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Abstract
In a typical text, readers look much longer at some words than at others and fixate some words multiple times,

while skipping others altogether. Historically, researchers explained this variation via low-level visual or oculomotor

factors, but today it is primarily explained via cognitive factors, such as how well words can be predicted from

context or discerned from parafoveal preview. While the existence of these effects has been well established in

experiments, the relative importance of prediction, preview and low-level factors for eye movement variation in

natural reading is unclear. Here, we address this question in three large datasets (n=104, 1.5 million words), using

a deep neural network and Bayesian ideal observer to model linguistic prediction and parafoveal preview from

moment to moment in natural reading. Strikingly, neither prediction nor preview was important for explaining word

skipping – the vast majority of skipping was explained by a simple oculomotor model. For reading times, by contrast,

we found strong but independent contributions of both prediction and preview, and effect sizes matching those

from controlled experiments. Together, these results challenge dominant models of eye movements in reading by

showing that linguistic prediction and parafoveal preview are not important determinants of word skipping.

INTRODUCTION1

When reading a text, readers move their eyes across2

the page to bring new information to the centre of3

the visual field, where perceptual sensitivity is highest.4

While it may subjectively feel as if the eyes smoothly5

slide along the text, they in fact traverse the words6

with rapid jerky movements called saccades, followed7

by brief stationary periods called fixations. Across a8

text, saccades and fixations are highly variable and9

seemingly erratic: Some fixations last less than 10010

ms, others more than 400; and while some words are11

fixated multiple times, many other words are skipped12

altogether [1, 2]. What explains this striking variation?13

Historically, researchers have pointed to low-level14

non-linguistic factors like word length, oculomotor15

noise, or the relative position where the eyes happen16

to land [2–5]. Such explanations were motivated by the17

idea that oculomotor control was largely autonomous.18

In this view, readers can adjust saccade lengths and fixa-19

tion durations to global characteristics like text difficulty20

or reading strategy, but not to subtle word-by-word dif-21

ferences in language processing [2–4, 6].22

As reading was studied in more detail, however, it23

became clear that the link between eye movements24

and cognition was more direct. For instance, it was25

found that fixation durations were shorter for words26

with higher frequency [7, 8]. Eye movements were even27

shown to depend on howwell a word’s identity could be28

inferred before fixation. Specifically, researchers found29

that words are read faster and skipped more often if30

they are predictable from linguistic context [9, 10] or if31

they are identifiable from a parafoveal preview [11–13].32
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These demonstrations of a direct link between eye33

movements and language processing overturned the34

autonomous view, replacing it by cognitive accounts35

describing eye movements during reading as largely, if36

not entirely, controlled by linguistic processing [14, 15].37

Today, many studies still build on the powerful tech-38

niques like gaze-contingent displays that helped over-39

turn the autonomous view, but now ask much more40

detailed questions, like whether word identification is41

a distributed or sequential process [16, 17]; how many42

words can be processed in the parafovea [18]; at which43

level they are analysed [19], and how this might differ44

between writing systems or orthographies [20, 21].45

Here, we ask a different, perhaps more elemental46

question: how much of the variation in eye movements47

do linguistic prediction, parafoveal preview, and non-48

linguistic factors each explain? That is, how important49

are these factors for determining how the eyes move50

during reading? Dominant, cognitive models explain51

eye movement variation primarily as a function of on-52

going processing. Skipping, for instance, is modelled53

as the probability that a word is identified before fixa-54

tion [14, 22, 23]. Some, however, have questioned this55

purely cognitive view, suggesting that low-level features56

like word eccentricity or length might be more impor-57

tant [24–26]. Similarly, one may ask what drives next-58

word identification: is identifying the next word mostly59

driven by linguistic predictions [27] or by parafoveal per-60

ception? Remarkably, while it is well-established that61

both linguistic and oculomotor, and both predictive62

and parafoveal processing, all affect eye-movements63

[13, 24, 28, 29], a comprehensive picture of the their rel-64

ative explanatory power is currently missing, perhaps65

because they are seldom studied all at the same time.66

To arrive at such a comprehensive picture we focus67

on natural reading, analysing three large datasets of68

participants reading passages, long articles, and even69

an entire novel – together encompassing 1.5 million70

(un)fixated words, across 108 individuals [30–32]. In-71

stead of manipulating word predictability or perturb-72

ing parafoveal perceptibility, we combine deep neural73

language modelling [33] and Bayesian ideal observer74

analysis [34] to quantify how much information is con-75

veyed by both factors, on moment-by-moment basis.76

This way, we can probe the effect of both prediction77

and preview on each word during natural reading. Such78

a broad-coverage approach has been applied to the79

effects of predictability on reading before [29, 35–38],80

but either without considering preview or only through81

coarse heuristics such as using frequency as a proxy82

for parafoveal identifiability [17, 39, 40] (cf. [34]). By83

contrast, here we explicitly model both, in addition to84

low-level explanations like autonomous oculomotor85

control. To assess explanatory power, we use set the-86

ory to derive the unique and shared variation in eye87

movements explained by each model.88

To preview the results, this revealed a striking dis-89

sociation between skipping and reading times. For90

word skipping, the overwhelming majority of variation91

could be explained – mostly uniquely explained – by a92

non-linguistic oculomotor model. For reading times,93

by contrast, we found strong effects of both predic-94

tion and preview, tightly matching effect sizes from95

controlled designs. Interestingly, linguistic prediction96

and parafoveal preview seem to operate independently:97

we found strong evidence against Bayes-optimal inte-98

gration of the two. Together, these results challenge99

dominant cognitive models of reading, and show that100

skipping (or the decision of where to fixate) and reading101

times (i.e. how long to fixate) are governed by different102

principles.103

RESULTS104

We analysed eye movements from three large105

datasets of participants reading texts ranging from iso-106

lated paragraphs to an entire novel. Specifically, we107

considered three datasets: Dundee [32] (N=10, 51.502108

words per participant), Geco [31] (N=14, 54.364 words109

per participant) and Provo [30] (N=84, 2.689 words per110

participant). In each corpus, we analysed both skipping111
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Figure 1: Quantifying two types of context during natural reading
a) Readers can infer the identity of the next word before fixation either by predicting it from context or by discerning it
from the parafovea. Both can be cast as a probabilistic inference about the next word, either given the preceding words

(prediction, blue) or given a parafoveal percept (preview, orange). b) To model prediction, we use GPT-2, one of the most
powerful publicly available language models [33]. For preview, we use an ideal observer [34] based on well-established

‘Bayesian Reader‘ models [41–43]. Importantly, we do not use either model as a cognitive model per se, but rather as a

tool to quantify how much information is in principle available from prediction or preview on a moment-by-moment basis.

and reading times (indexed by gaze duration), as they112

are thought to reflect separate processes: the decision113

of where vs how long to fixate, respectively [14, 24].114

To estimate the effect of linguistic prediction and115

parafoveal preview, we quantified the amount of in-116

formation conveyed by both factors for each word in117

the corpus (for preview, this was tailored to each in-118

dividual participant, since each word was previewed119

at a different eccentricity by each participant). To this120

end, we formalised both processes as a probabilistic121

belief about the identity of the next word, given either122

the preceding words (prediction) or a noisy parafoveal123

percept (preview; see Figure 1a). As such, we could124

describe these disparate cognitive processes using a125

common information-theoretic currency. To compute126

the probability distributions, we used GPT-2 for predic-127

tion [33] and a Bayesian ideal observer for preview [34]128

(see Figure 1b and Methods).129

Prediction and preview increase skipping rates and130

reduce reading times131

We first asked whether our formalisations allowed132

us to observe the expected effects of prediction and133

preview, while statistically controlling for oculomotor134

and lexical variables in a multiple regression model. Be-135

cause the decisions of whether to skip and how long to136

fixate a word are made at different moments, we mod-137

eled each separately with a different set of explanatory138

variables; but for both, we considered the full model139

(detailed below).140

As expected, we found in all datasets that words141

were more likely to be skipped if there was more infor-142

mation available from the linguistic prediction (Boot-143

strap: Dundee, p = 0.023; GECO, p = 0.034; Provo144

p < 10−5) and/or the parafoveal preview (Bootstrap:145

Dundee, p = 4×10−5; GECO, p < 10−5; Provo p < 10−5).146

Similarly, reading times were reduced for words that147
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were more predictable (all p′s < 3.2 × 10−4) or more148

identifiable from the parafovea (all p′s < 4× 10−5).149

Together this confirms that our model-based ap-150

proach can capture the expected effects of both pre-151

diction [15] and preview [13] in natural reading, while152

statistically controlling for other variables.153

Skipping can be largely explained by non-linguistic154

oculomotor factors155

After confirming that prediction and preview had a156

statistically significant influence on word skipping and157

reading times, we went on to assess their relative ex-158

planatory power. After confirming the effects of predic-159

tion and preview, we then further examined their rela-160

tive explanatory power. That is, we asked the question161

how important these factors were, by examining how162

much variance was explained by each. To this end, we163

grouped the variables from the full regression model164

into different types of explanations, and assessed how165

well each type accounted for the data.166

For skipping, we considered three explanations. First,167

a word might be skipped purely because it could be168

predicted from context – i.e. purely as a function of169

the amount of information conveyed by the prediction.170

Secondly, a word might be skipped because its identity171

could be gleaned from a parafoveal preview – that is,172

purely as a function of the informativeness of the pre-173

view. Finally, a word might be skipped simply because174

it is so short or so close to the prior fixation location175

that a saccade of average length will overshoot it, ir-176

respective of its linguistic properties – in other words,177

purely as a function of length and eccentricity. Note178

that we did not include often-used lexical attributes like179

frequency to predict skipping, because using attributes180

of wordn+1 already pre-supposes parafoveal identifica-181

tion. Moreover, to the extent that a lexical attribute like182

frequency might influence a words parafoveal identifia-183

bility, this should already be captured by the parafoveal184

entropy (see Figure S3 and Methods for more details).185

For each word, we thus modelled the probability of186

skipping either as a function of prediction, preview, or187

oculomotor information, or by any combination of the188

three. Then we partitioned the unique and shared189

cross-validated variation explained by each account.190

Strikingly, this revealed that the overwhelming major-191

ity of explained skipping variation (94 %) could be ac-192

counted for by the non-linguistic baseline (Figure 2).193

Moreover, the majority of the variation was only ex-194

plained by the baseline, which explained 10 times more195

unique variation than prediction and preview combined.196

There was a large degree of overlap between preview197

and the oculomotor baseline, which is unsurprising198

since a word’s identifiability decreases as a function199

of its eccentricity and length. Interestingly, there was200

even more overlap between the prediction and base-201

line model: almost all skipping variation that could be202

explained by contextual constraint could be equally well203

explained by the oculomotor baseline factors.204

Importantly, while the contribution of prediction and205

preview was small, it was significant both for prediction206

(bootstrap: Dundee, p = 0.015; Geco, p = 0.0001; Provo,207

p < 10−5) and preview (all p′s < 5× 10−5), confirming208

that both factors do affect skipping. Crucially however,209

the vast majority of skipping that could be explained by210

either prediction or preview was equally well explained211

by the more parsimonious oculomotor model – which212

also explained much more of the skipping data overall.213

Reading times are strongly modulated by predic-214

tion and preview215

For reading times (operationalised through gaze du-216

rations, so considering foveal ‘reading’ only), we also217

considered three explanatory factors. First, a word218

might be read faster because it was predictable from219

the preceding context, which we formalised via linguis-220

tic surprise. Second, a word might be read faster if it221

could already be partly identified from the parafoveal222

preview (before fixation). This informativeness of the223

preview was again formalised via the parafoveal pre-224

view entropy. Finally, a word might be read faster due225
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Figure 2: Variation in skipping explained by predictive, parafoveal and autonomous oculomotor processing
a) Proportions of cross-validated variation explained by prediction (blue), preview (orange) oculomotor baseline (grey) and
their overlap; averaged across datasets (each dataset weighted equally). b) Variation partitions for each individual dataset,
including statistical significance of variation uniquely explained by predictive, parafoveal or oculomotor processing. Stars

indicate significance-levels of the cross-validated unique variation explained (bootstrap t-test against zero): p < 0.05 (*),

p < 0.05 (**), p < 0.001 (***) For results of individual participants, and their consistency, see Figure S5.

to attributes of the word itself, such as lexical frequency.226

This last explanatory factor functioned as an aggregate227

baseline model that captured key non-contextual word228

attributes, both linguistic and non-linguistic (see Meth-229

ods).230

In all datasets, prediction (all p′s < 7.7× 10−3), pre-231

view (all p′s < 1.2 × 10−4) and non-contextual woord232

attributes (all p′s < 1.8× 10−4) again all explained sig-233

nificant unique variation. The non-contextual baseline234

explained the most variance, which shows – perhaps235

unsurprisingly – that properties of the word itself are236

more important than contextual factors in determining237

how long a word is fixated. Critically however, com-238

pared to skipping the unique contribution of prediction239

and preview was more than three times higher (see Fig240

3). Specifically, while prediction and preview could only241

uniquely account for 6% of explained word skipping242

variation, they uniquely accounted for more than 18 %243

of explained variation in reading times. Importantly, the244

non-contextual baseline used to predict reading times245
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Figure 3: Variation in reading times explained by predictive, parafoveal and non-contextual information
a) Grand average of partitions of cross-validated variance in reading times (indexed by gaze durations) across datasets
(each dataset weighted equally) explained by non-contextual factors (grey), parafoveal preview (orange), and linguis-

tic prediction (blue). b) Variance partitions for each individual dataset, including statistical significance of the cross-
validated variance explained uniquely by the predictive, parafoveal or non-contextual explanatory variables. Stars indicate

significance-levels of the cross-validated unique variance explained (bootstrap t-test against zero): p < 0.05 (**), p < 0.001

(***). Note that the non-contextual model here included both lexical attributes (e.g. frequency) and oculomotor factors

(relative viewing or landing position); assessing these separately reveals that reading time variation uniquely explained by

oculomotor factors was small (see Fig S7). For results of individual participants, see Figure S6.

included both linguistic (e.g. lexical frequency) and non-246

linguistic information (viewing position) of the current247

word. When we analysed these separately, we found248

that the unique contribution of non-linguistic factors249

was small (see S7). This shows that contrary to skipping,250

variation in reading time is heavily influenced by online251

linguistic processing.252

Naturalistic prediction and preview benefit effect253

match experimental effect sizes254

The previous result confirms that reading times (in-255

dexed via gaze durations) are highly sensitive to lin-256

guistic and parafoveal context, in line with decades of257

research on eye movements in reading [44]. But how258

well do our results compare exactly to established find-259
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Figure 4: Simulated preview and predictability benefits match those reported in experimental literature
Preview (left) and predictability benefits (right) inferred from our analysis of each dataset, and observed in a sample of

studies (see Table S1). In this analysis, preview benefit was simulated as the expected difference in gaze duration after a

preview of average informativeness versus after no preview at all. Predictability benefit was defined as the difference in

gaze duration for high versus low probability words; ‘high’ and ‘low’ were defined by subdividing the cloze probabilities

from provo into equal thirds of ‘low’, ‘medium’ and ‘high’ probability (see Methods). In each plot, small dots with dark edges

represent either individual subjects within one dataset or individual studies in the sample of the literature; larger dots

with error bars represent the mean effect across individuals or studies, plus the bootstrapped 99% confidence interval.

ings from the experimental literature?260

To directly address this question, we simulated, for261

each participant the effect size of two well-established262

effects that would be expected to be obtained if we263

would conduct a well-controlled factorial experiment.264

Specifically, because we estimated how much addi-265

tional information from either prediction or preview (in266

bits) reduced reading times (in milliseconds) we could267

predict reading times for words that are expected vs268

unexpected (predictability benefit [28, 45]) or have valid269

vs invalid preview (i.e. preview benefit [13]).270

The simulated effects tightly corresponded to those271

from experimental studies (see Fig 4). This shows that272

our analysis does not strongly underfit or otherwise273

underestimate the effect of either prediction or pre-274

view. Moreover, it shows that the effect sizes, which275

are well-established in controlled designs, generalise276

to natural reading. This is especially interesting for the277

preview benefit, because it implies that this effect can278

be largely explained through parafoveal lexical identifi-279

cation, rather than visual preprocessing or interference280

effects (see Discussion).281

No integration of prediction and preview282

So far, we have treated prediction and preview as be-283

ing independent. However, it might be that these pro-284

cesses, while using different information, are integrated285

– such that a word is parafoveally more identifiable286

when it is also more predictable in context. Bayesian287

probability theory proposes an elegant and mathemat-288

ically optimal way to integrate these sources of infor-289

mation: the prediction of the next word could be in-290

corporated as a prior in perceptual inference. Such a291

contextual prior fits into hierarchical Bayesian models292

of vision [46], and has been observed in speech percep-293

tion, where a contextual prior guides the recognition of294

words from a partial sequence of phonemes [47]. Does295

such a prior also guide word recognition in reading,296

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.10.06.463362doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.06.463362
http://creativecommons.org/licenses/by/4.0/


Parafoveal preview and linguistic prediction in natural reading • October 2021 • preprint

Figure 5: Evidence against bayesian integration of lin-
guistic prediction and parafoveal preview
Cross-validated prediction performance of the full

reading times (top) and skipping (bottom) model

(including all variables), equipped with parafoveal

preview information either from the contextual ob-

server or from the non-contextual observer. Dots

with connecting lines indicate participants; stars

indicate significance: p < 0.001 (***).

based on a partial parafoveal percept?297

To test this, we recomputed the parafoveal identifia-298

bility of each word for each participant, but now with299

an ideal observer using the prediction from GPT-2 as300

a prior. As expected, bayesian integration enhanced301

perceptual inference: on average, the observer using302

linguistic prediction as a prior extracted more informa-303

tion from the preview (± 6.25 bits) than the observer304

not taking the prediction into account (± 4.30 bits;305

T1.39×106 = 1.35 × 1011, p ≈ 0). Interestingly however,306

it provided a worse fit to the human reading data. This307

was established by comparing two versions of the full308

regression model: one with parafoveal entropy from309

the (theoretically superior) contextual ideal observer310

and one from the non-contextual ideal observer. In all311

datasets both skipping and reading times were better312

explained by a model including parafoveal identifia-313

bility from the non-contextual observer (skipping: all314

p′s < 10−5; reading times: p′s < 10−5; see Figure 5).315

Together, this suggests linguistic prediction and316

parafoveal preview are not integrated, but instead oper-317

ate independently – thereby highlighting a remarkable318

sub-optimality in reading, and potentially an intriguing319

difference between visual and auditory word recogni-320

tion.321

DISCUSSION322

Eye movements during reading are highly variable.323

Across three large datasets, we have assessed the rela-324

tive importance of two major cognitive explanations for325

this variability – linguistic prediction and parafoveal pre-326

view – compared to alternative non-linguistic and non-327

contextual explanations. This revealed a stark dissoci-328

ation between skipping and reading times. For word329

skipping, neither prediction nor preview were especially330

important, as the overwhelming majority of variation331

could be explained – mostly uniquely explained – by332

an oculomotor baseline model using just word length333

and eccentricity. For reading times, by contrast, we334

observed clear contributions of both prediction and335

preview – in addition to non-contextual features like336

frequency – and effect sizes matching those obtained337

in controlled experiments. Interestingly, preview effects338

were best captured by a non-contextual observer, sug-339

gesting that while readers use both linguistic prediction340

and preview, these do not appear to be integrated on-341

line. Together, the results underscore the dissociation342

between skipping and reading times, and show that for343

word skipping, the link between eye movements and344

cognition is less direct than commonly thought.345

Our results on skipping align well with earlier findings346

by Drieghe and colleagues [24]. They analysed effect347

sizes from studies on skipping and found a dispropor-348

tionately large effect of length, compared to proxies of349

processing-difficulty like frequency and predictability.350

We significantly extend their findings by modelling skip-351

ping itself (rather than effect sizes from studies) and352
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making a direct link to processing mechanisms. For353

instance, based on their analysis it was unclear how354

much of the length effect could be attributed to the de-355

creasing visibility of longer words – i.e. howmuch of the356

length effect may be an identifiability effect [24, p. 19].357

We show that length and eccentricity alone explained358

three times as much variation as parafoveal identifi-359

ability – and that most of the variation explained by360

identifiability was equally well explained by length and361

eccentricity. This demonstrates that length and eccen-362

tricity themselves – not just to the extent they reduce363

parafoveal identifiability – are key drivers of skipping.364

This conclusion challenges dominant, cognitive mod-365

els of eye movements, which describe lexical identifica-366

tion as the primary driver behind skipping [14, 22, 23].367

However, it does not challenge the notion of predictive368

or parafoveal word identification itself. In fact, we be-369

lieve this happens routinely – after all, most skips are370

not followed by regressions. Rather, our results chal-371

lenge the notion that moment-to-moment decisions372

of whether to skip individual words are primarily de-373

termined by the identification of those words. Instead,374

they support a much simpler strategy, which is primar-375

ily sensitive to a word’s length and eccentricity.376

One such simpler strategy would be a ‘blind‘ random377

walk: making saccades of some average length, plus378

oculomotor noise. However, we do not think this is379

likely, since landing positions are distributed with pre-380

ferred positions with respect to word boundaries [24,381

48]. Instead, we suggest an alternatie view, in which382

the decision of where to look next is based on an analy-383

sis of the parafovea – but at a very low level, aimed to384

discern mostly the next word’s length and eccentricity385

(see also [24, 25]). This is not the whole story, since386

preview and prediction explain some unique skipping387

variation that cannot be reduced to low-level variables388

(or other variables [34]). Our results may thus support389

a hybrid account, in which most skipping decisions are390

made by a low-level ‘autopilot’, whereas in some limited391

cases skipping is influenced by high-level contextual392

information. How the brain arbitrates between these393

strategies is an interesting question for future research.394

A distinctive feature of our approach is that we we395

focus on a limited number of computationally explicit396

functional explanations, rather than using lexical at-397

tributes as proxies for functional explanations (e.g. a398

word’s frequency as a proxy for its identifiability). For399

instance, we model parafoveal identifiability using a sin-400

gle variable that should in principle capture all impor-401

tant effects such as that of frequency and orthography402

(see Figure S3 and Methods). A limitation of this ap-403

proach is that an imperfection in the model can cause404

an underestimation of preview importance. However,405

a key advantage of using explicit modelling rather than406

proxies is that it can avoid confound-related misinter-407

pretations. For instance, word frequency is strongly408

correlated with length, so when using frequency as a409

proxy for identifiability (e.g. to predict skipping), one410

may find apparent identifiability effects which are in411

fact length effects, and strongly overestimate the im-412

portance of preview [49]. Therefore, we have only used413

explanatory variables that explicitly relate to the de-414

pendent variable (Methods). After all, our goal was not415

to measure as many effects as possible, but to gain416

a clear picture of the importance of two cognitive ex-417

planations for eye movement variation. Based on the418

effect sizes for gaze duration (Fig 4) we do not believe419

that we strongly underestimate either prediction or420

preview, and we are optimistic the results provide the421

comprehensive, interpretable picture we aimed for.422

When comparing Figures 2, 3 and 5, the numericalR2
423

values of the reading times regression may seem rather424

small, potentially indicating a poor fit. However, our425

(cross-validated) R2
’s for gaze durations are not lower426

thanR2
’s reported by other regression analyses of gaze427

durations in natural reading [e.g. 17]; moreover we find428

effect sizes in line with the experimental literature (Fig429

4). Therefore, we do not believe we either overfit or430

underfit the gaze durations. Instead, what the rela-431

tively low R2
values indicate, we suggest, is that gaze432
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durations are inherently noisy, and that only a limited433

amount of the word-by-word variation is systematic vari-434

ation, due to e.g. preview or frequency effects. While435

this is interesting in itself, it is not of primary interest in436

this study, which focusses on the relative importance437

of different explanations, and hence only on systematic438

variation. Therefore, what matters is not as much the439

absolute R2
values, but rather the relative importance440

of different explanations – in other words, the relative441

size of the circles in Figures 2, 3 and S7, their overlap,442

and the explanations each circle represents. It is on443

this level of analysis that we find the stark dissociation444

– that for skipping (but not for reading times) a simple445

low-level heuristic can account for almost all of the ex-446

plained variation – and not on the level of numerical447

values for variation explained.448

A remarkable result is that we found preview bene-449

fits comparable to effect sizes from controlled designs450

(Figure 4), despite major methodological differences.451

In controlled designs preview benefits are defined as452

the difference in reading time for words with preview,453

versus words where the preview was masked or made454

invalid (i.e. where a different word was previewed than455

subsequently perceived at fixation). As such, it seemed456

a priori plausible that a significant portion of preview457

benefits observed in controlled studies might reflect458

interference or mismatch between the preview (or the459

mask) and the subsequent percept, rather than reflect-460

ing purely the lack of parafoveal identification of a word.461

Our analysis modelled the preview benefit purely in462

terms of lexical identification, and yielded only slightly463

smaller effect sizes (Fig. 4). This may suggest that pre-464

view benefits may largely reflect lexical parafoveal iden-465

tification, and that interference or visual ‘preprocessing’466

may only play a minor role [compare 13, 14].467

Another notable finding is that preview was best ex-468

plained by a non-contextual observer – a model which469

only takes word frequency (and not contextual pre-470

dictability) into account. This replicates and extends the471

only study that explicitly compared contextual and non-472

contextual accounts of parafoveal preview [34]. That473

study only analysed skipping (in the Dundee corpus);474

the fact that we find the same for reading times (where475

preview and prediction effects are stronger) and repli-476

cate the result in other corpora, considerably strength-477

ens the conclusion that parafoveal word recognition478

is not informed by linguistic context. This conclusion479

seems to contradict experiments finding an interaction480

between linguistic context and preview, which was inter-481

preted as context constraining preview [e.g. 9, 50–52].482

One explanation for this discrepancy stems from how483

the effect is measured. Experimental studies did not484

explicitly model contextual and non-contextual recog-485

nition, but looked at the effect of context on the dif-486

ference in reading time after valid versus invalid pre-487

view [51, 52]. This may reveal a context effect not488

on recognition, but at a later stage (e.g. priming be-489

tween the context, preview and fixated word). Arguably,490

these scenarios yield different predictions: if context af-491

fects recognition it may allow identification of otherwise492

unidentifiable words. However, if the interaction occurs493

later it might only amplify processing of recognisable494

words. Constructing a model that formally reconciles495

this discrepancy – and predicts the context-preview in-496

teraction using a non-contextual prior – is an interesting497

challenge for future work.498

The lack of influence of contextual constraint on499

parafoveal preview might be specific to parafoveal pre-500

view, perhaps due to time-constraints imposed by eye501

movements. Given that readers on average only look502

some 250 ms at a word in which they have to both503

recognise the foveal word and process the parafoveal504

percept, this perhaps leaves too little time to fully let505

the foveal word and context inform parafoveal percep-506

tion. On the other hand, word recognition based on507

partial information also occurs in speech perception,508

where it also occurs under significant time-constraints.509

And yet in auditory word recognition, contextual effects510

are found [53, 54], and a formally highly similar analysis511

of word recognition based on partial phonemic infor-512
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mation recently showed clear support for a contextual513

prior; i.e. the exact opposite of what we find here [47].514

An alternative, more speculative explanation for the515

lack of context effect in reading but not speech percep-516

tion is that this may reflect a difference between visual517

and auditory word recognition. This could be related518

to the fact that contrary to auditory word recognition,519

visual word recognition is an acquired skill and occurs520

throughout areas in the visual system repurposed for521

reading [55, 56], where perhaps the dynamic sentence522

context cannot exert as much of an influence as rapidly,523

allowing for facilitation by lexical or orthographic con-524

text [57–60], but not as much of sentence context.525

Given that readers use both prediction and preview,526

why would they strongly affect reading times but hardly527

word skipping? To understand this dissociation, it is528

important to consider that they reflect different deci-529

sions, namely where versus how long to fixate, which are530

made at different moments. Specifically, the decision531

of where to fixate – and hence whether to skip the next532

word – is made early in saccade programming, which533

can take 100-150 ms [24, 44, 61]. Although the exact534

sequence of operations leading to a saccade remains535

debated, given that readers on average only look some536

250 ms at a word, it is clear that skipping decisions are537

made under strong time constraints, especially given538

the lower processing rate of parafoveal information.539

Our results suggest that the brain meets this constraint540

by resorting to a computationally frugal policy, largely541

based on low-level characteristics such as length and542

eccentricity. How long to fixate, by contrast, mostly de-543

pends on foveal information, which is processed more544

rapidly and may thus directly influence the decision to545

either keep dwelling and accumulate more information546

or initiate a saccade (and/or an attention shift).547

In conclusion, we have found that two important548

contextual sources of information in reading, linguis-549

tic prediction and parafoveal preview, strongly drive550

variation in reading times, but hardly affect word skip-551

ping, which is largely based on low-level factors. Our552

results show that as readers, we do not always use553

all information available to us; and that we are, in a554

sense, of two minds: consulting complex inferences555

to decide how long to look at a word, while employing556

semi-mindless scanning routines to decide where to557

look next. It is striking that these disparate strategies558

operate mostly in harmony. Only occasionally they go559

out of step – then we notice that our eyes have moved560

too far and we have to look back, back to where our561

eyes left cognition behind.562

METHODS563

We analysed eye-tracking data from three, big, naturalistic564

reading corpora, in which native English speakers read texts565

while eye-movement data was recorded [31, 32, 38].566

Eye-tracking data and stimulus materials567

We considered the English-native portions of the Dundee,568

Geco and Provo corpora. The Dundee corpus comprises eye-569

movements from 10 native speakers from the UK ([32]), who570

read a total of 56.212 words across 20 long articles from571

The Independent newspaper. Secondly, the English portion572

of the Ghent Eye-tracking Corpus (Geco) [31] is a collection573

of eye movement data from 14 UK English speakers who574

each read Agathe Cristie’s The Mysterious Affair at Styles in575

full (54.364 words per participant). Lastly, the Provo corpus576

([30]) is a collection of eye movement data from 84 US English577

speakers, who each read a total of 55 paragraphs (extracted578

from diverse sources) for a total of 2.689 words.579

Language model580

Contextual predictions were formalised using a lan-581

guage model – a model computing the probability of each582

word given the preceding words. Here, we used GPT-583

2 (XL) – currently among the best publicly released En-584

glish language models. GPT-2 is a transformer-based585

model, that in a single pass turns a sequence of tokens586

(representing either whole words or word-parts) U =587

(u1, . . . , uk) into a sequence of conditional probabilities,588

(p(u1), p(u2|u1), . . . , p(uk | u1, ..., uk−1)).589

Roughly, this happens in three steps: first, an embedding590

step encodes the sequence of symbolic tokens as a sequence591
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of vectors, which can be seen as the first hidden state ho.592

Then, a stack of n transformer blocks each apply a series of593

operations resulting in a new set of hidden states hl, for each594

block l. Finally, a (log-)softmax layer is applied to compute595

(log-)probabilities over target tokens. In other words, the596

model can be summarised as follows:597

h0 = UWe +Wp (1)

hl = transformer_block (hl−1) ∀i ∈ [1, n] (2)

P (u) = softmax
(
hnW

T
e

)
, (3)

whereWe is the token embedding andWp is the position598

embedding.599

The key component of the transformer-block is masked600

multi-headed self-attention (Fig S1). This transforms a se-601

quence of input vectors (x1,x2, . . .xk) into a sequence of602

output vectors (y1,y2, . . . ,yk). Fundamentally, each out-603

put vector yi is simply a weighted average of the input vec-604

tors: yi =
∑k
j=1 wijxj . Critically, the weight wi,j is not a605

parameter, but is derived from a dot product between the606

input vectors xTi xj , passed through a softmax and scaled607

by a constant determined by the dimensionality dk: wij =608

(expxT
i xj/∑k

j=1 expxT
i xj)

1√
dk
. Because this is done for each609

position, each input vector xi is used in three ways: first, to610

derive the weights for its own output, yi (as the query); sec-611

ond, to derive the weight for any other output yj (as the key);612

finally, in it used in the weighted sum (as the value). Differ-613

ent linear transformations are applied to the vectors in each614

cases, resulting in Query, Key and Value matrices (Q,K, V ).615

Putting this all together, we obtain:616

self_attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V. (4)

To be used as a language model, two elements are added.617

First, to make the operation position-sensitive, a position618

embedding Wp is added during the embedding step – see619

Equation (1). Second, to enforce that the model only uses620

information from the past, attention from future vectors is621

masked out. To give the model more flexibility, each trans-622

former block contains multiple instances (‘heads’) of the self-623

attention mechanisms from Equation (4).624

In total, GPT-2 (XL) contains n = 48 blocks, with 12 heads625

each; a dimensionality of d = 1600 and a context window of626

k = 1024, yielding a total 1.5× 109
parameters. We used the627

PyTorch implementation of GPT-2 provided by HuggingFace’s628

Transformers package [62]. For words spanning multiple to-629

kens, we computed their joint probability.630

Ideal observer631

To compute parafoveal identifiability, we implemented632

an ideal observer based on the formalism by Duan & Bick-633

nell [34]. This model formalises parafoveal word identifica-634

tion using Bayesian inference and builds on previous well-635

established ’Bayesian Reader’ models [41–43]. It computes636

the probability of the next word given a noisy percept by com-637

bining a prior over possible words with a likelihood of the638

noisy percept, given a word identity:639

p(w | I) ∝ p(w)p(I|w), (5)

where I represents the noisy visual input, and w repre-640

sents a word identity. We considered two priors (see Fig 5):641

a non-contextual prior (the the overall probability of words642

in English based on their frequency in Subtlex ([63]), and a643

contextual prior based on GPT2 (see below). Below we de-644

scribe how visual information is represented and perceptual645

inference is performed. For a graphical schematic of the646

model, see Fig S2; for some distinctive simulations showing647

how the model captures key effects of linguistic and visual648

characteristics on word recognition, see Fig S3.649

Sampling visual information650

Like in other Bayesian Readers [41–43], noisy visual input is651

accumulated by sampling from a multivariate Gaussian which652

is centered on a one-hot ’true’ letter vector – here represented653

in an uncased 26-dimensional encoding – with a diagional654

covariance matrix Σ(ε) = λ(ε)−
1/2I . The shape of Σ is thus655

scaled by the sensory quality λ(ε) for a letter at eccentricity ε.656

Sensory quality is computed as a function of the perceptual657

span: this uses using a Gaussian integral based follows the658

perceptual span or processing rate function from the SWIFT659

model [22]. Specifically, for a letter at eccentricity ε, λ is given660

by the integral within the bounding box of the letter:661

λ(ε) =

∫ ε+.5

ε−.5

1√
2πσ2

exp

(
− x2

2σ2

)
dx, (6)
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which, following [34, 43], is scaled by a scaling factor Λ. Unlike662

SWIFT, the Gaussian in Equation 6 is symmetric, since we only663

perform inference on information about the next word. By664

using one-hot encoding and a diagonal covariance matrix, the665

ideal observer ignores similarity structure between letters.666

This is clearly a simplification, but one with significant com-667

putational benefits; moreover, it is a simplification shared668

by all Bayesian Reader-like models [34, 41, 43], which can669

nonetheless capture many important aspects of visual word670

recognition and reading. To determine parameters Λ and671

σ, we performed a grid search on a subset of Dundee and672

Geco (see Fig S4), resulting in Λ = 1 and σ = 3. Note that this673

σ value is close to the average σ value of SWIFT and (3.075)674

and corresponds well to prior literature on the size of the675

perceptual span (±15 characters; [13, 22, 43]).676

Perceptual inference677

Inference is performed over the full vocabulary. This is678

represented as a matrix which can be seen as a stack of word679

vectors, y1, y2, . . . , yv, obtained by concatenating the letter680

vectors. The vocabulary is thus a V × d matrix, with V the681

number of words in the vocabulary and d the dimensionality682

of the word vectors (determined by the length of the longest683

word: d = 26× lmax).684

To perform inference, we use the belief-updating scheme685

from [34], in which the posterior at sample t is expressed as a686

(V − 1) dimensional log-odds vector x(t)
, in which each entry687

x
(t)
i represents the log-odds of yi relative to the final word688

yv. In this formulation, the initial value of x is thus simply the689

prior log odds, x
(0)
i = log p(wi)− log p(wv), and updating is690

done by summing prior log-odds and the log-odds likelihood.691

This procedure is repeated for T samples, each time taking692

the posterior of the previous timestep as the prior in the693

current timestep. Note that using log odds in this way avoids694

renormalization:695

x
(t)
i = log

p
(
wi | I(0,...,t)

)
p (wv | I(0,...,t))

= log
p
(
wi | I(0,...,t−1)

)
p
(
I(t) | wi

)
p (wv | I(0,...,t−1)) p (I(t) | wv)

= log
p
(
wi | I(0,...,t−1)

)
p (wv | I(0,...,t−1))

+ log
p
(
I(t) | wi

)
p (I(t) | wv)

= x
(t−1)
i + ∆x

(t)
i .

(7)

In other words, as visual sample I(t) comes in, beliefs are696

updated by summing the prior log odds x(t−1)
and the log-697

odds likelihood of the new information x(t)
.698

For a given word wi, the log-odds likelihood of each new699

sample is the difference of two multivariate Gaussian log700

likelihoods, one centred on yi and one on the last vector yv .701

This can be formulated as a linear transformation of I:702

∆xi = log p (I | wi)− log p (I | wv)

= log p (I | N (yi,Σ))− log p (I | N (yv,Σ))

=

[
−1

2
(I − yi)

T Σ−1 (I − yi)

]
−[

−1

2
(I − yv)T Σ−1 (I − yv)

]
=

yTv Σ−1yv − yTi Σ−1yi
2

+ (yi − yv)T Σ−1I,

(8)

which implies that updating can be implemented by sam-703

pling from a multivariate normal. To perform inference on a704

given word, we performed this sampling scheme until con-705

vergence (using T = 50), and then transformed the posterior706

log-odds into the log posterior, from which we computed the707

Shannon entropy as a metric of parafoveal identifiability.708

To compute the parafoveal entropy for each word in the709

corpus, we make the simplifying assumption that parafoveal710

preview only occurs during the last fixation prior to a sac-711

cade, thus computing the entropy as a function of the word712

itself and its distance to the last fixation location within the713

previously fixated word (which is not always the previous714

word). Because this distance is different for each participant,715

it was computed separately for each word, for each partic-716

ipant. Moreover, because the inference scheme is based717

on sampling, we repeated it 3 times, and averaged these to718

compute the posterior entropy of the word. The amount of719

information obtained from the preview is then simply the720

difference between prior and posterior entropy.721

The ideal observer was implemented in custom Python722

code, and can be found in the data sharing collection (see723

below).724

Contextual vs non-contextual prior725

We considered two observers: one with a non-contextual726

prior capturing the overall probability of a word in a language,727

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.10.06.463362doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.06.463362
http://creativecommons.org/licenses/by/4.0/


Parafoveal preview and linguistic prediction in natural reading • October 2021 • preprint

and with a contextual prior, capturing the contextual probabil-728

ity of a word in a specific context. For the non-contextual prior,729

we simply used lexical frequencies from which we computed730

the (log)-odds prior used in equation (7). For the contextual731

prior, we derived the contextual prior from log-probabilities732

from GPT-2. This effectively involves constructing a new733

Bayesian model for each word, for each participant, in each734

dataset. To simplify this process, we did not take the full pre-735

dicted distribution of GPT-2, but only the ‘nucleus‘ of the top736

k predicted words with a cumulative probability of 0.95, and737

truncated the (less reliable) tail of the distribution. Further,738

we simply assumed that the rest of the tail was ‘flat’ and had a739

uniform probability. Since the prior odds can be derived from740

relative frequencies, we can think of the probabilities in the741

flat tail as having a ‘pseudocount’ of 1. If we similarly express742

the prior probabilities in the nucleus as implied ‘pseudofre-743

quencies’, the cumulative implied nucleus frequency is then744

complementary to the the length of the tail, which is simply745

the difference between the vocabulary size and nucleus size746

(V − k). As such, for word i in the text, we can express the747

nucleus as implied frequencies as follows:748

freqsψ = Ptr(w
(i)|context) V − k

1−
∑k
j=1 P (w

(i)
j |context)

, (9)

where Ptr(w
(i)|context) is the trunctated lexical prediction,749

and P (w
(i)
j |context) is predicted probability that word i in the750

text is word j in the sorted vocabulary. Note that using this751

flat tail not only simplifies the computation, but also deals752

with the fact that the vocabulary of GPT-2 is smaller than of753

the ideal observer – using this tail we can still use the full754

vocabulary (e.g. to capture orthographic uniqueness effects),755

while using 95% of the density from GPT-2.756

Data selection757

In all our analyses, we focus strictly on first-pass reading,758

analysing only those fixations or skips when none of the sub-759

sequent words have been fixated before. We extensively760

preprocessed the corpora so that we could include as many761

words as possible. However, we had to impose some addi-762

tional restrictions. Specifically we did not include words if763

they a) contained non-alphabetic characters; b) if they were764

adjacent to blinks; c) if the distance to the prior fixation loca-765

tion was more than 24 characters (±8◦); moreover, for the766

gaze duration we excluded d) words with implausibly short767

(< 70ms) or long (> 900ms) gaze durations. Criterion c) was768

chosen because some participants occasionally skipped long769

sequences of words, up to entire lines ormore. Such ‘skipping’770

– indicated by saccades much larger than the the perceptual771

span – is clearly different from the skipping of words during772

normal reading, and was therefore excluded. Note that these773

criteria are comparatively mild (cf. [34, 35]), and leave approx-774

imately 1.1 million observations for the skipping analysis, and775

593.000 reading times observations.776

Regression models: skipping777

Skipping was modelled via logistic regression in scikit-learn778

[64], with three sets of explanatory variables (or ’models’) each779

formalising a different explanation for why a word might be780

skipped.781

First, a word might be skipped because it could be confi-782

dently predicted from context. We formalise this via linguistic783

entropy, quantifying the information conveyed by the pre-784

diction from GPT-2. We used entropy, not (log) probability,785

because using the next word’s probability directly would pre-786

suppose that the word is identified, undermining the disso-787

ciation of prediction and preview. By contrast, prior entropy788

specifically probes the information available from prediction789

only.790

Secondly, a word might be skipped because it could be791

identified from a parafoveal preview. This was formalised792

via parafoveal entropy, which quantifies the parafoveal pre-793

view uncertainty (or, inversely, the amount of information794

conveyed by the preview). This is a complex function integrat-795

ing low-level visual (e.g. decreasing visibility as a function of796

eccentricity) and higher-level information (e.g. frequency or797

orthographic effects) and their interaction (see Fig S3). Here,798

too we did not use lexical features (e.g. frequency) of the next799

word to model skipping directly, as this presupposes that the800

word is identified; and to the extent that these factors are801

expected to influence identifiability, this is already captured802

by the parafoveal entropy (Fig S3).803

Finally, a word might be skipped simply because it is too804

short and/or too close to the prior fixation location, such that805

a fixation of average length would overshoot the word. This806

autonomous oculomotor account was formalised by mod-807

elling skipping probability purely as a function of a word’s808

length and its distance to the previous fixation location.809
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Note that these explanations are not mutually exclusive,810

so we also evaluated their combinations (see below).811

Regression models: reading time812

As an index of reading time, we analysed first-pass gaze813

duration, the sum of a word’s first-pass fixation durations. We814

analyse gaze durations as they arguably most comprehen-815

sively reflect how long a word is looked at, and are the focus816

of similar model-based analyses of contextual effects in read-817

ing [35, 37]. For reading times, we used linear regression, and818

again considered three sets of explanatory variables, each819

formalising a different kind of explanation.820

First, a word may be read more slowly because it is unex-821

pected in context. We formalised this using surprisal− log(p),822

a metric of a word’s unexpectedness – or how much infor-823

mation is conveyed by a word’s identity in light of a prior824

expectation about the identity. To capture spillover (R; regpa-825

per; smith) we included not just the surprisal of the current826

word, but also that of the previous two words.827

Secondly, a word might be read more slowly because it828

was difficult to discern from the parafoveal preview. This was829

formalised using the parafoveal entropy (see above).830

Finally, a word might be read more slowly because of non-831

contextual factors of the word itself. This is an aggregate base-832

line explanation, aimed to capture all relevant non-contextual833

word attributes, which we contrast to the two major contex-834

tual sources of information about a word identity that might835

affect reading times (prediction and preview). We included836

word class, length, log-frequency, and the relative landing po-837

sition (quantified as the distance to word centre in characters.838

For log-frequency we used the UK or US version of SUBTLEX839

depending on the corpus and included the log-frequency of840

the past two words to capture spillover effects.841

Note that, while for skipping, we used a non-linguistic base-842

line, for reading times we use a non-contextual baseline. This843

is because for skipping the most interesting contrast is be-844

tween the role of non-linguistic oculomotor control vs an845

account that explains skipping via ease of next-word identi-846

fication (either through prediction or preview). For reading847

times, by contrast, the most interesting comparison is be-848

tween properties of the word itself versus contextual cues,849

as a purely non-linguistic account for gaze duration variation850

seemed less plausible (indeed, see Figure S7 for a supplemen-851

tary analysis confirming that the limited relative importance852

of a purely non-linguistic account for reading time variation).853

Model evaluation854

We compared the ability of each model to account for the855

variation in the data by probing prediction performance in a856

10-fold cross-validation scheme, in which we quantified how857

much of the observed variation in skipping rates and gaze858

durations could be explained.859

For reading times, we did this using the coefficient of de-860

termination, defined via the ratio of residual and total sum861

of squares: R2 = 1− SSres
SStot

. The ratio
SSres
SStot

relates the error862

of the model (SSres) to the error of a ’null’ model predicting863

just the mean (SStot), and gives the variance explained. For864

skipping, we use a tightly related metric, the McFadden R2
.865

Like the R2
it is computed by comparing the error of the866

model to the error of a null model with only an intercept:867

R2
McF = 1− LM

Lnull
, where L indicates the loss.868

While R2
and R2

McF are not identical, they are formally869

tightly related – critically, both are zero when the prediction870

is constant (no variation explained) and go towards one pro-871

portionally as the error decreases to zero (i.e. towards all872

variation explained). Note that in a cross-validated setting,873

both metrics can become negative when prediction of the874

model is worse than the prediction of a constant null-model.875

Variation partitioning876

To assess relative explanatory power, we used variation877

partitioning to estimate how much of the explained variation878

could be attributed to each set of explanatory variables. This879

is also known as variance partitioning, as it is originally based880

on partitioning sums of squares in regression analysis; here881

we use the more general term ’variation’ following [65].882

Variation partitioning builds on the insight that when two883

(groups of) explanatory variables (A and B) both explain884

some variation in the data y, and A and B are independent,885

then variation explained by combining A and B will be ap-886

proximately additive. By contrast, when A and B are fully887

redundant – e.g. when B only has an apparent effect on y888

through its correlation with A – then a model combining A889

and B will not explain more than the two alone.890
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Following [66], we generalise this logic to three (groups891

of) explanatory variables, by testing each individually and892

all combinations, and use set theory notation and graphical893

representation for its simplicity and clarity. For three groups894

of explanatory variables (A, B and C), we first evaluate each895

separately and all combinations, resulting in 7 models:896

A,B,C,A ∪B,A ∪ C,B ∪ C,A ∪B ∪ C.

From these 7 models we obtain 7 ‘empirical‘ scores (ex-897

pressing variation explained), from which we derive the 7898

‘theoretical‘ variation partitions: 4 overlap partitions and 3899

unique partitions. The first overlap partition is the variation900

explained by all models, which we can derive as:901

A∩B∩C = A∪B∪C+A+B+C−A∪B−A∪C−B∪C. (10)

The next three overlap partitions contain all pairwise inter-902

sections of models that did not include the other model:903

(A ∩B) \ C = A+B −A ∪B −A ∩B ∩ C

(A ∩ C) \B = A+ C −A ∪ C −A ∩B ∩ C

(B ∩ C) \A = B + C −B ∪ C −A ∩B ∩ C.

(11)

The last three partitions are those explained exclusively by904

each model. This is the relative complement: the partition905

unique to A is the relative complement of BC: BCRC . For906

simplicity we also use a star notation, indicating the unique907

partition of A as A∗. These are derived as follows:908

A∗ = BCRC = A ∪B ∪ C −B ∪ C

B∗ = ACRC = A ∪B ∪ C −A ∪ C

C∗ = ABRC = A ∪B ∪ C −A ∪B.

(12)

Note that, in the cross-validated setting, the results can909

become paradoxical and depart from what is possible in clas-910

sical statistical theory, such as partitioning sums of squares.911

For instance, due to over-fitting, a model that combines mul-912

tiple EVs could explain less variance than all of the EVs alone,913

in which case some partitions would become negative. How-914

ever, following [66], we believe that the advantages of using915

cross-validation outweigh the risk of potentially paradoxical916

results in some subjects. Partitioning was carried out for917

each subject, allowing to statistically assess whether the ad-918

ditional variation explained by a given model was significant.919

On average, none of the partitions were paradoxical.920

Simulating effect sizes921

Preview benefits were simulated as the expected diïňĂer-922

ence in gaze duration after a preview of average informa-923

tiveness versus after no preview at all (. . . ). This this best924

corresponds to an experiment in which the preceding pre-925

view was masked (e.g. XXXX) rather than invalid (see Discus-926

sion). To compute this we compared the took the difference in927

parafoveal entropy between an average preview and the prior928

entropy. Because we standardised our explanatory variables,929

this was transformed to subject-specific z-scores and then930

multiplied by the regression weights to obtain an expected931

effect size.932

For the predictability benefit, we computed the expected933

difference in gaze duration between ‘high‘ and ‘low‘ probabil-934

ity words. ‘High‘ and ‘low‘ was empirically defined based on935

the human-normed cloze probabilities in provo, which we di-936

vided into thirds using percentiles. The resulting cutoff points937

(low < 0.02; high >0.25) were log-transformed, applied to the938

surprisal values from GPT-2, and multiplied by the weights to939

predict effect sizes. Note that these definitions of ‘low‘ and940

‘high‘ may appear low compared to those in literature – how-941

ever, most studies collect cloze only for specific ‘target‘ words942

in relatively predictable contexts, which biases the definition943

of ‘low‘ vs ‘high’ probability. By contrast, we analysed cloze944

probabilities for all words, yielding these values.945

Statistical testing946

Statistical testing was performed across participants within947

each dataset. Because two of the three corpora had a low948

number of participants (10 and 14 respectively) we used non-949

parametric bootstrap t-tests, by creating resampling a null-950

distribution with zero mean counting how likely a t-value951

at least as extreme as the true t-value was to occur. Each952

test used at least 104
bootstraps; p-values were computed953

without assuming symmetry (equal-tail bootstrap).954

Data and code availability955

The Provo and Geco corpora are freely available ([30, 31]).956

All additional data and code needed to reproduce these re-957

sults will be made public at the Donders Data Repository.958
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Supplementary materials1

Figure S1 – GPT-2 Architecture. Note that this panel is based on the original GPT schematic, with some operations
modified and re-arranged to reflect the slightly different architecture of GPT-2. The most important
and distinctive step of each transformer block is masked multi-headed self-attention (see Methods). Not
visualised here is the initial tokenisation, mapping a sequence of characters into a sequence of tokens.

Table S1 – Literature sample for effect size ranges

Effect type Publication
Effect
size

preview benefit

Inhoff, A. W. (1989). Lexical access during eye fixations
in reading: Are word access codes used to integrate lexical
information across interword fixations?. Journal of Memory
and Language, 28(4), 444-461.

51

preview benefit

Veldre, A., & Andrews, S. (2018). Parafoveal preview effects
depend on both preview plausibility and target predictability.
Lexical access during eye fixations in reading: Quarterly
Journal of Experimental Psychology, 71(1), 64-74.

49
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Table S1 – Continued from previous page

Effect type Publication
Effect
size

preview benefit
Inhoff, A. W., & Rayner, K. (1986). Parafoveal word pro-
cessing during eye fixations in reading: Effects of word
frequency. Perception & psychophysics, 40(6), 431-439.

40

preview benefit
McDonald, S. A. (2006). Parafoveal preview benefit in
reading is only obtained from the saccade goal. Vision
Research, 46(26), 4416-4424.

35

preview benefit

Williams, C. C., Perea, M., Pollatsek, A., & Rayner, K.
(2006). Previewing the neighborhood: The role of ortho-
graphic neighbors as parafoveal previews in reading. Journal
of Experimental Psychology: Human Perception and Per-
formance, 32(4), 1072.

26.7

preview benefit

Kennison, S. M., & Clifton, C. (1995). Determinants of
parafoveal preview benefit in high and low working memory
capacity readers: Implications for eye movement control.
Journal of Experimental Psychology: Learning, Memory,
and Cognition, 21(1), 68.

25.25

preview benefit
Blanchard, Harry E., Alexander Pollatsek, and Keith
Rayner. "The acquisition of parafoveal word information in
reading." Perception & Psychophysics 46.1 (1989): 85-94.

22.6

preview benefit

Schroyens, W., Vitu, F., Brysbaert, M., & d’Ydewalle, G.
(1999). Eye movement control during reading: Foveal load
and parafoveal processing. The Quarterly Journal of Exper-
imental Psychology Section A, 52(4), 1021-1046.

14.6

prediction benefit
Ehrlich, S. F., & Rayner, K. (1981). Contextual effects on
word perception and eye movements during reading. Journal
of verbal learning and verbal behavior, 20(6), 641-655.

33

prediction benefit
Rayner, K., & Well, A. D. (1996). Effects of contextual con-
straint on eye movements in reading: A further examination.
Psychonomic Bulletin & Review, 3(4), 504-509.

20

prediction benefit

RJ. Altarriba, J. Kroll, A. Sholl, K. Rayner. (1996) The
influence of lexical and conceptual constraints on reading
mixed-language sentences: Evidence from eye fixations and
naming times Memory & Cognition, 24 (1996), pp. 477-492.

21

Continued on next page
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Table S1 – Continued from previous page

Effect type Publication
Effect
size

prediction benefit

Ashby, J., Rayner, K., & Clifton Jr, C. (2005). Eye move-
ments of highly skilled and average readers: Differential
effects of frequency and predictability. The Quarterly Jour-
nal of Experimental Psychology Section A, 58(6), 1065-1086.

23.5

prediction benefit

Rayner, K., Ashby, J., Pollatsek, A., & Reichle, E. D. (2004).
The effects of frequency and predictability on eye fixations
in reading: implications for the EZ Reader model. Jour-
nal of Experimental Psychology: Human Perception and
Performance, 30(4), 72

19

prediction benefit

Rayner, K., Binder, K. S., Ashby, J., & Pollatsek, A. (2001).
Eye movement control in reading: Word predictability has
little influence on initial landing positions in words. Vision
Research, 41(7), 943-954.

15

prediction benefit

Rayner, K., Slattery, T. J., Drieghe, D., & Liversedge, S. P.
(2011). Eye movements and word skipping during reading:
effects of word length and predictability. Vision Research,
41(7), 943-954.

18

prediction benefit

Hand, C. J., Miellet, S., O’Donnell, P. J., & Sereno, S. C.
(2010). The frequency-predictability interaction in reading:
It depends where you’re coming from. Journal of Experi-
mental Psychology: Human Perception and Performance,
36(5), 1294âĂŞ1313.
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Figure S2 – Encoding and inference scheme of the ideal observer analysis. A word at a given eccentricity is
converted into a noisy visual percept, after which a posterior probability of the identity of the word given
the noisy percept was computed using Bayesian inference. The uncertainty of this posterior (expressed in
terms of Shannon entropy) was then used to quantify the expected uncertainty in the parafoveal percept –
or, inversely, a word’s parafoveal identifiability.
In this scheme, words are represented as a concatenation of one-hot encoded letter vectors. Visual
information (I) is sampled from a multivariate Gaussian centred on the word vector yw with a diagonal
covariance matrix Σ, the values of which (σ2) are inversely related to the integral under the visual acuity
function around each letter. The posterior is then computed by comining the likelihood of the visual
information I given a particular word, with a prior probability of that word p(w) (e.g. derived from lexical
frequency). This computation was performed using a log-odds formulation that exploits the proportionality
in Bayes’ rule to perform belief-updating without renormalisation (see Methods).
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Figure S3 – Modulation of parafoveal identifiability by visual and linguistic features, and their interac-
tion. The parafoveal entropy for a given word (Fig S2) is a complex function that integrates linguistic
and visual characteristics, and which can account for various known effects, such as the effect of lexical
frequency and orthographic neighbourhood on visual word recognition. To illustrate this, we simulated
some characteristic effects of eccentricity, frequency (a,b) and orthographic distinctiveness (c,d).
For frequency (a), we randomly sampled 20 ‘rare’ and ‘frequent’ 5-letter words (based on a quartile split),
and computed the parafoveal identifiability (quantified via posterior entropy) at increasing eccentricities.
As can be seen, the percept becomes uncertain at increasing eccentricities more quickly for low-frequency
words, showing that lexical frequency boosts parafoveal identifiability.
For orthography (c), we similarly sampled 20 7-letter words that were classified as orthographically
common or uncommon based on the first three letters. Here, commonality was again defined using a
quartile split but now on the number of alternative words starting with the same three letters. For
instance, the letters ‘awk‘ in the word ‘awkward‘ are highly uncommon and allow to identify the entire
word with high confidence based on just those three letters. As can be seen, the model predicts that
orthographic uniqueness boosts parafoveal identifiability – as observed in experiments (see [13]).
Notably, when we consider the difference between the two classes of words (b,d), an inverted U shape is
apparent: the effects are strongest at intermediate visibility. This demonstrates the well-established fact
that the effects of prior (linguistic) knowledge is strongest at intermediate levels of perceptual uncertainty
(see [41] for discussion). (Note that, while both the orthography and frequency effects are effects of "prior
linguistic knowledge", only the frequency effect is technically an effect of the prior, since the orthography
effect is driven by the generative model.) In all plots, thick lines represent the mean entropy across words;
shaded regions indicate bootstrapped 95% confidence intervals.

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.10.06.463362doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.06.463362
http://creativecommons.org/licenses/by/4.0/


Figure S4 – Grid search to establish ideal observer parameters. Grid search result grand average (top) and
individual results for different corpora and analyses (bottom). To decide on the values for σ and Λ, a
grid search was performed on a random subset of 25% of the Dundee and Geco corpus; we did not apply
it to PROVO because there was not enough data per participant. In both skipping and reading times,
we performed a 10-fold cross-validation with the full model, using parafoveal entropy as computed with
different visual acuity parameters σ and Λ (Equation 6). To avoid biasing the contextual vs non-contextual
model comparison (Figure 5), we used both the contextual and non-contextual prior and averaged the
results to obtain the results for each analysis in each corpus. To ensure that different analyses and corpora
are weighted equally in the grand average, the prediction scores (R2 or R2

McF ) were normalised by dividing
the prediction score of each parameter combination by the highest score (i.e. score of the best parameter
combination) for each subject, for each analysis. This resulted in σ = 3 and Λ = 1, which we have used in
all analyses. Note that σ determines the perceptual span (see Figure S2) and that σ = 3 corresponds well
to what is known about the size of the perceptual span and is close to default parameters in other models
(see Methods).
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Figure S5 – Skipping variation partitioning for all participants. Explained cross-validated variation partition
for skipping (see Fig 2) of each partition, for each participant, for the skipping analysis. Models for the
baseline, parafoveal preview and linguistic prediction are indicated by ‘base’, ‘para’, and ‘ling’, respectively.
Unions are indicated by ∪, intersections by ∩; for the relative complement we use the asterisk-notation: e.g.
‘para*’ indicates variation explained uniquely by parafoveal preview. Note that due to cross-validation,
the amount of variation explained can become negative in some partitions for individual participants (see
Methods).
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Figure S6 – Reading times variance partitioning. Explained cross-validated variation partition for skipping
(see Fig 3) of each partition, for each participant, for the skipping analysis. Models for the baseline,
parafoveal preview and linguistic prediction are indicated by ‘base’, ‘para’, and ‘ling’, respectively. Unions
are indicated by ∪, intersections by ∩; for the relative complement we use the asterisk-notation: e.g.
‘para*’ indicates variation explained uniquely by parafoveal preview (see Methods). Note that due to
cross-validation, the amount of variation explained can become negative in individual participants (see
Methods).
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Figure S7 – Reading times variance partitioning with and without non-linguistic factors Same as in Fig
3, but comparing the baseline with (a)) or without (b)) the primary non-linguistic explanatory factor
for reading time variation – viewing position [48]. Including the viewing position adds 0.7% additional
variance explained. This demonstrates while that viewing position affect reading times, the amount of
variance uniquely explained by non-linguistic factors is much lower for reading times than for skipping.
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