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Abstract

Cross-frequency synchronization (CFS) has been proposed as a mechanism
for integrating spatially and spectrally distributed information in the brain.
However, investigating CFS in Magneto- and Electroencephalography
(MEG/EEG) is hampered by the presence of spurious neuronal interactions
due to the non-sinusoidal waveshape of brain oscillations. Such waveshape
gives rise to the presence of oscillatory harmonics mimicking genuine neu-
ronal oscillations. Until recently, however, there has been no methodology
for removing these harmonics from neuronal data. In order to address this
long-standing challenge, we introduce a novel method (called HARMOnic
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miNImization - Harmoni) that removes the signal components which can be
harmonics of a non-sinusoidal signal. Harmoni’s working principle is based
on the presence of CFS between harmonic components and the fundamen-
tal component of a non-sinusoidal signal. We extensively tested Harmoni
in realistic EEG simulations. The simulated couplings between the source
signals represented genuine and spurious CFS and within-frequency phase
synchronization. Using diverse evaluation criteria, including ROC analyses,
we showed that the within- and cross-frequency spurious interactions are sup-
pressed significantly, while the genuine activities are not affected. Addition-
ally, we applied Harmoni to real resting-state EEG data revealing intricate
remote connectivity patterns which are usually masked by the spurious con-
nections. Given the ubiquity of non-sinusoidal neuronal oscillations in elec-
trophysiological recordings, Harmoni is expected to facilitate novel insights
into genuine neuronal interactions in various research fields, and can also
serve as a steppingstone towards the development of further signal process-
ing methods aiming at refining within- and cross-frequency synchronization
in electrophysiological recordings.

1. Introduction

The importance of oscillatory neuronal activity has been demonstrated
by its association with cognitive, sensory, and motor processes in the brain
(Buzsáki and Draguhn, 2004; Engel and Fries, 2010; Harris and Gordon, 2015;
Miller et al., 2010; Sadaghiani and Kleinschmidt, 2016). Various oscillatory
processes have to be integrated in order to support formation of behaviorally
relevant outputs based on a multitude of sensory and cognitive factors. This
neuronal integration is facilitated by complex spatial connectivity patterns
in the brain (Bullmore and Sporns, 2009; Nentwich et al., 2020). In this
context, phase-phase synchronization (PPS) has been hypothesized to repre-
sent a mechanism through which such spatially distributed information can
be integrated in the brain with a high temporal precision (Fries, 2015). Im-
portantly, PPS underlies not only spatially, but also spectrally distributed
interactions - so-called cross-frequency synchronization (CFS) (Canolty and
Knight, 2010; Jensen and Colgin, 2007; Nikulin and Brismar, 2006; Palva
et al., 2005; Palva and Palva, 2018a,b). Magneto- and Electroencephalog-
raphy (MEG/EEG) provide a unique opportunity to non-invasively study
these neuronal interactions in humans.
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Since in the frequency domain analysis the kernel function is sinusoidal,
we often conceptualize oscillations as sinusoids. However, neural oscillations
with non-sinusoidal waveshape are abundant in human electrophysiological
recordings Cole and Voytek (2017). Such non-sinusoidality reflects complex
trans-membrane ion currents flowing though highly morphologically asym-
metric neurons (e.g. pyramidal cells) where inward and outward currents
are unlikely to balance each other with the exact temporal dynamics thus
leading to different shape of oscillations recorded with EEG/MEG/LFP (Lo-
cal field potential) (Jones et al., 2009). This ubiquity of the non-sinusoidal
waveform of brain oscillations has significant implications for the analysis of
brain connectivity.

A periodic signal can be decomposed into its harmonic components using
Fourier analysis. For the sake of clarity, we call the first harmonic the funda-
mental component and from here on by harmonics we mean the second and
higher harmonic components whose central frequencies are integer multiples
of the fundamental frequency. By band-pass filtering the signal around the
fundamental and harmonic frequencies, we can separate the respective com-
ponents, which are – by construction – CF synchronized to the fundamental
component (Hyafil, 2017; Scheffer-Teixeira and Tort, 2016). Additionally, if
the band-pass filters of the harmonics frequency are wide enough, a phase-
amplitude coupling (PAC) can be observed between the fundamental and
harmonic components (Giehl et al., 2021; Hyafil, 2017). Note that, as also
discussed in (Kramer et al., 2008), non-sinusoidal signals can be constructed
from the mixture of distinct sources with cross-frequency coupling. However,
in this work, we do not distinguish whether the non-sinusoidality originates
from signal mixing or the intrinsic waveshape of the signal. In the discussion
section, we elaborate on the effect of signal mixing.

In this manuscript, we address the effects of non-sinusoidal shape of the
brain oscillations on the observation of spurious interactions between the os-
cillatory brain activities. In spite of other spurious interactions (e.g. bias
of the data length), the spurious interactions due to the waveshape cannot
be determined by statistical methods. For example, our recently introduced
method for separating cross-frequency coupled sources cannot distinguish
sources with genuine interactions and those which are coupled because of
the higher frequency signal being the harmonic of the lower frequency one
(Idaji et al., 2020) because a harmonic-driven synchronization is not sta-
tistically distinguishable from a genuine coupling. Therefore, distinguishing
harmonic-driven and genuine interactions has currently gained more atten-
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tion and still remains as a major challenge in the MEG/EEG connectivity
research (Giehl et al., 2021; Scheffer-Teixeira and Tort, 2016; Siebenhühner
et al., 2020). The main reason of this challenge is that the connectivity anal-
ysis of MEG/EEG data is typically done using band-pass filtering, which
separates the fundamental and harmonic components of an oscillatory activ-
ity with a non-sinusoidal waveform. As a result, the observed within- and
cross-frequency synchronization between the components in the frequency
bands of the fundamental and harmonic frequencies can be mistakenly inter-
preted as genuine interaction. Figure 1 shows a schematic example where two
non-sinusoidal signals are synchronized. This coupling should be manifested
in the synchronization of the fundamental components, while the harmonic
components shape the waveform of the individual signals. However, the har-
monic components are also spuriously synchronized and additional CFS is
observed between and within the regions. Since these interactions (shown in
dashed lines in figure 1-B) are observed due to the waveform of the individual
signals, they are referred to as spurious, in contrast to genuine interactions.
The omnipresence of these spurious interactions in all human MEG/EEG
recordings makes the validity of the previously studied within- and cross-
frequency connectivity maps ambiguous.

There has been an attempt from Siebenhühner et al. (2020) to discard
the potentially spurious connections from cross-frequency (CF) connectiv-
ity graphs based on the detection of ambiguous motifs in the connectivity
graphs. In that work, any CFS connection forming a triangle motif with
the local CFS and within-frequency inter-areal phase synchronization is con-
sidered as ambiguous and is discarded. However, such an approach cannot
disentangle the within-frequency spurious interactions in the harmonic fre-
quency bands, and is specific to the CF connectivity graphs. Furthermore,
this approach cannot distinguish cases of genuine couplings which form an
ambiguous motif. A more attractive approach, however, would remove or
suppress the data components that can be associated with the harmonics of
the periodic neuronal activity. Such an approach can provide the opportu-
nity of using the cleaned narrow-band data (in the frequency range of the
harmonics) for within-frequency and cross-frequency connectivity analyses.

In the current work, we introduce a novel, first-of-its-kind method for re-
moving effects of harmonics on the estimation of within- and cross-frequency
synchronization. Our method, called HARMonic miNImization (Harmoni),
is (to the best of our knowledge) the first existing signal processing tool for
suppressing higher harmonic components of a periodic signal, without band-
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Figure 1: How non-sinusoidal shape of the neuronal oscillations impacts the connectivity
of brain regions. Panel A shows two non-sinusoidal oscillations with their fundamental
frequency in the alpha band. The second harmonics of these signals are located in the
beta band. As a byproduct of the coupling of the fundamental alpha components (the
solid line in panel B), the second harmonics are also coupled to each other, which results
in spurious interactions within the beta band (the dashed line in panel B) and across the
two frequency bands (dotted lines in panel B).
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stop filtering or rejecting non-sinusoidally shaped signal components using
ICA or any other multi-variate decomposition.

We extensively tested Harmoni with realistic EEG simulations and show
that the spurious interactions are alleviated significantly, while the genuine
activities are not affected. Harmoni is then applied to resting-state EEG
(rsEEG) data and we show that the CFS connections mimicking genuine
interactions are suppressed, while many masked remote interactions are re-
covered.

2. Materials and Methods

2.1. Phase-Phase Synchronization

Phase-Phase Synchronization (PPS) can be defined for within-frequency
as well as for cross-frequency (CF) interactions. In order to define the within-
and cross-frequency synchronization indices, assume two complex narrow-
band signals x(t) = ax(t)e

jφx(t), y(t) = ay(t)e
jφy(t) ∈ C with central frequen-

cies fx and fy, respectively. Here, by narrow-band complex signal we mean
the analytic signal built using the Hilbert transform. Formally, if xH(t) is the
Hilbert transform of a narrow-band real signal xR(t) = ax(t) cos (φx(t)), then
x(t) = xR(t) + jxH(t) is the analytic signal of xR(t). In these formulations
the index R indicates that the signal is real valued and the index H denotes
a Hilbert transformed signal. Note that, another way to get the narrow-band
complex signals from a broad-band signal is complex wavelet transforms.

If fx = fy then x(t) and y(t) are two narrow-band signals in the same
frequency band. Their complex-valued coherence coh(x, y) ∈ C can be com-
puted from the following equation:

coh(x, y) =
< ax(t)ay(t)e

jφx(t)−jφy(t) >√
< ax(t)2 >< ay(t)2 >

(1)

where < . > is the averaging operator over time and j =
√
−1 is the imagi-

nary number.
We use the absolute of the imaginary part of coherence (iCoh) (Nolte

et al., 2004) for estimating the connectivity between two signals in the same
frequency band. This prevents a lot of the within-frequency spurious inter-
actions due to signal mixing and volume conduction in EEG.

If nfx = mfy for m,n ∈ N , the cross-frequency synchronization (CFS,
known as m:n synchronization) of x(t) and y(t) can be quantified by m:n
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absolute coherence cohm:n(x, y) ∈ R defined by the following equation:

cohm:n(x, y) =
| < ax(t)ay(t)e

jnφx(t)−jmφy(t) > |√
< ax(t)2 >< ay(t)2 >

(2)

which is in principle similar to m:n phase locking value as:

plvm:n = | < ejnφx(t)−jmφy(t) > | (3)

with the difference that in equation 2 the amplitudes of the signals are taken
into account and the phase estimations during higher amplitudes are weighted
higher. Giehl et al. (2021) have used a variant of equation 2. Equation 2
reduces to the absolute part of equation 1 for m = n = 1. In this work,
we are specifically interested in the case that m = 1 and n > 1, i.e. when
x(t) is a signal with central frequency fx and y(t) is a faster oscillation with
the central frequency fy = nfx. In this case, coh1:n(x, y) = |coh(xn, y)|,
where xn(t) = ax(t)e

jnφx(t) is built by multiplying the phase of x(t) by n, i.e.
accelerating x(t) by a factor of n.

CFS as defined by equation 2 has a real value between 0 and 1, with 0
corresponding to the lack of any phase synchronization between two com-
pletely independent signals and 1 for two perfectly synchronized time-series
with the same amplitude envelope.

2.2. Genuine vs. spurious interactions

The PPS and CFS indices of equations 1 and 2 have a bias based on
the length of the data time-series, i.e., two band-pass filtered random time-
series also show a value larger than 0. Therefore, a test of significance is
necessary for phase synchronization measures (Scheffer-Teixeira and Tort,
2016) in order to distinguish such spurious interactions when the data length
is not sufficient.

Another type of spurious interactions (which is not statistically discernible
from real interactions) is the interactions due to the waveshape of brain
signals. The reason is that harmonic components of a signal with a non-
sinusoidal shape have CFS to each other. As an illustrative example, figure
2 depicts a sawtooth-shaped signal and its fundamental and 7th harmonic
components. The 7th harmonic of this sawtooth-shaped signal has an almost
perfect 1:7 synchronization to the fundamental frequency (coh1:7 = 0.99).
Additionally, although it is not the focus of this manuscript, it is interesting
to note that when a non-sinusoidally shaped signal (here sawtooth-shaped)
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Figure 2: A simulated sawtooth-shaped signal with the fundamental frequency equal to 6
Hz is depicted in the first row and the fundamental 6 Hz component (i.e. the 1st harmonic)
is shown in the second row. The 7th harmonic component filtered at a frequency window
with width of 2Hz is illustrated in third row. Additionally, the sawtooth signal was filtered
around the 7th harmonic frequency with a window size of 7Hz, depicted in the fourth row.
The magnitude of the fast Fourier transform (FFT) of each signal is depicted at its left side.
The CFS and PAC between the fundamental component and the two components with
central frequency of the 7th harmonic frequency are noted along the right side vertical lines.
The 7th harmonic on the third row shows a strong 1:7 synchronization to the fundamental
component (coh1:7 = 0.99) and no PAC. However, if filtered at a wider frequency band,
the harmonic component shown on the fourth row shows also a PAC with the fundamental
component. Note that the amplitude of the signals and their FFT magnitudes are scaled
arbitrarily for the sake of better illustration.

is filtered in a wider frequency range around the harmonic frequency, PAC
is observed between the harmonic and fundamental frequencies (in addition
to CFS). In this paper, however, our focus is on the n:m synchronizations.

The example of figure 2 shows that by band-pass filtering a single process
one can observe cross-frequency coupling between its different components,
although these components still represent the same complex signal. In the lit-
erature of cross-frequency coupling (Hyafil, 2017; Scheffer-Teixeira and Tort,
2016; Siebenhühner et al., 2020; Giehl et al., 2021), such a coupling between
the components of a single process, or generally an interaction between two
signals where at least one of them is a higher harmonic of a non-sinusoidal
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process is called spurious. This is usually in contrast to genuine interactions
between two signals representing two distinct processes where none of them
is a higher harmonic of a periodic signal. Formally, let x(t) =

∑
i x

(i)(t)
and y(t) =

∑
i y

(i)(t), i ∈ N be two n:m synchronized periodic oscillatory
processes, where x(i) and y(i) are the i-th harmonic components of x(t) and
y(t), respectively. The fundamental components (x(1) and y(1)) and higher
harmonics (x(i) and y(i) for i > 2) of each of these signals can be separated
from each other by band-pass filtering x(t) and y(t). The synchronization of
x and y implies that for any i1, i2 ∈ N , x(i1)(t) and y(i2)(t) are cross-frequency
synchronized. When assessing the synchronization of the narrow-band sig-
nals, we consider only the synchronization of fundamental components x(1)

and y(1) genuine. The synchronization of x(i1)(t) and y(i2)(t) for i1 > 1 or
i2 > 1 is harmonic-driven and is called spurious. Note that this does not
mean that the signal components are not synchronzed and the synchroniza-
tion value is non-zero because of insufficient number of data points or due
to filtering. By spurious interactions due to waveshape it is meant that any
coupling including higher harmonics is in fact mediated by the fundamen-
tal component of the respective non-sinusoidal signal. Figure 1 illustrates
various possible within- and cross-frequency spurious synchronizations due
to waveshape. In the next section we introduce an original signal processing
method for suppressing the harmonic-driven synchronizations in connectivity
analyses using electrophysiological data.

A final important note is that, as discussed in (Kramer et al., 2008), a
non-sinusoidal signal can be constructed from the mixing of distinct sources
with CFS or PAC. This is actually a major concern in electrophysiological
research even outside of connectivity topic. Although we do not account for
this issue in our analyses explicitly, we discuss it in the discussion section,
“Harmoni and signal mixing”.

2.3. HARMOnic miNImization (HARMONI)

Assume that z(t) = s(t) + ε(t), where s(t) is a a periodic signal with
the fundamental frequency of f0. ε(t) is additive noise or any other pro-
cess such as another oscillatory activity mixed with s(t). Harmoni aims at
removing the components of z(t) within a narrow frequency band around
nf0, n ∈ N, n ≥ 2 that have similar phase profile as the fundamental com-
ponent of s(t). For this purpose, we can write z(t) = xR(t) + yR(t) + ξ(t),
where xR(t) = ax(t) cos (φx(t)) and yR(t) = ay(t) cos (φy(t)) are the real-
valued contents (indicated by the index R) from frequency bands f0 and nf0,
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Figure 3: Harmoni is a method that removes
harmonics of a non-sinusoidal signal. The in-
puts are the band-pass filtered signals in the
frequency bands of the fundamental and har-
monic frequencies. In this figure, the signal
is a non-sinusoidal alpha rhythm with fun-
damental and second harmonic frequencies of
10Hz and 20Hz, respectively. The band-pass
filtered signals at 10Hz and 20Hz are used as
inputs to the minimization block, which runs a
regression-like algorithm to find the best mul-
tiplier for removing the harmonic parts of y(t).
This is done by means of subtracting a scaled
version of xn(t) from y(t), where xn(t) is an
accelerated version of x(t) by multiplying its
phase by a factor of n (here n = 2). The
output of Harmoni is a band-limited signal in
the harmonic frequency band (here 20Hz - the
second harmonic) where the harmonic compo-
nent is removed.
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respectively. ξ(t) represents all other components of z(t) except xR(t) and
yR(t). Therefore, xR(t) and yR(t) are estimated using band-pass filtering z(t)
within the respective frequency bands of the fundamental and harmonic fre-
quencies. We define x(t) and y(t) as the analytical signals of xR(t) and yR(t)
built using the Hilbert transform and work with them in the next steps of
Harmoni. Note that x(t) and y(t) can be also generated by applying complex
wavelet transforms to z(t).

The fundamental component of a non-sinusoidal signal has 1:n synchro-
nization to its n-th harmonic component. Therefore, the phase information
of the harmonic components can be recovered from the phase of the funda-
mental component. Using x(t), Harmoni tries to remove the parts of y(t) that
are 1:n coupled to x(t), or equivalently 1:1 coupled to xn(t) = ax(t)e

jnφx(t).
As mentioned above, the part of y(t) which is a harmonic of a component

in x(t) should be phase synchronized to xn(t). Therefore, we estimate the
harmonic part of y by λxn(t), λ ∈ C. ycorr(t) = y(t) − λxn(t) contains the
non-harmonic components of y(t), where ycorr(t) has a minimum possible
within-frequency synchronization to xn(t). The complex multiplier λ = cejφ

is estimated through the following optimization problem:

min
c,φ
|coh

(
y(t)− λxn(t), xn(t)

)
| for λ = cejφ

Here, the phase of λ compensates the possible phase difference between the
harmonic and fundamental components. Figure 3 shows a schematic block
diagram of Harmoni. Practically, we perform a grid-search procedure for
computing λ = cejφ, which is presented in algorithm 1. In practice, in a
connectivity pipeline, the activity of each brain site - that can be a region-
of-interest (ROI) or an electrode - is band-pass filtered within the two bands
of interest, namely f0 and nf0. Then Harmoni is applied on the data of each
sensor or ROI. In the next section, it will be described in detail how Harmoni
can be used in a connectivity analysis pipeline with electrophysiological data.

2.4. Connectivity pipeline in source space

Figure 4 shows a block-diagram of a connectivity pipeline, also imple-
menting Harmoni. The first step is to band-pass filter the multi-channel
data within the frequency bands of interest f0 and nf0. For instance, if we
are interested in alpha and beta band, f0 = 10 and n = 2. Below, we will
elaborate upon the next steps.
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2.4.1. Forward and inverse solutions

We used fsaverage standard head model and the three-layer boundary
element model (BEM) accompanied with MNE Python (Gramfort et al.,
2013, 2014). 64 electrodes (or a subset of it) with positions according to
the BioSemi cap were used and aligned to the MRI coordinates. MNE-
Python was used to create a dipole grid on white matter surface with oct6
spacing between the grid points, resulting in 4098 sources per hemisphere.
The surface-based source space and the BEM solutions were then used for
computing a forward solution. An inverse solution with dipole directions nor-
mal to the cortical surface was computed with eLORETA inverse modelling
(Pascual-Marqui, 2007) with the regularization parameter equal to 0.05, and
the noise covariance equal to the covariance of 64 white-Gaussian signals with
equal duration to the data, which is an estimation of the identity matrix.

2.4.2. From sensor space to ROIs

The band-pass filtered multi-channel EEG data were projected to the
cortical surface using the computed inverse solution, resulting in ∼8000 re-
constructed surface sources. These sources were then grouped based on an
atlas into regions of interest (ROIs). We used the Desikan Killiany atlas with
68 ROIs (Desikan et al., 2006) for simulations and Schaefer atlas with 100
ROIs (Schaefer et al., 2018) for real data analysis. Singular value decom-
position (SVD) was then applied to the band-pass filtered time-series of the
sources of each ROI and a single time-series was computed per ROI. As a
result, the ∼8000 reconstructed cortical sources were translated to nROI ROI
times-series in each frequency band (here: nROI=number of ROIs in the used
atlas), which are ready for connectivity computations.

2.4.3. Harmoni

Although the ROI time series can be directly used for computing the
connectivity maps, we suggest to use Harmoni as an intermediate step in a
connectivity pipeline. Harmoni is applied on the signals of each ROI in the
two frequency bands of interest centered at f0 and nf0, which correspond
to the fundamental and the n-th harmonic frequencies. The output of the
algorithm is a signal in the frequency band of nf0 for which the harmonic
components are suppressed to a large extent. The ROI time series at f0 and
the Harmoni-corrected signals at nf0 are then passed to the next step for
computing the within- and cross-frequency synchronization maps.
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Figure 4: The block-diagram of Harmoni pipeline in source space. The multi-channel
signal is first band-pass filtered in the range of the fundamental frequency (f0) and the
harmonic frequency of interest (nf0). The narrow-band signals are mapped to the cortical
surface using the inverse solution and the ROI time series are extracted. The ROI signals
in the range of harmonic-frequency are then corrected with Harmoni and the potential
harmonic components are removed. Finally, the ROI-ROI within- and cross-frequency
connectivity maps are computed. In this paper, without loss of generality and due to the
better SNRs, we set f0 = 10 and n = 2.

2.4.4. From ROIs’ time-series to connectivity maps

For both of the simulations and real data, after computing the ROI time
series and applying Harmoni on them, we computed a connectivity index
for each pair of the ROIs, resulting in an nROI × nROI graph. For within-
frequency connectivity (here in alpha and beta bands), we used the absolute
of imaginary part of coherence (iCoh) computed from the imaginary part of
equation 1 and for the cross-frequency synchronization we used the extension
of coherence for n:m coupling as in equation 2.

2.5. Simulations

2.5.1. Signals and SNR

The pipeline for producing signals and the definition of signal-to-noise
ratio (SNR) are similar to that of (Idaji et al., 2020). In this section we de-
scribe the procedure of simulating the signals and how SNR is defined in our
simulation pipelines. Note that in all places, band-pass filtering was carried
out using fourth-ordered Butterworth filters designed for the frequency band
of interest. The filtering was applied forward and backward in order to avoid
phase shift in data.

Additive noise: The time-series of the noise sources were produced with
the colornoise package (Patzelt, 2019) in Python by building a random signal
with a 1/f (pink) spectrum from a random white Gaussian noise.
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Sinusoidal oscillations: Without loss of generality, in our simulations,
all of the time-series of the sinusoidal oscillatory sources were simulated in
alpha (8-12 Hz) and beta (16-24 Hz) frequency bands.

Independent sources (those without a synchronization to other source
signals) were generated by band-pass filtering white Gaussian noise in the
frequency band of interest. The analytic signals of these oscillations were
built using the Hilbert transform of them. For instance, if xR(t) is an alpha
oscillation produced by band-pass filtering white Gaussian noise within (8-
12) Hz and xH(t) is the Hilbert transform of xR(t), x(t) = xR(t) + jxH(t) is
the analytic signal of xR(t).

A source signal y(t) with 1:n synchronization to an oscillation x(t) was
simulated by phase-warping of x(t), i.e.:

x(t) = ax(t)e
jφx(t)

y(t) = ay(t)e
jnφx(t)+jφ0

(4)

where x(t) ∈ C is the analytic signal of an oscillation generated by band-pass
filtering white Gaussian noise around f0, y(t) ∈ C is the analytic signal of
an oscillation within a frequency band around nf0 and 1:n synchronized to
x(t), and φ0 is the phase difference of the two signals taken randomly from
a uniform distribution between [−π/2, π/2]. ay(t) is either equal to ax(t)
or equal to the envelope of another band-pass filtered white-Gaussian signal
in the same frequency band as y(t). For instance, if x(t) is an alpha band
oscillation and n = 2, y(t) is a beta band oscillation and 1:2 synchronized to
x(t). If ax(t) = ay(t), the 1:n synchronization of these two signals computed
from equation 2 is equal to 1. Note that in the case of ax(t) 6= ay(t), the
interaction of x and y is for sure genuine. Therefore, for the simulation of
two genuinely (cross-frequency) synchronized sources, we used ax(t) 6= ay(t).

The power of each oscillation is scaled based on the signal-to-noise (SNR)
ratio of the frequency band of interest (see below).

Non-sinusoidal oscillations: A non-sinusoidal signal s(t) =
∑

n s
(n)(t),

n ∈ N with the fundamental frequency of f0 was generated by adding up
its fundamental component (or the first harmonic) s(1)(t) and the higher
harmonics components s(n)(t), n ≥ 2. In the following equations, s(1)(t) is an
oscillation at f0 produced by band-pass filtering a white Gaussian noise signal
and s(n)(t), n ≥ 2 is a 1:n synchronized oscillation produced by equation 4 to
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be 1:n synchronized to s(1).

s(t) =
∑
n

s(n)(t), n ∈ N

s(1)(t) = Re
(
a1(t)e

jφ(t)
)

s(n)(t) ∝ Re
(
a1(t)e

jnφ(t)+jφn , n ≥ 2
) (5)

where φn, n ≥ 2 are random numbers taken from a uniform distribution
between [−π/2, π/2].

Given a fundamental frequency of f0, let s1(t) =
∑

n s
(n)
1 (t) be a simulated

non-sinusoidal oscillation based on equation 5 and s
(1)
1 (t) = a1(t) cos

(
φ(t)

)
.

The following equations show how another non-sinusoidal signal s2(t) is sim-
ulated to be synchronized to s1(t):

s2(t) =
∑
n

s
(n)
2 (t), n ∈ N

s
(1)
2 (t) = Re

(
a2(t)e

jφ(t)+jψ1
)

s
(n)
2 (t) ∝ Re

(
a2(t)e

jnφ(t)+jψn
)
, n ≥ 2

(6)

where ψn, n ∈ N are random numbers taken from a uniform distribution
between [−π/2, π/2]. In equation 6, s

(1)
2 is an oscillation with 1:1 synchro-

nization to s
(1)
1

Note that the second harmonic is the strongest harmonic which is gen-
erally visible in real electrophysiological data. Therefore, without loss of
generality, we only examine the removal of the second harmonic. There-
fore, we simulated only the fundamental and the second harmonic. That
is, in our simulations, the non-sinusoidal source signals are simulated as
s(t) = s(1)(t) + s(2)(t) where s(1)(t) is an alpha oscillations and s(2)(t) is
the second harmonic in beta frequency band. After that, the amplitude of
s(1)(t) and s(2)(t) were re-scaled so that the SNR at each of alpha and beta
frequency bands for these signals are set to the desired value (see below).
Finally, s(1)(t) and s(2)(t) are added up together to generate s(t).

SNR: In realistic simulations, The SNR was defined as the ratio of the
mean power of the source signal in the sensor space divided by the mean
power of all pink noise sources in sensor space, filtered in the frequency band
of interest. In our realistic simulations, the SNR of alpha and beta bands
were set to 0dB and −10dB respectively.
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For the toy examples, the SNR of a narrow-band source was defined as
the ratio of its power to the power of the pink noise, filtered in the frequency
band of interest. The SNR values at alpha and beta band were set to 5 dB
and −5 dB respectively.

2.5.2. Toy Examples

We used toy examples for initial assessment of the effect of Harmoni
on the interactions between two signals with non-sinusoidal components. We
used four scenarios for these toy examples, where the ground truth about the
existing genuine and spurious interactions between the simulated signals were
pre-defined. The left side of figure 5 depicts these scenarios schematically.

In each of the four scenarios, two signals zk(t), k = 1, 2 were simulated.
On the schemes of figure 5, z1(t) and z2(t) are depicted as shaded areas
in each scenario. In the rest of this section, the index k = 1, 2 refers to
these two signals. z1(t) and z2(t) were multi-band signals with components
in alpha and beta bands. In each scenario, specific ground truth genuine
interactions were simulated between the two signals, which produced known
spurious interactions, too. Harmoni was applied on each of the signals in
order to remove the beta-component which could be the harmonic component
of the alpha band component of the signal. The interactions between the two
signals were estimated using absolute within- and cross-frequency coherence
before and after Harmoni. We expected that Harmoni suppresses the spurious
interactions, but does not touch the genuine interactions. For each scenario,
50 runs with random seeds were carried out.

In all scenarios, the two signals z1(t) and z2(t) contained an alpha os-
cillation with non-sinusoidal waveshape. sk(t) = αk(t) + βk(t) is the non-
sinusoidal component of zk(t), where αk(t) represents the fundamental com-
ponent and βk its second harmonic, which is phase-synchronized to αk(t).

Below, the composition of z1 and z2 in all the four scenarios and their
genuine and spurious interactions are listed. Note that ξk(t) is the additive
1/f (pink) noise component of zk(t).

Scenario 1 (figure 5-A): zk(t) = sk(t) + ξk(t), k = 1, 2. The signal s1
was simulated using equation 5 and s2 was simulated to be synchronized to
s1 using equation 6. Therefore, a genuine interaction in alpha band between
the two signals was simulated. Additionally, a spurious interaction in beta
band, as well as spurious cross-frequency interactions between the two signals
were observed in the ground truth. Figure 15 shows exemplar signals of this
scenario.
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Figure 5: Simulation scenarios. Toy examples: Two signals z1 and z2 were simulated
for each scenario, where various genuine and spurious synchronizations are present in
the ground truth. The solid lines show the simulated, genuine synchronizations, and the
dashed lines depict the spurious interactions observed in the ground-truth. Harmoni was
applied on each of the signals and the within- and cross-frequency synchronization for alpha
and beta bands were examined before and after Harmoni. In all scenarios, zk contained a
non-sinusoidally shaped component sk = αk + βk, where αk and βk are the fundamental
and second harmonic components of sk respectively. β̆k, k = 1, 2 in scenarios 2 to 4 are
beta oscillations independent of sk, k = 1, 2 Realistic simulations: In the first row, each
dot shows a source and the connecting lines represent the synchronization of the source
signals. The sources with purple color and the letter N correspond to sources with non-
sinusoidal alpha oscillations having components in both alpha and beta frequency bands.
The blue color and letter B corresponds to sinusoidal beta band sources, and the red color
and letter A represent sinusoidal alpha frequency range sources. In the schematic brains
of rows 2 to 4, the ground truth alpha, beta, and CFS networks are depicted. While solid
lines depict genuine interactions, dashed lines show spurious interactions caused by non-
sinusoidal waveshape of the signals. In both of the toy examples and realistic simulations,
the main purpose of Harmoni is to suppress the spurious (dashed-line) connections, while
not affecting the genuine (solid-line) interactions.
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Scenario 2 (figure 5-B): zk(t) = sk(t) + β̆k(t) + ξk(t), k = 1, 2. s1 and
s2 were simulated as synchronized non-sinusoidal signals using equations 5
and 6 (similar to scenario 1). Each signal zk had an extra beta component
β̆k. β̆1 and β̆2 were simulated as narrow-band beta band oscillations and
synchronized to each other (with equation 4) but independent of sk, k = 1, 2.
In addition to the genuine integration between the z1 and z2 in beta band due
to the synchronization of β̆1 and β̆2, similar genuine and spurious interactions
as in scenario 1 were present in the ground truth. In figure 15 15 an example
of signals of this scenario is depicted (at the end of the manuscript).

Scenario 3 (figure 5-C): zk(t) = sk(t) + β̆k(t) + ξk(t), k = 1, 2. s1 and
s2 were two independent non-sinusoidal oscillations (using equation 5) with
their fundamental and second harmonic components in alpha and beta band
respectively. β̆1 and β̆2 were two synchronized narrow-band beta oscillations
(using equation 4), which were independent of s1 and s2. As a result, no
CFS existed between z1 and z2 in the ground truth and the only genuine
interaction was a synchronization within beta band.

Scenario 4 (figure 5-D): zk(t) = sk(t) + β̆k(t) + ξk(t), k = 1, 2. s1 and
s2 were two non-sinusoidal alpha oscillations simulated independently using
equation 5, and β̆2 was a narrow-band beta oscillation 1:2 synchronized to
s1, i.e. β̆2 was simulated to have 1:2 CFS to the alpha component of s1 (α1)
using equation 4. Therefore, in addition to the genuine CFS between z1 and
z2, a spurious synchronization within beta band between z1 and z2 existed
in the ground truth (i.e. between β̆2 and β1). β̆1 was a narrow-band beta
oscillations independent of s1, s2, and β̆2.

Note that since there is no mixing between z1 and z2 in these simulations,
the absolute coherence was used for quantifying both the within- and cross-
frequency synchronizations.

2.5.3. Realistic simulations

Source positions. The oscillatory sources were located at the center of ran-
domly selected ROIs. Additionally, the position of 50 pink noise sources
were selected randomly from the ∼8000 nodes of the source space grid. The
Desikan Killiany (DK) atlas was used.

Scalp EEG generation.. In order to generate the realistic multi-channel EEG
signal, oscillatory and noise signals in source space were mapped to the sensor
space using the forward solution with 64 electrodes according to BioSemi
EEG cap layout. 200 datasets were simulated by using random seeds.
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Realistic simulation scenarios. The two scenarios depicted on the right side
of figure 5 were used for simulating realistic EEG data.

In scenario one, a pair of interacting non-sinusoidal source signals were
simulated using equations 5 and 6 with their fundamental frequency in alpha
band. Additionally, a pair of coupled sources in the beta band were generated
using equation 4 and n = 1. A pair of synchronized sinusoidal sources in
alpha band were simulated as well, by using equation 4 and n = 1.

In scenario 2, a pair of genuinely cross-frequency synchronized sources
were simulated using equation 4 with n = 2. In addition, a pair of synchro-
nized non-sinusoidal source signals were generated using equations 5 and 6.

Connectivity. The connectivity pipeline explained in detail above (also fig-
ure 4) was then applied to the simulated EEG data. As depicted in figure
5, each of these two scenarios include genuine and spurious interactions in
their ground-truth. By using Harmoni, we expect to suppress the spurious
interactions.

Evaluation criterion: ROC curve. Since the computed connectivity maps are
not binary values (while the ground truth connectivity is binary), we evaluate
the matching of computed connectivity maps and the ground truth using the
area under curve (AUC) of the receiver operating characteristic (ROC) curve
of the computed connectivity matrix. Figure 6 shows how true positive and
false positive values are computed. After thresholding the test graph (T )
with threshold level 0 ≤ p ≤ 1 (resulting in Tp), The true positive ratio
(TPR) and false positive ratio (FPR) corresponding to this threshold value

are computed as TPR(p) =
Σi,jGijTp,ij
Σi,jGijTij

and FPR(p) =
Σi,j∼GijTp,ij
Σi,j∼GijTij

, where

the subscripts ij indicates the (i, j)-th element of the adjacency matrix and
G is the ground-truth connectivity matrix. ∼G is the the 1’s complement of
G (i.e., all zeros are converted to 1 and vice-versa).

Using the TPR and FPR values for all the threshold level, an ROC curve
is built. The AUC of this curve reflects how well the computed connectivity
map matches the ground truth adjacency matrix of the graph corresponding
to the simulated connectivity.

The AUC of the ROC curve (AUC-of-ROC) was computed for each simu-
lation run before and after Harmoni and compared. We expected an increase
of AUC-of-ROC after Harmoni.

Additionally, for graphs where no true positives were expected (for exam-
ple the CFS network of scenario 1 or beta-band network of scenario 2) the
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Figure 6: AUC of an ROC curve as an evaluation criterion for assessing the matching of
computed connectivity graphs and the ground truth ones. Panel A shows an exemplar
ROC curve. In panel b, the procedure of computing the true positive (TP) and false
positive (FP) values corresponding to threshold level 0 ≤ p ≤ 1 is depicted. The true
positive ratio (TPR) and false positive ratio (FPR) corresponding to each threshold level

p is computed by TPR(p) =
Σi,jGijTp,ij
Σi,jGijTij

and FPR(p) =
Σi,j∼GijTp,ij
Σi,j∼GijTij

. The ij index

indicates the (i, j)-th element of the indexed matrix.

FPR curve was built as a curve of FPR vs. threshold. The AUC of this curve
(AUC-of-FPR) is a proxy of the amount of false positives. We expected a
drop of AUC-of-FPR after Harmoni.

2.6. Resting-state EEG

2.6.1. Data description

The resting-state EEG data from 81 subjects (20-35 years old, male,
right-handed) of an open-access database (LEMON) were used (Babayan
et al., 2019). The LEMON study was carried out in accordance with the
Declaration of Helsinki and the study protocol was approved by the ethics
committee at the medical faculty of the University of Leipzig. The data
of each subject included 16 min resting-state recording with interleaved, 1-
min blocks of eyes-closed and eyes-open conditions. For this manuscript, we
used the data of the eyes-closed condition. The recordings were done with
a band-pass filter between 0.015 Hz and 1 kHz and a sampling rate of 2500
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Hz.
For our analysis, we used the publicly available preprocessed data in the

database. The sampling rate was reduced to 250 Hz and the down-sampled
data were filtered within [1, 45] Hz with a fourth order Butterworth filter,
applied forward and backward. Then the data segments of eyes-open and
eyes-closed conditions were separated. Bad segments were removed manually
and ICA artifact rejection was employed to remove the noise components
relating to eye, heart, and muscle activity. Babayan et al. (2019) provide
detailed information about the data recording and preprocessing steps.

2.6.2. Connectivity

The pipeline in figure 4 was used, as simular to the simulated data connec-
tivity. Fourth-order Butterworth filters (applied forward-backward to avoid
phase shift) were used for filtering data in alpha band (8-12 Hz) and beta
band (16-24 Hz). Similar to the connectivity pipeline described in detail
above (also figure 4), the band-pass filtered data were then projected onto
cortical source space using the inverse solution computed from fsaverage stan-
dard head, with 4098 vertices per hemisphere. Afterwards, a single time se-
ries was extracted (using SVD) for each ROI from the cortical sources within
that ROI. The Schaefer atlas (Schaefer et al., 2018) with 100 ROI and 7 Yeo
resting-state networks (Yeo et al., 2011) was used.

For each subject, the ROI-ROI connectivity for alpha-beta CFS was com-
puted before and after Harmoni, resulting in 100×100 connectivity adjacency
matrices. In order to make the connectivity graphs comparable before and
after Harmoni at the group level, the adjacency matrix of each subject was
z-scored before and after Harmoni. The z-scored matrices of the networks
before Harmoni were subtracted from the ones after Harmoni. Two-sided
paired t-tests was used for each connection to specify the links which were
changing significantly on group level. The Bonferroni method was used to
correct for multiple comparisons, i.e. the p-values were multiplied by 1002

and then the links with corrected pvalues > 0.05 were considered as signifi-
cant.

Asymmetry-index of CFS networks. In order to quantify the extent to which
the CFS adjacency matrices are asymmetric, we used the norm of the anti-
symmetric part of the adjacency matrix. For a given matrix A, the antisym-
metric part is defined as Aanti = 1

2
(A − AT). We define

√
2||Aanti||/||A||

as an asymmetry-index. It can be shown that this index is between zero and
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one, with zero value corresponding to a symmetric matrix and a value of one
for an antisymmetric matrix.

2.7. Depiction of CFS connectivity

We used a bipartite graph for the depiction of CFS networks. The CFS
networks have an asymmetric adjacency matrix and therefore, should be
depicted as directed graphs. We actually used a bipartite graph as a way of
illustrating a directed graph in a more comprehensive way.

A bipartite graph is a graph which has two sets of nodes and an edge
can only connect the vertices from different sets (i.e. alpha and beta sets
in our analysis) to each other. In our case of CFS networks, each node
is a representative of a brain region and each set of nodes relates to the
activity of the brain regions in one of the frequency bands. Figure 7 shows
an illustrative example of such depiction for alpha-beta CFS. The upper and
lower node-sets represent the alpha and beta band activity of the ROIs of
interest, respectively. A link between node 1 from the upper set (alpha nodes)
with node 3 of the lower set (beta nodes) shows a CFS coupling between ROI
1 and 3. This connection would be the element (1,3) of the adjacency matrix
of the network. In a directed graph this edge would be an out-going edge for
node 1 and an in-coming edge for node 3.

In our illustration of the graph, each node can have a color, which shows
its centrality value. In this work, we did not use this feature and the node
colors are the label colors provided with the parcellation. For real data these
colors code the ROI’s Yeo resting-state network. Each edge is also color-
coded with the strength of the coupling that it represents. It can be the
absolute or relative strength of coupling.

2.8. Statistical Analysis

Two-sided paired t-tests were used for testing the difference of the mean
value of two paired samples. Specifically, the changes of the evaluation pa-
rameters in simulations (the AUC values) as well as real data (the change
in the connectivity values and the asymmetry-index) were tested before and
after Harmoni.

For testing the significance of the correlation of the initial value of a
parameter (before Harmoni) and its percentage change after Harmoni, we
used the correction method introduced in (Tu, 2016). Assume x is the base-
line value of a parameter of interest before Harmoni and y is its value after
Harmoni. The percentage change of this parameter is defined as (y − x)/x,
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Figure 7: Depicting CFS network as a
bipartite graph. The nodes stand for
brain regions. While the upper set of
nodes represents the alpha activity in
the brain regions, the lower nodes are
for the beta activity in those regions.
When node 1 from alpha nodes (upper
nodes) is connected to node 3 of beta
nodes (lower nodes) it means that the
alpha activity in region 1 is coupled to
beta activity in node 3. The links are
color-coded based on the strength of the
coupling. Additionally, each node in
each frequency band can have a color
which represents its centrality in that
frequency band.

which is mathematically coupled to x. Therefore, it would not be valid to
use the conventional statistical testing between the initial value and the per-
centage change and compare the observed correlation to zero. Tu (2016)
suggests that the appropriate null value for the hypothesis test should be

r0 = −
√

1−rxy
2

rather than zero, where rxy is the Pearson correlation of x

and y. In this approach, the hypothesis test is H0 : rx,y/x+
√

1−rxy
2

= 0 versus

H1 : rx,y/x +
√

1−rxy
2
6= 0. Finally, the expression for the z-test is suggested

to be z =
(
zr(r)−zr(ρ)

)
/
√

1/(n− 3), where zr(r) = 0.5ln((1+ r)/(1− r)) is
the Fischer’s z transformation, r is the observed correlation coefficient, and
ρ is the correlation coefficient to be tested against.

3. Results

3.1. Simulations

Toy Examples. As the very first step, we used simplified simulations (toy
signals) to show that Harmoni is an effective algorithm for suppressing spu-
rious CFS and within-frequency interactions due to the non-sinusoidal shape
of the signals. In these simple simulations, where there are no complications
regarding source mixing or limitations of source reconstruction, the ground
truth about the interactions between the two simulated signals is known. In
fact, we were interested to validate two important properties of Harmoni: (1)
It suppresses the spurious interactions significantly, and (2) it does not affect
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genuine interactions. In addition, these initial simulations serve as a demon-
stration for the main spurious interactions present due to non-sinusoidality.

In each of the four scenarios, two noisy multi-band signals zk(t), k = 1, 2
were simulated with components in alpha and beta band. Different genuine
interactions were simulated between the two signals, resulting in spurious
interactions as well. Harmoni was applied to each of the two signals to
remove beta components associated with being a harmonic of alpha band
components, i.e. showing CFS with the alpha oscillation. The within- and
cross-frequency interactions were then estimated using absolute coherence to
investigate how they changed after using Harmoni and how these changes
were related to the ground truth. Each scenario was simulated 50 times
with random seeds. Figure 8 depicts the boxplots of the strength of possible
within- and cross-frequency interactions between and within the two signals,
before and after Harmoni. The interactions in the schematic of each scenario
have the same color-code as their respective boxplots. The change of the
synchronization strength after Harmoni (in comparison to before Harmoni)
was tested with a two-sided paired t-test for each possible interaction, and
then corrected by the Bonferroni method.

In scenario one (figure 8-A), the two signals were synchronized non-
sinusoidal waves with their fundamental frequency in alpha band (i.e., zi(t) ≈
sk(t) + ξk(t) with sk(t) = αk(t) + βk(t) being the non-sinusoidal component
of zk(t). s1 and s2 were simulated to be synchronzied, i.e. α1 ↔ α2, where↔
shows the synchronization). The CFS interaction between the two signals as
well as the interaction in beta band are by construction spurious. As shown
in figure 8-A, the within- and cross-frequency spurious coherence between
and within the two signals are successfully suppressed after Harmoni.

In scenario two (figure 8-B), each of the two signals contained another
beta component which was independent of the non-sinusoidal components,
but these components from z1 and z2 were simulated to be synchronized to
each other (i.e., zk(t) ≈ sk(t) + β̆k(t), sk(t) = αk(t) + βk(t), with α1 ↔ α2,
β̆1 ↔ β̆2). In this scenario, the CFS interaction is by construction spurious,
too. However, a part of the interaction between the two signals within the
beta band is genuine because of the interaction between β̆1 and β̆2. The
results in figure 8-B show that the CFS interactions are suppressed, and the
coherence between the beta components of the two signals does not have
any significant change, showing that the genuine beta synchronization is still
present..

Scenario three (figure 8-C) was similar to scenario two with the difference
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that the non-sinusoidal oscillations from the two signals were not synchro-
nized (i.e., zk(t) ≈ sk(t) + β̆k(t), sk(t) = αk(t) + βk(t), with β̆1 ↔ β̆2).
Therefore, no CFS between the two signals is observed. The boxplots in
figure 8-C show that the CFS within each signal is suppressed as expected
from the proper functioning of Harmoni, while CFS between the two signals
does not change, remaining at a negligible level. Importantly, the genuine
synchronization in beta-band does not change after Harmoni.

In scenario four (figure 8-D) zk(t) ≈ sk(t) + β̆k(t), sk(t) = αk(t) +βk(t) as
well. The ground truth interactions were set to α1 ↔ β̆2. This setting results
in genuine CFS between the two signals. Figure 8-D shows that Harmoni
is robust: the genuine inter-signal CFS does not change, while the present
CFS within each signal as well as the spurious beta-band interaction drop
significantly. Additionally, the other CFS between the two signals which was
missing by construction, does not change and remains at a low value.

All in all the results of the above scenarios show that the spurious inter-
actions are suppressed by Harmoni, while the genuine interactions are not
changed.

Realistic EEG simulations. For the further evaluation of Harmoni, we de-
veloped an EEG simulation pipeline for generating realistic scalp EEG sig-
nals (details in the method section). The simulated EEG data consisted of
narrow-band sinusoidal source signals at alpha (8-12 Hz) and beta (16-24 Hz)
bands, as well as non-sinusoidal signals with fundamental frequency at alpha
band. The dipole positions were randomly selected from the center of 68 re-
gions of interest (ROIs) of Desikan Killiany atlas (Desikan et al., 2006). 1/f
(pink) noise data were also added to the generated source signals of interest.
All the source signals were forward modelled to generate realistic EEG. Two
scenarios (shown in figure 5) were used for generating the simulated EEG
signals. Both of the scenarios included coupled non-sinusoidal alpha sources.
In scenario one there were also within-frequency coupled narrow-band sinu-
soidal alpha and beta sources. In scenario two, in addition to the pair of
coupled non-sinusoidal sources, a genuine, remote cross-frequency coupled
pair of sinusoidal sources was simulated as well. As shown in figure 5, these
two scenarios have differential within- and cross-frequency network profiles.

We used the connectivity pipeline of figure 4 to compute the within-
frequency synchronization in beta band and the alpha-beta cross-frequency
synchronization maps.

As an illustrative example (figure 9) and a proof of principle, we first show
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Figure 8: Performance of Harmoni on toy examples in 50 runs with random start seeds.
The left -side schemes are the simulation scenarios shown in figure 5. For all scenarios the
strength of each possible interaction is shown before and after Harmoni in the boxplots
in the same panel as the scenario scheme. The purple and blue color are associated with
the within-signal CFS, the two green colors are related to the inter-signal CFS values,
and finally the orange color is dedicated for the beta band synchronization among the
two signals. In all scenarios, two signals are simulated and each of them contains a non-
sinusoidal wave sk(t) = αk(t) + βk(t), k = 1, 2 with their fundamental component αk in
alpha band and their second harmonic βk in beta band. Scenario one: The boxplots show
that all of the within-signal CFS and the spurious interactions are suppressed significantly.
Scenario two: Only the beta-synchronization between the two signals does not change
significantly after Harmoni and stays at a large value due to the genuine synchronization
of β̆k, k = 1, 2. Scenario three: The CFS within each signal is suppressed significantly,
the CFS values between the two signals do not change and have small values in general,
and importantly the beta-synchronization between the two signals stays almost the same
at a high value. Scenario four: a genuine CFS (light green) between the two signals is
simulated, which is not affected after Harmoni, while the spurious within-beta interactions
and the within-signal CFS are suppressed.
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an example of scenario two. Two synchronized non-sinusoidal alpha source
signals were simulated with their corresponding sources in caudal middle-
frontal and inferior-parietal regions of right and left hemispheres, respectively.
In addition, two sinusoidal alpha and beta source signals, with CFS, were
simulated in the caudal middle-frontal and inferior-parietal regions of the left
and right hemispheres, respectively. The ground truth networks are shown in
figure 9-A. Afterwards, the source signals, along with random noise sources,
were projected to the sensor space and then the above-mentioned source space
pipeline was performed. Panel B of figure 9 depicts the top 1% connections
of the connectivity networks in alpha band as well as beta band and CFS
networks before and after Harmoni. The spurious beta and CFS connections
are suppressed.

Our main evaluation criterion for the realistic simulations was the area
under curve (AUC) of the receiver operating characteristic (ROC) curve and
the false positive ratio (FPR) curve. These curves were built by comparing
the adjacency matrix of the connectivity graphs before and after Harmoni
to their counterpart ground truth connectivity matrices. The ROC curve
was computed for the beta network in scenario one and the CFS network
in scenario two. The higher the AUC of ROC curve (AUC-of-ROC), the
more similar the connectivity matrix to the ground truth one. Figure 10
shows the results of evaluating the two scenarios of the simulation in 200
Monte Carlo simulations with random dipole positions. The increase of the
AUC-of-ROC in the left sides of panels A and B demonstrates a success
of Harmoni in both of the scenarios in correcting the connectivity maps in
the way that they are more similar to the ground truth. Consequently the
ratio of the true positive ratio (TPR) and FPR increases after Harmoni,
reflecting the suppression of spurious interactions (false positives) and not
affecting/increasing the genuine interactions (true positives). Moreover, the
percentage change of the AUC-of-ROC values decreases with the increase of
the initial value of AUC-of-ROC. That is, the closer the initial connectivity
map to the ground truth, the less correction Harmoni applies. In other
words, if a network shows a lot of spurious interactions, then it is corrected
by Harmoni more strongly (see statistical analysis section in Methods for
quantifying this dependency in a statistically stringent manner). In addition,
at the left sides of both the panels of figure 10 the AUC of the FPR curves
(AUC-of-FPR) of the CF networks in scenario one, and the beta networks in
scenario two (where all the present interactions are spurious) decrease after
Harmoni (the second columns in figure 10-A and B), showing the suppression
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Figure 9: An illustrative realistic simulation example, showing the effect of Harmoni in
suppressing the spurious interactions due to harmonics. Panel A depicts the ground truth,
where synchronized non-sinusoidal alpha sources were simulated in right caudal middle-
frontal and left inferior-parietal regions (red connecting line) and two cross-frequency
synchronized narrow-band alpha and beta sources were simulated in the left caudal middle-
frontal and right inferior-parietal regions (purple connection). The circular and bipartite
graphs depict the ground truth alpha and CFS networks. A bipartite graph allows to see
how different nodes from two networks, represented by horizontal bars, connect to each
other allowing non-symmetric connections - without using a directed graph. In the CFS
network, the dashed-lines represent the spurious interactions due the connectivity between
two non-sinusoidal signals, while the solid line represents the genuine interaction. Panel
B shows the top 1% connections of the within-frequency and cross-frequency networks
computed before and after Harmoni. The spurious beta connections and the spurious CFS
connections are suppressed. The glass brains were plotted with Brain Network viewer (Xia
et al., 2013) in MATLAB. The circular plots were generated with MNE Python (Gramfort
et al., 2013, 2014)
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of the spurious interactions. The absolute value of the percentage change of
the AUC-of-FPR in these cases increases with the increase of the initial value.
This means that the more false positive links are present in the connectivity
maps, the more pronounced is the impact of Harmoni on the networks.

3.2. Harmoni on resting-state EEG data

Alpha oscillations recorded with resting-state EEG (rsEEG) are known
to have a non-sinusoidal waveshape in many brain areas. For example, the µ
rhythm in the somatomotor areas or visual alpha are well-known examples
of non-sinusoidal oscillations. This non-sinusoidal waveform is manifested
in the power spectral density (PSD) having a large peak at alpha and a
smaller peak at beta frequency band, together with 1:2 CFS between alpha
and beta bands. As an example from real data, figure 11 shows a segment
of a non-sinusoidal source signal extracted from the recordings of a subject’s
eyes-closed rsEEG from the LEMON dataset (Babayan et al., 2019). In this
case, the power spectrum of such signal shows two prominent peaks at the
fundamental frequency (11Hz) and its second harmonic frequency (22Hz).
Additionally, a third peak is visible at the third harmonic frequency as well
(33Hz). As indicated by the values of the cross-frequency coherence in the
figure, the harmonic components demonstrate CFS with the fundamental
frequency component.

We used rsEEG data from 81 subjects (data description in the Method
section) and applied Harmoni in order to disambiguate genuine from spurious
CFS alpha-beta interactions. Panel (A) of figure 12 illustrates the across-
subjects average of 1:2 alpha-beta synchronization at each cortical source
(i.e. a vertex on the cortical mantel). A very high 1:2 synchronization within
one cortical source is an indication of a non-sinusoidal waveshape of alpha
oscillation at the corresponding dipole. On average, the occipital, temporal
and central areas demonstrate the highest 1:2 alpha-beta synchronization.
This figure shows the ubiquity of harmonics in data and highlights the im-
portance of taking care of it in connectivity analysis. Note that although
we make the assumption that the 1:2 synchronization at a single source is a
harmonic-driven synchronization, we are fully aware that this can be a result
of residuals of signal mixing in source space. We explicitly address this point
in the discussion.

In order to compute the CFS connectivity networks, a similar data-
analysis pipeline as in the realistic simulations was used at the source space.
The rsEEG multi-channel data were mapped to 100 ROIs of the Schaefer

29

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.10.06.463319doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.06.463319
http://creativecommons.org/licenses/by-nc-nd/4.0/


A: Scenario 1 B: Scenario 2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9
-20

0

20

40

60

80

100

120

140

before Harmoni after Harmoni

r=-0.686
H0: r0=-0.262

p=0.0

AUC-of-ROC before Harmoni for beta

pe
rc

en
ta

ge
 c

ha
ng

e
 o

f A
U

C
-o

f-
R

O
C

AUC-of-ROC for beta connectivity

0.05 0.10 0.15 0.20 0.25 0.30 0.35

-80

-70

-60

-50

-40

-30

-20

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

AUC-of-FPR for CFS connectivity

before Harmoni after Harmoni

0.4

AUC-of-FPR before Harmoni for CFS

pe
rc

en
ta

ge
 c

ha
ng

e
 o

f A
U

C
-o

f-
F

P
R r=-0.813

H0: r0=-0.375
p=0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8

75

50

25

0

25

50

75

100

before Harmoni after Harmoni

pe
rc

en
ta

ge
 c

ha
ng

e
 o

f A
U

C
-o

f-
R

O
C

AUC-of-ROC before Harmoni for CFS

AUC-of-ROC for CFS connectivity

p=0.0

r=0.595
H0: r0=-0.348

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.025

0.025 0.075 0.125 0.175

-120

-100

-80

-60

-40

-20

-0

-20

-40

0.225

r=0.861
H0: r0=-0.397

p=0

before Harmoni after Harmoni

AUC-of-FPR for beta connectivity

AUC-of-FPR before Harmoni for beta

pe
rc

en
ta

ge
 c

ha
ng

e
 o

f A
U

C
-o

f-
F

P
R

Figure 10: Results of 200 realistic simulations according to scenario one (panel A) and
two (panel B) of figure 5. At the left side of panel A, the boxplots of the AUC-of-ROC
of beta connectivity before and after Harmoni are depicted, showing an increase after the
application of Harmoni. This indicates a successful correction of the network’s connections
after Harmoni in favor of suppressing the spurious interactions. Beneath the boxplots, the
scatter-plot of the percentage change vs. the AUC-of-ROC values for beta connectivity
before Harmoni is shown. The higher the initial AUC-of-ROC value (i.e. the more accurate
the initial connectivity map), the less difference between the AUC values before and after
Harmoni (i.e., the less the impact of Harmoni). At the right side of panel A the boxplots
of the AUC-of-FPR for the CFS connectivity are illustrated. Note that in scenario one the
whole CFS connectivity is spurious due to waveshape, which is to a great extent removed
by Harmoni (reflected in the decrease of the FPR). The bottom scatter-plot shows that the
percentage change increases as the AUC-of-FPR of the CFS network increases, meaning
that Harmoni has a larger effect on networks with more spurious interactions. Panel B
shows the results of scenario two, but for the AUC-of-ROC of the CFS network (the left
side) and the AUC-of-FPR of the beta connectivity (the right side). A similar outcome
as in scenario one is observed in scenario two: and increase in the AUC-of-ROC after
Harmoni for CFS networks, as well as a decrease in AUC-of-FPR for beta networks where
all the connections are spurious ones. The percentage-change scatter plots imply a similar
effect: the more spurious interactions in the simulated signals, the more corrections is
performed by Harmoni.
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Figure 11: An example of a non-sinusoidal brain source signal. In panel A, a non-sinusoidal
brain oscillatory activity and its first three harmonics are shown along with the spatial
pattern of this activity. This source was extracted from eyes-closed rsEEG of a subject
of the LEMON dataset using independent component analysis (ICA) (extended InfoMax
ICA (Lee et al., 1999) with 32 components). Panel B shows the PSD of the non-sinusoidal
signal with the peaks at 11 Hz (first harmonic, or the fundamental frequency), 22 Hz
(second harmonic), and 33Hz (third harmonic). The cross-frequency coherence of the
harmonic components and the fundamental component are reported as well. The largest
synchronization occurs between the first and second harmonic (coherence value of 0.65).
This is mainly due to the higher signal-to-noise ratio at these frequency bands.

31

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.10.06.463319doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.06.463319
http://creativecommons.org/licenses/by-nc-nd/4.0/


atlas (Schaefer et al., 2018) with each ROI being assigned to one of the seven
resting-state Yeo networks, i.e. Default-mode network, Fronto-parietal, Lim-
bic, Ventral Attentional, Dorsal Attentional, Somatomotor, and Visual net-
works (Yeo et al., 2011). Then, the components of beta activity at each
ROI that could potentially be a higher harmonic of alpha oscillations were
removed using Harmoni. Finally, the ROI-ROI alpha-beta CFS connectivity
networks, represented by 100 × 100 connectivity matrices were computed.
Figure 12-B and C show the across-subject mean connectivity graphs before
and after Harmoni over all subjects. In Panel B (CFS before Harmoni), the
dominating vertical links correspond to the local synchronization of the alpha
oscillations with their second harmonic (beta). This is an expected pattern
for the non-sinusoidal oscillations where both alpha and beta components
are generated at the same location and demonstrate spurious CFS. Panel C
shows that the application of Harmoni resulted in the unmasking of genuine
remote neuronal interactions which were previously under-emphasized due to
the presence of spurious cross-frequency connectivity. In order to be able to
compare the networks before and after Harmoni at the group level, the con-
nectivity matrices were z-scored for each subject and then these standardized
coherence scores before Harmoni were subtracted from the ones after Har-
moni, and paired two-sided t-tests (with Bonferroni correction of p-values)
were employed to specify the links which changed significantly after Harmoni.
Panel 12-D and E show the across-subject mean of the difference networks
for positive and negative links (only the significantly changing links). 12-D
depicts the connections which are more pronounced after Harmoni. This
enhancement is observed for both inter and intra-hemispheric connections,
specifically between the visual cortices of the two hemispheres, between the
visual areas and the default mode and fronto-parietal regions. These effects
were achieved via the elimination of spurious connections which were driven
by harmonics. The presence of such harmonics masks the strength of the
genuine interactions which, however, become more pronounced after the ap-
plication of Harmoni. The presence of vertical lines and some cross-region
lines in figure 12-E illustrates that within-ROI CFS as well as many within-
hemispheric connections are significantly suppressed.

Importantly, Harmoni does not create any new connections, it rather leads
to a reweighing of the connections after the suppression of the spurious ones.
In order to validate this claim, we used paired t-tests to check whether the
across-subject mean of the weights of each connectivity link changes signif-
icantly after Harmoni. Accounting for multiple comparisons by Bonferroni
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Figure 12: Harmoni and rsEEG data. Panel (A) shows the across-subject average of 1:2
synchronization of the alpha and beta band activity over the cortex. If the 1:2 synchro-
nization is high at a given source, the second harmonic of the alpha activity may have
a large contribution to the beta activity. Panel (B) shows the bipartite illustration of
the mean CFS connectivity matrix. The nodes are sorted based on their assigned Yeo
resting-state network. The vertical links show the presence of CFS within a single region,
which is a sign of a synchronization due to waveshape (since this way they connect the
same region). Panel (C) is similar to panel (B), but for the data after the application
of Harmoni on beta band. The vertical links in the bipartite illustration are eliminated
and more inter-hemispheric connections emerged. Panel (D) shows the links which are
more pronounced after Harmoni, including more inter-hemispheric interactions. Panel (E)
shows the links which were suppressed by Harmoni. The networks of panels (D) and (E)
were computed by subtracting the z-scored coherence values before Harmoni from the ones
after Harmoni.
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Figure 13: Harmoni does not create new connections, i.e., an appearance of a synchroniza-
tion between two ROIs after Harmoni which was not present before Harmoni. Panel (A)
shows the significant across-subjects mean difference of the alpha-beta networks after and
before Harmoni (the coherence values before Harmoni were subtracted from the values
after Harmoni). All the values are ≤ 0, showing that the synchronization strengths drop
for all pairs of the ROIs on average. (B) The matrix of corrected p-values (Bonferroni cor-
rected) corresponding to the two-sided paired t-tests performed for each CFS connection
before and after Harmoni. The insignificant connections are not colored. All the signif-
icant changes indicated a decrease, −12.77 ≤ t(80) ≤ −4.9, p < 0.05 (after Bonferroni
correction).

correction, we found that all the significant changes were in the direction of a
decrease in the connectivity strength after Harmoni, −12.77 ≤ t(80) ≤ −4.9,
p < 0.05 (figure 13), which confirms that no new connection is produced by
Harmoni. Indeed, by suppressing the synchronizations that can mimic the
spurious interactions due to non-sinusoidal waveshape of alpha oscillations,
the ratio of the connectivity weights with respect to the maximum synchro-
nization is changed and therefore, some connection weights which previously
were in the low ranks move to higher percentiles of the connectivity weights
after the application of Harmoni. With this procedure, the dominant and
strongest connections change in the CFS network and we observe the net-
works in figure 12-B and C.

Another important feature of the MEG/EEG connectivity networks is
the symmetry of the adjacency matrix. All within-frequency or amplitude-
amplitude coupling networks are characterized by a symmetric adjacency
matrix. However, to the best of our knowledge, no study until so far inves-
tigated the presence of a similar pattern in the adjacency matrix for CFS
coupling which is strongly affected by the interactions due to higher har-
monics of non-sinusoidal shape of the signals. The CFS adjacency matrix
is by definition asymmetric. Actually, harmonic-driven spurious interactions
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result in symmetric CFS matrix. In other words, if the alpha activity in
region i is coupled to the beta activity in region j, the (i,j)-th element of the
adjacency matrix is non-zero. If this coupling is due to the non-sinusoidal
shape of the waveform of the alpha-signals at both of these two regions, then
the beta activity in region i is also synchronized to the alpha activity in
region j, which results in a non-zero value at the (j, i)-th element of the
adjacency matrix. This decreases the extent to which the adjacency ma-
trix is asymmetric. Therefore, we reasoned that Harmoni should decrease
the extent to which the adjacency matrix of the CFS network is symmetric.
This idea was indeed confirmed as shown in figure 14-A with the boxplots
of an asymmetry-index (refer to Methods) of the CFS networks before and
after Harmoni for all subjects, where the asymmetry-index of the individual
CFS connectivity networks increases significantly after Harmoni (two-sided
paired t-test, t(80) ≈ 17.75, p ≈ 1.8e − 29). Furthermore, panel B of this
figure shows that the percentage change of the asymmetry-index significantly
decreases with the initial value of the index, pearson r=−0.75, p ≈ 0.0007
(with null hypothesis r=-0.55). In other words, Harmoni corrects the CFS
network more (resulting in a more asymmetric network), when there are more
potentially spurious interactions due to harmonics (i.e., the CFS network is
less symmetric). See Methods for the rigorous statistical treatment of this
analysis. Note that not all the harmonic-driven cross-frequency interactions
are reflected in the symmetry of the CFS network adjacency matrix.

4. Discussion

EEG and MEG techniques are becoming more and more frequently used
for the investigation of neuronal connectivity, owing to (1) their ability to
record neuronal activity directly, and 2) their refined temporal resolution in
a millisecond range which is required for the detection of subtle changes in
neuronal dynamics. In addition, the recent advancement of brain data anal-
ysis for mapping sensor recordings to the cortex has provided an opportunity
for computing the connectivity of different brain areas in source space. Yet,
connectivity analysis with MEG/EEG faces considerable challenges. The
limited spatial resolution and spatial mixing of neural activity from differ-
ent regions hampers connectivity analysis. Additionally, the non-sinusoidal
shape of brain oscillations has been repeatedly highlighted as crucially af-
fecting the (mis)interpretation of underlying neuronal activity (Hyafil, 2017;
Lozano-Soldevilla, 2018). Because non-sinusoidality always implies a pres-
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Figure 14: The CFS networks of individual LEMON subjects becomes more asymmetric
after Harmoni. (A) the boxplots of the asymmetry-index of the CFS adjacency matrices
of all subjects shows that the asymmetry of the CFS adjacency matrices increases signif-
icantly after Harmoni. (B) The scatter-plot of the percentage change of the asymmetry-
index vs. the initial value of the index, i.e., before Harmoni.The less asymmetric the CFS
network (i.e., the more harmonic-driven symmetric connections), the more changes are
observed after Harmoni. The solid line shows the linear regression line and the blue shade
shows the result of a leave-one-out bootstrap.

ence of harmonics, these harmonics can often be mistakenly taken to repre-
sent genuine neuronal oscillations. Consequently, spurious interactions are
observed between harmonics of a non-sinusoidal oscillation and other neu-
ronal processes in the same frequency range, which in turn cannot be easily
disentangled from genuine interactions. This has been recognized earlier as
a major challenge for studying phase-amplitude coupling (PAC) in neuronal
data (Aru et al., 2015; Giehl et al., 2021; Jensen et al., 2016; Lozano-Soldevilla
et al., 2016; Zhang et al., 2021) as well as for n:m phase-synchronization
(Hyafil, 2017; Scheffer-Teixeira and Tort, 2016; Siebenhühner et al., 2020).
In this work, we directly addressed the issue of spurious interactions due to
waveshape of oscillations and offer a solution for the assessment of phase
synchronization as one of the most important measures used for connectivity
analyses with brain electrophysiology (Marzetti et al., 2019; Nentwich et al.,
2020; Sadaghiani et al., 2021; Vidaurre et al., 2020).

Currently available measures for quantifying n:m phase-synchronization
(also referred to as cross-frequency synchronization - CFS) are not suitable for
differentiation between genuine and spurious interactions. Short data length,
filtering bias, and non-sinusoidal signal waveshape are being mentioned as
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reasons for measuring spurious n:m phase-synchronization. Statistical tests
based on surrogate data can be used for disentangling spurious and genuine
phase-synchronization due to limited data points or filtering factor. Yet,
these procedures cannot differentiate the genuine interactions from the spu-
rious ones due to the non-sinusoidality of oscillations (Scheffer-Teixeira and
Tort, 2016). The reason for this is that Fourier and narrow-band analysis is
the base of almost all current signal processing pipelines, where a signal is de-
composed into narrow frequency band components. Consequently, the higher
harmonics of a non-sinusoidal signal are analysed as representing genuine os-
cillations not directly relating to the fundamental frequency. In the context
of cross-frequency coupling, this can result in the observation of spurious in-
teractions which are mimicking genuine interactions and cannot be detected
by surrogate tests. Furthermore, the non-sinusoidal waveshape of oscillatory
brain signals produce spurious interactions in the within-frequency phase-
synchronization in the range of harmonic-frequency, as depicted schemati-
cally in figure 1.

Although the presence of spurious interactions in phase-synchronization
connectivity analysis of neurophysiological data has been largely acknowl-
edged by the community, there has been only very few attempts for providing
a potential solution for it. Palva et al. (2005) used the coincidence of cross-
frequency phase-phase and amplitude-amplitude coupling as the hallmark of
harmonic-driven CFS. This, however, is more a qualitative measure rather
than a quantitative one and can be less applicable to the inter-areal whole
brain connectivity analysis. In a recent paper, Siebenhühner et al. (2020)
suggested a graph-theoretical analysis for discarding potential spurious CFS.
The authors employed a procedure of detecting ambiguous motifs in the CFS
graph combined with the within-frequency graphs of the fundamental and
harmonic frequencies of interest, and discarding the CFS interactions corre-
sponding to the links included in those motifs. This procedure, however, was
not validated using realistic MEG/EEG simulations. Such graph-based post-
processing of connectivity networks can in fact discard all the interactions
which mimic the motif of spurious interactions in the connectivity graphs.
However, due to the limited spatial resolution of MEG/EEG data, some of
the genuine interactions among the ROIs may still coincide with harmonic-
driven spurious interactions, as we show in figure 8-D. The graph motif of
such interactions is similar to the spurious interactions, depicted in figure 8-
A. Thus, a motif-discarding approach cannot distinguish the two cases of 8-A
and D and would label the CFS interaction as a spurious one. Moreover, this
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graph-based correction method is applicable only to cross-frequency graphs,
while, as discussed in this study, the within-frequency interactions in the
harmonic frequency band may also include spurious interactions driven by
non-sinusoidal waveshape. Therefore, to the best of our knowledge, so far
there has been no method that can address the issue of spurious n:m inter-
actions due to waveshape via removing the harmonic components from the
neuronal signals.

A signal processing tool for dealing with harmonics in connectivity. In this
manuscript, we introduced the first signal processing tool for suppressing
spurious within- and cross-frequency synchronization due to non-sinusoidal
shape of the oscillatory activity in the brain. Our method significantly sup-
presses the spurious interactions, while at the same time not affecting genuine
interactions present in data. We first validated these two key properties using
simple, yet informing, simulations. They consisted of two signals with differ-
ent components interacting with each other, giving us a chance to evaluate
Harmoni’s performance in the presence of genuine and spurious interactions
in data. The results of these simulations (figure 8) showed that Harmoni
effectively suppresses spurious within- and cross-frequency interactions. Im-
portantly, this suppression did not affect the genuine interactions.

Realistic simulations: decrease in FPR, increase in AUC of ROC curve. In
order to comprehensively assess Harmoni’s performance, we used realistic
simulations where source mixing and limitations of source reconstruction are
present. Using the area under curve (AUC) of the receiver operating charac-
teristic (ROC) curve (figure 10), we showed that Harmoni increases the AUC
of ROC curve of connectivity networks where the ground truth included both
genuine and spurious interactions. This means that with Harmoni, it was
possible to uncover even weak connections that would have been masked by
spurious CFS otherwise. In the same direction as the results of the toy ex-
amples, the increase in AUC of ROC curve in realistic simulations indicates
that Harmoni does not affect genuine interactions (reflected in TPR) and
suppresses spurious interactions (i.e., false positives). In those simulations
where the ground truth connectivity networks were based on spurious in-
teractions only, Harmoni decreased the AUC of the FPR curve. Confirming
other results of the simulations, this result further demonstrates that spurious
interactions both for within-frequency and cross-frequency connectivity are
indeed suppressed significantly by Harmoni. This aspect of Harmoni is par-
ticularly important for the investigation of connectivity for beta oscillations
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in the sensorimotor networks where comb-shaped mu oscillations are abun-
dant (Schaworonkow and Nikulin, 2019) and thus their harmonics in beta
frequency range should lead to spurious connectivity while merely reflecting
interactions at the base alpha frequency. Additionally, in studies addressing
the relationship of EEG and fMRI data, for example (Ritter et al., 2009),
Harmoni could contribute to the suppression of the effects of harmonic com-
ponents and disentangling the effect of harmonics and the genuine activity
in the same frequency band.

Moreover, given that our simulations were based on hundreds of runs with
different random locations of the sources, one can conclude that Harmoni is
applicable to a wide variety of source configurations in the cortex including
frontal, sensorimotor, and occipito-parietal areas.

Harmoni on resting-state EEG data. Real neuronal data are of a complex
nature and in most cases the ground truth of connectivity patterns is not
known. Therefore, the main validating stage of new methods is rather based
on simulations. However, any new method should also be applied to real data
to further extend its validity. For this purpose, we used resting-state EEG
(rsEEG) of 81 subjects from the LEMON database (Babayan et al., 2019).
We discussed how a symmetric adjacency matrix of a cross-frequency syn-
chronization network can reflect the presence of harmonics, and showed that
the adjacency matrices of the CFS networks become more asymmetric after
Harmoni. Additionally, we showed that Harmoni does not create new con-
nections which were not observed before the application of Harmoni. How-
ever, it changes the relative strength of the already existing connections by
suppressing spurious connectivity. Harmoni suppresses the CFS interactions
both within and between regions, as depicted in figure 12-E. Consequently,
other interactions, which were previously not ranked high due to the presence
of strong spurious interactions, become more pronounced after the applica-
tion of Harmoni. Although a detailed analysis of connectivity patterns of
rsEEG goes beyond the scope of the current study, below we illustrate a few
examples of the unmasked synchronization after the application of Harmoni.

In our data, only after the application of Harmoni, the visual cortical
areas appear to be interacting strongly with other regions, especially inter-
hemispherically. This in turn indicates that the interaction of the visual sys-
tem with other cortical areas is not based only on a relatively slow amplitude-
amplitude coupling as shown previously (Hipp and Siegel, 2015) but in fact
can demonstrate genuine millisecond-range functional interactions important
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for the precise coordination of neuronal activity in the brain. Additionally,
Wang et al. (2008), in an resting-state fMRI study, found that the spon-
taneous activity in primary visual cortex is associated with the activity in
bilateral middle occipital gyrus, bilateral lingual gyrus, and bilateral cuneous
and precuneus suggesting that these spontaneous activities may be related to
visual imagery during resting-state. In our rsEEG data, the recovered inter-
hemispheric interactions between the visual networks after the application of
Harmoni can also be interpreted in this direction. Interestingly, figure 12-D
shows the influence of Harmoni in recovering remote interactions of alpha
and beta activity in ROIs overlapping with precuneus in both hemispheres -
precuneus is known as a critical region for visual imagery in memory recall
(Wang et al., 2008). Note that we also observed the emergence of precuneus
as an important region in cross-frequency interactions, as well as in the inter-
hemispheric interactions of visual cortices in our previous study (Idaji et al.,
2020) with similar data, where phase-phase synchronized sources were sepa-
rated with a multivariate source separation method.

Furthermore, figure 12-D illustrates intensified within- and inter-hemispheric
interactions of default mode network (DMN) and visual networks, especially
areas in the vicinity of V1. In line with our observation, in a recent paper,
Costumero et al. (2020) reported a connectivity of V1 with DMN as well as
posterior cingulate cortex in closed-eyes resting-state fMRI functional con-
nectivity, suggesting that this connectivity may reflect a brain configuration
associated with mental imagery.

Harmoni and signal mixing. Due to the limited spatial resolution of non-
invasive recordings, the activity of very close neuronal sources cannot be
disentangled when being recorded by non-invasive imaging techniques such
as MEG/EEG. Therefore, even at the source space, the observation of signals
with non-sinusoidal shapes in non-invasive recordings may be due to mixing of
distinct coupled sources with very close spatial locations. Using MEG/EEG,
such cases cannot be distinguished from single sources generating signals
with non-sinusoidal shapes. This limitation is also applicable to the Harmoni
connectivity pipeline, when applying it to MEG/EEG data. However, it is
important to note that, this problem is not a natural limitation of Harmoni.
If we have access to invasive LFP recordings where the spatial resolution can
be in the order of hundred of micrometers (Buzsáki et al., 2012), Harmoni
can successfully resolve such cases.

The other aspect of spatial mixing relates to the leakage of spatially
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distanced source signals to other locations, even after source reconstruction.
As a result, the synchronization observed at a single region (or even at a given
reconstructed cortical source) may be due to the synchronization between
distanced source signals which are spatially mixed and still could not be
fully disentangled with source separation or source reconstruction methods.
This, however, is again a general problem of data analysis in MEG/EEG
research and is not specific to Harmoni. Therefore, in some instances the
removal of harmonics in a ROI by Harmoni can lead to removing components
which were not a harmonic of a lower frequency in that region but rather
represents a leaked oscillatory activity from another coupled source. Yet, this
property can in fact be an advantage for Harmoni: It can remove some of the
spurious interactions which were present due to spatial leakage and uncover
the activity at the harmonic frequency, which was not a result of spatial
leakage of a coupled source. As an illustrative example for this property, in
panel A of figure 8, if β1 is not a harmonic of α1 but a leakage of a cross-
frequency coupled source different from s1, then the observed interaction
β1 − α2 would still be accounted as a spurious interaction. This interaction,
however, is successfully suppressed by Harmoni.

Finally, the mixing of background neuronal activity - known as 1/f noise
- and other noise sources with oscillatory activities affects the signal-to-noise
ratio (SNR) and consequently the estimation of the true phase of the os-
cillations. Using simulations in (Idaji et al., 2020), we showed how source
separation of cross-frequency coupled sources worsens with decreasing SNR.
Therefore, the phase estimates and consequently the n:m synchronization
suffer from noise contamination. Because of this issue, the synchronization
should be estimated with a sufficient amount of data points for MEG/EEG
recordings.

5. Code and data availability

The codes of Harmoni, simulating toy examples, as well as analysing
the simulated EEG and real data are available at github.com/harmonic-
minimization. EEG data is from LEMON dataset, which is a public database
(Babayan et al., 2019).
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Toy example: Scenario 1

Toy example: Scenario 2

Figure 15: Examples of the composition of the two signals of scenario 1 and 2 of the toy
examples. In scenario 1 zk = sk + ξk, k = 1, 2 with sk = αk +βk. the noise components ξk
are not depicted. The solid lines show the simulated interactions, while the dashed lines
are the spurious interactions which are the by-products of the simulated ones.
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Algorithm 1: Grid-search algorithm of Harmoni. filter(., f0)
stands for band-pass filtering around f0. Hilbert(.) builds the ana-
lytic signal of its input using the Hilbert transform. Re(.) denotes
the real part of a complex number. std(.) stands for standard devi-
ation.
Input : A signal z(t) ∈ R containing a non-sinusoidal component

with a fundamental frequency of f0
Frequency f0
Integer n (referring to the n-th harmonic)

Output: Harmonic-corrected signal ycorr(t) ∈ C centered at nf0

xR(t) = filter
(
z(t), f0

)
// band-pass filter around f0

x(t) = Hilbert
(
xR(t)

)
// the analytic signal of xR(t)

yR(t) = filter
(
z(t), nf0

)
// band-pass filter around nf0

y(t) = Hilbert
(
yR(t)

)
// the analytic signal of yR(t)

xn(t) = ax(t)e
jnφx(t) // accelerate x by a factor of n

xn(t) = xn(t)/std
(
Re(xn)

)
// normalize the power

ỹ(t) = y(t)/std
(
Re(y)

)
for c = −1 to 1 with steps δc do

for φ = −π/2 to π/2 with steps δφ do
yres(t) = ỹ(t)− cxn(t)ejφ

cohc,φ = |coh
(
yres,xn

)
|

copt, φopt = argmin
c,φ

cohc,φ // find the minimum

ỹcorr(t) = ỹ(t)− coptxn(t)ejφopt

ycorr(t) = ỹcorr(t).std
(
Re(y)

)
// set the power of y
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