TBCD5), UBR4 (Figs. 5A, inside blue circle in bold, S8 and 

S9).  

Within our autophagy hits, several core autophagy proteins or well-established 

regulators such as ATG3 (62), ATG7 (63), ATG9A (8), ATG16L1 (A16L1) (16), CALCOCO2 

(CACO2) (64), FYCO1 (21), MTOR (65) and SQSTM (66), as well as LC3B (MLP3B) (10), 

were found (Fig. 5A). SQSTM/p62, known as the major receptor for selective autophagy (67), 

interacts directly with LC3B through its LIR (21), even in basal cell conditions (68). The 

presence of SQSTM was detected in the neutravidin pull-down (shown in Fig. 3) from HeLa 

APEX2-GFP-LC3B cells but not HeLa GFP-LC3B cells (Fig. 5B). SQSTM colocalised with 

GFP-LC3B puncta (Fig. 5C) in HeLa GFP-LC3B cells, ruling out non-specific detection of 

SQSTM with the APEX2 tag. Furthermore, SQSTM co-immunoprecipitated with LC3B in HeLa 

cells (expressing endogenous LC3B), using two distinct antibodies previously validated to 

correctly detect autophagosomes (69, 70) (Fig. 5D). 

One of our high confidence hits was EEA1 (Early Endosome Antigen 1). This was 

revealed by the volcano plot representation and also detected in one of the four proteomic 

studies (57) (Fig. 5A in intersection between green and grey circles, Fig. S8). It is recruited 

to endosomal membranes by binding the phospholipid phosphatidylinositol 3-phosphate 

(PI(3)P) through its C-terminal FYVE domain (71) where it binds to its effector Rab5 (72, 73). 

It promotes sorting from the early endosome and early-late endosome fusion (74). Autophagic 

vacuoles can also fuse with EEA1-positive early endosomes, generating amphisomes (75). 

Moreover EEA1-positive endosome and autophagic vacuole fusion have been shown to be 

required for autophagosome maturation and autophagy (76). We confirmed the presence of 

EEA1 in the neutravidin pull-down (shown in Fig. 3) from HeLa APEX2-GFP-LC3B cells and 

not HeLa GFP-LC3B cells (Fig. 5E). GFP-LC3B and EEA1 colocalisation was also detected 

(Fig. 5F).  
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Therefore, at least 141 LC3B proximity proteins, 34.6 % of our total 407 hits, were 

found to be related to autophagy (Fig. 5A and Figs. S8 and S10), including several proteins 

with putative LIR domains, validating our method. Interestingly 30 of these 141 autophagy-

related hits were shown to associate (through co-immunoprecipitation or GST-pull-down 

experiments) or colocalise with LC3B (Figs. 5A, in bold and S8). Our study also revealed 

that 111 of the 141 autophagy-related hits have no published interaction or colocalisation with 

LC3 to our knowledge (others than in the four proteomic studies) (Fig. S8).  

 

The endosomal protein GAPD1 has a putative LIR domain and is in proximity to LC3B 

Among our 407 hits, 41 have not been reported to associate with LC3 or to be linked 

to autophagy, but have a putative LIR domain (Fig. 6A). Twenty-nine of these proteins were 

found to be part of “endocytosis or membrane trafficking” in the DAVID Pathway analysis or 

localised on endosomes in the GO localisation analyses (Figs. 6B and S11). “Endosomal 

trafficking” is one of the four pathways enriched in the GO “biological processes” analysis (Fig. 

4D). One of these proteins is GAPD1 or GAPVD1 (GTPase-activating protein and VPS9 

domain-containing protein 1), also called RAP6 (Rab5-activating protein 6) and GAPex5. As 

seen in the diagram Fig. 6C, obtained by the software STRING, GAPD1 is an endosomal 

protein that biologically interacts with a number of others such as Rab5A and B. It plays a role 

in constitutive and regulated endocytosis and is involved in the regulation of receptor-mediated 

endocytosis (77). GAPD1 was detected by western blot in the neutravidin pull-down from the 

HeLa APEX2-GFP-LC3B cells and not HeLa GFP-LC3B cells (Fig. 6D). We then confirmed 

GAPD1 colocalisation with GFP-LC3B puncta (Fig. 6E). Furthermore, GAPD1 co-

immunoprecipitated with endogenous LC3B in HeLa cells (Fig. 6F). 

 

The translation initiation factor eIF2D has a putative LIR domain and is associated with 

LC3B 

Five of the LC3B proximity proteins with putative LIR domains, which have not been 

previously reported to bind LC3, are part of the category “RNA related proteins” in the DAVID 
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Pathway analysis. These are AASD1, CNO10, EIF2D, PRC2C and R3HD1 (Figs. 6AG, S3 

and S11). EIF2D is an initiation factor of translation, part of the 43S preinitiation complex. 

Interestingly, the following hits were not found in the ILIR database, but are also initiation 

factors: eIF3A, eIF3B, eIF3C, eIF3G, eIF3H, eIF3I (78) (Fig. S11). EIF2D colocalised with 

GFP-LC3B puncta (Fig. 6H) and co-immunoprecipitated with endogenous LC3B (Fig. 6IJ), 

validating the APEX2 result. While eIF2A phosphorylation has previously been shown to be 

necessary for the stimulation of autophagy, it is through transcription of several autophagy 

genes (SQSTM, LC3B, BECN1, ATG3, ATG7) (79, 80). Therefore, our results, revealing a 

novel LC3B-eIF2D interaction, suggest a novel relationship between the initiation of translation 

and LC3B. 
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Discussion 

In this study, we used peroxidase-mediated proteomic mapping in live cells combined 

with unlabelled mass spectrometry to determine the proteins in proximity (≤ 20 nm) to LC3B 

in HeLa cells cultured in full medium. Four hundred and seven LC3B proximity proteins were 

detected. One hundred forty one of these proteins, or 34.6% of the total hits, have been 

previously reported as related to the autophagy process or its regulation (Fig. 5A), validating 

our approach. These include several core autophagy drivers or regulators. Sixty-eight of these 

141 autophagy-related proteins have been determined to be present in the autophagosome 

or associated with LC3 in at least one of four previous proteomic studies (57–60). Moreover, 

30 of the 141 proteins have already been shown to associate with LC3 through co-

immunoprecipitation, GST pull-down or colocalisation studies (Fig. 5A). Using co-

immunofluorescence analysed by confocal microscopy and co-immunoprecipitation 

experiments, we validated two of these proteins in our culture conditions: the autophagy 

receptor SQSTM (or p62) (67) (Fig. 5BCD), containing an LIR (18, 21), and the sorting 

endosome marker EEA1 (72, 75) (Fig. 5EF). Twenty-eight of the 141 autophagy-related hits 

were found in the iLIR database, including 13 with demonstrated LC3B association (Fig. 5A 

in bold in the blue circle), further validating our approach.  

Interestingly, for 53 hits found in at least one of the four proteomic studies and shown 

to play a role in autophagy, there is no association with LC3 further reported in the literature 

(through co-immunoprecipitation or GST pull-down or colocalisation) (Fig. S7). It is, for 

example, the case for ROCK1 and ROCK2, two key protein kinase regulators of the actin 

cytoskeleton and cell polarity (81). Furthermore, 69 of the total 407 hits were found in the iLIR 

database, including 56 proteins that have not, to our knowledge, been shown to be associated 

with LC3 (through co-immunoprecipitation or GST-pull-down or colocalisation) (Figs. 6A and 

S9). On the other hand, 41 proteins with a putative LIR domain have not been reported to be 

related to autophagy (Fig. 6A). These findings suggest that a direct interaction between some 

of these proteins and LC3B may regulate an unknown function.  
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Previous proteomic studies aimed to determine proteins present in the 

autophagosome and thus were performed from enriched autophagosome from cells that were 

serum or amino acid-deprived or treated with inhibitors to trigger stress-induced autophagy or 

inhibit autophagic flux (60, 82). Interestingly, a LC3-APEX2 screen (60) has recently been 

published, and 54 of our hits are common with this study (Fig. S7). This study determined 

LC3B proximity proteins inside the autophagosome. Our study has a distinct focus from these 

previous studies, which is to uncover the LC3B global interactome, irrespective of LC3B 

localisation (inner or outer membrane of the autophagosome or other cell location). We have 

determined the LC3B interactors from whole cell lysates and in basal cell condition (using cells 

maintained in full medium and without inhibitors). Thus our experimental conditions allow the 

detection of proteins in proximity to LC3B potentially involved in the three primary types of 

autophagy: microautophagy (83), macroautophagy (6), and CMA (84), but also in non-

canonical autophagy or even functions unrelated to autophagy (26, 35, 38, 85, 86). Additional 

LC3-ylated proteins (that we recently described (47)) may also have been uncovered.  

Accordingly, we found some novel LC3B interactors, involved in a broad range of 

pathways and cell localisation (Fig. 4). The pathway functions include membrane trafficking, 

cytoskeleton rearrangement, antigen processing and presentation of exogenous peptide 

antigens, RNA-related proteins, cell cycle/mitosis/cytokinesis and nuclear proteins. 

Interestingly, a pool of LC3 has recently been shown to localise to the nucleus and initiate 

autophagy upon redistribution to the cytoplasm (63, 87–89). Over 16% of the 407 proteins 

detected in proximity to LC3B have a reported nuclear localisation (Fig. 4A), and some could 

be novel partners or regulators of LC3B nucleo-cytoplasm shuttling. Moreover, LC3 has been 

reported to associate with nuclear complexes (45, 90).  

A substantial proportion of our hits were part of pathways we regrouped under “actin 

cytoskeleton organisation/focal adhesion/ECM/cell junction” (Fig. 4). Among these, two 

proteins of the alpha-actinin family (ACTN1 and ACTN4) are cytoskeletal actin-binding 

proteins with an important role in the structure and regulation of cytoskeleton organization and 
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muscle contraction (91). These two proteins were not found in the iLIR database. ACTN4, but 

not ACTN1, has been described in autophagy (92) although with no interaction with LC3B. 

Another group of our identified LC3B interactors were previously reported to be part of 

the membrane trafficking localisation (24.7%) or pathway (25.9% of the hits) (Fig. 4AB). It is 

one of the four enriched pathway categories in the GO “biological functions” analysis and 

accounts for 36.8% of the hits enriched (Fig. 4D). This could reflect the highly dynamic 

membrane trafficking which depends on various endomembranes connecting with each other, 

through maturation or fusion. Nevertheless, 53 of these proteins have a putative LIR domain, 

including 11 reported associated with LC3, reinforcing the possibility that they are true LC3B 

interactors (Fig. S12). Moreover, 29 proteins with a putative LIR domain and not previously 

reported to be related to autophagy are membrane trafficking proteins or have been found 

localised to endomembranes (Fig. 6B). We have validated one of these proteins, GAPD1, a 

regulator of endocytosis that exhibits GEF activity specific for RAB5 and GAP activity specific 

for RAS (77) (Fig. 6DEF).  

Eleven-point nine percent of the 407 hits are part of “RNA binding proteins” as detected 

by the DAVID database (Fig. 4B). Several of these proteins have not been reported to be 

related to autophagy and have a putative LIR domain (Fig. 6G). Of these, we have validated 

the translation factor EIF2D (Fig. 6HI). The fact that several other initiation factors of 

translation, all part of the 43S preinitiation complex (78), were also detected in proximity to 

LC3B strongly suggest a previously unrecognised relationship between LC3B and this 

complex.  

This study has uncovered the LC3B proximity proteome in cells in normal growth 

culture. We have discovered a number of novel LC3B proximity proteins, opening the way to 

a better understanding of LC3B’s role in autophagy and possibly functions not related to 

autophagy. 
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Titles and legends 

Fig. 1: APEX2-GFP-LC3B labels autophagosomes 

(A) Schematic of APEX2-GFP-LC3B and GFP-LC3B constructs.  

(B) Expression of LC3B and the loading control HSC70 was evaluated in HeLa GFP-LC3B 

and HeLa APEX2-GFP-LC3B lysates by western blot. 

(C) Confocal sections of HeLa APEX2-GFP-LC3B cells treated with bafilomycin A1 (baf A1; 

10 nM), torin 1 (250 nM) or a combination of both for 3 hours. GFP-LC3B (green), LAMP1 

(red) and Hoechst (blue). Colocalisation appears as yellow puncta. Scale bar, 10 μm.  

(D) HeLa APEX2-GFP-LC3B cells were treated for 3 hours with 10 nM bafilomycin A1 and 

250 nM torin 1 prior to sample processing for electron microscopy with or without DAB 

substrate. Scale bar, 2 µm. Higher magnifications of boxes 1, 2 and 3 are shown below. Scale 

bar, 0.5 µm. 

 

Fig. 2: APEX2 workflow and validation of the method 

(A) Diagram showing the experimental workflow. 1) HeLa cells expressing APEX2-GFP-LC3B 

or GFP-LC3B were incubated with biotin phenol for 30 minutes and with H2O2 for 1 minute, 

allowing biotinylation of proteins in proximity to APEX2-GFP-LC3B. 2) The technique was 

validated by immunofluorescence and western blot with streptavidin isolation. 3) The 

experiment was scaled up for proteomic analysis. Here biotinylated proteins were pulled-down 

with neutravidin and analysed by mass spectrometry followed by a range of bioinformatic and 

statistical analyses. 4) Hits were validated based on literature research, interrogation of the 

LIR database and further technical validation for selected proteins.  

(B) Confocal sections of HeLa APEX2-GFP-LC3B cells incubated with biotin phenol for 30 

minutes with or without a subsequent 1 minute incubation with H2O2. GFP-LC3B (green), 

Streptavidin-546 (red) and DAPI (blue). Colocalisation appears as yellow puncta. Scale bar, 

10 μm.  

(C) Levels of streptavidin-HRP evaluated by western blot in HeLa GFP-LC3B and HeLa 

APEX2-GFP-LC3B neutravidin pull-down eluates following the APEX2 assay (left) or 
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corresponding lysates (right). Cells were incubated with biotin phenol for 30 minutes and with 

or without H2O2 for 1 minute.  

 

Fig. 3: 407 hits in proximity to APEX2-GFP-LC3B were detected by proteomics 

(A, B) Before the mass spectrometry analyses, levels of biotinylated proteins detected by 

streptavidin-HRP (A) and LC3B (B) were evaluated by western blot in HeLa GFP-LC3B and 

HeLa APEX2-GFP-LC3B neutravidin pull-down eluates following the APEX2 assay. Cells 

were incubated with biotin phenol 30 minutes and H2O2 for 1 minute. The experiment was 

performed in duplicates.  

(C) Pie graph showing the percentage of the 407 proteomic hits overlapping between 2, 3 or 

4 experiments. 

(D) Heat map representation of the 407 hits in HeLa APEX2-GFP-LC3B cells and HeLa GFP-

LC3B cells in each of the four experiments. Proteins were selected if log2 HeLa APEX2-GFP-

LC3B compared to HeLa GFP-LC3B >1, MASCOT score >50, >2 peptides identified and p-

Value <0.05. 

 

Fig. 4: The 407 hits grouped in localisations, pathways, gene ontology enrichment and 

high confidence hits 

(A) Pie graph representation of different localisations found by gene ontology (GO) analysis. 

The percentage of proteins in each localisation is indicated.  

(B) Bar graph showing the different pathways found by an analysis with DAVID software 

(https://david.ncifcrf.gov/) completed with a search by PubMed and UniProt. The percentage 

of proteins in each pathway is indicated. 

(C, D) Enrichment analysis of “biological processes” GO analysis. 

(C) Volcano Plot analysis of “biological processes” GO analysis. Proteins were selected 

following p-Value <0.05 and MASCOT score >50. The names and the red points are for gene 

ontologies with FDR <0.1 and fold enrichment >2.5. 
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(D) Pie graph representation of the different “biological processes” genes found by GO and 

grouped into four categories. The percentage of proteins in each group is indicated.  

(E) Volcano plot revealing the “high-confidence hits” representing the FDR in function of the 

Log2fold of the hits obtained in HeLa APEX2-GFP-LC3B cells compared to HeLa GFP-LC3B 

cells. Hits with a Mascot score >50, >2 peptides and a FDR score <0.05 were selected. 

 

Fig. 5: Autophagy-related hits 

(A) List of the 141 autophagy-related hits. Proteins in bold have been shown associated with 

LC3 (through co-immunoprecipitation, pull-down or co-immunofluorescence). Green circle: 

high confidence hits revealed by the volcano plot representation in Fig. 4E. Blue circle: 

containing a putative LIR. Yellow circle: present in pathways of autophagy (DAVID search) or 

in the GO localisation in autophagosome. Grey circle: present in at least one of the four 

proteomics studies analysed (57–60). Red circle: present in literature only. 

(B, C, D) Validation of LC3B-SQSTM proximity.  

(B) Western blot for SQSTM from neutravidin pull-down eluates following the APEX2 assay in 

HeLa APEX2-GFP-LC3B and HeLa GFP-LC3B cells.  

(C) Confocal sections of HeLa GFP-LC3B cells. GFP-LC3B (green), SQSTM (red) and DAPI 

(blue). Colocalisation appears in yellow. Scale bar, 10 μm. 

(D) Western blots for LC3B and SQSTM following immunoprecipitation of endogenous LC3B 

in HeLa cells performed in duplicate with an Abcam antibody (Ab1, left side of the blot) and a 

Cell Signalling Technology antibody, clone D11 (Ab2, right side of the blot) or corresponding 

IgG control. Total levels of LC3B-I and II and SQSTM in the cell lysates are also shown. 

(E, F) Validation of LC3B-EEA1 proximity.  

(E) Western blot for EEA1 from neutravidin pull-down eluates following the APEX2 assay in 

HeLa APEX2-GFP-LC3B and HeLa GFP-LC3B cells. 

(F) Confocal sections of HeLa GFP-LC3B cells. GFP-LC3B (green), EEA1 (red) and DAPI 

(blue). Colocalisation appears in yellow. Scale bar, 10 μm. 
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Fig. 6: Hits not reported related to autophagy but with putative LIR domains and 

validation: trafficking pathway and RNA binding/Initiation of translation factors 

(A) Heat map of the 41 hits not previously shown to be related to autophagy and found in the 

iLIR database. For each protein, the log2fold HeLa APEX2-GFP-LC3B compared to HeLa 

GFP-LC3B is indicated with a matching colour gradient. 

(B) List of the hits from (A) reported to be involved in endocytosis/membrane trafficking 

pathways in the DAVID pathway database (green circle), in the “biological processes” GO 

analysis (orange circle) or localised to endosomes as determined by the GO localisation 

analysis (blue circle). 

(C) GAPD1 network obtained by STRING software.  

(D, E, F) Validation of LC3B-GAPD1 proximity  

(D) Western blot for GAPD1 from neutravidin pull-down eluates following the APEX2 assay in 

HeLa APEX2-GFP-LC3B and HeLa GFP-LC3B cells. 

(E) Confocal sections of HeLa GFP-LC3B cells. GFP-LC3B (green), GAPD1 (red) and DAPI 

(blue). Colocalisation appears in yellow. Scale bar, 10 μm. 

(F) Western blots for LC3B and GAPD1 following immunoprecipitation of endogenous LC3B 

in HeLa cells performed in duplicate with an Abcam antibody (Ab1, left side of the blot) and a 

Cell Signalling Technology antibody, clone D11 (Ab2, right side of the blot) or corresponding 

IgG control. Total levels of LC3B-I and II and GAPD1 in the cell lysates are also shown. 

(G) List of the proteins not previously shown to be related to autophagy and found in the iLIR 

database (from Fig. 6A) and reported to be involved in RNA binding, degradation or translation 

in the DAVID pathway database. 

(H) Confocal sections of HeLa GFP-LC3B cells. GFP-LC3B (green), eIF2D (red) and DAPI 

(blue). Colocalisation appears in yellow. Scale bar, 10 μm. 

(I) Western blots for LC3B and eIF2D following immunoprecipitation of endogenous LC3B in 

HeLa cells performed in duplicate with an Abcam antibody (Ab1, left side of the blot) and a 

Cell Signalling Technology antibody, clone D11 (Ab2, right side of the blot) or corresponding 

IgG control. Total levels of LC3B-I and II and eIF2D in the cell lysates are also shown. 
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(J) Western blots for eIF2D and HSC70 from a large amount of protein lysate.  
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Methods 

Generation of HeLa cells stably expressing APEX2-GFP-LC3B 

The APEX2 coding and linker peptide sequence was PCR-amplified from pcDNA3 

Connexin43-GFP-APEX2, a gift from Alice Ting (Addgene plasmid # 49385; 

http://n2t.net/addgene:49385; RRID:Addgene_49385) (93), using the primers 5'-PacI-APEX2 

(5’-GACTTAATTAAGCCACCATGGGAAAGTCTTACCCAACTGTG-3’) and 3'-XbaI-linker-

APEX2 (5’-GACTCTAGATCCGGAGCCCGAGCCCGAGGTCGAGCCCGAGCCCTTGGCAT 

CAGCAAACCCAAGC-3’). The resulting PCR product was inserted into pLVpuro-CMV-N-

EGFP (Addgene plasmid # 122848 ; http://n2t.net/addgene:122848; RRID:Addgene_122848) 

(94) by restriction-based cloning, between the PacI and XbaI sites, to generate pLVpuro-CMV-

N-APEX2-EGFP. Gateway recombination of the destination vector pLVpuro-CMV-N-APEX2-

EGFP with the entry clone pDONR223 LC3B WT (Addgene plasmid # 123072; 

http://n2t.net/addgene:123072; RRID:Addgene_123072) (94) was performed using LR 

clonase II enzyme mix (ThermoFisher Scientific, 11791020), to generate pLVpuro-CMV-

APEX2-EGFP-LC3B. Lentiviral packaging and stable cell line generation was then performed 

as previously described (94) using pLVpuro-CMV-APEX2-EGFP-LC3B as the transfer plasmid 

and infecting wild type HeLa cells with the resulting lentiviral particles. A clonal HeLa cell line 

expressing moderate levels of APEX2-EGFP-LC3B was isolated by limit dilution prior to 

expansion and use in all experiments described. As a control, wild type HeLa cells were 

infected in parallel with lentivirus encoding CMV-driven EGFP-LC3B generated previously (94) 

and expanded as a pool.  

 

Cell culture 

HeLa cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM, Gibco) 

supplemented with 10% fetal bovine serum (FBS, Gibco). For the HeLa cells infected with 

GFP-LC3B or APEX2-GFP-LC3B lentivirus, puromycin (2μg/ml, Sigma Aldrich) was added in 

the medium. The cells were grown in a humidified atmosphere with 5% CO2 at 37°C. 
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Western blot 

Cells were lysed in sample buffer (Thermofisher) supplemented with dithiothreietal (DTT, 

Fisher), sonicated and boiled at 99˚C for 5 min. Samples were loaded on 4–12% Novex Bis-

Tris gels (Invitrogen). Separated proteins were transferred onto 0.45 µm nitrocellulose transfer 

membranes (VWR International). Protein loading and transfer quality were checked by 

staining with Ponceau S. Membranes were blocked in TBS with 4% BSA, then probed with 

the following primary antibodies: EEA1 (Santa cruz), eIF2D (invitrogen), GAPD1 (Novusbio), 

HSC70 (Santa Cruz), LC3B (Clone D11, Cell Signaling Technology), and SQSTM (Cell 

Signaling Technology) at a 1:1000 dilution and Streptavidin HRP (Millipore) at a 1:10,000 

dilution. Membranes were incubated overnight at 4˚C, followed by a one hour incubation in 

the appropriate secondary antibodies coupled to peroxidase (1:1000, Biorad). Proteins were 

detected by enhanced chemiluminescence detection (ECL, GE Healthcare). Densitometric 

analyses of immunoblots were performed using ImageJ 1.50i (National Institute of Health). 

 

Immunofluorescence and confocal microscopy 

Cells were plated onto coverslips in 24-well plates (50000 cells per well). For most 

experiments, cells were fixed in 2% paraformaldehyde for 15 minutes. Free aldehydes were 

quenched with 50 mM NH4Cl in PBS for 10 min. Fixed cells were blocked and permeabilized 

in PBS with 3% BSA and 0.1% Triton X-100 for 15 minutes. Cells were incubated with the 

following primary antibodies: eIF2D (invitrogen), GAPD1 (RAP6 Novusbio), LC3B (Catalogue 

number 2775S, Cell Signaling Technology), and SQSTM (Cell Signaling Technology) at a 

1:100 dilution 1:100 and streptavidin-546 (Life technologies) at a 1:500 dilution for 30 minutes. 

Cells were washed three times in PBS, followed by a 20 minutes incubation with the 

appropriate secondary antibodies coupled to a fluorochrome Alexa 555 (1:500, Life 

technologies). Cells were washed three times in PBS and once in water and mounted onto 

slides with Prolong™ Gold Antifade Mountant with DAPI (Molecular probes, Life technologies). 

Images were acquired using a confocal laser scanning microscope (LSM710; Carl Zeiss, Inc.) 
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equipped with a 63x1,4 NA Plan-Apochromat oil immersion objective. Alexa 488 was excited 

with the 488 nm line of an Argon laser, Alexa 555 was excited with a 543 nm HeNe laser. 

For immunofluorescence using the anti-LAMP1 antibody (1:1,000, BD Biosciences, Catalogue 

number 555798) we used a protocol previously described (94) and imaged with a Leica SPE 

confocal microscope using a 1.3 NA 63x oil immersion objective. 

All image fields were chosen arbitrarily based on DAPI (4,6-diamidino-2-phenylindole) staining 

and images were taken in unsaturated conditions.  

 

Electron microscopy 

Transmission electron microscopy sample preparation and imaging was performed as 

previously described (94) with some modifications. The DAB substrate mix was freshly 

prepared using 3.5 mM DAB (3,3’-Diaminobenzidine tetra–HCl, obtained from TAAB UK) and 

0.02% H2O2 (Sigma) in 50 mM Tris-HCl at a pH of 7.6. Immediately following glutaraldehyde 

fixation and rinsing in 0.1 M sodium cacodylate, samples were incubated with or without the 

DAB substrate mix for 3 minutes at room temperature. To stop the reaction, samples were 

rinsed in 50 mM Tris-HCl buffer followed by 0.1 M sodium cacodylate. Samples were then 

fixed with osmium and processed as previously described (94), but with the omission of tannic 

acid and sodium sulphate incubations. 

 

Co-Immunoprecipitation  

Cells were lysed in RIPA buffer (Merck) supplemented with phosphatase and protease 

inhibitors. Lysates were centrifuged at 10000 rpm for 10 minutes at 4˚C. The supernatant was 

precleared with beads (Protein G sepharoseTM 4 flast flow, GE Healthcare) for 1 hour at 4˚C 

on a rotating wheel. Beads were removed and 4 µg LC3B antibody (Abcam or clone D11 Cell 

Signalling Technology) or IgG was added and rotated overnight at 4˚C. The following day, 

beads were added and rotated for 1 hour at 4˚C. Beads were washed 3 times with RIPA and 

sample buffer supplemented with DTT was added. 
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APEX2 experiment 

Five million cells were plated in 100 x 17 mm dishes in full media containing 7 μM Heme 

(Sigma). After 24 hours, the cells were treated with 500 µM biotin tyramide (biotin phenol; Iris 

Biotech) for 30 minutes at 37°C and exposed to 1 mM freshly prepared hydrogen peroxide for 

1 minute. The biotinylation reaction was quenched by 3 washes of a stop solution prepared 

with 10 mM 6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox; Sigma), 20 mM 

sodium Ascorbate and 10 μM sodium azide in PBS. Cells were lysed at 4°C in RIPA buffer 

supplemented with 10 mM sodium azide and protease inhibitors. Lysates were centrifuged at 

14000 rpm for 15 minutes at 4°C and protein concentration determined with a Pierce™ BCA 

Protein Assay Kit (Life Technologies). High capacity neutravidin beads (Life Technologies) 

were added to the lysates and rotated overnight at 4°C. Beads were washed 3 times with 

RIPA. For western blot, sample buffer supplemented with DTT was added. For mass 

spectrometry, beads were washed with 25 mM ammonium bicarbonate buffer 3 times, 

centrifuged at 14000 rpm and frozen at -80°C. Three independent experiments were 

performed, including one experiment in duplicate (called experiment 3 and 4), thus four 

replicates were produced.  

 

Mass spectrometry  

Proteomics experiments were performed using mass spectrometry as previously described 

(95, 96). Immunoprecipitated (IP) protein complex beads were digested into peptides using 

trypsin and peptides were desalted using C18+carbon top tips (Glygen corparation, 

TT2MC18.96) and eluted using 70% acetonitrile (ACN) with 0.1% formic acid. Dried peptides 

were dissolved in 0.1% TFA and analysed by ultimate 3000 RSL nanoflow liquid 

chromatograph coupled on-line to a Q Exactive plus mass spectrometer (Thermo Fisher 

Scientific). Gradient elution was from 3% to 35% buffer B over 120 minutes at a flow rate of 

250 nL/min with buffer A being used to balance the mobile phase. Buffer A was 0.1% formic 

acid in water and B was 0.1% formic acid in ACN. The mass spectrometer was controlled by 

Xcalibur software (version 4.0) and operated in the positive ionisation mode. The spray voltage 
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was 1.95 kV and the capillary temperature was set to 255ºC. The Q-Exactive plus was 

operated in a data-dependent mode with one survey MS scan followed by 15 MS/MS scans. 

The full scans were acquired in the mass analyser at 375-1500 m/z with a resolution of 70000, 

and the MS/MS scans were obtained with a resolution of 17500.  

MS raw files were converted into Mascot Generic Format using Mascot Distiller (version 2.7.1) 

and compared to the SwissProt database using the Mascot search daemon (version 2.6.0) 

with FDR of ~1% and restricted to human entries. Allowed mass windows were 10 ppm and 

25 mmu for parent and fragment mass to charge values, respectively. Variable modifications 

included in searches were oxidation of methionine, pyro-glu (N-term) and phosphorylation of 

serine, threonine and tyrosine. The mascot result (DAT) files were extracted into Excel files 

for further normalisation, quantitative label-free analysis and statistical analysis as described 

previously (49, 96).  

 

Bioinformatic analyses  

Statistical analyses 

Statistical analyses were performed within the R (v3.6.1) statistical computing environment 

(98). Following sum scaling to normalise the protein quantification data, missing values were 

replaced by the minimum observed value within each sample. For differential analysis, 

proteins were first filtered on identification confidence criteria (Mascot score >50, >2 detected 

peptides per protein; in APEX2 only comparisons, any proteins detected in GFP controls were 

removed) and then the log 2 transformed average fold change was calculated between the 

conditions. Unpaired, two-tailed t tests were used to assess significance in the proteomics 

data. Where applicable, p-Values were adjusted for multiple testing using the Benjamini-

Hochberg method (99). The analyses were visualized using a combination of individual R 

packages, namely: ggplot2, gplots, reshape2, Hmisc, readXL and ggrepel (100–105). 

 

Gene ontology analysis 
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For gene ontology analysis, proteins differentially expressed between conditions (at p-Value 

<0.05) were grouped into gene ontologies as annotated in UniProt and DAVID informatics 

curated databases (Biological processes/cellular compartment/molecular function) (54–56). 

To infer ontology enrichment across sets of samples, a hypergeometric test was used followed 

by Benjamini-Hochberg multiple testing correction. 

For literature validation analysis, supplementary data from four studies (57–60) that had 

previously performed autophagy-associated proteomics studies were extracted. These 

datasets were merged and matched against the APEX2-enriched proteins identified in this 

study that met the following criteria: ≥2 Log2 fold change in abundance compared to GFP 

controls, with a Mascot score >50.  

 

STRING protein-protein interaction (PPI) analyses 

STRING (Search Tool for the Retrieval of INteracting Genes) V11 (https://string-db.org/) was 

used to study the PPI network. The settings “multiple proteins” and organism “Homo sapiens” 

were selected (106). 

 

DAVID analyses 

DAVID Bioinformatics Resources 6.8, NIAID/NIH (https://david.ncifcrf.gov/) was used to 

identify the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. KEGG is a 

collection of databases. The settings “UniProt ID” and “gene list” were selected (55). 
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