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Abstract 

Adolescence is a crucial developmental period in terms of behavior and mental 

health. Therefore, understanding how the brain develops during this stage is a 

fundamental challenge for neuroscience. Recent studies have modelled the brain as 

a network or connectome, mainly applying measures from graph theory, showing a 

change in its functional organization such as an increase in its segregation and 

integration. Topological Data Analysis (TDA) complements such modelling by 

extracting high-dimensional features across the whole range of connectivity values, 

instead of exploring a fixed set of connections. This study enquiries into the 

developmental trajectories of such properties using a longitudinal sample of typically 

developing participants (N = 98; 53/45 F/M; 6.7-18.1 years), applying TDA into their 

functional connectomes. In addition, we explore the effect of puberty on the 

individual developmental trajectories. Results showed that compared to random 

networks, the adolescent brain is more segregated at the global level, but more 

densely connected at the local level. Furthermore, developmental effects showed 

nonlinear trajectories for the integration of the whole brain and fronto-parietal 
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networks, with an inflection point and increasing trajectories after puberty onset. 

These results add to the insights in the development of the functional organization of 

the adolescent. 

Significance Statement 

Topological Data Analysis may be used to explore the topology of the brain along the 

whole range of connectivity values instead of selecting only a fixed set of 

connectivity thresholds. Here, we explored some properties of the topology of the 

brain functional connectome, and how they develop in adolescence. First, we show 

that developmental trajectories are nonlinear and better explained by the puberty 

status than chronological age, with an inflection point around the puberty onset. The 

greatest effect is the increase in functional integration for the whole brain, and 

particularly for the Fronto-Parietal Network when exploring functional subnetworks. 

1. Introduction 

Adolescence is a critical development period with substantial impact on body and 

behavior. Particularly, the brain undergoes structural and functional changes that are 

influenced by pubertal hormones (Vijayakumar et al., 2018; Laube et al., 2020). 

Moreover, these changes occur along with a consolidation of cognitive and executive 

performance (Baum et al., 2017; Chai et al., 2017). 

These insights had been addressed modelling the brain as a complex network 

of interacting components, either at task or rest conditions (Biswal et al., 1995; Smith 

et al., 2009). In this framework, the functional connectome is described by its system 

properties in biologically plausible terms, mainly using measures from graph theory 

(Rubinov and Sporns, 2010). Nevertheless, other methods had recently been applied 
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to address high-dimensional data such as Topological Data Analysis (TDA) 

(Sizemore et al., 2018; Expert et al., 2019). TDA models the connectome as a 

topological space and characterizes its interaction patterns as geometric features, 

allowing it to simplify complex structures at different scales (Giusti et al., 2016; 

Santos et al., 2019; Centeno et al., 2021). In particular, TDA applied to functional 

connectomes is not affected by the potential biases of connectivity thresholding nor 

brain segmentation (Lee et al., 2012; Gracia-Tabuenca et al., 2020). 

In terms of functional organization of the brain, previous cross-sectional 

studies have shown that the adolescent period is characterized by an increase of the 

modularity and specialization (Fair et al., 2009; Satterthwaite et al., 2013a; Gu et al., 

2015), with prominent effects in frontal and parietal systems, along with executive 

performance (Marek et al., 2015; Gracia-Tabuenca et al., 2021). However, as far as 

we are concerned, TDA in human connectomes have mainly been applied into 

neuropsychiatric disorders (Lee et al., 2012, 2017; Gracia-Tabuenca et al., 2020; Li 

et al., 2020), but not to characterize the typical development. There is still a huge 

degree of incertitude in this field due to the great variability between samples, sexes, 

and cultures (Sawyer et al., 2018), with special emphasis in the fact that some 

individuals have faster or slower pubertal development even when they have the 

same chronological age (Blakemore et al., 2010; Vijayakumar et al., 2018). To this 

regard, longitudinal trajectories and pubertal markers are highly valuable to describe 

adolescent development. 

Therefore, this study focuses on characterizing the development of the 

functional connectome in the adolescent period applying TDA into a longitudinal 

sample of typically developing subjects. In addition, the effect of pubertal status and 

linear vs. nonlinear trends are tested as well. 
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2. Methods 

2.1 Sample 

A general invitation was sent to local schools describing the study protocols and the 

inclusion/exclusion criteria. Inclusion criteria consisted of a full-term gestation (more 

or equal than 37 weeks). Exclusion criteria included academic year repetition and 

any neurological or psychiatric disorder identified with the MINI semi-structured 

interview. Signed informed consent for parents and verbal assent for minors was 

required. The study protocols followed the ethical principles of the Declaration of 

Helsinki and were approved by the Institutional Ethics Board. 

The sample consisted of 98 typically developing participants (53 females, 45 

males; age range: 6.7 - 18.1 years old). From those, 41 returned for a second 

session, and 16 for a third. Follow-ups occurred after 5 years and the second after 2 

years, respectively. 

 

2.2 Pubertal status assessment 

Participants fulfilled the Pubertal Development Scale (PDS; Petersen et al., 1988). 

PDS averages the response of five self-reported questions about growth spurt in 

height, pubic hair, and skin change for both sexes; plus breast growth and menarche 

for females and facial hair growth and voice change for males. Responses are 

absence (1), first signs (2), evident (3), and finished (4) pubertal spurt. Those 

participants under 10 years old were set to PDS level 1, following similar values in 

previous studies (Hibberd et al., 2015; van Duijvenvoorde et al., 2019). In addition, 8 

missing values (4 females) were estimated via Generalized Additive Mixed Model 
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(GAMM) with age-sex interaction locally estimated scatterplot smoothing (LOESS) 

curves. 

 

2.3 Imaging 

For each session, participants underwent an MRI protocol including a whole-brain 

fMRI sequence plus high-resolution T1-weighted images for anatomical reference. 

After five 'dummy' volumes for scan stabilization, a total of 150 fMRI volumes were 

obtained using a gradient recalled T2* echo-planar imaging sequence (TR/TE = 

2000/40 ms, voxel size 4×4×4 mm3). Participants were instructed to lay down, close 

their eyes, and not to fall asleep. In order to ease participants to remain awake, the 

fMRI scan was applied at the beginning of the MRI session and always in the 

morning. T1 images were obtained using a 3D spoiled gradient recalled (SPGR) 

acquisition (TR/TE = 8.1/3.2 ms, flip angle = 12.0, voxel size 1×1×1 mm3). All brain 

imaging was acquired with a 3T MR GE750 Discovery scanner (General Electric, 

Waukesha, WI), using an 8-channel-array head coil. However, 20 sessions were 

acquired with a 32-channel coil, thus a covariate was included in the subsequent 

analyses. 

 

2.4 Preprocessing 

Structural T1 volumes were denoised with non-local means (Manjón et al., 2010) and 

N4 bias field correction (Tustison et al., 2010). fMRI datasets were preprocessed 

using FSL v.5.0.6 (Jenkinson et al., 2012; RRID:SCR_002823). Preprocessing steps 

included slice timing, head motion correction, brain extraction, intensity 
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normalization, confound regression, spatial normalization, and 0.01-0.08 Hz band-

pass filtering. 

Considering that the pediatric population tends to move more inside the 

scanner (Satterthwaite et al., 2012), we implemented a strident strategy of 

confounding variables regression (Satterthwaite et al., 2013b). 36 parameters were 

regressed out from the fMRI time series, including the six head-motion estimated 

parameters plus the average time series of the global signal, white matter, and 

cerebrospinal fluid. The derivatives of these nine variables were also added, and the 

quadratic terms of those eighteen. Additionally, the volumes with a framewise 

displacement (FD-RMS; Jenkinson et al., 2002) greater than 0.25 mm ("spikes") 

were included as confounds as well. This approach overpowers other widely used 

motion-mitigation methods (Ciric et al., 2017; Parkes et al., 2018; Graff et al., 2020). 

Eighteen sessions with less than four minutes without spike-volumes were discarded 

(Satterthwaite et al., 2013b; Parkes et al., 2018), therefore, the final sample 

consisted of 89 participants (39 male, age range: 6.7–18.1 y.o.), of whom 37 and 11 

had two and three longitudinal sessions, respectively. 

In addition, fMRI datasets were co-registered to their T1 volume with six 

degrees of freedom, and then warped twice using nonlinear SyN transformation 

(Avants et al., 2008; RRID:SCR_004757) to a pediatric template (NIHPD4.5-18.5; 

Fonov et al., 2011) and then to the MNI-152 standard template. 
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2.5 Functional Connectomes 

Brain networks were defined based on 264 regions of interest (ROIs) as nodes 

(Power et al., 2011). Pairwise edges were calculated through Pearson's correlation 

between the average fMRI preprocessed signal of every pair of ROIs. 

These ROIs consist of 5mm-radius spheres with high consistency in task and 

rest tested in large fMRI databases (Power et al., 2011). Moreover, this set of ROIs 

can be grouped in thirteen functional networks. This segmentation has been applied 

in numerous pediatric studies (Satterthwaite et al., 2013a; Gu et al., 2015; Marek et 

al., 2015; Chai et al., 2017; Ciric et al., 2017; Gracia-Tabuenca 2020, 2021). 

 

2.6 Topological Data Analysis 

The functional connectome can be modeled as a topological space by the means of 

the Rips complex, defined as Rips(F,�). F stands for the set of nodes (same as the 

connectome nodes) and � stands for the filtration value, which is a positive number 

that indicates which nodes of F with lower distance than it are connected. Then, the 

set of connected nodes of the Rips complex varies as a function of �. Additionally, 

algebraic properties can be extracted from the Rips complexes, the so-called Betti 

numbers. Specifically, Betti numbers of order zero or Betti-0 (B0) accounts for the 

number of components (i.e., the sum of groups of connected and isolated nodes), 

Betti-1 (B1) accounts for the number of "holes" in the two-dimensional space 

between connected nodes (Figure 1), and so on (for extensive review on TDA, we 

suggest Edelsbrunner et al., 2000; Sizemore et al., 2019). 
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Figure 1. Betti-0 and Betti-1. Set of 20 nodes, eight filtration values ε, represented as 

the circle diameter and their corresponding Betti-0 (B0) and Betti-1 (B1). At ε = 0 the 

number of components (Betti-0) is equal to the number of nodes, even without links 

there are no holes. As the filtration value increases, the number of components 

(Betti-0) reduces while the number of holes (Betti-1) increases. A hole is a polygon 

with four or more sides, by definition a triangle is not a hole and if this is the case, we 

put a triangular surface (light blue). Eventually it will reach a single component 

containing all nodes and the number of holes becomes zero. Blue triangles are not 

holes as they are surfaces between triads of nodes. 

 

In this study we focused exclusively on B0 and B1. As � increases, the number of 

isolated nodes decreases in favour of the connected nodes, that is the B0 decreases 

and eventually will reach a single component where every node of F is connected 

(Figure 1). In contrast, at low values of � there are no holes in the connected pattern 

of the topological space because there are not enough connections to build them. 

Similarly, at high values of � the holes are "filled" because all pairwise connections 
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within the component are accomplished. These holes represent serially distributed 

connections of nodes without shortcuts between them, while a filled hole means that 

those nodes are densely connected between them (Sizemore et al., 2018). 

Therefore, the greater amount of holes (i.e., B1) is reached at intermediate values of 

�. Both processes can be characterized by Betti curves as a function of � (Figures 2 

and 3). 

The distance between nodes was set as one minus their corresponding 

Pearson's correlation (i.e., their functional connectivity edge), following Lee et al. 

(2012): d(xi, xj) = 1 - r(xi, xj). Being r the Pearson's correlation between nodes xi and 

xj. B0 and B1 curves were computed using the TDA R-package (Fasy et al., 2014), 

and were summarized by means of the area under the curve (AUC). The AUC 

accounts for the overall process of the Betti numbers along all possible values of �. 

Low scores of B0-AUC can be interpreted as a fast transition to the single 

component, while higher scores imply a more segregated configuration of the brain 

network. Meanwhile, low scores of B1-AUC mean that distributed connected 

components rapidly bind to one another, and higher scores imply an increase in the 

number of holes within the network (i.e., a more distributed connectivity structure). 

Furthermore, to discard that the observed results can be obtained by chance, 

a null distribution of Betti curves was generated by bootstrapping 1000 connectomes 

extracted from the original sample whose edges were randomly rewired (Giusti et al., 

2015; Gracia-Tabuenca et al., 2020). 
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2.7 Developmental trajectories 

Developmental effects were tested using linear mixed-effects (LME) and nonlinear 

generalized additive mixed models (GAMM). Six models were applied: two LME for 

age and age-sex interaction, two GAMM fitting smooth splines for age and age-by-

sex. However, given that PDS is an ordinal and not a continous scale, nonparametric 

locally estimated scatterplot smoothing (LOESS) terms for PDS and PDS-sex 

interaction were included in the two remaining GAMMs. Every model included 

random-effects for the intercept plus average head motion (FD-RMS) and coil as 

confounds. Random-effects were estimated via maximum likelihood. Models were 

implemented using R libraries: LME via lme4 (Bates et al., 2007; 

RRID:SCR_015654), GAMM with splines via gamm4 (Wood et al., 2017), GAMM 

with LOESS via gamlss (Stasinopoulos and Rigby, 2007). Model selection was set 

by the lowest Akaike Information Criterion (AIC; Akaike, 1974). The AIC evals a 

model by the tradeoff between its complexity and its goodness of fit. That is, the 

subtraction between the number of parameters (k) and the log-likelihood function 

(lnL) by a factor of two (i.e., AIC = 2k-2lnL). 

In addition, developmental effects within the model were tested using a "drop-

term" Likelihood Ratio Test (LRT) approach. The LRT contrasts the full model in 

relation to a null model without the term of interest. Also, LRT was applied for the 

thirteen functional networks of the Power et al. (2011) segmentation, where their 

corresponding significance was corrected for multiple testing using a False 

Discovery Rate (FDR) q < 0.05 (Benjamini and Hochberg, 1995). 
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2.8 Code accessibility 

All preprocessed data and the code described in this study are freely available online 

at ###. Also, the code is available as Extended Data 1. Present results were 

computed with an Intel Core i7-4790 CPU @ 3.60�GHz�×�8 with Ubuntu 18.04.3 

LTS 64-bit. 

 

 

3. Results 

The sample intercept B0 curve, that is, the representative curve for the whole 

sample, showed an inverse sigmoid pattern with a slower transition to the single 

component compared to the permuted data (Figure 2). On the other hand, the B1 

curve shows a bell-shape with a maximum of 104.69 "holes" at 0.432 filtration value, 

while the permuted data shows a maximum of 183.92 at � = 0.438 (Figure 3). 
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Figure 2. Sample intercept B0 curve (with 95% confidence interval) in blue. Average 

of 1000 bootstrapped connectomes with random edge-rewiring B0 curve (with 95% 

confidence interval) in gray. 
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Figure 3. Sample intercept B1 curve (with 95% confidence interval) in blue. Average 

of 1000 bootstrapped connectomes with random edge-rewiring B1 curve (with 95% 

confidence interval) in gray. 

 

Regarding model selection for the developmental effects, the GAMM for the PDS 

showed the lowest AIC for B0-AUC (834.83) and B1-AUC (615.71) (Table 1).  

 

Table 1. Akaike Information Criterion (AIC) for Betti-0 (B0) and Betti-1 (B1) areas 

under the curve (AUC) at every developmental model: linear mixed-effects models 

for age (LME-Age) and age-sex interaction (LME-Age.Sex), generalized additive 

mixed models with smooth splines for age (GAMM-Age) and age-by-sex (GAMM-

Age.Sex), and with LOESS terms for PDS (GAMM-PDS) and PDS-sex interaction 

(GAMM-PDS.Sex). The smallest values in bold. 
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 LME-Age LME-
Age.Sex 

GAMM-Age GAMM-
Age.Sex 

GAMM-
PDS 

GAMM-
PDS.Sex 

B0-AUC 863

.05 

864.8

6 

861.3

3 

862.1

9 

83

4.

83 

837

.84 

B1-AUC 627

.61 

631.3

3 

627.4

9 

630.2 61

5.

71 

622

.15 

 

The B0- and B1-AUC trends along the PDS show an initial increase from level 1 to 2, 

followed by a soft decline after that (Figure 4). However, only the PDS term was 

significant for the B0-AUC (LRT = 12.18; DOF = 2.11; p = 0.0026). Furthermore, the 

random-effects term was only significant for the B0-AUC (LRT = 79.86; DOF = 30.96; 

p = 3.38e-06). 
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Figure 4. Scatter-plots of the GAMM PDS-LOESS (left) and age-spline (right) models 

for the B0 (top) and B1 (bottom) area under de curve (AUC) residuals (after 

regressing out in-scanner motion and head-coil) in relation to the pubertal scale 

(PDS) or age. Thin lines represent individual trajectories; thick black lines represent 

the sample curve (with 95% confidence-interval shadow). 

 

Concerning the developmental effects at the functional network level, PDS term 

showed strong effects in the Fronto-Parietal (FPN) and moderate effects in the 

Auditory (AUD), sensorimotor-hand (SMH), and subcortical (SUB) networks for the 

B0-AUC (Figure 5). Only the FPN had a significant effect after FDR correction (LRT = 

26.18; DOF = 7.21; p = 5.52e-04), which shows a nonlinear trend similar to that for 
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the whole brain network (Figure 5). No effects (even uncorrected) were found for the 

B1-AUC. 

 

Figure 5. Brain maps of the Likelihood Ratio Test of the GAMM LOESS of the 

Pubertal Developmental Scale (PDS) term for B0-AUC at the functional networks 

level. Mapping was based on ROI corresponding to the consensus area according to 

Power et al. (2011), using BrainNet Viewer (Xia et al., 2013; RRID:SCR_009446). 
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Figure 6. Scatter-plot of the GAMM LOESS-PDS model for the B0-AUC residuals 

(after regressing out in-scanner motion and head-coil) of the Fronto-Parietal Network 

(FPN) in relation to the pubertal scale (PDS). Thin lines represent individual 

trajectories; thick black lines represent the sample LOESS curve (with 95% 

confidence-interval shadow). 

 

4. Discussion 

In this study, we have applied Topological Data Analysis (TDA) on the functional 

connectomes of a longitudinal sample of typically developing children and 

adolescents. TDA features show a segregated connectivity structure compared to 

random networks, but even segregated, the brain connectomes exhibit a more dense 

connectivity pattern within neighbours connections. Furthermore, this topology 
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develops in a nonlinear fashion through adolescence, better described by the 

pubertal status than by chronological age. This nonlinear effect exhibits a faster 

connectivity of the whole-network and within the Fronto-Parietal Network just after 

the onset of the pubertal signs. 

Regarding the average Betti curves, the sample intercept for the B0 curve 

showed an inverse sigmoid pattern that replicates previous findings in functional 

connectivity fMRI (Liang and Wang, 2017; Gracia-Tabuenca et al., 2020; Li et al., 

2021) and PET (Lee et al., 2012) studies. Furthermore, the average B0 curve of the 

randomized data reached the single component faster than the observed data, 

evincing a less segregated network. This random pattern was also replicated in 

another pediatric sample showing the same faster transition to a single component 

(Gracia-Tabuenca et al., 2020). Concerning the B1, both the sample intercept and 

randomized curves exhibit a bell-shaped curve with an approximate similar filtration 

value at their maxima, but lower area for the observed data. This evinces a 

connectivity structure of lower number of holes, or more densely connected at the 

local level in the real data compared to the random networks. Thus, B0 tells how fast 

the whole-network goes from isolated to all-connected nodes, while B1 reflects how 

densely connected are those elements already connected. It is noticeable that on 

average B0 tends to reach the single component at filtration values of �=0.5, but at 

that point B1 curves display their peak number of “holes”. This implies that these 

TDA features not only reflect different levels of connectivity structure, but also, they 

occur at different connectivity strengths. 

About the developmental effects of the TDA features, several models were 

tested to address the area under the B0 and B1 curves. Nonlinear additive models 

surpass the goodness of fit of the linear ones, even controlling for the extra number 
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of parameters. Specifically, when considering the pubertal status (assessed by the 

PDS) without its sex interaction is the model that better fits the AUC for both B0 and 

B1. Hence, the development of the functional connectome topology better adjusts the 

pubertal status than chronological age. This is a relevant finding considering that the 

pubertal status takes into account non-continuous changes as well as more subtle 

sex effects than a nonlinear age-sex interaction. No previous studies have 

addressed the adolescent connectome via TDA, but recent studies have shown a 

better adjustment with the pubertal status for the developmental trends of the 

functional connectome (based on graph theory; Gracia-Tabuenca et al., 2021) or the 

frontostriatal functional connectivity (van Duijvenvoorde et al., 2019). 

Concerning whole-brain inferences, the AUC for both B0 and B1, showed an 

initial increase from PDS level 1 to 2, but decreased afterwards. In contrast, when 

focusing on the chronological age, the turning point is approximately at 12 years old, 

but showing smoother trends compared to PDS. This means a faster transition to the 

single component for the B0, while a lower rate of geometric holes for the B1 at the 

end of the adolescence when considering PDS or age. But only B0-AUC effects were 

significant, which evinces that those changes were more prominent at lower filtration 

values, i.e., edges with higher functional connectivity (or higher integration). Although 

TDA was not applied in developmental connectomes yet, previous work on brain 

functional organization during this period has shown increases along age in the 

functional segregation (Fair et al., 2009; Satterhwaite et al., 2013a; Gu et al., 2015) 

and integration (Marek et al., 2015). In addition, when considering the PDS, it has 

been shown that functional centrality, segregation, efficiency, and integration 

increases at the end of adolescence (Gracia-Tabuenca et al., 2021). All these 

studies demonstrate the change in configuration of the brain functional organization 
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during adolescence. Lastly, when testing the random-intercepts effect within the 

developmental models, in the additive model with PDS for the B0-AUC its random-

effects showed a strong effect, which shows the relevance of intra-individual 

trajectories even though of the loss of degrees of freedom.  

Likewise, the B0-AUC along PDS effect was stronger in the Fronto-Parietal 

Network (FPN), showing a similar nonlinear trend as that for the whole brain 

network. This demonstrates a faster integration of the FPN nodes at the end of the 

adolescence. The FPN is a key module of the connectome that is involved in the 

response to high-demanding tasks (Zanto and Gazzaley, 2013) and it is a 

fundamental system for the consolidation of executive behavior in the adolescent 

period (Baum et al., 2017; Chai et al., 2017). Other works on functional connectomes 

have reported an increase of the FPN connectivity along with other attention related 

systems at the late adolescence (Kwang et al., 2013; Marek et al., 2015; Gracia-

Tabuenca et al., 2021). Previous studies in animal models have shown brain 

plasticity associated with puberty-related hormonal changes (Sisk & Foster, 2004). 

Neuroimaging studies controlling for the age effects, have also revealed structural 

changes associated with puberty stage in humans, mainly showing decreased gray 

matter density but increased white matter density in later stages (Peper et al., 2009; 

Perrin et al., 2009; Bramen et al., 2011; Herting et al., 2012). This work contributes 

to the emerging evidence that puberty onset greatly influences the development of 

the brain functional connectivity (van Duijvenvoorde et al., 2019; Gracia-Tabuenca et 

al., 2021). 

Some limitations of this work should be taken into account. We used relatively 

short scans which may affect the quality of the data, nonetheless it was considered 

sufficient at the time of the first acquisition (Van Dijk et al., 2010). Furthermore, we 
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applied a strident quality control of the data discarding those datasets with less than 

80% good quality data in terms of motion artifact. Nonetheless, the Topological Data 

Analysis (TDA) complements other network modelling strategies by extracting high-

dimensional features across the whole range of connectivity values, instead of 

exploring a fixed set of connections. 

 

5. Conclusion 

The present study focused on the characterization of functional connectomes as 

topological spaces in a longitudinal sample of typically developing children and 

adolescents. Observed Topological Data Analysis (TDA) features showed higher 

segregation and denser local connections compared to random networks. However, 

during adolescence this effect changes with a nonlinear trend that increases the 

integration of the whole-brain and the Fronto-Parietal Network, particularly after the 

onset of the pubertal signs. These results provide evidence of the nonlinear, puberty-

dependent developmental trajectories of the topology of the brain network. With the 

advantage that these properties arise exploring the whole range of connectivity 

strengths instead of focusing on a small set of them. Being adolescence a critical 

period for the appearance of the first signs of mental health disorders, we expect 

these trajectories may be of interest for studying both normal and altered 

development. 
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