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Abstract

Manual sleep stage annotation is a time-consuming but often essential step in the analysis of sleep

data. To address this bottleneck several algorithms have been proposed that automate this process,

reporting performance levels that are on par with manual annotation according to measures of inter-

rater  agreement.  Here we first  demonstrate  that  inter-rater  agreement  can provide a biased and

imprecise measure of annotation quality. We therefore develop a principled framework for assessing

performance against a consensus annotation derived from multiple experienced sleep researchers.

We then construct a new sleep stage classifier that combines automated feature extraction using

linear  discriminant  analysis  with  inference  based  on  vigilance  state-dependent  contextual

information using a hidden Markov model.  This produces automated annotation accuracies  that

exceed expert performance on rodent electrophysiological data. Furthermore, our classifier is shown

to be robust to errors in the training data, robust to experimental manipulations, and compatible

with different recording configurations. Finally, we demonstrate that the classifier identifies both

successful and failed attempts to transition between vigilance states, which may offer new insights

into the occurrence of short awake periods between REM and NREM sleep. We call our classifier

‘Somnotate’ and make an implementation available to the neuroscience community.
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Introduction

Long-term electrophysiological recordings from freely moving mice and other laboratory animals

are a popular and powerful mode of investigation for neuroscientists, particularly sleep researchers

(e.g. Schwierin et al. 1998, Leemburg et al 2010, Northeast et al. 2019). This approach affords the

study of a  wide range of animal  behaviours and associated neurophysiological activities,  under

experimentally controlled conditions. The recordings typically incorporate an electroencephalogram

(EEG) signal recorded from the cortical surface at one or more locations, and may also include

electromyogram (EMG) recordings from relevant muscle groups. Due to their continuous nature,

these  recordings  generate  large  amounts  of  data,  which  places  significant  demands  upon  the

analysis stages of the experimental process. As the vigilance state profoundly affects the behaviour

and physiology of the animal, the first step in this analysis is typically sleep stage annotation. This

involves the parcellation of the data into awake, rapid eye movement (REM) sleep and non-REM

(NREM) sleep epochs.

Sleep stage annotation is typically performed manually by human experts. Classical criteria used for

manual annotation of vigilance states in laboratory rodents include the amplitude of the EEG signal,

and the presence of specific oscillations, such as slow waves (0.5-4Hz), spindles (10-15 Hz) and

theta-frequency (5-10Hz) activity (Tobler et  al.  1997, Ang et al.  2018). Conventionally,  NREM

sleep is defined by the presence of high amplitude slow waves and spindles, plus a low EMG tone.

Wakefulness  is  defined  by  a  low amplitude,  activated  EEG  pattern,  that  is  dominated  by  fast

frequencies and often theta-activity, plus an EMG that displays elevated tone and phasic events

associated  with  movement.  Whereas  REM  sleep  is  defined  by  EEG  signals  that  resemble

wakefulness, but the EMG tone is generally low, except for brief muscle twitches. 

Whilst  manual  annotation remains widely used,  there are  two principal  motives for developing

effective automated methods for annotating sleep data.  The first  motive is the substantial  time-

saving benefit and the resulting opportunities that automation affords. This enables experiments to

be conducted at a scale that would be otherwise difficult to imagine (Funato at al. 2016) and can

improve smaller-scale experiments by freeing up experimenters to focus upon points of interest,

particularly if relevant parts of the data can be identified in a principled way. The second principal

motive for developing automated sleep stage annotation is that the underlying electrophysiological

signals can be ambiguous with respect to the sleep stage. This is especially the case around sleep

stage transitions and during intermediate sleep states, when EEG signals can exhibit signatures of
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multiple states. Local slow wave activity for example, which is normally considered a hallmark of

NREM sleep, has been observed during REM and awake states across different cortical regions,

both in humans (Nir et al. 2011, Bernardi et al. 2015) and in rodents (Vyazovskyi et al 2011, Funk et

al.  2016, Soltani et al. 2019). When faced with such ambiguity, manual annotations often differ

between sleep scorers. By standardising the annotation process, automated methods can remove

inter-rater variance from the design and replication of experiments, and afford new opportunities to

systematically describe these intermediate states.

The earliest approaches to automated sleep stage annotation relied upon hard-coded decision rules

that were applied to subjectively selected features in the recordings (Martin et al. 1972; Benington,

Kodali, and Heller 1994; Veasey et al. 2000; Stephenson et al. 2009). For example, Bennington et

al. determined awake periods by identifying epochs in which the product of the power in the EEG

beta frequency band (10-14 Hz) and theta band (4-9 Hz) was below a predetermined threshold. The

remaining data was then partitioned into NREM and REM using the ratio between the power in the

delta band (0.5-4 Hz) and upper theta band (6-9 Hz) (J. H. Benington, Kodali, and Heller 1994).

Others soon realised that the accuracy of such classifiers could be improved by including more

features.  However,  as  features  differ  in  their  relevance  to  each  vigilance  state,  systematic

approaches are required to weigh different features and determine suitable decision boundaries. This

motivated  the  use  of  more  complex  techniques  such  as  linear  discriminant  analysis  (LDA;

(Brankačk et al. 2010), support vector machines (Crisler et al. 2008; T. Zeng et al. 2012), naive

Bayes  classifiers  (Rytkönen,  Zitting,  and  Porkka-Heiskanen  2011),  artificial  neural  networks

(reviewed in Ronzhina et al. 2012), and combinations thereof (e.g. Lajnef et al. 2015). 

With most of these approaches however, each sample is classified independently. As the input data

can be noisy,  this  can result  in misclassifications and an overestimation of the number of state

transitions. Human scorers can avoid these issues by using contextual information as they visually

interrogate the data in a sequential manner, subjectively integrating the evidence within each time

bin, with an estimate of the likelihood of each state based on the broader context. Algorithmically,

the simplest way to integrate predictions based on individual samples with contextual information is

to smooth the inferred state sequence by determining the most common vigilance state surrounding

the  sample  of  interest.  However,  vigilance  states  can  be  genuinely  short-lived,  which  poses  a

difficult  problem for such an approach. For example,  mice often transition from REM sleep to

NREM sleep  via  a  brief  period  in  which  their  EEG and EMG activity  reflect  the awake state

(Franken et al. 1991, Huang et al. 2006, Cui et al. 2014, dos Santos Lima et al. 2019). 
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Artificial neural networks represent a powerful method for classifying data sets with large numbers

of features that take the surrounding state sequence into account (Rumelhart et al. 1986; Werbos

1988;  Hochreiter  &  Schmidhuber  1997).  For  instance,  convolutional  neural  networks  (CNNs)

include in their inference the values of the samples immediately surrounding the sample of interest

(Homma et al. 1988; Waibel et al. 1989; LeCun & Bengio 1995) and recurrent neural networks are

capable of learning long-term dependencies (Hochreiter & Schmidhuber 1997). These principles

have been combined to generate networks that are effective at inferring vigilance states (Yulita et al.

2017; Chambon et al. 2018; Malafeev et al. 2018; Phan et al. 2018; Phan et al. 2019; Sun et al.

2019). However, the power and flexibility of artificial neural networks comes at a cost in terms of

complexity. Artificial neural networks are non-linear and typically have thousands of parameters

that need to be learnt from labelled data. Overparameterisation leaves neural networks prone to

overfitting, with the result that networks trained on certain datasets perform less well on data that

has been collected under different conditions. In practice, the flexibility of a large number of free

parameters poses challenges for sleep researchers that would like to adapt methods to their own

experimental setup.

Conceptually simpler algorithms include hidden Markov models (HMMs), which have also been

successfully employed for sleep stage annotation (Längkvist, Karlsson, and Loutfi 2012; Jiang et al.

2019). At the core of HMMs are estimates of the probability to change to a different vigilance state

from one sample to the next. These probabilities can be learnt from labelled training data and then

used to judge the likelihood of state sequences. For example, if the most likely state of the previous

epoch is state A, and the state of the next epoch is also state A, the assignment of state B to the

current  epoch is  probably erroneous,  particularly if  transitions  between state  A and B are rare.

Conversely, if the state of the previous epochs is state A and the state of the following epochs is

state B, the assignment of state B to the current epoch becomes more plausible. As well as applying

HMMs post-hoc to the state sequence inferred by another algorithm, HMMs can also be applied

directly to features derived from electrophysiological data (Doroshenkov, Konyshev, and Selishchev

2007; Pan et al. 2012; Fonseca et al. 2018). However, a crucial drawback of HMMs is that they

require an estimate of the multivariate probability distribution over input values for each state. With

each additional  feature,  the number of  samples  needed to  accurately estimate these probability

distributions increases exponentially. HMMs are therefore only effective if the dimensionality of the

input  signal  is  relatively  low.  As  a  result,  previous  implementations  have  relied  upon  a  small

number of hand-crafted features as basis of their inference.
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Here we develop a sleep stage classifier that combines inference based on rich feature sets, with the

low complexity of a HMM. To this end, we use LDA to perform targeted dimensionality reduction

of  the  complex  input  signals,  while  retaining  the  maximal  amount  of  (linearly  decodable)

information about vigilance states. This low dimensional representation is then passed to a HMM,

which combines the information encoded independently by each sample, with the broader context

given  by  the  surrounding  state  sequence  and  estimated  state  transition  probabilities.  In

demonstrating the performance of our classifier, we first draw upon human clinical studies (Danker-

Hopfe et  al.  2009; Magalang et al.  2013; Deng et al.  2019; Guillot et  al.  2020) to establish an

unbiased  framework  for  assessing  annotation  accuracy,  which  uses  the  independent  manual

annotation  of  data  by  ten  experienced  rodent  sleep  researchers.  Our  classifier  is  shown  to

consistently exceed the accuracy of expert manual annotations on rodent electrophysiological data.

We then demonstrate that our classifier is remarkably robust to errors in the training data and to

experimental manipulations. Furthermore, our classifier maintains its performance with different

numbers and sources of electrophysiological signals, which highlights the classifier’s adaptability to

different experimental scenarios. As the only free parameter is the time resolution or epoch length

of the inference, the classifier is easy to use and retrain, even by an inexperienced user.
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Results

Unbiased and precise assessment of automated and

manual sleep annotation

The performance of sleep stage classifiers is typically measured by computing their agreement with

two independent manual annotations. Performance is evaluated as the average agreement of the

automated annotation with each of the two manual annotations, which is then compared to the level

of  agreement  between  the  two  manual  annotations.  This  subtle  difference  in  how manual  and

automated  annotations  are  assessed  can  lead  to  systematic  biases  in  favour  of  the  automated

annotation, as illustrated by the following example. Assume that one manual annotation is perfectly

accurate but the other manual annotation misclassifies half of the data. The inter-rater agreement

between  manual  annotations  is  calculated  as  1  *  0.5  =  0.5.  Now  assume  that  the  automated

annotation has exactly the average accuracy of the two manual annotations, i.e. 0.75. The average

agreement with the two manual annotations will be (1 * 0.75 + 0.5 * 0.75) / 2 = 0.5625. In other

words,  the  automated  annotation  will  appear  to  be  more  than  10%  better  than  the  manual

annotations,  even  though  its  accuracy  was  exactly  average.  Conversely,  to  achieve  an  average

agreement score of 0.5, the automated annotation would only need to have an accuracy of 0.667, i.e.

it  could  be  10% less  accurate  than  the  mean manual  accuracy,  while  still  achieving the  same

agreement between manual annotations. The only condition under which this bias is zero, is if both

manual annotations have the same exact accuracy. For example, if both manual annotations have an

accuracy  of  0.75,  their  agreement  is  0.75  *  0.75  =  0.5625,  and  the  average  agreement  of  an

automated annotation with both manual annotations yields the same value: (0.75 * 0.75 + 0.75 *

0.75) / 2 = 0.5625.

For these reasons, we were keen to compare automated annotations to a majority-vote consensus

derived from multiple independent manual annotations. We asked ten experienced sleep researchers

(Figure 1 - Figure Supplement 1) to annotate awake, NREM, and REM states during the same 12-

hour period and based on simultaneous recordings of an anterior EEG, posterior EEG, and EMG in

a  freely  behaving  mouse  (Materials  and  methods).  This  enabled  us  to  generate  consensus

annotations based on multiple independent manual annotations (Figure 1A-C). First, we assessed

the accuracy of each annotation against the consensus of the other nine annotations. This revealed

that although the overall  accuracy of the annotations was high,  individual annotations varied in
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terms of how closely they matched the consensus of the other annotations (Figure 1C-D). This

variance would cause systematic bias if one was to rely upon the level of agreement between just

two manual annotations (see above). We were also keen to assess how precisely the agreement

between any two annotators is able to capture the mean accuracy of both manual annotations. We

therefore  compared the  inter-rater  agreement  for  each  pair  of  annotations  to  the  mean of  their

accuracies based on the majority-vote consensus of the remaining eight annotations (serving as a

proxy for ground truth). Whilst there was a statistically significant linear relationship between inter-

rater agreement and the mean accuracy of the two annotations, the relationship was weak (R2 =

0.25; Figure 1E). 

To assess the quality of manual and automated annotations in an unbiased and more precise way, we

compared  the  annotations  to  the  consensus  of  multiple  independent  manual  annotations.  This

comparison is unbiased as both the manual and automated annotations are assessed in exactly the

same way. We confirmed that  it  is  also a more precise measure,  as the spread of performance

estimates of manual annotations was smaller when using the consensus of three independent manual

annotations to assess the accuracy of a fourth annotation, than when using a single other annotation

as a point of reference (Figure 1F;  p < 0.01, Wilcoxon signed rank test). Finally, to estimate the

minimum number of manual annotations required to achieve a high quality consensus sequence, we

determined the consensus sequence of five annotations by majority-vote. Using either one, three or

all five of the remaining unused annotations, we constructed a second consensus sequence, and

computed  the  agreement  between  the  two  and  then  repeated  this  process  for  all  possible

combinations.  On  average,  any  individual  manual  annotation  matched  a  consensus  of  five

sequences for 92.5% ± 1.3% of the data (mean ± standard deviation), whereas a consensus of three

annotations already significantly increased the agreement by 2.2% ± 1.5% (agreement 94.7% ±

0.8%, p < 0.01, Mann-Whitney rank test)  (Figure 1G). There was a significant but more modest

improvement  by  0.5% ± 1.1% when the  number  of  manual  annotations  was  increased  to  five

(agreement 95.3% ± 0.7%, p < 0.01, Mann-Whitney rank test). Another widely used measure of

interrater agreement is Cohen’s kappa, which accounts for the possibility of agreements occurring

due to chance.  When we repeated the analyses  shown in  Figure 1D-G using this  performance

measure, we obtained analogous results (Figure 1 - Figure Supplement 1).  

In summary, a consensus derived from multiple independent manual annotations provides a less

biased and more precise framework for assessing the quality of manual and automated annotations

under comparable conditions. Based on these observations, we generated a larger test data set of six

24-hour EEG and EMG recordings (i.e. 144 hours total), which were independently scored by at
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least four experienced sleep researchers. Unless noted, we used these six data sets throughout the

rest of the study. This allowed us to compute the accuracy of manual and automated annotations

using the majority-vote consensus of at least three other manual annotations for that recording. The

recordings, individual manual annotations, and automated annotations are made freely available in

standard formats at TBD.

Contextual  information  improves  automated

classification of sleep states

In machine learning, most classifiers learn a transformation that maps a sample consisting of a set

of input values or features, onto an output value or category. This is the basis of the majority of

automated  methods  for  sleep  stage  classification,  such  as  decision  trees,  linear  discriminant

analysis, support vector machines, and neural networks (without recurrence) (Brankačk et al. 2010;

Crisler et al. 2008; T. Zeng et al. 2012; Rytkönen, Zitting, and Porkka-Heiskanen 2011; Ronzhina et

al. 2012; Lajnef et al. 2015). A key weakness of these approaches is that each sample is classified

independently of all other samples. In contrast, two methods that incorporate contextual information

and have been successfully applied to sleep stage classification are recurrent neural networks and

HMMs.  Recurrent  neural  networks  can  perform  exceptionally  well  at  learning  long-term

dependencies from large feature sets in a variety of problems. However, their inherent flexibility

poses problems in practice, as they require large amounts of labelled data to train, are prone to

overfitting,  and  adapting  their  architecture  to  different  inputs  can  be  non-trivial.  In  a  research

setting, where changes to the experimental setup can be frequent and generating large, well curated

training data sets is often impractical,  recurrent neural networks can be a suboptimal choice. In

contrast,  HMMs  have  much  fewer  parameters  and  require  much  less  data  to  train.  Typically,

however, HMMs have been applied either to low dimensional, hand-crafted features (Doroshenkov,

Konyshev, and Selishchev 2007; Pan et al. 2012; Fonseca et al. 2018) or to state sequences inferred

by other algorithms (Längkvist, Karlsson, and Loutfi 2012; Jiang et al. 2019). To incorporate more

of  the information  present  in  the individual  samples  into the inference,  we set  out  to  combine

HMMs with  LDA,  which  automatically  extracts  low dimensional  features  from complex,  high

dimensional input signals while retaining the maximal amount of (linearly decodable) information

about the labelled target classes.

Our  first  aim  was  to  demonstrate  the  advantage  conferred  when  the  classifier  incorporates

contextual information. To that end, we split the data into a training set and a test set, and evaluated
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three automated classifiers  that  differed only in the amount of contextual information that  they

incorporated  into  their  inference  (Figure  2C-E).  The  data  preparation  was  the  same  for  all

classifiers: 1) data pre-processing (subsampling to 256 Hz; conversion to multitaper spectrograms),

2) normalisation (log(x + 1) transformation; conversion to z-scores), and 3) targeted dimensionality

reduction using linear discriminant analysis (LDA).

In the first classifier, referred to as ‘LDA’, a set of thresholds computed as part of the LDA were

applied to the low dimensional representation of the test data (Figure 2C). This is equivalent to

selecting the state ŝ  S that best explains the values in the data sample d  D, regardless of the∈ S that best explains the values in the data sample d ∈ D, regardless of the ∈ S that best explains the values in the data sample d ∈ D, regardless of the

prior probability of different states:

ŝ = argmaxs P(D|S)

and  thus  represents  a  baseline  performance  for  automated  annotation  without  incorporating

contextual  information.  In  the second classifier,  referred to  as  ‘Bayes’,  we constructed  a  naive

Bayes  classifier  by  fitting  multivariate  Gaussian  distributions  (one  for  each  state)  to  the  low

dimensional representation of the samples in the training data set, as well as computing the expected

frequencies of the different states (Figure 2D and 2F). The states corresponding to samples in the

test set were then predicted based on the probability of the sample given each state weighted by the

frequency of states:

ŝ = argmaxs P(D|S) P(S)

In the third classifier, referred to as ‘HMM’, the states in the test set were predicted using a hidden

Markov model. As above, multivariate Gaussian distributions were fitted to the low dimensional

representation of samples in the training data. In addition however, the expected probabilities of

transitioning from one state to another were estimated from the training data set (Figure 2G). The

probability given each state P(D|S) was computed for each sample in the test set, combined with the

expected state transition frequencies, and the most likely state sequence through the test set was

computed  using  the  Viterbi  algorithm  (Viterbi  1967)  (Figure  2E).  The  HMM  classifier  is

conceptually similar to the naive Bayes classifier, with the difference being that the prior probability

of the state, P(S), is not approximated by its expected frequency, but rather depends on the overall

most likely state sequence. Consequently, the HMM incorporates more contextual information into

its inference than the Bayes classifier, as the transition probability matrix can be used to compute

the expected state frequencies from the stationary distribution of a corresponding Markov model

(whereas the state transition probabilities cannot be computed from the state frequencies alone). It

was observed that incorporating contextual information more than halved the number of errors, as
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the accuracy significantly increased from the LDA classifier’s accuracy of 92% ± 1%, to the HMM

classifier, which achieved an accuracy of 97% ± 1% (errors correspond to standard deviations from

the  mean).  These  analyses  confirmed  the  benefit  of  incorporating  contextual  information  and

established automated feature extraction using LDA, combined with context-aware state annotation

using a HMM, as a promising solution for an automated sleep stage classifier. We refer to this

classifier as ‘Somnotate’ and we set out to test its performance and robustness in the subsequent

sections.

State  annotation  by  Somnotate  exceeds  manual

accuracy

Manual  state  annotation  continues  to  be  the  yardstick  by  which  any  automated  annotation  is

measured. To determine the accuracy of manual annotations by experienced sleep researchers, we

compared individual manual annotations for any of the six 24-hour recordings to the consensus of

the remaining three or more annotations for that data set. The sleep researchers had a minimum of 2

years’ experience (median of 5 years’ experience) in manual vigilance state annotation and had

annotated  at  least  768  hours  of  equivalent  recordings  (Figure  3  –  Figure  Supplement  1).

Somnotate was trained and tested, in a hold-one-out fashion, on the same data set and its accuracy

was determined by comparison to the consensus of the manual annotations. This revealed that the

accuracy  of  Somnotate  exceeded  the  accuracy  of  manual  annotations  by  13  experienced  sleep

researchers (Figure 3A).  Out of a total of 25 manual annotations, 22 were less accurate than the

automated annotation. Twelve out of the thirteen annotators had a lower average accuracy than the

automated  classifier  on  the  same  data  sets. Thus  Somnotate  significantly  exceeded  human

performance (p < 0.001, Wilcoxon signed rank). When we used Cohen’s kappa instead of accuracy

as a measure of performance, we obtained identical results (Figure 3 - Figure Supplement 2). The

difference between the confusion matrices for the manual and automated annotations indicated that

the performance difference between manual and automated annotation was mainly driven by a more

accurate annotation of NREM states (Figure 3B). Somnotate identified more state transitions than

were typically  present  in  manual  annotations,  in  particular  if  these transitions  involved NREM

states (Figure 3D). However, cumulatively, the differences between manual and automated state

annotations  resulted  in  minor  differences  in  the  overall  state  occupancy  (Figure  3C).  When

partitioning the data by state according to the manual consensus or the automated annotation, there
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were no discernible differences between power spectra of the EEG activity (Figure 3 – Figure

Supplement 3).

Approximately  two  thirds  of  the  differences  between  the  automated  and  manual  consensus

annotations had a duration that was shorter than the temporal resolution of the manual annotations

(i.e. shorter than 4 s; Figure 3E). Many of these differences could therefore be resolved if the data

had been manually annotated at  a higher temporal resolution,  albeit at  the expense of a greater

investment  of  time.  In  other  cases  however,  annotating  a  definitive  state  may  not  have  been

possible. For instance, the animal may have been transitioning from one state to another, resulting

in ambiguous EEG and EMG waveforms that reflect an ‘intermediate’ state. Consistent with this

scenario, 54% of differences between the consensus and the automated annotation occurred within 5

seconds  of  a  state  transition,  where  manual  annotations  also  often  disagree  with  one  another

(Figure 3F). As a final validation, we trained Somnotate on the six 24-hour test data sets, but then

tested  performance  on  the  12-hour  data  set  that  had  been  annotated  by  ten  experienced  sleep

researchers (as in  Figure 1).  This revealed that the more manual annotations that were used to

generate a consensus sequence of the test data, the more closely this manual consensus matched the

automated annotation (Spearman’s rank correlation ρ = 0.80, p < 0.001; Figure 3G). In other words,

as one increases the number of experienced annotators, the manual consensus annotation converges

on the automated annotation by Somnotate.

Somnotate is highly robust

Machine  learning  algorithms  can  be  uniquely  sensitive  to  patterns  in  the  training  data.  This

sensitivity is often desirable, but can also be problematic. We were therefore keen to examine the

Somnotate’s performance under conditions in which the training data contained errors, or where the

test data reflected different experimental recording conditions. 

First, to test sensitivity to errors in the training data, we evaluated Somnotate’s accuracy on six 24-

hour EEG and EMG recordings annotated by at least 4 experienced sleep researchers in a hold-one-

out fashion, while randomly permuting an increasing proportion of the consensus state annotations.

This experiment revealed that Somnotate is extremely robust to errors in the training data, as the

accuracy on the test set only displayed a notable drop in performance when more than half of the

training  samples  were  misclassified  (Figure  4A-B).  Furthermore,  classifier  performance

monotonically increased with increasing amounts of training data (Figure 4 – Figure supplement
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1), consistent with the idea that the classifier does not overfit the training data and, as a result, does

not learn patterns that are present due to chance.

Second,  classifiers are  susceptible  to being fine-tuned to a  standard training data set,  such that

performance levels drop when faced with test data collected under different conditions, particularly

when  features  used  by  the  classifier  are  consistently  altered.  One  of  the  most  common

manipulations used in sleep research is sleep deprivation, which is known to result in changes in the

EEG power spectrum after sleep onset. As the EEG power values are primary features used by

Somnotate, it stood to reason that sleep deprivation could negatively impact its performance. To test

this, we evaluated the accuracy of our pre-trained classifier on six 3-hour data sets recorded after

sleep onset in sleep deprived mice, and compared this to the accuracy on matched ‘baseline’ data

recorded from the  same animals  when not  experiencing sleep  deprivation  (Figure 4C-D).  The

annotation accuracy was found to be comparable and high across both the sleep deprivation and

baseline conditions, confirming Somnotate’s robustness to sleep deprivation induced changes in

features used by the classifier.

Third, as Somnotate uses contextual information in the form of prior probabilities of the different

vigilance states, changes in these probabilities could negatively impact the automated annotation.

The values of the prior probabilities depend on how much time the animals spend in each state and

how frequently they transition between states. To gauge the impact that variations in these priors

might have on the performance, we trained and tested the HMM in a hold-one-out fashion on the six

24-hour EEG and EMG recordings with high quality consensus annotations, as before. However,

we then evaluated the accuracy separately for the 12-hour light period and the 12-hour dark period,

when state occupancies and state transition probabilities are very different (Figure 4E-F). Despite

these large changes in vigilance state, the accuracy of Somnotate continued to match or exceed the

accuracy of manual annotations by experienced sleep researchers across both the light and dark

periods (Figure 4G-H). These observations demonstrate the robustness of Somnotate to changes in

the  values  of  the  features  used  for  inference,  the  state  frequencies,  and  the  state  transition

probabilities,  which  represent  the  main  components  that  the  classifier  uses  for  contextual

information.
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A single  EEG signal  is  sufficient  for  Somnotate  to

infer vigilance states with high accuracy

Although most electrophysiological signals show a dependence on vigilance state, some signals can

be more informative of certain states. For example, REM sleep is often indicated by a high power in

the theta frequency band of an EEG recording, which is typically more apparent for a posterior

electrode  than an anterior  electrode  (Huber  et  al.  2000).  However,  it  is  not  always technically

possible to record the ‘ideal’ combination of signals for the inference of vigilance states. We were

therefore  keen  to  assess  Somnotate’s  ability  to  infer  vigilance  states  from  individual

electrophysiological  signals.  A  series  of  classifiers  were  trained  and  tested  using  only  one

electrophysiological signal as an input; either the anterior EEG, the posterior EEG, the LFP from

primary motor cortex, or the EMG. This revealed that a single EEG signal was sufficient to infer the

vigilance state with high accuracy (Figure 5A).  In fact,  the overall  accuracy of the predictions

based on the anterior EEG alone did not differ from the overall accuracy when the anterior EEG,

posterior  EEG and EMG were provided simultaneously (p > 0.24,  Wilcoxon signed rank test).

Underlying this was a small increase in the false negative detection rate for REM sleep, which was

offset by an improved distinction between the awake and two sleep states (Figure 5B). The overall

accuracy of the predictions based on the posterior EEG was on average 1 % lower (p < 0.05,

Wilcoxon  signed rank test),  although  in  this  case  the  identification  of  REM showed  a  similar

accuracy to when all  signals were provided (Figure 5B).  The accuracy of predictions based on

either an LFP recorded from primary somatosensory cortex, or only the EMG signal, was in both

cases  worse  (by  6  % and  14 %,  respectively),  largely  due  to  the  performance  on REM sleep

episodes  (p  <  0.05  in  both  cases,  Wilcoxon  signed  rank  test;  Figure  5A-B).  However,  each

individual  signal  was  still  sufficient  to  distinguish  between awake and asleep  states  with  high

accuracy (~95%), indicating that either signal would be sufficient in experiments that do not need to

distinguish between REM and NREM sleep states. Overall, these data establish that Somnotate is

able to accurately infer vigilance states from individual electrophysiological signals and in a manner

that could be optimised depending on the experimental arrangement and objectives.
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Somnotate  identifies  ambiguous  states  around

successful  and unsuccessful  attempts to transition

between states

HMMs belong to the category of Bayes classifiers that compute the likelihood of each state, for

every data sample. This likelihood identifies samples where the classifier is certain in its prediction

(i.e. samples where the likelihood of the predicted state is effectively one), and samples where the

classifier is uncertain (i.e. samples where the likelihood of the predicted state is less than one). For

our datasets,  the cumulative distribution of likelihood values  indicated a  change point at  0.995

(Figure 6 – Figure supplement 1), with a minority of samples (5.5%) having a likelihood below

this  threshold.  Notably,  almost  half  of  the  periods  for  which  Somnotate  was  uncertain  (44%)

coincided with instances where manual annotations disagreed with one another. This suggested that

the  difficulty  in  predicting  the  vigilance  state  for  these  time points  was  not  an  artefact  of  the

inference method, but a  result  of ambiguity in the signals themselves.  Human annotators  often

exclude such sections of the data from their analysis and, by analogy, the accuracy of our automated

classifier increased when these ambiguous samples were excluded (Figure 6 – Figure supplement

2). 

In  contrast  to  manual  annotation,  Somnotate  provides  the  opportunity  to  characterise  these

ambiguous samples in a principled way. An ambiguous signal can derive from measurement noise

masking a true, unambiguous signal, or it can reflect an intermediate state that produces a mixed

signal. Three lines of evidence support the idea that ambiguous samples derive from an intermediate

state and are not a measurement artefact. First, the majority of ambiguous samples (76%) occur

around state transitions (first two examples in Figure 6A), which represent relatively rare events in

the recordings. Second, for nearly all ambiguous samples, the probability mass was concentrated in

two states, rather than being randomly distributed across all three states (Figure 6B). Third, the

power spectra for ambiguous samples showed elements of the power spectra of the two most likely

states (Figure 6C). For example, samples where Somnotate was uncertain whether to assign the

awake state or NREM sleep, showed a high power in the δ  frequency band, characteristic of NREM

sleep, but also an increased power in the γ frequency band, which is typically an indicator of the

awake state (Figure 6C). Finally, as the periods during which the classifier was uncertain tended to

be much longer than the duration of a single sample (Figure 6 – Figure supplement 3), these
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intermediate states could not be an artefact of the temporal resolution,  i.e. the result  of a state

transition occurring during a single one second sample.

To  investigate  the  new  analysis  opportunities  this  generates,  we  focused  upon  the  24%  of

ambiguous  samples  that  were  associated  with  an  incomplete  state  transition  (such as  the  third

example  in  Figure  6A)  and  referred  to  these  as  failed  transitions,  to  distinguish  them  from

successful state transitions.  We computed the frequencies of these different transition types and

expressed the failed transitions as a proportion of all transitions (Figure 6D). This revealed that the

probability of failing to transition was not random. The overall probability of failed transitions was

higher when moving out of NREM sleep,  than when moving out of REM sleep  (p < 0.001, χ2

contingency  test).  However,  whereas  the two state  transitions  out  of  NREM sleep  exhibited  a

similar probability of failing (p = 0.98, χ2  contingency test), the state transitions out of REM sleep

differed,  with  a  transition from REM-to-NREM showing a  higher  probability  of  failing  than a

transition from REM-to-awake (17% versus 1%; p < 0.001, χ2  contingency test). The same pattern

of failed transitions remained when a more conservative threshold was adopted for ambiguous time

points (state probability below 0.95;  Figure 6 – Figure supplement 4). These observations may

explain why animals often appear to enter a brief awake state after a period of REM sleep, before

they resume with NREM sleep. In summary, these analyses represent an example of the additional

opportunities generated by using an automated classifier that computes the likelihood of vigilance

states at each time point.
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Discussion

Here we present a novel sleep stage classifier that achieves performance levels that surpass human

experts, is robust, easy to use and provides quantification of ambiguous states. We call the classifier

‘Somnotate’ and we make this available to the neuroscientific community.  Somnotate combines

optimal feature extraction by linear discriminant analysis (LDA), with state-dependent contextual

information  derived  via  a  hidden  Markov  model  (HMM).  Through  a  series  of  systematic

benchmarking tests against expert manual annotations, we demonstrate that Somnotate outperforms

the accuracy achieved by experienced sleep researchers. The classifier is shown to be robust to

errors in the training data, able to operate across experimental manipulations, and compatible with

different  electrophysiological  signals.  Finally,  we demonstrate  that  Somnotate  is  well-placed to

quantify ambiguous states,  which can be used to investigate putative failed transitions between

vigilance states.

Despite  the  development  of  multiple  algorithms  for  sleep  stage  classification,  many  sleep

researchers and clinicians continue to manually score their data. We believe that several barriers

have prevented widespread adoption of automated solutions, which include issues relating to the

true performance levels of automated classifiers,  their robustness, adaptability,  accessibility,  and

whether they offer the potential for new insights. We will discuss Somnotate in the context of each

of these aspects. 

In terms of performance levels, reports of human-like performance by automated methods may fall

short in practice. We believe that the choice of performance metric may have contributed to this, as

we show that inter-rater agreement can be an imprecise measure of annotation accuracy and is

typically used in a manner that favours automated annotation. To improve upon this standard, we

evaluated  the  quality  of  automated  annotations  against  the  consensus  of  at  least  three  manual

annotations. An annotation based on the consensus by majority vote will be more accurate than any

individual  annotation,  whenever  manual  errors  show  some  degree  of  independence  from  one

another  (Danker-Hopfe  et  al.  2009;  Deng  et  al.  2019).  Using  this  improved  assessment  of

performance, we showed that, on average, Somnotate matched the consensus more closely than any

individual manual annotation. Further, the more manual annotations that were used to generate the

consensus sequence, the more closely this consensus matched the automated annotation. 
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Key to Somnotate’s performance is  its  incorporation of  contextual  information.  Human experts

continually  use  contextual  information  as  they  interrogate  such  time  series  data,  relating

information at a time point of interest, with information that they infer over longer timescales. This

is often overlooked in automated classifiers, although a subset have used algorithms that incorporate

contextual information,  including those that have used HMMs (Längkvist,  Karlsson, and Loutfi

2012; Jiang et al. 2019) and recurrent neural networks (Yulita et al. 2017; Chambon et al. 2018;

Malafeev et al. 2018; Phan et al. 2018; Phan et al. 2019; Sun et al. 2019). As HMMs are much

easier to adapt and optimise by a non-expert, we concentrated our efforts on improving the state-of-

the-art  for HMM-based inference of vigilance states.  Our classifier  represents an advance upon

previous work, by first using LDA to automatically extract features that carry the maximum amount

of linearly decodable information about vigilance states,  and then incorporating state-dependent

contextual information through the application of a HMM. 

A key advantage to Somnotate is its robustness. We found that Somnotate is remarkably robust to

errors in the training data, with test performance only dropping significantly when more than half of

the training samples had been deliberately misclassified. Furthermore, automated scoring methods

can show such overfitting to a standard or control data set, that their performance is diminished in

other settings when the probabilities of key features vary (Veasey et al. 2000; Khalighi et al. 2013;

Malafeev et  al.  2018, Sun et  al.  2019;  Guillot  et  al.  2020). In contrast,  we saw no statistically

significant  drop  in  the  performance  of  Somnotate  when  used  with  data  collected  from  sleep

deprived animals, even though sleep deprivation elicits significant changes in the EEG spectrogram,

and thus changes in key features used by Somnotate. Similarly, dividing the data into light and dark

periods produced pronounced changes in the state transition frequencies, yet Somnotate continued

to perform at least as well as expert sleep researchers.

In terms of adaptability, some automated methods have been optimised for a specific input signal

(Lefort  et  al.  2018).  In  other  cases,  an automated method can be  recalibrated  to  accommodate

changes in the experimental setup. For example, support vector machines and neural networks can

be  retrained,  or  linear  discriminants  and decision  trees  can  be  re-evaluated.  However,  as  most

previous  methods  have  several  free  parameters,  adapting  them  to  a  different  experimental

arrangement  can  be  time-consuming,  with  uncertain  returns.  Here  we  showed  that  Somnotate

performs  well  with  a  variety  of  different  input  signals,  which  are  typically  available  in  an

experimental  setting.  Furthermore,  as  there  are  no  free  parameters  other  than  the  desired  time

resolution of the state prediction, re-training requires no optimisation, and is straightforward and
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fast. Training Somnotate takes approximately one second per 24 hours of data on a standard desktop

computer.

A further barrier to the widespread adoption of automated solutions is the issue of accessibility.

Available  software  implementations  for  automated  sleep  stage  classification  can  be  expensive

(Taguchi et al. 2004; Alloca et al.  2019). We provide an open source implementation written in

Python. The code comes with extensive documentation including detailed installation instructions

and a comprehensive tutorial.  The modules of the code base can be integrated into an existing

workflow. Alternatively, we also provide a fully-fledged pipeline as a standalone command line

application.

Finally,  previous  descriptions  of  automated  methods  for  sleep  stage  classification  have

understandably focused on the savings in person-hours (Khalighi et al. 2013; Sun et al. 2019). In

our  opinion,  it  is  also  important  to  recognise  that  some  analyses  may  require an  automated

approach. Whilst the gold standard for sleep stage classification remains human experts, there is an

element of subjectivity to all manual annotations that makes certain areas of investigation difficult.

For example, EEG traces show signatures of multiple states, particularly around state transitions

(Glin et al. 1991, Gottesmann 1996, Emrick et al. 2016, Funk et al. 2016), which we show is where

most  disagreements  between  manual  annotations  occur.  And  whilst  humans  are  very  good  at

determining the most likely state at any given time point, they struggle to quantify intermediate

states. In contrast, there is no difference between these two tasks for our classifier. In a subset of

cases, Somnotate indicated intermediate states in the absence of a state transition, which we defined

as  failed  transitions.  Interestingly,  the  distribution  of  failed  transitions  was highly  non-random.

Notably,  REM-to-awake transitions were nearly always successful,  whereas  failures were much

more  common  for  REM-to-NREM  transitions.  The  differential  failure  rate  may  explain  the

preponderance of short bouts of wakefulness between REM and NREM sleep, as it may be easier

for the underlying neuronal networks to transition from REM to awake, and then to NREM, rather

than  transition  directly  from  REM  to  NREM.  This  highlights  a  potential  direction  for  future

investigations, which could lead to a  richer description of the neurophysiological mechanisms of

vigilance state transitions.

More broadly, we have assessed Somnotate’s performance upon a number of electrophysiological

signals recorded in mice. The use of targeted feature extraction via LDA means that Somnotate is

agnostic with respect to the exact nature of the input signal. In principle,  the method could be

applied  to  any  high  frequency  time  series  data  that  contains  information  about  an  organism’s

vigilance state. Hence we plan to expand this approach to other types of signals, such as surface
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EEG, actigraphy, or respiratory activity (Zeng et al. 2012; Khalighi et al. 2016; Boe et al. 2019;

Guillot et al. 2020). In conclusion, we present Somnotate - a method for automated sleep stage

classification from long-term electrophysiological recordings in freely moving animals. Somnotate

achieves performance levels that exceed human experts and meets important criteria in terms of

robustness, ease of use, accessibility, and the potential for new biological insights.
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Materials and methods

Animal husbandry and sleep deprivation

All experiments were performed on adult male C57BL/6 wild-type mice, which were bred, housed

and used in accordance with the UK Animals (Scientific Procedures) Act (1986). Animals were

maintained under a 12-h:12-h light-dark (LD) cycle.  For the subset of animals that underwent a

sleep  deprivation  (SD)  protocol,  the  animal  was  pre-exposed  to  novel  objects  to  encourage

exploratory behaviour. The SD protocol then consisted of delivering novel objects for the first six

hours of the light cycle, under the continuous observation of an experimenter. Once an animal had

stopped exploring an object, a new object was presented.

Surgical procedures and electrode configuration

For chronic electroencephalogram (EEG) and electromyogram (EMG) recordings,  custom-made

headstages  were  constructed  by  connecting  three  stainless  steel  screw electrodes  (Fine  Science

Tools),  and two stainless steel  wires,  to  an 8-pin surface mount  connector  (8415-SM, Pinnacle

Technology  Inc.,  Kansas).  For  LFP  recordings,  a  16-channel  silicon  probe  (NeuroNexus

Technologies Inc., Ann Arbor, MI, USA; model: A1x16- 3mm-100-703-Z16) with a spacing of 100

micrometre  between  individual  channels  was  used.  Device  implantation  was  performed  using

stereotactic surgery, aseptic technique,  isoflurane anaesthesia (3-5% for induction and 1-2% for

maintenance) and constant body temperature monitoring. Analgesia was provided at the beginning

of surgery and during recovery (buprenorphine and meloxicam). A craniotomy was performed over

the right frontal cortex (AP +2 mm, ML +2 mm from Bregma), right occipital cortex (AP +3.5 mm,

ML +2.5 mm from Bregma), and the cerebellum (-1.5 mm posterior from Lambda, ML 0). A subset

of animals were further implanted with a bipolar concentric electrode (PlasticsOne Inc., Roanoke,

VA, USA) in the right primary motor cortex, anterior to the frontal EEG screw. To accommodate

this additional implant, the frontal EEG screw was typically implanted 0.2-1.6 mm posterior to the

target coordinates. For EEG recordings, a screw was fixed over both the right frontal and occipital

cortex. For LFP and multi-unit activity recording in a subset of animals, a 16-channel silicon probe

was implanted into primary motor cortex (+1.1 mm AP (anterior), -1.75 mm ML (left), tilt -15°

(left)) under microscopic control as reported previously (Krone et al., 2021). EEG and LFP signals

were referenced to a cerebellum screw. For EMG recordings, wire electrodes were inserted into the
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left and right neck muscles and one signal acted as reference to the other. All implants were secured

using a non-transparent dental cement (SuperBond
 
from Prestige Dental Products Ltd, Bradford,

UK). Animals were allowed to recover for at least 1 week before recordings.

In vivo data acquisition

Animals were moved to a recording chamber and housed individually in a Plexiglas cage (20.3 x 32

x 35 cm).  Recordings were performed using a 128-channel Neurophysiology Recording System

(Tucker-Davis  Technologies  Inc.,  Alachua,  FL,  USA),  acquired  using  the  electrophysiological

recording software,  Synapse  (Tucker-Davis  Technologies  Inc.,  Alachua,  FL,  USA),  and stored

locally  for  offline  analysis.  EEG,  EMG,  and  LFP signals  were  continuously  recorded,  filtered

between 0.1–100 Hz, and stored at a sampling rate of 305 Hz. EEG, EMG and LFP signals were

resampled  at  a  sampling  rate  of  256  Hz  using  custom-made  code  in  MATLAB  (MathWorks,

v2017a)  and  converted  into  the  European  Data  Format.  The  first  and/or  last  30  seconds  of

recordings could contain missing values as this corresponded to the period when the electrodes were

being connected/disconnected from the recording system. These epochs were excluded from all

subsequent analyses.

Manual vigilance state annotation

Manual annotation of vigilance states was performed offline, based on 4 s epochs using SleepSign

software (Kissei Comtec). The anterior EEG channel, the posterior EEG channel, and the EMG

channel were displayed on-screen simultaneously and visually inspected for vigilance state scoring.

Three vigilance states were identified, as is typical in laboratory rodent studies. Waking was defined

by a low-voltage, high-frequency EEG signal, with a high level or phasic EMG activity. During

active, exploratory waking, a transient increase in theta-activity (5-10 Hz) was typically observed in

the occipital derivation, overlying the hippocampus. NREM sleep was defined by an overall higher

amplitude signal, dominated by slow waves (<4 Hz) and spindle oscillations (10-15 Hz) that were

especially prominent in the anterior EEG channel, while the EMG signal was typically low. REM

sleep was characterised by low-voltage, high-frequency EEG, dominated by theta activity especially

in the posterior EEG channel, with a low level of EMG activity.
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Data pre-processing for automated annotation

We first computed the spectrograms of the anterior EEG, the posterior EEG, and the EMG traces.

To reduce  sensitivity  to  noise  present  in  electrophysiological  recordings,  we used  a  multitaper

approach as this results in more robust estimates of the power than the more conventional Baum-

Welch algorithm. Specifically, we used the implementation in the lspopt python library (1 second

long segments with no overlap, other parameters at default values). We then discarded parts of the

power spectrum that are strongly influenced by signals not related to changes in vigilance states. We

discarded signals in the 0-0.5 Hz frequency range in the EEG and EMG recordings, as these are

dominated by drift due to animal locomotion. Furthermore, we discarded signals between 45-55 Hz

and above 90 Hz, as these were strongly affected by 50 Hz electrical noise. We then applied a

log(x+1) transformation to map the heavy-tailed distribution of power values to a distribution that is

more  normally  distributed.  The  Normal  distribution  is  the  maximum  entropy  distribution  for

continuous distributions on unbounded domains, and as such, samples are maximally far apart from

one another (compared to other distributions with the same variance). This facilitates downstream

classification  into  separable  groups.  The  re-mapped  power  values  were  then  normalised  by

converting  them  to  Z-scores  (mean  subtraction  followed  by  rescaling  to  unit  variance).

Normalisation  ensures  that  all  frequencies  are  weighted  equally  in  the  downstream  feature

extraction. Finally, the normalised spectrograms were concatenated, resulting in a high-dimensional

signal.

Automated feature extraction

Features for downstream classification were then extracted from the concatenated spectrograms in a

targeted  manner  using  linear  discriminant  analysis  (LDA; Fisher  1936)  as  implemented  in  the

scikit-learn python library (Pedregosa et  al.  2011).  LDA determines  a linear  projection of high

dimensional  data  to a  low dimensional  representation,  such that  samples belonging to different

classes are optimally linearly separated in the low dimensional  space.  Thus,  information in the

signal about the different classes is preserved, while non-informative components of the signal are

discarded.  This  has  two  further  effects.  Firstly,  training  of  any  classifier  is  accelerated,  which

implicitly or explicitly fits a joint probability distribution to the components of the training data.

The  number  of  samples  required  to  accurately  fit  a  joint  probability  distribution  increases

exponentially with the number of dimensions. As the dimensionality of the data is reduced, fewer

samples are required to escape the under-sampled regime and accurately determine the shape of the
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data  distribution.  This  is  enhanced  by  the  fact  that  the  components  of  the  LDA are  largely

independent  of one another  – unlike the original  signal,  in  which many frequencies  are  highly

correlated  with  each  other.  Secondly,  as  much  of  the  original  signal  is  effectively  discarded,

artefacts that contaminate the signal are also removed.

Automated vigilance state annotation

Given three target states (awake, NREM sleep,  and REM sleep),  dimensionality reduction with

LDA  results  in  two-dimensional  signals.  These  two-dimensional  signals  together  with  the

corresponding  manual  annotations  were  used  to  train  an  HMM  in  a  supervised  fashion  with

multivariate Gaussian state emissions using the python library pomegranate (Schreiber 2018; all

optional  parameters  at  default  values).  If  the  annotations  were  not  based  on  the  consensus  of

multiple  manual  annotations,  mislabelled  samples  in  the  training  data  resulted  in  non-zero

probabilities for disallowed state  transitions,  specifically  awake-to-REM transitions.  These were

pruned by removing all state transitions with probability below 0.0001 per second. The accuracy of

the trained LDA and HMM models were ascertained by applying them to held out test data. For

each sample, the probability of each state was computed using the Baum-Welch algorithm, and the

most likely state sequence was determined using the Viterbi algorithm. Unless specified otherwise,

training and testing occurred in a hold-one-out fashion.

Recording artefacts

Samples containing artefacts associated with the animal’s gross body movements were identified

during manual annotations, but were still included in the analysis of vigilance states and in the data

used  to  train  Somnotate.  Such  artefacts  represented  1.0%  ±  1.0%  of  the  consensus  manual

annotations (mean ± standard deviation; 3.8% ± 2.8% in the individual manual annotations) and did

not  influence  the  automated  feature  extraction  by  LDA,  so  did  not  impact  the  quality  of  the

automated  annotations.  However,  such  artefacts  could  affect  downstream  analyses  in  future

applications, such as spectral analysis of the recorded signals. For this reason, Somnotate includes

two  features  to  facilitate  the  detection  and  removal  of  artefacts.  First,  Somnotate  detects  and

demarcates gross movements that generate voltage deflections outside of the dynamic range of the

recording  system (with  an  optional  padding  to  also  remove  voltage  deflections  preceding  and

following such events), so that they are not included in downstream analyses. Second, Somnotate
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has  the  option  to  present  samples  to  the  user  where  the  classifier  was  uncertain  about  state

assignment. Intervals consisting of consecutive samples in which the probability of the inferred

state is below one are scored according to the sum of the residual probabilities (i.e. one minus the

probability of the inferred state) and presented to the user in descending order. Movement artefacts

associated with prolonged voltage deflections or that strongly affect the spectral features identified

by LDA result in a high score and can be excluded by the user.
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Figure legends

Figure 1. The consensus of manual annotations yields a better estimate of annotation accuracy.
(A) The annotation of vigilance states was based on recordings of the anterior EEG, posterior EEG
and EMG from a freely moving mouse. A one-minute segment of the recordings is shown. (B) Multi-
taper spectrograms for each of the recorded signals in ‘A’. (C) The majority-vote  consensus of
manual annotations by three independent experienced sleep researchers (top), which discriminates
the  vigilance states  of  ‘awake’ (red),  ‘NREM’ sleep (blue)  and ‘REM’ sleep  (yellow).  A fourth
(middle) and fifth (bottom) independent individual manual annotation of the same segment. (D) A
total of ten experienced sleep researchers independently annotated the same 12-hour recording and
the accuracy of each annotation was assessed by using the consensus of the other nine annotations
as  a  proxy  for  the  ground  truth.  (E)  For  each  possible  pair  of  annotations,  the  inter-rater
agreement was plotted against the mean accuracy of the pair of annotations, when judged against a
consensus based on the remaining other eight annotations. (F) There was greater variability in the
accuracy  of  an  annotation  when judged against  a  single  other  manual  annotation,  than when
judged against the consensus of three randomly selected annotations (without replacement). Plot
shows the variability in accuracy estimates (standard deviation with Bessel correction), which was
significantly lower when using the consensus of three annotations (p < 0.01, Wilcoxon signed rank
test).  (G)  A consensus  was constructed  from five of  the ten independent  annotations  based on
majority vote. A second consensus annotation was then constructed using either one, three or all
five of the remaining annotations. The plot shows the mean agreement between the two consensus
annotations. Error bars represent the standard deviation of the mean.

Figure 2. Contextual information improves automated sleep stage classification. (A) A fifteen-
minute segment of the consensus of manual annotations by four independent experienced sleep
researchers, based on recordings from a freely behaving mouse. (B) Annotation was based on the
anterior EEG, posterior EEG and EMG traces (top), and corresponding multi-taper spectrograms
(bottom).  (C)  Two-dimensional  representation  of  the  segment  after  targeted  dimensionality
reduction via LDA. Small values in the first component (LDA1) indicate the awake state, large
values indicate either REM or NREM. Small values in the second component (LDA2) indicate the
awake or NREM state, large values indicate REM. (D) Probability of each state when fitting two-
dimensional  Gaussian  distributions  to  the  values  in  C.  (E) Likelihood  of  each state  given  the
probability of each state (as shown in ‘D’) and all possible state sequences, weighted by their
likelihood given the state transition probabilities (as shown in ‘G’). (F) The state occupancy based
on the time spent in each state across six 24-hour data sets, according to at least four manual
annotations.  (G)  The corresponding state transition probabilities.  (H)  Comparison of the LDA,
naive Bayes, and HMM classifiers. Without any contextual information, applying linear thresholds
to the values in ‘C’ yields the LDA classifier. Combining the probability of the data given the state
with  the  prior  state  probability  based  on  state  occupancy  shown in  ‘F’ yields  a  naive  Bayes
classifier.  If  instead  the  prior  probability  of  each  state  is  derived  from  the  state  transition
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probabilities shown in ‘G’, the classifier becomes a HMM. The accuracy of the three classifiers was
evaluated across six 24-hour data sets in a hold-one-out fashion. Error bars indicate the standard
deviation of the mean. P-values are based on a Wilcoxon signed rank test with a Bonferroni-Holm
correction for multiple comparisons.

Figure  3.  Automated  sleep  stage  classification  by  Somnotate  exceeds  manual  accuracy.  (A)
Somnotate was trained and tested, in a hold-one-out fashion, on six 24-hour data sets. Using a
consensus annotation based on at least 3 manual annotations, the accuracy of the classifier was
compared to the accuracy of individual manual annotations (n=25 manual annotations from 13
experienced  sleep  researchers).  (B)  The  confusion  matrix  for  individual  manual  annotations
compared to the manual consensus (left),  for the automated classifier compared to the manual
consensus  (middle),  and  the  difference  between  these  two  confusion  matrices  (right).  (C)
Comparison of state occupancies between the automated and manual consensus annotations. (D)
State  transition  probabilities  in  the  automated  annotation,  normalised  to  the  state  transition
probabilities  in  the  manual  consensus  annotation.  (E)  Cumulative  frequency  plot  shows  the
duration of the differences between the automated annotation and the manual consensus. Note that
the  manual  annotation  had  a  temporal  resolution  of  4  s  (vertical  dashed  line),  whereas  the
automated classifier performed best at a time resolution of 1 s. (F) Venn-diagram of the time points
at which the automated annotation and manual consensus differed. (G) Somnotate was trained on
six  24-hour  data  sets  and  then  tested  on  a  12-hour  data  set,  independently  annotated  by  ten
experienced sleep researchers (as in Figure 1). The accuracy of the annotation by Somnotate was
compared to consensus annotations generated from different numbers of manual annotations. Error
bars indicate the standard deviation of the mean. P-values are derived from a Wilcoxon signed rank
test.

Figure 4. Automated sleep stage classification by Somnotate is robust. (A) Somnotate’s accuracy
was evaluated on six 24-hour data sets, in a hold-one-out fashion, while permuting an increasing
fraction of annotations in the training data. Confusion matrices show the results when permuting
10% of the training data annotations (resulting in 6% mislabelled time points; left), permuting 50%
of the training data annotations (resulting in 28% mislabelled time points; middle), or permuting
90% of  the training data annotations  (resulting in 51% mislabelled time points;  right).  Values
represent mean ± standard deviation. (B) Somnotate’s accuracy as a function of the percentage of
permuted training data annotations. The accuracy was evaluated based on an individual manual
annotation on six 12-hour data sets acquired during a normal sleep cycle, and compared to the
accuracy on six 12-hour data sets acquired from the same animals after sleep deprivation. (C) The
accuracy of a pre-trained classifier was evaluated against a manual annotation of normal sleep-
wake cycle data (six 12-hour data sets), and compared to its accuracy on data from the same
animals after undergoing a sleep deprivation protocol (six 12-hour data sets). Confusion matrices
are shown for the normal sleep-wake cycle (left, ‘baseline’), following sleep deprivation (middle),
and as the difference between these two confusion matrices (right). (D) Comparison of Somnotate’s
overall accuracy on baseline data and data collected after sleep deprivation. (E) To assess the
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impact of a change in state transition probabilities, the accuracy of a classifier trained on 24-hour
data sets (i.e. full-day data sets) was evaluated on either data sets acquired during the light period
(six 12-hour data sets) or during the dark period (six 12-hour data sets). The state occupancy is
shown  during  the  light  (left)  and  dark  period  (right).  (F)  The  state  transition  probabilities,
normalised to their corresponding values over the full-day, for the light (left) and dark periods
(right).  (G)  Confusion  matrices  for  the  light  (left)  and  dark  periods  (right),  with  entries
corresponding to the difference after subtracting the corresponding values for the full-day.  (H)
Somnotate’s  accuracy was compared to  the accuracy of  individual  manual  annotations  (n=25)
during  the  light  (left)  and  dark  periods  (right).  Values  throughout  indicate  mean  ±  standard
deviation. P-values are derived from a Wilcoxon signed rank test.

Figure 5.  A single EEG signal is  sufficient  for Somnotate to  infer  vigilance state  with high
accuracy. (A) The accuracy of Somnotate’s sleep stage classification using a single input signal.
Classifiers were trained and tested, in a hold-one-out fashion, on six 24-hour data sets. Only one
signal was provided as an input signal: either the anterior EEG, the posterior EEG, the LFP from
primary somatosensory cortex, or the EMG. (B) Confusion matrices when using only the anterior
EEG (top left), the posterior EEG (top right), an LFP (bottom left) or the EMG (bottom right).
Values indicate mean ± standard deviation. 

Figure  6.  Somnotate  identifies  time  intervals  with  ambiguous  states. (A)  Three  examples  of
ambiguous states identified by Somnotate, in which the probability of the most likely state dropped
below 0.995. In each case, the consensus annotation, input signals, power spectra and likelihood of
each state  assigned by Somnotate  are shown.  The first  example (left)  shows a successful  state
transition from awake to NREM sleep. Just before the transition, Somnotate identifies time points
with intermediate states in which the probability of being awake has decreased and NREM sleep
has increased. The second example (middle) shows a brief state transition from NREM sleep to
awake, then back to NREM sleep, which includes time points with intermediate states. The third
example (right) shows a failed transition from NREM sleep to awake, which includes a series of
time points with intermediate states in which there is a partial decrease in the probability of NREM
sleep  and  partial  increase  in  the  probability  of  being  awake.  (B)  Ternary  plots  of  the  state
probabilities assigned to each sample in six 24-hour data sets. In the vast majority of samples, the
probability mass was concentrated in one or two states (left). This was different to a theoretical
distribution in which the probability mass outside the most likely state was randomly assigned to
the other two states (right). (C) Power spectra extracted for time points with intermediate states
(solid lines). For reference, the power spectra for the “pure” states are also shown (dashed lines).
(D)  Relative  frequencies  of  successful  state  transitions  (per  day;  left),  failed  state  transitions
(middle) and the ratio between these (right). Values indicate mean ± standard deviation.
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Figure Supplement legends

Figure 1 – Figure Supplement 1. The consensus of manual annotations yields a better estimate 
of annotation accuracy, as measured by Cohen’s kappa. The analyses in Figure 1D-G were 
repeated using Cohen’s kappa as a measure of performance. (A) A total of ten experienced sleep 
researchers independently annotated the same 12-hour recording and the accuracy of each 
annotation was assessed by using the consensus of the other nine annotations as a proxy for the 
ground truth. (B) For each possible pair of annotations, the inter-rater agreement was plotted 
against the mean accuracy of the pair of annotations, when judged against a consensus based on 
the remaining other eight annotations. (C) There was greater variability in the accuracy of an 
annotation when judged against a single other manual annotation, than when judged against the 
consensus of three randomly selected annotations (without replacement). Plot shows the variability 
in accuracy estimates (standard deviation with Bessel correction), which was significantly lower 
when using the consensus of three annotations (p < 0.01, Wilcoxon signed rank test). (D) A 
consensus was constructed from five of the ten independent annotations based on majority vote. A 
second consensus annotation was then constructed using either one, three or all five of the 
remaining annotations. The plot shows the mean agreement between the two consensus 
annotations. Error bars represent the standard deviation of the mean.

Figure 3 – Figure Supplement 1. Manual annotations were carried out by experienced sleep
researchers. All authors who provided manual annotations reported their task-relevant experience
in years, as well as determined the number of 12-hour and 24-hour data sets they had manually
annotated previously.

Figure 3  – Figure  Supplement 2.  Sleep  stage classification with Somnotate exceeds manual
performance.  The  analysis  in  Figure  3A was  repeated  using  Cohen’s  kappa  as  a  measure  of
performance. Somnotate was trained and tested, in a hold-one-out fashion, on six 24-hour data
sets. Using a consensus annotation based on at least 3 manual annotations, the Cohen’s kappa
score of the automated annotation was compared to the Cohen’s kappa score of individual manual
annotations (n=25 manual annotations from 13 experienced sleep researchers).

Figure 3 – Figure Supplement 3. EEG power spectra by state according to Somnotate (solid
lines) or manual consensus annotations (dotted lines).  Somnotate was trained and tested, in a
hold-one-out fashion, on six 24-hour data sets. Spectrograms were computed for the anterior and
posterior EEG and partitioned according to the predicted state. The process was repeated using the
manual  consensus  annotations.  Solid  lines  indicate  the  median  EEG  power  according  to
Somnotate’s annotation; dotted lines  correspond to the median power according to the manual
consensus annotation.
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Figure  4  –  Figure  Supplement  1. Somnotate’s  performance as  a function of  the  amount  of
training data. Somnotate was trained and tested, in a hold-one-out fashion, using different numbers
of 24-hour data sets. The maximum amount of training data available to us was twenty 24-hour
EEG and EMG recordings under baseline conditions. The line indicates the median. Error bars
demarcate the 5th and 95th percentile.

Figure 6  – Figure  Supplement 1. Selecting a state probability threshold to identify ambiguous
samples. The probability of the predicted state was computed for each sample in six 24-hour data
sets.  As the cumulative distribution of probabilities  exhibits  an elbow at  0.995, this  value was
chosen as a threshold below which samples were classified as ambiguous. 

Figure 6 – Figure Supplement 2. Excluding samples where the classifier is not certain improves
the accuracy of automated annotation. (A) Classifier accuracy was compared between cases when
all time points were included (‘baseline’) and when 5.5% of samples were removed because the
likelihood  of  the  predicted  state  dropped  below  0.995  (‘refined’).  The  plot  indicates  mean  ±
standard deviation  and p-values  are  derived  from a Wilcoxon signed rank  test.  (B)  Confusion
matrices when including all time points (left),  when excluding time points where the automated
annotation was uncertain (middle) and the difference between these (right).

Figure 6 – Figure Supplement 3. Duration of ambiguous intervals around successful and failed
state transitions.  The probability of the predicted state was computed for each sample in six 24-
hour data sets, and ambiguous samples were identified as having a likelihood below 0.995. Each
interval of consecutive ambiguous samples was checked for the presence of state transitions.

Figure 6 – Figure Supplement 4. Frequencies of successful and failed transitions. The analysis in
Figure  6D)  was  repeated  using  a  more  conservative  threshold  to  identify  ambiguous  samples
(P(predicted state) < 0.95). Relative frequencies of successful state transitions (left), failed state
transitions (middle) and the ratio between these (right) are shown. Values indicate mean ± standard
deviation.
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