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Abstract: Sebaceous glands are adnexal structures, which critically contribute to skin homeostasis 13 

and the establishment of a functional epidermal barrier. Sebocytes, the main cell population found 14 

within the sebaceous glands, are highly specialized lipid-producing cells. Sebaceous gland-resem-15 

bling tissue structures are also found in male rodents in form of preputial glands. Similar to seba-16 

ceous glands, they are composed of lipid-specialized sebocytes. Due to a lack of adequate organ 17 

culture models for skin sebaceous glands and the fact that preputial glands are much larger and 18 

easier to handle, previous studies have used preputial glands as a model for skin sebaceous glands. 19 

Here, we compared both types of sebocytes, using a single cell RNA sequencing approach, to un-20 

ravel potential similarities and differences between the two sebocyte populations. In spite of com-21 

mon gene expression patterns due to general lipid-producing properties, we found significant dif-22 

ferences in the expression levels of genes encoding enzymes involved in the biogenesis of special-23 

ized lipid classes. Specifically, genes critically involved in the mevalonate pathway, including squa-24 

lene synthase, as well as the sphingolipid salvage pathway, such as ceramide synthase, (acid) sphin-25 

gomyelinase or acid and alkaline ceramidases, were significantly less expressed by preputial gland 26 

sebocytes. Together, our data revealed tissue-specific sebocyte populations, indicating major devel-27 

opmental, functional as well as biosynthetic differences between both glands. The use of preputial 28 

glands as surrogate model to study skin sebaceous glands is therefore limited, and major differences 29 

between both glands need to be carefully considered before planning an experiment.    30 

Keywords: Skin; Sebaceous Gland; Preputial Gland; scRNA-Sequencing; Lipid; Sebocyte Differen-31 

tiation, Bioactive Lipid Synthesis 32 

1. Introduction 33 

The skin provides a variety of adnexal structures including the pilosebaceous unit, 34 

which comprises the hair follicle, arrector pili muscle and the sebaceous gland. The latter 35 

contributes critically to epidermal homeostasis and barrier function by secreting lipids 36 

and enzymes[1]. Sebaceous gland (SG) development is tightly coordinated with the for-37 

mation of the hair follicle (HF)[2], [3]. The most prominent functions of SGs are the pro-38 

duction of sebum and the trafficking of lipids and lipid-soluble factors to the skin sur-39 

face[4]. Sebum mainly consists of non-polar lipids including triglycerides, fatty acids, wax 40 

esters, cholesterol and squalene[5]. Sebum production follows a highly specific program 41 

where pre-sebocytes undergo a maturation and differentiation process. During this dif-42 

ferentiation program sebocytes (SEB) from the outer epithelial layer of the sac-like gland 43 

structure move towards the lumen to the hair shaft, ultimately leading to cell death. The 44 

amount of intracellular lipids constantly increases during differentiation until the so-45 
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called ‘necrotic zone’ is reached and terminally differentiated sebocytes undergo mem-46 

brane lysis and nuclear degradation, thereby releasing their cellular content[5]–[7]. SG lin-47 

eage differentiation relies on a well-balanced equilibrium of canonical Wnt/β-catenin and 48 

c-myc/Hedgehog signaling. SEB progenitors usually express high levels of β-catenin. 49 

Lymphoid enhancer binding factor-1 (Lef1) serves as essential regulatory factor control-50 

ling lineage differentiation towards either HF or SG cells [8]–[10]. Terminally differenti-51 

ated SEB express high levels of stearoyl-CoA desaturase 1 (Scd1) and peroxisome prolif-52 

erator-activated receptor γ (Pparg). Both factors are known to critically contribute to SG 53 

differentiation and the formation of a functional epidermal barrier by regulating keratino-54 

cyte differentiation [10], [11]. SG function and lipid composition have been linked to sev-55 

eral inflammatory dermatoses including for example acne vulgaris, atopic dermatitis, pso-56 

riasis, rosacea and seborrheic dermatitis with tremendously changed levels of squalene 57 

and bioactive sphingolipids such as ceramide (CER) [12]–[21]. 58 

Squalene represents one of the most abundant lipid components found in human 59 

sebum [22]. It serves as precursor for cholesterol which is lastly synthesized by epidermal 60 

keratinocytes rather than SEB as they lack the necessary enzymes required for the final 61 

conversion steps [12], [23], [24]. Squalene synthesis via the mevalonate/isoprenoid biosyn-62 

thetic pathway is initiated by β-hydroxy-β-methylglutaryl-CoA (HMG-CoA) synthase 63 

(Hmgcs1), converting acetoacetyl-CoA to HMG-CoA, which in turn is further processed to 64 

mevalonate by HMG-CoA reductase (Hmgcr). Mevalonate is then converted to geranyl 65 

diphosphate, which serves as substrate for farnesyl diphosphate synthase (Fdps) to syn-66 

thesize farnesyl diphosphate. At this point further lipid synthesis is either dedicated to 67 

cholesterol synthesis via the sterol branch or the non-sterol branch including isoprenyla-68 

tion of proteins as well as synthesis of ubiquitin, heme and dolichols. Squalene synthase 69 

(Fdft1) is essential for squalene synthesis from farnesyl diphosphate thereby catalyzing 70 

the first step of the cholesterol-specific sterol branch of the isoprenoid biosynthetic path-71 

way [25]–[29]. 72 

Biologically active sphingolipids, including sphingomyelin, ceramide and sphingo-73 

sine 1-phosphate, have received increasing attention over the past years with regard to 74 

their critical role in signaling cascades, regulating a vast array of cellular functions [30]. 75 

Furthermore, these lipids are important for the establishment of a functional skin barrier 76 

[17], [18], [30]–[35]. Under homeostatic conditions these lipids are formed via the sphin-77 

gomyelinase pathway by de novo synthesis or by the recycling of sphingosine via the sal-78 

vage pathway [36]–[38]. Depending on external stimuli, this sphingolipid synthesis favors 79 

different lipid products. UV-radiation, chemotherapy and death receptor ligation trigger 80 

CERs and sphingosine synthesis functioning as potent pro-apoptotic mediators [30], [39]. 81 

In contrast, growth factors (e.g. platelet-derived growth factor, insulin-like growth factor, 82 

vascular endothelial growth factor), cytokines such as TNF and interleukin-1, hypoxia and 83 

immune complexes promote sphingosine 1-phosphate synthesis [30]. To counteract the 84 

pro-apoptotic functions of CER, cells can evade CER-induced cell death by its conversion 85 

to non-apoptotic metabolites such as sphingosine 1-phosphate [40]. Sphingosine 1-phos-86 

phate and its synthesizing enzyme sphingosine kinase 1 were not only proven to promote 87 

cell survival and proliferation, but also seem capable of actively inhibiting CER-mediated 88 

apoptosis[41]. The initial step of the de novo sphingolipid synthesis pathway occurs in the 89 

endoplasmic reticulum where serine palmitoyltransferase (Sptlc1) condensates serine and 90 

palmitoyl-CoA [36]. After several consecutive enzymatic intermediate steps, CER is 91 

formed which can be further trafficked to the Golgi appartus where it may be converted 92 

into sphingomyelin by sphingomyelin synthases (Sgms1) or into glucosylceramide by glu-93 

cosylceramide synthase (Ugcg) und subsequently to glycosphingolipids [37], [42]. The 94 

sphingomyelinase pathway is initiated with hydrolysis of sphingomyelin by sphingomy-95 

elinases (SMases; Smpd1), resulting in CER generation [37]. CER is subsequently con-96 

verted into sphingosine by pH-dependent ceramidases including the alkaline ceramidase 97 

Acer1, neutral ceramidase Asah2 and acid ceramidase Asah1 [37], [43], [44]. Sphingosine is 98 

further processed to sphingosine-1-P by a sphingosine kinase (Sphk1) [38]. In the salvage 99 
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pathway, recycling of pre-formed sphingolipids via ceramide synthase (Cers4) results in 100 

the degradation of sphingosine to CER [37], [38]. 101 

Despite advances in in vitro approaches using sebocyte cell lines, such as SZ95, Seb-102 

E6E7 and SEB-1, the major drawback of SG studies is the lack of adequate organ culture 103 

models, which are indispensable to comprehensively investigate sebaceous cell differen-104 

tiation, lipid production and extrusion [45]–[47]. Since preputial glands (PGs) are signifi-105 

cantly larger and easier to obtain, they have previously been used as a surrogate model 106 

for skin SGs [7], [48], [49]. PGs are specialized sebaceous-like glands found in male ro-107 

dents. Several studies investigating skin sebocytes have been built on data obtained from 108 

PG sebocytes [50]–[54]. Here we investigated the differences between SG- and PG-derived 109 

sebocytes on a single-cell level to elaborate their suitability as model for skin sebaceous 110 

glands.  111 

2. Results 112 

2.1 Significant differences in gene expression between sebocytes derived from skin SGs and PGs 113 

Since PGs have previously been used as model for skin SGs, we wanted to investigate 114 

their differences and similarities in more detail. Hematoxylin and Eosin (H&E) staining 115 

(Figure 1A) and immunofluorescence (IF) (Figure 1B) were performed to obtain an over-116 

view of potential morphological differences between SEB derived from skin (sSEB) and 117 

PG (pSEB) (Figure 1A and B). Both, H&E staining and IF for Stearoyl-CoA desaturase 118 

(Scd1) revealed high morphological similarities between SEB of the glands of both tissue 119 

types. Skin sebocytes were only detected within the sebaceous gland in close proximity to 120 

a hair shaft. Preputial gland sebocytes were extensively distributed throughout the gland. 121 

Despite the larger size and therewith resulting higher numbers of SEB within the PG, 122 

overall morphology highly resembles sSEB. In both tissues, the gradual differentiation of 123 

SEB from less differentiated, nucleated SEB on the outer edges of the SG and further away 124 

from the lumen of the PG was observed. In SG as well as PG, nuclear degradation was 125 

detected in SEB closer to the hair canal or the glandular lumen, respectively, indicating a 126 

mature or fully differentiated state of the SEB. Size and gross shape of SEB was similar in 127 

both tissues.  128 

To decipher transcriptional differences between sSEB and pSEB, we performed 129 

scRNAseq. Unbiased analysis of the data set and cluster generation revealed comparable 130 

cell type composition in both samples (Figure 1C). All populations were identified based 131 

on computed cluster-specific markers and well-established marker genes (Supplementary 132 

Figure 1). Cell clusters were identified as keratinocytes, fibroblasts, immune cells, endo-133 

thelial cells, muscle and smooth muscle cells and SEB. Interestingly, the relative numbers 134 

of the different cell types varied between skin and PG (Figure 1D). Whereas PGs contained 135 

fewer keratinocytes, relative numbers of immune cells and SEB were higher in PGs. Alt-136 

hough SEB clustered together in skin and PGs (Figure 1C, purple), a striking difference in 137 

cluster shape was observed, already indicating differences in gene expression. 138 

For a more detailed characterization, we subclustered SEB yielding five distinct SEB sub-139 

populations in skin SGs and three in PGs (Figure 2A). Closer characterization of the sub-140 

populations present in the skin showed high expression levels of hair follicle (HF)-associ-141 

ated genes, such as Krt27, Krt17, Hoxc13 and Wnt5a in the major three subpopulations 142 

(HF/SEB1, HF/SEB2, HF/SEB3) (Supplementary Figure 2) [55]–[61]. The two main clusters 143 

in PG were identified as early SEB and late SEB, and were both also found in the skin, 144 

though at significantly smaller numbers. The HF/SEB3 cluster was present in both skin 145 

and PG (Figure 2B). A total number of 663 genes was differentially expressed between 146 

sSEB and pSEB with a fold change cutoff greater than 1.5 or smaller than 0.6 (452 genes 147 

upregulated and 211 genes downregulated in skin) (Figure 2C). To analyze transcriptional 148 

differences and consequently potential variations in function we performed gene ontol-149 

ogy (GO) term enrichment analyses based on computed marker gene lists of sSEB and 150 

pSEB. sSEB GO terms were highly related to skin-specific functions such as epidermal 151 
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development, epithelial cell differentiation, cell junction and cell-cell adhesion processes 152 

as well as gland development (Figure 2D).  153 

Contrary, genes highly expressed in pSEB were strongly related to lipid specific GO 154 

terms involving lipid-binding and -metabolic processes. Furthermore, genes involved in 155 

steroid metabolic processes were enriched in pSEB (Figure 2D). In addition, GO term anal-156 

yses indicated that the sSEB cluster represented a mixture of lipid-specialized SEB and HF 157 

cells. Closer analysis of key genes associated with the previously identified GO terms 158 

showed that the HF/SEB3 in skin showed high expression levels of genes involved in skin-159 

specific functions while HF/SEB3 in PG exhibited little to no expression of those genes but 160 

high expression of lipid-associated genes (Figure 2E). Together, our data suggest remark-161 

able tissue-specific differences between sSEB and pSEB in gene expression and conse-162 

quently indicates different SEB function.   163 

 164 

2.3 sSEB and pSEB exhibit significant differences in their differentiation program 165 

As our previous results suggest a high tissue-specific gene expression profile, we first 166 

compared the differentiation programs engaged by sSEB and pSEB. Analyses of key genes 167 

involved in the regulation of sebaceous cell differentiation revealed that the HF-associated 168 

clusters, HF/SEB1, HF/SEB2 and HF/SEB3, as well as early SEB in the skin exhibited high 169 

expression levels of β-catenin (Ctnnb1) (Figure 3A). In addition, the Wnt/β-catenin down-170 

stream effector gene Lef1, which promotes differentiation towards HF cells was strongly 171 

expressed in HF/SEB1 and HF/SEB2 clusters (Figure 3B) [9], [10]. In contrast, only early 172 

and late pSEB expressed high levels of β-catenin (Ctnnb1) but no Lef1 (Figure 3A, B). This 173 

finding is concomitant with previously published studies describing canonical Wnt/β-174 

catenin signaling as critical for cell fate decision towards either HF or SG in the skin [8], 175 

[10], [62]. Both, early and late SEB in skin and PGs showed high expression levels of Pparg 176 

(Figure 3C) and Plin2 (Figure 3D) compared to HF-associated clusters (Figure 3D), indi-177 

cating an advanced SEB differentiation stage. We furthermore performed pseudotime tra-178 

jectory analysis of skin HF-keratinocytes (HF-KC), identified by HF-associated genes 179 

(Supplementary Fig. 3A,B) and sSEB (Figure 3E) [63]. We included HF-KCs as the HF-180 

associated SEB cluster indicated a potential cell fate decision towards differentiated 181 

keratinocytes with lineage affinity towards hair follicle keratinocytes (HF/Diff KC). The 182 

starting point (green) was set at Blimp1+ (Prdm1) expressing stem cells (Figure 3E, Supple-183 

mentary Figure 3C). The first branching point (white circle) after pseudotime start (green 184 

circle) directed cell differentiation either into SEB or HF cells. Within the HF/Diff KC clus-185 

ter, there were two additional fate decision checkpoints, indicating differentiation steps 186 

within the HF cluster into different KC subpopulations found in HFs. Once the cell fate 187 

decision was made towards SEB, there was only one differentiation end point (marked as 188 

red circle). For pSEB, such trajectory analysis was not computed because stem cells or 189 

precursors could not be mapped with high accuracy (Supplementary Fig. 3D). To sum up, 190 

these findings clearly indicate that sSEB and pSEB undergo strikingly dissimilar differen-191 

tiation programs to reach a lipid-specialized and late differentiated state.  192 

 193 

194 
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 195 

Figure 1. Comparison of skin and preputial gland sebocytes. (A) Hematoxylin and eosin staining of a skin biopsy (left panel) 196 

and a preputial gland (right panel). Arrows indicate sebaceous glands in close proximity to hair shafts marked by asterisks. 197 

Arrowheads indicate differentiated sebocytes with degenerated nuclei, facing the lumen of either the hair shaft or the lumen 198 

of the preputial gland; Scale bar = 100µm, 50µm in insert; sc: stratum corneum; e: epidermis; d: dermis; h: hypodermis; L: lumen of 199 

the preputial gland; S: sebocytes; (B) Representative immunofluorescence labelling of Scd1+ sebocytes in the skin (left panel) and 200 

the preputial gland (right panel); scale bar = 100µm, 50µm in insert. Tissues of n = 3 respectively. (C) UMAP-plots comparing 201 

cells of skin biopsies (n=3) and preputial glands (n=3), split by tissue, identifying keratinocytes, fibroblasts, immune cells, 202 

endothelial cells, muscle and smooth muscle cells and sebocytes (SEB). (D) Bar plot indicating relative numbers of cell popu-203 

lations identified within the skin and preputial gland.  204 

 205 
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 206 

Figure 2. Subclustering of sebocytes and Gene Ontology analysis (A) Analysis of the sebocyte subcluster identified five distinct 207 

subtypes in UMAP-plot. Subclusters were identified as HF/SEB 1, HF/SEB 2, HF/SEB 3, early SEB and late SEB. (B) Barplot indicates 208 

relative cell numbers present within each sebocyte subcluster. (C) Barplot shows the total number of differentially expressed genes 209 

of total sSEB compared to total pSEB. (D) Gene Ontoloy (GO) term analysis results using Metascape. Genes with differential 210 

expression fold change of >1.5 or <0.6 were assigned to GO terms. (E) Heatmap showing expression levels of genes associated with 211 

distinct GO terms in the different SEB subcluster. 212 
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 213 

Figure 3. Preputial gland sebocytes lack downstream effector genes relevant for HF/SG lineage decision. Featureplots and violin plots 214 

of the integrated sebocyte subcluster from skin and preputial gland showing the expression of (A) β-catenin (Ctnnb1), (B) Lymphoid 215 

enhancer binding factor-1 (Lef1), (C) Peroxisome proliferator-activated receptor gamma (Pparg), (D) Perilipin 2 (Plin2). Violin-plots 216 

show gene expression levels and crossbar of violin-plots depicts mean expresion value. Vertical lines show maximum expression. 217 

Width of violins represents the frequency of cells at the corresponding expression levels. (E) UMAP-plot and pseudotime trajectory 218 

track starting from Blimp+ sebocyte precursors (green circle). Colour code indicates computational calculated progression in 219 

differentiation. White circles indicate cell fate decision check points and red circles depict differentiation end points.      220 
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2.4 Key enzymes of critical lipid synthesis pathways are differentially expressed in sSEB and 221 

pSEB  222 

To investigate differences in the lipid synthesis pathways between sSEB and pSEB, 223 

we analyzed the expression of enzymes important for the production of squalene and 224 

sphingolipids.  225 

Analysis of the expression levels of key enzymes involved in the synthesis of squa-226 

lene (Figure 4A) revealed that most of these enzymes (Hmgcs1, Hmgcr and Fdps) were sig-227 

nificantly increased in late SEB in both tissues (Figure 4B-D). Interestingly, expression lev-228 

els of the squalene synthase (Fdft1) differed significantly between skin and PGs (Figure 229 

4E). Whereas Fdft1 was highly expressed in sSEB, its expression was almost completely 230 

absent in pSEB, suggesting strongly reduced cholesterol synthesis. Together, these data 231 

indicate that pSEB-derived lipids produced via the mevalonate/isoprenoid pathway are 232 

more likely to follow the non-sterol branch. 233 

Our scRNAseq data revealed significant differences in expression levels of genes in-234 

volved in the synthesis of bioactive sphingolipids (Figure 5A). Figure 5B shows the aver-235 

age gene expression levels of key enzymes involved in de novo, sphingomyelinase and 236 

salvage lipid synthesis. Sptlc1, the key enzyme for de novo synthesis, was significantly 237 

higher expressed in pSEB compared to sSEB (Figure 5B, C). In contrast, sSEB showed 238 

higher expression levels of Smpd1, critically involved in ceramide synthesis from sphin-239 

gomyelin (Figure 5B, C). Enzymes which further process ceramide into either sphingomy-240 

elin or other sphingolipids within the Golgi, such as Sgms1 and Ugcg, were expressed at 241 

higher levels in sSEB, or were completely absent from pSEB (Figure 5B). Not only the ini-242 

tiating enzyme of sphingomyelin-ceramide conversion, Smpd1, but also downstream ef-243 

fector enzymes within the endo-lysosomal compartment, such as the acid ceramidase 244 

Asah1, exhibited higher expression levels in sSEB (Figure 5C). Furthermore, Cers4 expres-245 

sion was found to be almost exclusively linked to sSEB, while pSEB showed higher spec-246 

ificity for Sphk1 (Figure 5D). 247 

Together, these differences in enzyme expression levels suggest that pSEB sphin-248 

golipid synthesis occurs rather de novo with subsequent processing of ceramide to sphin-249 

gosine in order to generate sphingosine-1-P. Contrary, sSEB appear to synthesize a 250 

broader range of bioactive sphingolipids and recycle free sphingosine to ceramide via the 251 

salvage pathway.  252 

3. Discussion 253 

Lipids are bioactive signaling molecules, triggering a vast array of cellular responses 254 

[30]. In the skin, SG are the main producers of lipids, specifically sphingolipids and the 255 

cholesterol precursor squalene, both of which critically contribute to the establishment 256 

and maintenance of the skin barrier [18], [64]–[68]. Since PG have often been used as a 257 

model for skin SG, we analyzed both tissues on single cell level and found striking differ-258 

ences in the differentiation program and lipid synthesis processes in sebocytes of both 259 

organs.  260 

sSEB differentiation from sebocyte stem cells is described to follow a tightly con-261 

trolled program which allows the cells to either differentiate into HF cells or SG cells [10]. 262 

By contrast, pSEB differentiation is only poorly described, and our data suggest that it 263 

follows a different developmental program. Our single cell analysis identified the ability 264 

of sSEB to differentiate into HF cells as the major difference between both organs. Espe-265 

cially genes downstream of β-catenin, were not expressed in pSEB [9], [10]. Interestingly, 266 

Blimp1+ SG stem cells were only identified in sSEB but not in pSEB, suggesting that the 267 

SEB stem cells already differ significantly between SG and PG. It is yet unclear which cells 268 

serve as pSEB precursors and which differentiation pathway is crucial for lipid-special-269 

ized cell fate decisions. Thus, pSEB cannot substitute sSEB in in vitro studies investigating 270 

sSEB differentiation and potential ensuing consequences for HF homeostasis.  271 

 272 
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 273 

Figure 4. Key enzymes of the mevalonate lipid synthesis pathway are less expressed in preputial gland sebocytes. (A) Schematic 274 

depiction of the mevalonate pathway and key enzymes involved in the synthesis of squalene. (B)-(E) Violin plots showing the 275 

expression level of (B) HMG-CoA-synthase (Hmgcs1), (C) HMG-CoA reductase (Hmgcr), (D) farnesyl diphosphate synthase (Fdps), 276 

and (E) squalene synthase (Fdft1). Violin-plots show gene expression levels and crossbar of violin-plots depicts mean expresion value. 277 

Vertical lines show maximum expression. Width of violins represents the frequency of cells at the corresponding expression levels.   278 
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 279 

Figure 5. Preputial gland sebocytes are limited to de novo biosynthesis of sphingolipids. (A) Schematic drawing of the de novo, 280 

sphingomyelinase and salvage pathway of ceramide- and ceramide metabolide synthesis. Key enzymes involved in the respective 281 

pathways are coloured in red. Sptlc1: serine palmitoyltransferase1; Cers4: ceramide synthase 4; Sgms1: sphingomyelin synthase 1; 282 

Ugcg: ceramide glucosyltransferase; Smpd1: sphingomyelinase 1; Acer1: alkaline ceramidase; Asah2: neutral ceramidase; Asah1: acid 283 

ceramidase; Sphk1: sphingosine kinase 1. (B) Dotplot of average gene expression of the key enzymes involved in the synthesis of 284 

sphingolipids in preputial gland and skin tissue. Point size indicates relative averaged amount of positive cells. Colour code indicates 285 

average gene expression levels. (C) Featurescatter-plot of sSEB and pSEB shows correlation gene expression of Smpd1 and Sptlc1, or 286 

Asah1 and Sptlc1. (D) Featurescatter-plot of sSEB and pSEB showing corrleational gene expression of Sphk1 and Cers4. Gene 287 

expression levels for each gene respectively is shown on either x- or y-axis. 288 

  289 
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In addition to these fundamental dissimilarities, sSEB and pSEB further showed sig-290 

nificant differences in expression levels of key enzymes involved in lipid synthesis. Squa-291 

lene serves as SG-derived precursor for cholesterol synthesis by keratinocytes [22]. Inter-292 

estingly, literature on squalene in rodent sebum and preputial glands is rather controver-293 

sial. While some previous studies showed that the cholesterol precursor squalene is absent 294 

from rodent skin surface lipids and preputial glands, others identified squalene in both 295 

organs [69]–[73]. It is noteworthy that these studies, providing the foundation for modern 296 

research, relied on volatile analysis methods [70], [71]. As cholesterol is found on the skin 297 

surface and within preputial gland lipids and squalene-cholesterol conversion occurs at 298 

rather high frequency with low storage rates of squalene in rodents, the majority of reports 299 

indicate that squalene is indeed produced in both organs [24], [70]–[72], [74], [75]. In ad-300 

dition, we found high levels of key enzymes of the mevalonate pathway in sSEB and pSEB, 301 

which is upstream of squalene synthase. Interestingly, we detected remarkable differences 302 

in the expression of squalene synthase between sSEB and pSEB. The low levels of squalene 303 

synthase found in pSEB suggest that these cells rather produce non sterol compounds, 304 

while the synthesis of squalene in sSEB offers a decision between the non-sterol and the 305 

sterol branch, eventually leading to cholesterol synthesis by keratinocytes [76]. Given that 306 

cholesterol can either be synthesized de novo via the mevalonate pathway, or taken up 307 

from peripheral tissues via binding of low density lipoprotein (LDL) and high density 308 

lipoprotein (HDL), pSEB may not require squalene as cholesterol precursor and circum-309 

vent squalene synthase by LDL or HDL receptor mediated endocytosis [27], [76]. This 310 

substitute source of cholesterol may contribute to sufficient levels of cholesterol independ-311 

ent of de novo synthesis for pheromone-associated functions in the PG. Of note, besides 312 

serving as cholesterol precursor, squalene is also known to protect the skin from UV-irra-313 

diation-induced injury [77]. In addition, UV irradiation triggers a decomposition of skin 314 

surface lipids, specifically squalene, resulting in the generation of lipoperoxides of squa-315 

lene, which are able to reduce contact hypersensitivity in mice [78]. Since PG are not 316 

reached by UV-radiation, this protective mechanism is irrelevant in PG and may result in 317 

a generally reduced requirement for squalene synthesis.  318 

Previous studies implicated CER in intracellular as well as stress-induced signaling 319 

responses influencing keratinocyte proliferation, differentiation and apoptosis [79]. In 320 

terms of maintaining epidermal barrier function, ceramide is believed to act on PPAR 321 

which stimulates keratinocyte differentiation [40]. Furthermore, PPAR activation leads to 322 

ATP binding cassette transporter family-12 production serving as critical regulator of glu-323 

cosylceramide delivery to lamellar bodies, which in turn contributes to epidermal barrier 324 

formation [80], [81]. Considering the high potency of ceramide as second messenger in 325 

intracellular signaling critically influencing epidermal barrier function, we investigated 326 

key enzymes involved in de novo as well as salvaged sphingolipid synthesis [18], [80]–[84]. 327 

Our scRNA sequencing data revealed that rate limiting enzymes in sphingolipid synthe-328 

sis, such as serine palmitoyltransferase (Sptlc1) and sphingomyelinase (SMase; Smpd1), 329 

are present in SEB of both tissues. However, our data suggest that sphingolipid synthesis 330 

in PGs favors de novo synthesis, as Sptlc1 expression levels were significantly higher in 331 

pSEB. The most prominent difference was identified in the salvage pathway, as pSEB 332 

showed little to no ceramide synthase (CerS) expression but high expression of sphingo-333 

sine kinase 1 (Sphk1). Together, these findings indicate that whereas sSEB preferentially 334 

produce CER, pSEB favor the production of sphingosine-1-phosphate (S1P) from sphin-335 

gosine. Besides the crucial contribution of ceramide to the establishment of a functional 336 

skin barrier it has been previously linked to suppress steroid hormone production which 337 

is a major function of the PG [85]–[91]. In contrast, Sphk1 and its lipid product S1P have 338 

been linked to promote steroid hormone production [87], [92]–[96]. Taken together, our 339 

data suggest a higher affinity of sSEB to produce ceramide, independently of either the de 340 

novo or salvage route, while pSEB appear to be more specialized in lipid production rele-341 

vant for steroid hormone production, where increasing ceramide levels are unfavorable. 342 

Additionally, ceramide metabolites such as glucosylceramide and glycosphingolipids are 343 
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of vital importance for epidermal barrier function by either serving as precursors for stra-344 

tum corneum derived ceramide or actively contributing to skin barrier homeostasis [97], 345 

[98]. The discrepancy in enzymatic expression levels important for the conversion of 346 

ceramide to glucosylceramides and glycosphingolipids further indicates fundamental dif-347 

ferences between sSEB and pSEB.  348 

In summary, besides superficial transcriptional similarities and morphological re-349 

semblances, pSEB show tremendous differences rendering them highly unfavorable as 350 

substitute model for sSEB. Our study has built the basement for further studies, which 351 

will be necessary to fully understand the fundamental differences in the various SEB pop-352 

ulations and to elucidate which results obtained from pSEB can indeed be extrapolated to 353 

sSEB.   354 

4. Materials and Methods 355 

4.1 Animals 356 

Three male wild type C57BL/6 mice at the age of 52 weeks were used for this study. 357 

Biopsies were obtained from back skin and preputial glands. Skin biopsies as well as pre-358 

putial gland samples were pooled respectively and subsequently processed for single cell 359 

RNA sequencing, protein lysates or histology.   360 

 361 

4.2 Single cell RNA Sequencing (scRNAseq) 362 

Immediately after obtaining the skin biopsies and preputial glands, tissues were en-363 

zymatically digested using GentleMACS whole skin dissociation kit (Miltenyi Biotec, 364 

Bergisch-Gladbach, Germany) according to the manufacturers protocol. Samples were 365 

further processed on a GentleMACS OctoDissociator (Miltenyi). The cell suspension was 366 

filtered through 100µm and 40µm filters and washed with 0.04% bovine serum albumin 367 

(BSA, Sigma Aldrich, St. Louis, Mo, USA) in PBS. Cell viability and concentration was 368 

assessed using Acridine Orange/Propidium Iodide (AO/PI) Cell Viability Kit (Logos Bio-369 

systems, Anyang-si, Gyenoggi-do, South Korea) and analyzed on a LUNA-FLDual Fluo-370 

rescence Cell Counter (Logos Biosystems). Cell concentrations were adjusted to 0.7 to 1.2 371 

x106 cells/ml. Subsequently, gel beads-in-emulsion (GEMs) were generated. GEM genera-372 

tion, barcoding, sample clean-up, cDNA amplification as well as library construction were 373 

performed in accordance to the manufacturers protocol using Chromium Next GEM Sin-374 

gle Cell 3’GEM, Library and Gel Bead Kit v3.1, Chromium Next GEM Chip G Single Cell 375 

Kit, and Single Index Kit T Set A (10x Genomics, Pleasanton, CA, USA). Final RNA-se-376 

quencing, demultiplexing and counting was performed by the Biomedical Sequencing Fa-377 

cility (BSF) of the Center for Molecular Medicine (CeMM, Vienna, Austria). Obtaining 378 

samples and acquiring cell suspensions by Chromium instrument occurred within 4 379 

hours. In total, data of approximately 10,000 cells were obtained.  380 

 381 

4.3 Data analysis (Bioinformatics) 382 

Bioinformatics analyses were carried out using R (R version 4.0.3, The R Foundation, 383 

Vienna, Austria), R-studio desktop application and the R-Package “Seurat” (Seurat v4.0.3, 384 

Satija Lab).[99]–[102] To reduce variations cells with very low or very high unique molec-385 

ular identifiers (UMI) or high percentage of mitochondrial gene counts were excluded for 386 

subsequent analyses. PCA and UMAP were calculated and all further subset analyses 387 

were based on raw data of the cells of interest. Different cell populations were identified 388 

based on clustermarker features and checked for well-established marker genes for so-389 

phisticated cluster definition (supplementary Figure 1). Gene ontology (GO) enrichment 390 

analyses were carried out based on clustermarker and differentially expressed gene cal-391 

culations. Only genes with a fold change greater than 1.5 or smaller than 0.6 were in-392 

cluded. The publicly available enrichment tool Metascape was used for GO enrichment 393 
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analyses.[103] A p-value cutoff of 0.01 and a minimum enrichment score of 3 was set for 394 

GO terms with molecular function and biological process membership.    395 

 396 

 397 

4.4 Immunofluorescence and H&E 398 

 For immunofluorescent staining tissue samples were formalin-fixed, embedded in 399 

paraffin and cut into 5µm thick sections. Paraffin sections were deparaffinised by heating 400 

and ethanol dilution series (100%, 80%, 30%). Antigen de-masking was performed with 401 

Dako TRS citrate buffer at pH6 (Agilent Technologies, Santa Clara, CA, USA). Sample 402 

sections were incubated with anti Scd1 (ab236868, Abcam) primary antibody diluted in 403 

2%BSA in PBS overnight at 4°C. Secondary antibody was diluted in 2%BSA in PBS. Hae-404 

matoxilin and eosin staining was performed according to routine laboratory procedures. 405 

Images were acquired with an Olympus BX63 microscope (Olympus, Tokyo, Japan) with 406 

MetaMorph imaging software.  407 

 408 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 409 

Cell Population definition based on clustermarker, Figure S2: HF-associated gene expression in SEB, 410 

Figure S3: HF/Diff KC cluster marker and Blimp1 expression. 411 
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