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Abstract
The understanding of brain network interactions in cognitively healthy older adults

informs how brain characteristics vary as individuals age and how these variations affect
cognitive functioning. A functional connectivity analysis can reveal important insight into the
brain's organization, which is crucial to examining cognitive aging. We investigated functional
network properties in 146 cognitively healthy participants aged 85+ in the McKnight Brain
Aging Registry. We found that the segregation of the cortical association system and the
segregation of the fronto-parietal network (FPN) were stronger predictors of cognition and
executive function. Compared to other network metrics, the segregation of networks may be
more closely linked with cognitive performance and age-related dedifferentiation. We also
provide a healthy oldest-old (85+) cortical parcellation that can be used in future work in this age
group. This study shows that network segregation of the oldest-old brain supports cognition.
Specifically, the FPN plays an important role in supporting overall cognition and executive
function in an aging population. By studying network dynamics and cognitive abilities of healthy
brain aging, we advance the literature on dedifferentiation in the oldest-old.

Keywords: oldest-old, cognitive aging, networks, segregation, FPN, CON, DMN,
dedifferentiation
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1. Introduction
A critical societal goal is to slow or stop age-related cognitive decline — essentially, to

develop strategies to make all oldest-old adults more like the rarer cognitively healthy oldest-old
adults. Understanding the factors contributing to optimal cognitive function in aging individuals
is essential to developing effective cognitive rehabilitation interventions. To better understand
successful cognitive aging, we examined the healthy aging brain’s network segregation in an
elderly population. A large body of previous work has explored the aging brain’s anatomical,
physiological, and functional aspects. Here, we want to extend this work into an even older age
group that is of particular interest due to their enduring cognition into late life.

Some cognitive domains are particularly susceptible to decline with age, such as memory
and executive functions (e.g., complex attention, verbal fluency, and decision making)
(Reuter-Lorenz, Festini, & Jantz, 2016; Spaan, 2015). Deficits in memory and executive
functions, in particular, are consistently found to be the strongest predictors of impaired
functional ability in older adults (Martyr, Nelis, & Clare, 2014; Tomaszewski Farias et al., 2009;
Woods, Weinborn, Velnoweth, Rooney, & Bucks, 2012). Impaired cognition can also be
accompanied by problems in instrumental activities of daily living (IADLs) (Cahn-Weiner,
Boyle, & Malloy, 2002; Martyr et al., 2014; Tomaszewski Farias et al., 2009). Since executive
functioning and memory are some of the earliest and most impactful losses of cognition with
aging, it is important to understand what makes intact functioning in these domains possible in
an aging population.

Executive functioning is a broad collection of cognitive capacities centered on command
and control thinking and processing of information (Salthouse, 2005). Executive function
encompasses sustained attention, updating, inhibition, switching, planning, working memory,
set-shifting, and fluency (Fisk & Sharp, 2004; Lamar, Zonderman, & Resnick, 2002; McCabe,
Roediger, McDaniel, Balota, & Hambrick, 2010; Rabinovici, Stephens, & Possin, 2015; Sorel &
Pennequin, 2008). Executive functioning is also essential for efficient use of many other
cognitive skills such as memory (Duff, Schoenberg, Scott, & Adams, 2005; Salthouse, Atkinson,
& Berish, 2003; Spaan, 2015), working memory (Miyake, Friedman, Rettinger, Shah, & Hegarty,
2001), processing speed (Albinet, Boucard, Bouquet, & Audiffren, 2012; Baudouin, Clarys,
Vanneste, & Isingrini, 2009; Schretlen et al., 2000), and attention (McCabe et al., 2010). Because
of the multidimensional nature of executive function, it is difficult to assess it consistently
throughout the literature. However, there is a reliable lower performance in executive functioning
in normal aging populations (Fisk & Sharp, 2004; Harada, Natelson Love, & Triebel, 2013;
Reuter-Lorenz et al., 2016; Salthouse et al., 2003; Spaan, 2015). Longitudinal work has shown
that executive functioning declines faster in older age ranges (Zaninotto, Batty, Allerhand, &
Deary, 2018). In the present study, we assessed many aspects of the executive functioning skill,
including fluency, working memory, set-shifting, planning, inhibition, switching, complex
attention, and visuospatial planning. Memory is another well-studied cognitive domain that
encompasses multiple processes, namely the encoding, consolidation, and retrieval of
information (Huo, Li, Wang, Zheng, & Li, 2018; Zlotnik & Vansintjan, 2019). Measures of
memory performance in this study included verbal, narrative, visual, and recognition and
discrimination of learned and novel stimuli.

Brain networks play a crucial role in aging, and as part of the aging process, older adults
exhibit changes in brain structural and functional network integrity that impact network
dynamics (Marstaller, Williams, Rich, Savage, & Burianová, 2015). Because of their correlation
to cognitive performance, brain network dynamics have emerged as a major avenue to study
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aging and cognitive decline (Andrews-Hanna et al., 2007; Antonenko & Flöel, 2014; Chan, Park,
Savalia, Petersen, & Wig, 2014; Cohen & D’Esposito, 2016; Ng, Lo, Lim, Chee, & Zhou, 2016;
Shine et al., 2016; Wen et al., 2011). Networks can be described in terms of their properties
(Bullmore & Sporns, 2009; Damoiseaux, 2017; van den Heuvel & Hulshoff Pol, 2010). Network
integration describes how much the network’s regions interact and can be calculated as the mean
connectivity of nodes within a given network (within network connectivity). The network
participation coefficient describes the variety of connections of a given node. A low participation
coefficient occurs when a node is more selectively connected to its network, and high
participation occurs when a node is widely connected to other networks (Rubinov & Sporns,
2010). Modularity describes how separable a system is into parts (Rubinov & Sporns, 2010).
Lastly, segregation describes the balance of within and between network connectivity. Very high
segregation indicates very isolated networks, and very low segregation indicates the networks are
no longer separable (Wig, 2017). 

Higher-order cognitive networks in the Association System of particular interest are the
fronto-parietal network (FPN), cingulo-opercular network (CON), and the default mode network
(DMN). The FPN and CON are both associated with executive functioning (Cohen, Gallen,
Jacobs, Lee, & D’Esposito, 2014; Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008;
Gratton, Sun, & Petersen, 2018; Hearne, Cocchi, Zalesky, & Mattingley, 2017; Schmidt, Burge,
Visscher, & Ross, 2016; Yin, Deák, & Chen, 2018), but address different aspects of this broad
cognitive skill (Cohen et al., 2014; Dosenbach et al., 2008; Gratton et al., 2018; Hearne et al.,
2017; Schmidt et al., 2016; Yin et al., 2018). The FPN is associated with complex attention and
directing cognitive control (Avelar-Pereira, Bäckman, Wåhlin, Nyberg, & Salami, 2017;
Oschmann & Gawryluk, 2020; Ray et al., 2019), while the CON is associated with sustained
executive control and perceptual and attentional task maintenance (Coste & Kleinschmidt, 2016;
Hausman et al., 2020; Sadaghiani & D’Esposito, 2015). DMN activation occurs during rest,
internally focused tasks and memory processing, but is suppressed during cognitively
demanding, externally focused tasks (Avelar-Pereira et al., 2017; Hampson, Driesen, Skudlarski,
Gore, & Constable, 2006; Hellyer et al., 2014; Ng et al., 2016; Sambataro et al., 2010; Sestieri,
Corbetta, Romani, & Shulman, 2011).

A neural system’s functional specialization and segregation is determined by the
network's balance of connections between and within the network and is indicative of
organizational integrity (Chan, Alhazmi, Park, Savalia, & Wig, 2017; Damoiseaux, 2017; Iordan
et al., 2017; Koen, Srokova, & Rugg, 2020; Varangis, Habeck, Razlighi, & Stern, 2019). In older
adults, functional networks have increased between-network connectivity and decreased
within-network connectivity (Chan et al., 2017; Damoiseaux, 2017; Iordan et al., 2017; Koen et
al., 2020; Varangis et al., 2019). Prior evidence has shown differing hypotheses for age-related
cognitive decline, including the compensation hypothesis, the over-recruitment of brain regions
within a network, and the dedifferentiation hypothesis, the loss of functional specialization and
segregation in brain network activity, which has received greater support; however, these
hypotheses are not mutually exclusive (Chan et al., 2014; Daselaar et al., 2015; Seider, Porges,
Woods, & Cohen, 2021; Siman-Tov et al., 2016). Previous studies have found that
dedifferentiation of the FPN, CON, and DMN is associated with reduced performance in
episodic memory, processing speed, attention, and executive function – all of which are
vulnerable to the aging process (Chan et al., 2017; Damoiseaux, 2017; Goh, 2011; Hausman et
al., 2020; Iordan et al., 2017; Koen et al., 2020; Nashiro, Sakaki, Braskie, & Mather, 2017; Ng et
al., 2016; Varangis et al., 2019). However, prior work on dedifferentiation has only been done in
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younger-old samples (largely 65-85 years old). Studying the younger-old can be confounded by
including pre-symptomatic disease, since it is unknown which individuals may be experiencing
undetectable, pre-clinical cognitive disorders or will continue to be cognitively healthy for
another decade. The cognitively unimpaired oldest-old have lived into late ages, and we can be
more confident in determining their status as successful agers. To the best of our knowledge, the
relationship between the segregation of networks and overall cognition, including executive
functioning and memory, in a healthy oldest old cohort has not been examined until now.

The purpose of this study is to understand the brain basis of preserved cognition in the
context of functional network dynamics and, specifically, to understand how the FPN, CON, and
DMN contribute to executive function and episodic memory. We expand on prior methods of
studying functional networks and cognition by using an older, 85+ population and a brain
parcellation made from our healthy oldest-old sample. Here we address the hypothesis that
maintaining cognition into healthy aging relies on the segregation of the association system and
its sub-networks: FPN, CON, and DMN. We used forward selection hierarchical regressions and
canonical correlation between cognitive measures and network properties.

2. Results
We hypothesized that cognitive performance was related to the segregation of the

Association System and its sub-networks: FPN, CON, and DMN. Therefore, we predicted that
decreases in segregation within the Association System, FPN, CON, and DMN would be related
to poorer overall cognition and poorer executive functioning and memory performance in
oldest-old adults.

2.1 A priori power analysis
An a priori power analysis was conducted using a sample size of 146 in a canonical

correlation, hierarchical multiple regression with one variable in block one and five variables in
block two, and a hierarchical multiple regression with one variable in block one and ten variables
in block two. Using the sample size of 146, all analyses can detect small effect sizes with an
alpha of .05 and a power of .80. The smallest detectable effect for the canonical correlation was
r=.23, similar to the effect size found by Chan et al. (2014). The smallest detectable effect for
hierarchical multiple regression with one variable in block one and five variables in block two
was .092, and the hierarchical multiple regression with one variable in block one and ten
variables in block two was .12.

2.2 Exploratory Factor Analysis
EFA revealed three factors: 1) Executive functioning: Sustained attention (EF-SA), 2)

Episodic Memory, and 3) Executive functioning: Control (EF-C). (See Supplemental Table 1 for
variable factor loadings). The episodic memory factor included the following measures: a word
list learning task, the California Verbal Learning Test II (CVLT-II) long delay recall total score
(Delis, Kramer, Kaplan, & Ober, 1987); a story memory task, Craft Story paraphrase delayed
recall total score (Beekly et al., 2007); and a visual memory task, Benson Figure Test recall score
(Beekly et al., 2007). Executive functioning-sustained factor included a visual attention task, the
Trail Making Test A-lines per second (Gaudino, Geisler, & Squires, 1995); a category fluency
task, Animal naming total correct score (Beekly et al., 2007); the number correct score from a
speeded word reading test, Stroop Color-Word test (MacLeod, 1992); a verbal, processing speed
test of decoding numbers and symbols, WAIS-IV Coding (Weschler, 2008); and a processing
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speed and visual perception task, WAIS-IV Symbol Search (Weschler, 2008). Executive
functioning-control factor included a switching and inhibition task, the Stroop Color
Word-Inhibition test interference score (MacLeod, 1992); WAIS-IV Letter-Number Sequencing
longest correct sequence (Weschler, 2008); a working memory task, Digit Span Backward
(Beekly et al., 2007); and a non-verbal reasoning task, WAIS-IV Matrix Reasoning (Weschler,
2008). The task switching task, Trail Making Test B lines per second (Gaudino et al., 1995), had
a split loading between Executive functioning: Control/Switching and Executive functioning:
Sustained attention. Since this task requires processing speed and switching, this split between
the two factors is consistent with the task demands.

The EFA for the overall cognition factor had loadings from all variables and accounted
for 30% of the variance. The highest loadings on the factor were Coding, Symbol Search, Trails
A&B, CVLT II long delay recall, and Matrix Reasoning. See supplemental materials for the EFA
factor loadings that were constrained to 1 factor (Supplemental Table 2).

2.3 Functional Connectivity of Network Nodes
Using the ROIs we created (Figure 7), we generated a group average of Fisher’s

z-transformed correlation matrix grouped by network and system membership (Figure 1).

Figure 1. Group average Fisher’s z- transformed correlation matrix of 321 nodes. The Association system consists
of the Default mode (red), Fronto-parietal control (yellow), Ventral attention (teal), Cingulo-opercular control
(purple), and Dorsal attention (green). The Sensory-Motor system consists of the Hand somato-motor (light blue),
Visual (blue), Mouth somato-motor (orange), and Auditory networks (pink).
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2.4 Association System metrics & Overall Cognition

Table 1. Association System and Overall Cognition Metrics Mean SD Range

Segregation 0.4205 0.1071 0.0929–0.6463

Mean Within-Network Connectivity 0.0833 0.0246 0.0162–0.1522

Participation Coefficient 0.4356 0.0235 0.3675–0.4746

Modularity 0.2561 0.0374 0.1321–0.3501

Overall Cognition Factor Score 0.0382 0.9295 -2.6497–2.329

We then generated descriptive statistics of association system metrics and the overall
cognition metric (Table 1). Overall cognition was related to all association system metrics —
segregation (r=.343, p<.001), participation coefficient (r=-.166, p=.046), modularity (r=.249,
p=.003), and mean within-network connectivity (r=.173, p=.037) (Figure 3). However,
Bonferroni corrected alpha for four comparisons was p<.0125, and only Segregation and
Modularity meet this criterion. Association system segregation was not correlated with the
memory factor score, which had been previously found in work by Chan and colleagues (2017)
(Figure 3).
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Figure 2. Scatter plots between Association System metrics and overall cognitive performance. Histograms for the
variables are presented for each variable on the edge of the scatter plot. Each unique color of the density plots
represents each variable consistently across figures: overall cognition score (black), association system participation
coefficient (orange), association system segregation (blue), association system modularity (pink), and association
system mean within-network connectivity (green). Bonferroni corrected alpha for four comparisons is .0125; only
Segregation and Modularity meet this criterion (represented by a red star).
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Figure 3. Scatterplot of Association System Segregation and Memory relationship (r=.03, p=.718). Histograms for
the variables are presented for each variable on the edge of the scatter plot. Grey represents memory factor score,
and blue represents association system segregation. Association system segregation was not correlated with the
memory factor score, which was previously found in Chan and colleagues’ work (2017).

The forward selection hierarchical regression of overall cognition showed that
segregation was the best predictor of overall cognition among the association system metrics.
There was a significant R2-change of .112 (p<.001) between the first block of the covariate, site,
and the second block with association system segregation. The model accounted for 16.2% of the
variance of overall cognition.

2.5 Network metrics and Overall Cognition

Table 2. Network Metrics Mean SD Range

Segregation
DMN 0.4517 0.1495 0.0628–0.7209

FPN 0.3279 0.1385 -0.0482–0.5989

CON 0.2784 0.1848 -0.2677–0.7439

Participation Coefficient
DMN 0.7631 0.0398 0.6293–0.8364

FPN 0.8199 0.0156 0.7782–0.8508

CON 0.8354 0.008 0.8062–0.8509

Mean Within-Network Connectivity
DMN 0.0156 0.0118 0.0005–0.0692

FPN 0.0882 0.0369 0.0181–0.2452

CON 0.0865 0.0378 0.0044–0.2229

We then investigated the relationship of overall cognition with the network metrics
(participation coefficient, segregation, and mean connectivity) of 3 networks that belong to the
Association System: FPN, CON, and DMN (Table 2).
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The forward selection hierarchical regression of overall cognition showed that FPN
segregation was the best predictor of overall cognition among the network metrics. There was a
significant R2-change of .119 (p<.001) between the first block of the covariate, site, and the
second block with FPN segregation. The model accounted for 16.3% of the variance of overall
cognition.

To further describe specific relationships between overall cognition and network metrics,
partial correlations with the site as a covariate are shown in Figure 4. Of note, Bonferroni
corrected alpha for four comparisons was p<.005, and only segregation for FPN and DMN met
this criterion (partial correlation results can be found in Figure 4).

Figure 4. Scatter plot of Overall Cognition and FPN (yellow), CON (purple), and DMN (red) network segregation,
mean connectivity, and participation coefficient. Histograms for the variables are presented for each variable on the
edge of the scatter plot. The colors on these plots match the network color in Figure 7. The table shows the
corresponding partial correlation for each network and network metric to overall cognition; statistically significant
findings (p>.05) are bolded. Bonferroni corrected alpha for four comparisons is .005; only Segregation for FPN and
DMN meet this criterion.

2.6 Network metrics and cognitive domains
To further break down overall cognition into cognitive domains, we investigated the

relationship between the previously described network metrics of the FPN, CON, and DMN and
three domains of cognition: Memory, Executive functioning- sustained attention (EF-SA), and
Executive functioning- control (EF-C) (Table 3).
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Canonical correlation between network metrics and cognitive domains is illustrated in
Figure 5 (Thompson, 1991). We found that executive functioning (contributions from EF-SA and
EF-C) significantly correlated with network dynamics (r=.41, p=.019). The model accounted for
27.7% of the variance in the observed variables. Furthermore, the two highest canonical loadings
on the network metric canonical variable were FPN segregation and DMN segregation.
Specifically, poorer executive functioning was related to higher participation coefficients (i.e.,
more widely connected networks) of all networks, higher DMN mean connectivity, lower FPN
and CON mean connectivity, and lower segregation of all networks (Figure 5).

Table 3. Cognitive Domain Factor Scores Mean SD Range

Memory 0.0646 0.759 -2.0496–1.693

Executive Function - Sustained Attention 0.0315 0.9004 -2.6189–2.4631

Executive Function - Control -0.0447 0.7885 -2.2671–2.1412

Figure 5. Canonical correlation model. Circles represent the canonical variables, and rectangles represent observed
variables. The correlation coefficient between the two canonical variables is on the line between the two canonical
variables (r=.41, p<.001). The thickness of the lines represents the significance of the correlation between the
canonical variables. Solid lines represent positive correlations, and dashed lines represent negative correlations. The
value listed on the connections between the canonical variable and the observed variable is the loading for the
observed variable on the canonical variable. “Seg” refers to segregation, “pc” refers to participation coefficient, and
“mc” refers to mean connectivity.

To further describe specific relationships between cognitive domains and network metrics
within the canonical correlation, relationships between the network metrics and the executive
functioning canonical variable are shown in Figure 6. It is evident from these relationships that
the distributions of these metrics for different networks vary in their relationship to executive
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function and the segregation of the DMN and FPN having a strong relationship with executive
functioning.

Figure 6. The top left shows the relationship between the canonical variables (r=.41, p<.001). Brown represents
network metrics, and light blue represents executive functioning in the same way as Figure 5. The other three scatter
plots show the relationship between the executive functioning canonical variable and the network metric for each
network: FPN (yellow), CON (purple), and DMN (red). Histograms for the variables are presented for each variable
on the edge of the scatter plot. The executive functioning canonical variable scores’ sign was flipped to aid
interpretability of the plots so that higher values indicate better executive functioning performance.
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3. Discussion
First, we created a set of parcels in oldest-old adults based on functional connectivity

boundary-based mapping. We then showed that the segregation metric was the best predictor of
cognitive functioning compared to other metrics of the association system. We then found that
compared to metrics of the CON and DMN and other metrics of the FPN, the segregation of the
FPN was the best predictor of overall cognition and executive functioning. Our findings
indicated that the pattern of connectivity profiles across all networks (CON, DMN, and FPN),
but especially FPN segregation, predicted executive functioning. This study demonstrates that
the oldest-old brain is segregated within the association system and its networks, and that the
FPN is important to supporting cognitive function and executive functioning especially as we
age. Prior studies have largely examined younger older adults when studying network dynamics,
thereby excluding an ever-growing portion of the older adult population. In this study, we
expanded on prior methods of studying network functioning by using an older, 85+ population to
better understand how aspects of cognition are related to brain networks in the context of aging.

3.1 Healthy Oldest-old network parcellation
It is important to understand how a healthy aging cortex is subdivided, especially since

brain network reorganization can change across the lifespan (Bagarinao et al., 2019). While
boundary-based mapping and node identification has been applied to a sample that included
individuals 85 and above (Chan et al., 2014; Han et al., 2018), with the sample from the
McKnight Brain Aging Registry, we had the opportunity to apply the same methods to a sample
with an older age range and larger sample size than previous work for the oldest-old portion of
the sample. We provide a healthy oldest-old (85+) parcellation that can be used in future work in
this age group and can be used to compare to disease populations in this age range. It is
important to have an age-appropriate parcellation because it can more accurately identify cortical
mapping of networks. Future work will analyze the organization of the nodes in this parcellation
and identify networks without younger-adult-based network descriptors.

3.2 Age-related functional dedifferentiation
Models of dedifferentiation and compensation are used to explain changes in the

selectivity of functional activity of brain regions that occurs in the aging context (Koen et al.,
2020; Li, Lindenberger, & Sikström, 2001; Rakesh, Fernando, & Mansour L, 2020;
Reuter-Lorenz & Cappell, 2008; Reuter-Lorenz, Stanczak, & Miller, 1999). The neural
dedifferentiation hypothesis posits that functional networks are not as selectively recruited (Goh,
2011; Koen et al., 2020). On the other hand, the compensation hypothesis posits that functional
networks must recruit more regions or “over-activate” to complete the intended task
(Reuter-Lorenz & Cappell, 2008). These two models may be compatible (Burianová, Lee, Grady,
& Moscovitch, 2013). The study of the association system and association networks across the
lifespan has indicated that dedifferentiation is associated with age and a co-occurring decrease in
cognitive functioning (Chan et al., 2014; Geerligs, Renken, Saliasi, Maurits, & Lorist, 2015; Han
et al., 2018). Longitudinal work on association system networks has indicated that segregation of
association system networks decreases with age (Chong et al., 2019), and this rate of decline
corresponds to declining cognitive functioning in the elderly (Malagurski, Liem, Oschwald,
Mérillat, & Jäncke, 2020; Ng et al., 2016). However, the mean age of participants in prior work
was well below that of the current study. Therefore, it was unknown how far in the aging process
dedifferentiation can continue while cognitive functions are maintained and to what degree
different networks are sensitive to dedifferentiation in the oldest-old brain.
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The goal of this study was to further investigate cognition and brain network
dedifferentiation in the context of successful brain aging in the oldest-old cohort by examining
dedifferentiation through network metrics of segregation, participation coefficient, modularity,
and within-network connectivity.

3.3 Dedifferentiation predicts preserved cognition in the cognitively healthy elderly
We found that association system segregation is a greater predictor of overall cognition

than other widely-used measures of network integration and segregation. Additionally, only
segregation and modularity were significantly correlated with overall cognition (Figure 2). The
findings of our study support the dedifferentiation hypothesis, since the networks that compose
the association system cannot function when they are not differentiated adequately. However,
this finding does not exclude the compensation hypothesis; it is notable that the relationship
between overall cognition and mean connectivity was rather weak (r=.173, p=.037, not
significant after multiple comparison correction), which could indicate that individuals with
better cognitive performance were not as likely to “over-activate” the networks.

When we analyzed specific networks within the association system, we found similar
results to the overall association system; however, among the network properties of the FPN,
CON, and DMN, the network segregation of the FPN was the greatest predictor of overall
cognition (Figure 4). Additionally, only the FPN and DMN segregation were significantly
correlated with overall cognition (Figure 4). Although canonical correlation revealed
contributions from all network metrics to executive functioning performance, FPN segregation
contributed the most (Figure 5 & 6). We have shown that FPN segregation is related to one of the
key cognitive functions of aging — executive functioning (Figure 5).

Prior studies have shown that FPN properties relate to executive functioning task
performance and that other network properties, like DMN segregation, also contribute to
executive functioning abilities (Madden et al., 2010; Reineberg, Andrews-Hanna, Depue,
Friedman, & Banich, 2015; Rieck, Baracchini, Nichol, Abdi, & Grady, 2021). Recent research
indicates that the FPN regulates other brain networks to support executive function
(Avelar-Pereira et al., 2017; Marstaller et al., 2015). The FPN and DMN interact less efficiently
in older adults compared to younger adults; the networks are coupled during rest and across tasks
in older adults, suggesting that aging causes the FPN to have more difficulty flexibly engaging
and disengaging networks (Avelar-Pereira et al., 2017; Grady, Sarraf, Saverino, & Campbell,
2016; Spreng & Schacter, 2012). Age-related within-network structural changes and
between-network functional dedifferentiation may disrupt the FPN’s ability to control other
networks, like the DMN (Avelar-Pereira et al., 2017; Geerligs et al., 2015; Grady et al., 2016;
Marstaller et al., 2015; Romero-Garcia, Atienza, & Cantero, 2014; Zhang et al., 2014). Because
of the FPN's function as a control network, age-related disruptions in FPN connectivity may
explain the initial and most noticeable decline in cognition, processing speed (Ng et al., 2016;
Oschmann & Gawryluk, 2020; Rieck, Baracchini, & Grady, 2021).

The findings from this work support prior research by demonstrating that while
dedifferentiation may occur in aging populations, executive function can be maintained in old
age as long as the FPN and DMN remain well segregated. Further, the negative relationship
between executive functioning and DMN connectivity may reflect that individuals with better
executive functioning did not need to compensate by over-recruiting the DMN. Therefore,
sustainable healthy cognitive aging may be marked by maintaining segregated network
organization and not increased compensation. Further research will need to investigate the
mechanisms of maintenance of network organization in healthy agers.
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While segregation is not the only metric that can detect dedifferentiation, our findings
indicate that it more reliably relates to cognitive abilities. With segregation's greater predictive
ability, it may serve as a more sensitive metric than other network metrics when assessing
cognitive decline in aging populations. Additionally, our work helps inform other research that
has indicated that segregation may be a marker of potential cognitive resilience in Alzheimer’s
Disease (Ewers et al., 2021). Studies have shown that learning-induced plasticity through
cognitive training and exercise could be an avenue for changing network dynamics to improve
cognitive performance (Iordan et al., 2017; Voss et al., 2010). Future research could target
network dynamics in the older adult population to preserve cognitive functioning.

3.4 Limitations and Future Directions
This study has several limitations. Since this work is based on data collected across

multiple sites, the data collection site was used as a covariate in partial correlation analysis and
entered in the first block of hierarchical regression analyses. However, we recognize that this
may not completely address site differences, such as different test administrators, different
populations, scanner inhomogeneities, etc. We performed post-collection data quality assessment
methods, including visual inspection of MRI and cognitive data, strict fMRI preprocessing steps,
visual inspection of all generated surfaces and motion parameters, and double data entry for all
cognitive data.

We also recognize that the generalizability of our findings is limited due to the limited
diversity of our sample that is mostly non-Hispanic, Caucasian, and highly educated. Future
work should be focused on broadening the diversity of oldest-old samples.

Given the cross-sectional nature of this work, we have limited information about our
participants' state of health and cognitive performance earlier in life or what their cognitive
health will be later in life. Thus, we are not able to investigate whether an individual’s current
functioning is a decline from prior functioning or if they will go on to develop cognitive
impairment. The current work is the best guess as to what a range of best outcomes in
cognitively healthy brain functioning looks like. The scope of this work is focused on healthy
oldest-old and not the developmental process of aging. Therefore, inferences from this study
focus on what we can learn from individuals who survived to 85+ and are cognitively healthy in
their oldest-old years.

3.5 Conclusions
This work provides novel insight into the healthy oldest-old brain and intact cognition in

the aging process. Our work suggests that the organization of networks is critical for efficiently
functioning networks that preserve cognitive abilities. We also provide evidence for the
dedifferentiation hypothesis of aging. We show that cognition can be maintained when networks
are more separable and can therefore be more selectively recruited. Specifically, the FPN may
need the segregated organization of networks in order to play a central role in efficiently
manipulating other networks for cognitive performance. We also show that better cognition in
aging does not necessarily mean more compensation, since increased connectivity was relatively
weakly or negatively correlated with better cognitive performance. This study advances the
literature on the influence of network dynamics on cognitive ability in healthy brain aging.
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4. Materials and Methods
4.1 Participants

Data were collected as part of the McKnight Brain Aging Registry (MBAR), funded by
the Evelyn F. McKnight Brain Foundation. Data were collected from the four McKnight
Institutes: the University of Alabama at Birmingham, the University of Florida, the University of
Miami, and the University of Arizona. The study sample includes 197 individuals with cognitive
data and 146 with cognitive and MRI data, after excluding ten participants due to high head
movement in MRI, six due to anatomical incompatibility with Freesurfer surface rendering, and
one due to outlier network segregation values. Participants were aged 85 and older, screened for
memory disorders, neurological disorders, and psychiatric disorders. Participants were recruited
through mailings, flyers, physician referrals, and community-based recruitment. Participant
characteristics are shown in Table 4. Participant characteristics of the full sample of 197
participants used in the cognitive data analysis can be found in supplemental Table 1 broken
down by data collection site.

Table 4. Participant Characteristics Total Sample, N=146
Age (years), mean ± SD (range) 88.4 ± 3.18 (85-99)

Education (years), mean ± SD (range) 16.1 ± 3.03 (9-26)

Sex, N(%)

Female 79 (54.11%)
Male 67 (45.89%)

Race, N(%)

Non-Hispanic Caucasian 134 (91.78%)
African American 6 (4.11%)

Caucasian 5 (3.42%)
Asian 1 (0.69%)

Marital Status, N(%)

Widowed 74 (50.69%)
Married 54 (36.99%)
Divorced 13 (8.90%)

Living as Married/Domestic Partnership 3 (2.06%)
Never Married 2 (1.37%)

Dominant Hand, N(%)

Right 131 (89.73%)
Left 15 (10.27%)

4.2 Cognitive Measures
Multiple imputation is a statistical technique to estimate missing values in a dataset

(Murray, 2018; Nassiri, Lovik, Molenberghs, & Verbeke, 2018). In our multiple imputation
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analysis, all variables used in the subsequent exploratory factor analysis (EFA) were used in
multiple imputations to address missingness in Stroop interference score (10 missing values),
Trails B score (3 missing values), and Stroop word trial score (6 missing values). Missingness
was due to administrator error, participant’s inability to correctly perceive the stimuli due to low
visual acuity or color blindness, or the participant not finishing a task in the allotted time. We
obtained a similar mean and range of the variables when the dataset was restricted to only
complete cases. Imputed data from 5 iterations were then pooled by the average of the imputed
value across iterations.

An exploratory factor analysis (EFA) with varimax rotation was performed on 12
variables to identify cognitive domains. The EFA used all available cognitive data (n=197). The
number of factors was determined by eigenvalue greater than 1, analysis of scree plot, and
parallel analysis, which indicated three factors (Humphreys & Montanelli Jr., 1975; O’Connor,
2000; Zwick & Velicer, 1986). Factor scores were then calculated using the regression method
(Thomson, 1939). Cognitive measures used for this EFA can be found in supplemental Table 2.
An additional EFA that was constrained to 1 factor was calculated to reflect overall cognitive
ability. Factor scores for this 1 factor were also calculated using the regression method.
Cognitive measures used for the 1 factor EFA can be found in supplemental Table 3.

Quality control was performed on behavioral data through Redcap double data entry,
wherein data are entered twice, and discrepancies are identified and corrected (Harris et al.,
2019, 2009). Data were also visually inspected for errors.
4.3 Network Analysis

4.3.1 Imaging Acquisition
For all subjects, an anatomical scan was collected (T1-weighted; repetition time (TR) =

2530ms; echo time (TE) = 3.37ms; field of view [FOV (ap,fh,rl)] = 240 X 256 X 176 mm; slice
gap=, 0; voxel size=1.0 X 1.0 X 1.0 mm; flip angle (FA) = 7º). After the anatomical scan, a
resting-state functional scan was collected (T2*-weighted, TE/TR 30/2400 ms; FOV = 140 X 5
X 140; FA = 70º; voxel size = 3.0 X 3.0 X 3.0 mm; interleaved order of acquisition). Before the
functional scan, participants were instructed to try to be as still as possible, stay awake, keep
their eyes open, and let their minds wander without thinking of anything in particular. A central
fixation cross was presented during the scan, which participants were told they could choose to
look at during the scan.

4.3.2 Preprocessing
Anatomical images were preprocessed through Freesurfer (version 6.0) to render cortical

surfaces (Fischl, 2012). Generated surfaces were then visually inspected for errors.
Before functional connectivity analysis, data were preprocessed with rigorous quality

control methods for motion censoring (Carp, 2013; Gratton et al., 2020; Power, Barnes, Snyder,
Schlaggar, & Petersen, 2012; Power, Schlaggar, & Petersen, 2015; Siegel et al., 2014),
implemented by XCPEngine (Ciric et al., 2018) and fMRIPrep (Esteban et al., 2019). Nuisance
regressors included global signal, cerebral spinal fluid (CSF), white matter (WM), the six motion
parameters, their temporal derivatives, and their first order and quadratic expansion. Censoring
included a framewise displacement threshold of 0.5mm, a DVARS threshold of 5, a high pass
filter of 0.01, and a low pass filter of 0.08. Spatial smoothing of 4 mm was applied.

4.3.3 Network Nodes
We build upon Chan et al. (2014) and Han et al. (2018) by creating nodes from our

oldest-old sample. Since our sample of oldest-old adults was larger and included more fMRI data
per participant than Han et al. (2018) or Chan et al. (2014), we generated nodes from our sample
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using the same methods. Han et al. (2018) showed that while functional connectivity
boundary-based parcellation of the human cortex was generally consistent across the lifespan,
the boundaries become less similar to the younger adult boundaries as cohorts get older.
However, the relationship between increasing age and decreasing system segregation was still
intact even with older adult nodes (Han et al., 2018). This difference between young and
oldest-old adult parcellations led us to use the same methods of boundary-based parcellation as
Han et al. (2018) (Figure 7, Part A), the method of detection of local minima ROIs as Chan et al.
(2014) (Figure 7, Part B), and network membership identification from the parcellation by Power
et al. (2011) (Figure 7, Part C) to assess system and network segregation.

Figure 7. Regions of Interest Identification. A: Functional connectivity boundary maps based on methods used by
(Han et al., 2018); B: Local minima ROIs based on methods used by (Chan et al., 2014); C: Local minima ROIs
with the color of Network Membership of ROIs based on parcellation colors that are shown underneath ROIs
(Power et al., 2011).

4.3.4 Calculation of Network Properties
In each participant, a mean time course was computed for each node from the atlas. A

node-to-node correlation matrix was formed by correlating each node’s time course with every
node (Figure 1). The matrix of Pearson’s r values was then transformed into Fisher’s z. Only
positive correlations were retained for all metrics except the within-network mean connectivity
for which both negative and positive values were incorporated. Within-network connectivity was
calculated as the mean node-to-node z-value of all the nodes within that network. Segregation
was calculated as within-network connectivity minus between-network connectivity, divided by
within-network connectivity (Chan et al., 2014; Wig, 2017). Participation coefficient and
modularity were calculated using the Brain Connectivity Toolbox (Rubinov & Sporns, 2010).
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4.3.5 Relating Cognition to Network metrics
Two forward selection hierarchical regressions were performed to assess the predictors of

overall cognition. For the first forward selection hierarchical regression, the data collection site
was entered as the first block, and association system metrics were entered as the second block,
including segregation, modularity, mean network connectivity, and participation coefficient. For
the second forward selection hierarchical regression, the data collection site was entered as the
first block, and metrics of the DMN, CON, and FPN were entered as the second block, including
participation coefficient, mean network connectivity, and segregation. Partial correlations with
the site as a covariate were assessed for variables within each regression, and Bonferroni
correction was used for multiple comparison correction.

A canonical correlation was performed to assess the relationship between the set of
cognitive domains (EF-SA, EF-C, and Memory) and the set of network metrics (participation
coefficient, mean network connectivity, and segregation of the FPN, CON, and DMN) (Figure 5)
(Thompson, 1991). Partial correlations with the site as a covariate were assessed for variables
within the canonical correlation (Figure 6).
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Supplemental Materials

Supplemental Table 1. Participant
Characteristics

Total, N=146 UAB1, N= 48
(32.9%)

UA2, N= 35
(24.0%)

UF3, N= 35
(24.0%)

UM4, N= 28
(19.2%)

Age (years), mean ± SD (range) 88.4 ± 3.18
(85-99)

88.4 ± 3.47
(85-98)

88.7 ± 2.98
(85-95)

89.1 ± 3.65
(85-99)

87.1 ± 1.70
(85-91)

Education (years), mean ± SD (range) 16.1 ± 3.03
(9-26)

15.7 ± 2.62
(12-22)

15.9 ± 2.89 (9-22) 16.5 ± 3.30
(10-22)

16.5 ± 3.52
(12-26)

Sex, N(%)

Female 79 (54.11%) 24 (50.00%) 18 (51.43%) 20 (57.14%) 17 (60.71%)

Male 67 (45.89%) 24 (50.00%) 17 (48.57%) 15 (42.86%) 11 (39.29%)

Race, N(%)

Non-Hispanic Caucasian 134 (91.78%) 44 (91.67%) 33 (94.29%) 35 (100.00%) 22 (78.57%)

African American 6 (4.11%) 4 (8.33%) 0 (0.00%) 0 (0.00%) 2 (7.14%)

Hispanic Caucasian 5 (3.42%) 0 (0.00%) 2 (5.71%) 0 (0.00%) 3 (10.71%)

Asian 1 (0.69%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 1 (3.57%)

Marital Status, N(%)

Widowed 74 (50.69%) 27 (56.25%) 16 (45.71%) 19 (54.29%) 12 (42.86%)

Married 54 (36.99%) 17 (35.42%) 12 (34.29%) 13 (37.14%) 12 (42.86%)

Divorced 13 (8.90%) 4 (8.33%) 3 (8.57%) 3 (8.57%) 3 (10.71%)

Living as Married/Domestic
Partnership

3 (2.06%) 0 (0.00%) 3 (8.57%) 0 (0.00%) 0 (0.00%)

Never Married 2 (1.37%) 0 (0.00%) 1 (2.86%) 0 (0.00%) 1 (3.57%)

Dominant Hand, N(%)

Right 131 (89.73%) 45 (93.75%) 29 (82.86%) 33 (94.29%) 24 (85.71%)

Left 15 (10.27%) 3 (6.25%) 6 (17.14%) 2 (5.71%) 4 (14.29%)

1UAB, University of Alabama at Birmingham; 2UA, University of Arizona; 3UF, University of Florida; 4UM, University of Miami
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Supplemental Table 2. Factor Loadings for
Cognitive Domains EF-SA Factor Memory Factor EF-C Factor

WAIS-IV Coding 0.807    

Trail Making Test A (lines/sec) -0.724    

Stroop Color-Word Reading Trial 0.667

WAIS-IV Symbol Search 0.612    

Trail Making Test B (lines/sec) -0.508   -0.318

CVLT II Long Delay Recall   0.755  

Craft Story Paraphrase Delay Recall   0.574  

Benson Figure Test Delay Recall   0.398  
Stroop Color Word-Inhibition Test

Interference     0.59

Digit Span Backward     0.514

WAIS-IV Matrix Reasoning     0.458

WAIS-IV Letter-Number Sequencing     0.42

Supplemental Table 3. Overall Cognition
Factor Loadings Factor 1
WAIS-IV Coding 0.749

Trail Making Test A (lines/sec) -0.649

Stroop Color-Word Reading Trial 0.496

WAIS-IV Symbol Search 0.714

Trail Making Test B (lines/sec) -0.65

CVLT II Long Delay Recall 0.458

Craft Story Paraphrase Delay Recall 0.328

Benson Figure Test Delay Recall 0.214
Stroop Color Word-Inhibition Test

Interference 0.182

Digit Span Backward 0.357

WAIS-IV Matrix Reasoning 0.453

WAIS-IV Letter-Number Sequencing 0.272
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