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8 Abstract

9 It is significant but challenging to explore a subset of robust biomarkers to distinguish cancer from normal 

10 samples on high-dimensional imbalanced cancer biological omics data. Although many feature selection 

11 methods addressing high dimensionality and class imbalance have been proposed, they rarely pay attention 

12 to the fact that most classes will dominate the final decision-making when the dataset is imbalanced, 

13 leading to instability when it expands downstream tasks. Because of causality invariance, causal 

14 relationship inference is considered an effective way to improve machine learning performance and 

15 stability. This paper proposes a Causality-inspired Least Angle Nonlinear Distributed (CLAND) feature 

16 selection method, consisting of two branches with a class-wised branch and a sample-wised branch 

17 representing two deconfounder strategies, respectively. We compared the performance of CLAND with 

18 other advanced feature selection methods in transcriptional data of six cancer types with different 

19 imbalance ratios. The genes selected by CLAND have superior accuracy, stability, and generalization in 

20 the downstream classification tasks, indicating potential causality for identifying cancer samples. 
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21 Furthermore, these genes have also been demonstrated to play an essential role in cancer initiation and 

22 progression through reviewing the literature.

23 Keywords: invariance principles of causality, feature selection, imbalanced data, de-confounder

24 Author Summary

25 Selecting trustworthy biomarkers from high-dimensional data is an important step to help researchers and 

26 clinicians understand which genes play key roles in cancer development and progression. A large number 

27 of machine learning-based feature selection algorithms have been generated in recent years for biomarker 

28 discovery. However, these methods usually show unstable results in the face of class-imbalanced 

29 biological data, making it seem unreliable for researchers. Here we introduce the causal theory with the 

30 property of causal invariance to aid in the design of feature selection algorithms, analyze how imbalanced 

31 distributions affect feature selection methods, and propose a novel causality-based feature selection 

32 method. The method with bilateral structure adjusts the data distribution from both class-wise and 

33 sample-wise to eliminate the effect of imbalance on the results. Additionally, CLAND can simultaneously 

34 address the nonlinearity and high-dimensionality of cancer data, which broaden its application scope. We 

35 conducted extensive experiments on six real imbalance cancer datasets and obtained efficient and stable 

36 results, while the obtained biomarker has significant biological significance.

37 1 Introduction

38 Identifying biomarkers with distinguishing ability is a critical step towards cancer diagnosis and prognosis 

39 prediction and helps further understand the mechanism of cancer initiation and various phenotypes. Over 

40 the years, many computational feature selection methods have been proposed to identify critical 

41 biomarkers for cancer and cancer subtypes from the data generated by high-throughput technologies [1]. 
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42 However, as real data are usually imbalanced for each class, such as a large number of cancer samples 

43 versus very few normal samples, the selected features are highly partial to large class [2], and such a subset 

44 of features is often worthless even if it can achieve high classification accuracy. In addition, most existing 

45 feature selection methods have poor robustness and stability when the sample sizes are imbalanced. For the 

46 same dataset, features selected by various methods are usually very different. Furthermore, when 

47 combining selected features with downstream classification or clustering methods, their performances 

48 always vary greatly. The instability raises serious doubts about the reliability of the selected genes as 

49 candidate biomarkers [3]. 

50 Conventionally, this issue is attributed to the improper assumption of relatively balanced distribution 

51 among different classes, and researchers have put forward a series of methods to address it. The 

52 sampling-based method is one of the simplest and most effective types. They use the known dataset 

53 distribution to re-balance the data distribution, including undersampling for majority class and 

54 oversampling for minority, thereby strengthening the learning of the minority [4]. Nevertheless, this 

55 method destroys the original data distribution, leading to over-fitting to the minority class or under-fitting 

56 to the majority. Another popular type is the cost-sensitive learning method based on heuristic strategies. 

57 They add some constraints to weight conditions based on the original standard loss function so that the 

58 calculation of the final loss is partial to a specific direction to reduce the bias to the majority class. 

59 However, such methods usually require appropriate prior knowledge to establish a corresponding cost 

60 matrix [5].

61 However, regarding the poor performance of traditional feature selection methods for imbalanced data, we 

62 suggest the fundamental reason is that the features are obtained by the association with sample labels but 

63 not the stable causal relationship. Unlike the association, causality is invariable and can always be 
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64 identified no matter the data distribution. It has been widely used in economics [6] and epidemiology[7] 

65 for many years. Moreover, the introduction of causal mechanisms in the machine learning methods has 

66 been demonstrated to enhance their performance, stability, and interpretability [8-10]. Hence, causal 

67 inference has attracted more and more attention and has been applied in many scenarios, including image 

68 classification and recognition, reinforcement learning and transfer learning. The biggest challenge for 

69 causal inferences from observed data is to remove confounders, which are the common causes of the 

70 treatment variable and outcome. Assuming imbalanced distribution as the main confounder of selected 

71 features and sample labels prediction to identify cancer genes through re-examining and solving the 

72 problems of imbalanced transcriptomic data, we propose a novel feature selection method based on causal 

73 invariance called Causality-inspired Least Angle Nonlinear Distributed (CLAND).

74 We design a two-branch structure representing two deconfounder strategies respectively to remove the 

75 influence of imbalanced data distribution for feature selection. This structure can prevent the overfitting of 

76 the minority class without losing data information. Combining with Hilbert–Schmidt Independence 

77 Criterion Lasso, CLAND can simultaneously address other issues of biological cancer data, such as the 

78 extremely high-dimensional and non-linear association between features and sample labels. When applying 

79 CLAND into several sets of imbalanced cancer transcriptomic data, the selected features can distinguish 

80 between cancer and normal samples well and outperform state-of-the-art methods on efficiency and 

81 stability. Additionally, several biomarkers obtained by our method have considerable biological 

82 significance and have been widely recognized in clinical trials and cancer treatment.
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83

84 Figure 1: The framework of CLAND consists of three elements: 1) The class-wise causal branch taking 

85 re-balanced data as input; 2) The sample-wise causal branch taking the whole data as input; 3) The 

86 ensemble learning strategy balances the weights of the features generated by the two branches by using the 

87 super parameter .

88 2 Related works

89 Feature selection methods: The methods can be divided into filter, wrapper, and embedded [11, 12]. 

90 Specifically, embedded methods embed feature selection into the process of model construction. As the 

91 relationships between biological factors are usually non-linear, we need a feature selection algorithm for 

92 high-dimensional data to capture the non-linear relationship between input and output. Minimum 

93 redundancy and maximum relevance (mRMR) [13] is a widely used non-linear feature selection method, 

94 which uses mutual information as the evaluation measure and selects the most relevant features to the 


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95 output and is independent of the others. Efficient and robust feature selection (RFS) [14] reduces the 

96 influence of noise data by using  norm in the loss function and regularization and obtains sparse 

97 feature groups simultaneously. Hilbert–Schmidt Independence Criterion Lasso (HSIC Lasso) [15], which 

98 can find a small number of features from high-dimensional data in a non-linear manner, can be considered 

99 a convex variant of mRMR, a state-of-the-art method of non-linear feature selection. However, these 

100 methods do not consider the imbalance of data sets.

101 Re-balancing training: The core idea of the most widely used solution to the imbalance problem can be 

102 said to re-balance the contribution of different classes in the training phase. It can be divided into three 

103 categories: data-level method, algorithm-level method, ensemble method. The data-level method mainly 

104 modifies the number of samples in the dataset to make it suitable for standard learning, including 

105 under-sampling approaches  [16, 17], over-sampling approaches [18, 19], and hybrid approaches [20, 21]. 

106 The algorithm-level method mainly modifies the existing methods to reduce the tendency of majority 

107 classes. Cost-sensitive learning[22, 23] is the commonly used strategy. The ensemble method combines a 

108 data-level or algorithm-level method with an ensemble learning method to obtain a robust strong classifier. 

109 However, these integration-based methods are sensitive to noise and have poor applicability.

110 Casual inference: It has been demonstrated that machine learning methods could improve their 

111 interpretability, transferability, and stability when integrating causal invariance [24]. For example, image 

112 classification and detection task in computer vision: [25] uses causal inference to eliminate prediction bias 

113 caused by momentum in the training process; target detection task：[26] uses causal inference to eliminate 

114 spurious associations between targets and between targets and scenes. In addition to the field of computer 

115 vision, the research of causal inference-assisted machine learning also focuses on learning-to-rank[27, 28] 

116 and recommendation [29, 30], etc, which apply the user's implicit feedback as the label.
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117 3 Methodology

118 Symbol definition: Let  denote the input data with n samples with m 

119 features, and  denote the output (or labels) in which  is the label of xi.  This 

120 paper only considers feature selection for the binary classification problem, in which the class with fewer 

121 samples is minority class also marked as positive class P and the class with more samples is majority class 

122 also marked as negative class N, and use imbalance ratio (IR) to quantify the degree of class imbalance of 

123 a dataset as follow:

124 .

125 The goal of feature selection from biological data is to select k (k <<m) features most relevant to the label 

126 by exploiting the biological data .

127 Evaluation criteria: In this article, we use the feature selection method to selected the task-related 

128 features from the dataset, but we cannot directly evaluate the effect of the selected features. Therefore, we 

129 evaluate the amount of information retained in the subset feature by evaluating the performance of 

130 different classifiers based on these features. 

131 3.1 A Casual view on the class distribution

132
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133 Figure 2 The proposed causal graph. D: the label probability distribution, F: selected features by a given 

134 feature selection method, E: efficiency of classifiers.

135 To systematically study how imbalanced class distribution affects feature selection, we introduce 

136 confounder [31, 32], the common cause of treatment and outcome, and the main factor leading to spurious 

137 statistical correlation. Deconfounder can ensure the stability of learning to a certain extent. For instance, 

138 considering the relationship between "yellow finger" and "lung cancer," it is not difficult to find that many 

139 people with yellow fingers are more likely to develop lung cancer. Nevertheless, we cannot say that yellow 

140 fingers can cause lung cancer, and obviously, there is no causal relationship between them. As we know 

141 that smokers are prone to lung cancer, and smokers are also prone to yellow fingers, that is, "yellow 

142 finger"←smoke→"lung cancer." Smoke is the common cause of infection and death and makes a "pseudo 

143 correlation" between infection and death, also called "bias." Therefore, the causality can be obtained only 

144 when the observation data is used correctly, and the influence of confounder (also known as confounder 

145 bias) is removed.

146 Then we constructed a causal diagram [32] in Figure 2 (left), where nodes represent variables and arrows 

147 represent the direct causal effect with three variables: label probability distribution (D); the feature subset 

148 by a given feature selection method (F); the efficiency of classifiers (E). A causal graph is a directed 

149 acyclic graph used to show how the variables interact with each other through causal relationships. D is a 

150 confounder in the diagram, which is the common cause of F (via D→F) and E (via D→E).

151 D→F indicates that the feature subset is selected from the labeled dataset by the feature selection method. 

152 D→E, it is evident that the label probability distribution will affect the efficiency of the classifier. 

153 Therefore, when we evaluate the subset feature's information by the prediction efficiency of classifiers 

154 (F→E), D is a confounder leading to the confounding association flow from F to E. 
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155 Let us make some formal explanations and use the Bayes rule to express correlations in Figure 2 (left):

156  (1)

157 Where each d is the stratification of D and constitutes the whole D. Confounder D introduces the bias 

158 through P(d|F). To illustrate, suppose M represents a feature selection method (e.g., mRMR), f* represents 

159 the feature set filtered by M, F={f*,M} represents the overall information. For example, 

160 P(d=positive-class|F={f*,M}) is small while P(d=negative-class|F={f*,M}) is large. According to 

161 Equation 1, the likelihood sum will be attributed to P(E|F={f*,M},d=negative-class) more than 

162 P(E|F={f*,M},d=positive-class), so the prediction from F to E will be focused on negative-class rather than 

163 the F itself.

164 To eliminate the influence of imbalanced class distribution (confounder), we adjust D towards balancing 

165 label distribution which means D and F is independent. As shown in Figure 2 (right), we balanced the 

166 distribution of the label and eliminate the confounding association. Based on the causal view of the 

167 influence of label distribution on feature selection, we propose a causality inspired feature selection 

168 method called CLAND, which contains three modules and form an efficient and stable feature selection 

169 strategy. Specifically, we designed two branches as shown in Figure 1, the class-wise branch and the 

170 sample-wise branch and used the ensemble strategy to gather the two branches.

171 3.2 Feature selection by LAND

172 We consider a non-linear extension of LARS [33] leveraging Hibert–Schmidt independence criterion 

173 (HSIC) [34] called Least Angle Non-linear Distributed (LAND) feature selection [35]. 

( | ) ( | , ) ( | )
d

P E F P E F d P d F 
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174 Specifically, the LAND is a LARS variant of HSIC lasso[15], which can be used to process tens of 

175 thousands of features and tens of thousands of samples, and has good prediction ability and interpretability. 

176 The optimization problem of HSIC Lasso for paired data  is formulated as:   

177

178 Where  is the Frobenius norm,  is the  norm,  and  are the centered 

179 Gram matrices,  is the centering matrix,  is n-dimensional identity matrix,   is the 

180 n-dimensional vector whose elements is all ones.  is the delta kernel function for output, 

181  is the Gaussian kernel matrix of the k-th feature input, and ,  

182 is the regression coefficient vector,  is the regularization parameter. LAND 

183 uses LARS to solve the problem and selects features one by one, and finally gets the most relevant and 

184 least redundant feature set. To illustrate the reason. The first term of the objective function can be rewritten 

185 as:

186

187 NHSIC(u,y) is the normalized version of HSIC[34] based on kernel function to estimate the dependency 

188 between two variables. NHSIC (y,y) is a constant variable and can be ignored in the training process. The 

189 larger the value , the stronger the dependency between the two variables. If and only 

190 if , the two variables are independent and when u=y, . If the dependency 

191 between the k-th feature and y is strong, the value of  is close to 1 and leads to a large 

192 value of the regression coefficient βk, which means the k-th feature should be preferred. If the k-th feature 

193 is independent of y, the value of  is close to zero, and βk will be very small under the 
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194 influence of  norm, which means the k-th would not be selected. Moreover, if there is a strong 

195 dependency between k-th and l-th features, which means they are redundant with each other，and the value 

196 of  is close to one and either of βk and βl would be very small, which ensures that features 

197 with the redundant relationship will not be selected at the same time.

198 LAND iteratively selects non-redundant features strongly related to the output and defines the selection 

199 score of the k-th feature as , where k* is the feature that has 

200 been selected. Intuitively, this score represents a compromise between the relevance of k-th feature k and 

201 output and the degree of redundancy between k-th feature and previously selected features. At the same 

202 time, due to the use of HSIC [34], which can capture the non-linear relationship between features and 

203 between features and output, the problem of feature-wise non-linear has been solved simultaneously.

204 3.3 Double branch structure and ensemble strategy

205 This section, we will explain the two-branch structure proposed in framework and ensemble strategy 

206 shown in Figure 1 in detail.

207 As analysis in Section 3.1, the label probability distribution becomes a confounder while the dataset loss 

208 the label balance (IR>1). So for the imbalanced label distribution, we directly adjust it to a balanced 

209 distribution in the training process which forces the causal effect from F to E not influenced by imbalance 

210 distribution, by the class-wise method and the sample-wise method. 

211 Class-wise causal branch: For confounder D, this branch trans it to several balanced datasets 

212  by a balanced sampler and the class-wise implementation is defined as:

213         (2)

1l
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214 The balanced sampler takes oversampling on the positive class and full sampling on the negative class to 

215 use the information contained in all samples fully. Moreover, noise-based data enhancement is set to 

216 prevent overfitting. By random sampling without putting back, the negative class is divided into s=sup{IR} 

217 sets, and each of them combines with the positive class samples as sub-dataset, and the i-th sub-dataset is 

218 labeled as . LAND is used to calculate each sub-datasets the feature selection score vector 

219 and the i-th weight vector is labeled as . Combine s weight vector as the branch weight score 

220 by: .

221 Sample-wise causal branch: This branch is sample-wise, builds a reweighted version of observed 

222 distribution by calculating the weight of each sample  to eliminate the influence 

223 of confounder and the implementation is defined as:

224        (3)

225 where D’ is the dataset with the weight of each sample and fE(.) represents the evaluation efficiency of the 

226 classifiers. By assigning more weights for positive samples and less for negative samples, the feature 

227 selection method would more focus on the positive class in the training process and balance the label 

228 distribution on the sample-wise. 

229 To evaluate the affect/weight of each sample on the decision of feature selection, we employ the concept of 

230 Margin Vector Feature Space [3] and map the samples in the original feature space to the margin vector 

231 feature space by decomposing the margin of a sample along each dimension. For each sample 

232  in dataset  is mapping as , the jth component is 

233 formulated as:
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234

235 where xh and xk represent the samples with the same and opposite label to xi with the amount K and H, 

236 respectively. For the first item in the equation, the value of the positive class with K>H is larger than the 

237 value of the negative class with K<H through accumulation operation. And for the second item, the value 

238 of the positive class is less than the negative class. So in the new feature space, the positive class has been 

239 mapping as a group far away from the negative class, and the degree of deviation increases with the 

240 increase of IR. 

241 After the margin vector feature space is generated, the samples in the original space are weighted by the 

242 difference of samples in the new space. As the positive class samples always exhibit largely distinct 

243 margin vectors from the negative, we assign weights to a sample according to its deviation with rest of 

244 samples to increase the weight of the positive class. The formulation of the weight of  we 

245 proposed is:

246             (4)

247 where  is the Euclidean Distance of two samples in the new feature space. 

248 Therefore, we use the sample-wise causal branch to eliminate the influence of imbalance, and calculate the 

249 feature score vector Wsample-wise through LAND. We use this branch as a fine grained supplement to the 

250 class-wise causal branch.
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251 Ensemble learning strategy: Integrate the score vectors generated by the two branches to eliminate the 

252 influence of confounder from both class-wise and sample-wise. Here, we define a propensity parameter 

253 labeled as α and calculated by:

254               (5)

255 Specifically, the Wclass-wise is multiplied by the α, the Wsample-wise is multiplied by (1-α), and the two new 

256 score vectors are added (Figure 1). Furthermore, the feature set is obtained according to the finally 

257 obtained score vector W. Although class-wise learning and sample-wise learning are both worthy of 

258 attention, as the imbalance ratio increases, our learning focus should shift to the class-wise branch to 

259 improve the accuracy of positive class recognition. Therefore, we designed a α-adaptive strategy based on 

260 IR. For different data sets, the larger the IR, the larger the α.

261 4 Experiment & Analysis 

262 In this section, we will introduce our experimental results on six real biological datasets. We tested the 

263 stability and accuracy of our proposed algorithm to extend to different kinds of classifiers. We also 

264 analyzed the effectiveness of the biomarker found by our algorithm. We evaluated the experimental results 

265 with multiple criteria and proved the power of our proposed method.

266 4.1 Data source and setup detail

267 To evaluate the efficiency of our method, we download the transcriptomic data of a total of 2028 samples 

268 consisting of 1827 cancer samples and 201 normal samples across six cancer types with different 

269 imbalance ratios (IR) from The Cancer Genome Atlas (TCGA) [36] database. We preprocessed datasets 

270 and deleted pseudogenes and the genes whose average expression values were less than 10. Table 1 lists 

271 the information of each dataset.

1
22 1, 1

IR

IR
 

   
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272 Table 1. Description of datasets.

Dataset #Genes #Samples IR

Kidney Chromophobe (KICH) 15608 91 2.64:1

Colon adenocarcinoma (COAD) 15418 311 6.59:1

Thyroid carcinoma (THCA) 15362 560 8.49:1

Head and Neck squamous cell carcinoma (HNSC) 15909 488 10.09:1

Esophageal carcinoma (ESCA) 5946 175 12.46:1

Bladder Urothelial Carcinoma (BLCA) 16088 403 20.21:1

273 We compared the performance of our proposed method with ReliefF[37], mRMR[13], MIFS[38], 

274 REFS[14], LAND[35]. As mentioned in Section 3.1, our proposed method is expected to have a stable 

275 performance regardless of the downstream classifier by eliminating the confounders. Therefore, we 

276 introduced six classical classifiers to test the effectiveness and stability of different feature selection 

277 methods, including NB (Naive Bayes), KNN (K-Nearest Neighbors), LR (Logistic Regression), RF 

278 (Random Forest), and GDBT (Gradient Boosting Decision Tree). To better evaluate the models' 

279 performance on imbalanced datasets, we used the confusion matrix as the evaluation index, which can 

280 reflect the number of each class that is correctly or incorrectly identified, including AUCPRC[39], 

281 F1-score[40], G-mean[41], and MCC[42]. Among them, MCC is the most sensitive to the results of 

282 imbalanced datasets.
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283 As the number of features in each dataset is much higher than the sample size (shown in Table 1), all the 

284 samples are used for feature selection, and 80% and 20% of them are used as the training set and test set 

285 for classifiers, respectively. We use the average result of 10 independent experiments to reduce 

286 randomness and show the mean and standard deviation in Table 2 and Supplementary A.1. We expect to 

287 retain as much information as possible with fewer features, so the ten most relevant features were selected 

288 in each method. 

289 4.2 CLAND is comparable to the state-of-the-art methods and has better stability

290

291 Figure 3: AUCPRC, F1-score, GM, MCC of 6 feature selection methods. The horizontal axis denotes the 

292 IR of the dataset in (a, b, c, d) and the number of selected features in (e, f, g, h). The vertical axis denotes 

293 the mean value of evaluation metrics.

294 We use five classifiers with four evaluation criteria to assess the performance of feature selection methods 

295 on six imbalanced datasets with different IR. As shown in Figure 3 (a-d), CLAND is superior to other 

296 methods in almost all the settings, and the advantages are gradually apparent as the IR of the data set 

297 increases. The performance of mRMR, MIFS, and RFS in the KICH dataset with the smallest IR is like 
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298 other methods, but as the IR increases further, their ability to predict the positive class decreases. When the 

299 IR value reached eight or more, the performance of ReliefF, mRMR, MIFS, and RFS all dropped 

300 significantly. Moreover, as IR changes, the performance of ReliefF is relatively stable, but it is still lower 

301 than LAND and CLAND. Table 2 shows the results of THCA, and the detailed results of other datasets are 

302 shown in Supplementary A.1. LAND is the basis of the CLAND method, and it can obtain a good feature 

303 set by capturing non-linear relationships between features and labels. However, when it comes to 

304 imbalanced data, its efficiency in all data sets is still inferior to CLAND, although higher than other 

305 baselines. With the change of IR, it exhibits noticeable oscillation  (Supplementary A.1).

306 Table 2. Detail results of THCA.

THCA

Model Metric ReliefF mRMR MIFS RFS LAND CLAND

AUCPRC 0.97±0.008 0.889±0.025 0.892±0.023 0.962±0.015 0.927±0.035 0.993±0.003

F1 0.943±0.012 0.943±0.012 0.943±0.012 0.943±0.012 0.943±0.012 0.969±0.014

GM 0.944±0.011 0.944±0.011 0.944±0.011 0.944±0.011 0.944±0.011 0.969±0.013
NB

MCC 0.479±0.048 -0.093±0.15 -0.044±0.125 0.462±0.042 0.269±0.172 0.795±0.066

AUCPRC 0.96±0.014 0.917±0.016 0.895±0.021 0.943±0.022 0.993±0.007 0.989±0.005

F1 0.959±0.012 0.95±0.01 0.943±0.012 0.96±0.012 0.989±0.005 0.985±0.005

GM 0.959±0.012 0.951±0.009 0.944±0.011 0.96±0.012 0.989±0.005 0.985±0.005
KNN

MCC 0.635±0.084 0.384±0.1 0.051±0.088 0.581±0.087 0.905±0.039 0.868±0.032

AUCPRC 0.938±0.019 0.891±0.021 0.892±0.021 0.917±0.022 0.944±0.027 0.992±0.007
LR

F1 0.956±0.008 0.943±0.012 0.943±0.012 0.946±0.011 0.943±0.012 0.988±0.004
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GM 0.957±0.008 0.944±0.011 0.944±0.011 0.947±0.011 0.944±0.011 0.988±0.004

MCC 0.524±0.103 -0.021±0.018 -0.01±0.016 0.334±0.082 0.41±0.116 0.891±0.046

AUCPRC 0.97±0.006 0.938±0.022 0.893±0.02 0.966±0.013 0.991±0.01 0.989±0.009

F1 0.977±0.005 0.954±0.01 0.943±0.012 0.972±0.01 0.989±0.007 0.991±0.005

GM 0.977±0.005 0.954±0.009 0.944±0.011 0.972±0.01 0.989±0.007 0.991±0.005
RF

MCC 0.778±0.04 0.502±0.129 0.013±0.083 0.73±0.094 0.904±0.058 0.912±0.059

AUCPRC 0.974±0.007 0.932±0.021 0.894±0.022 0.957±0.019 0.989±0.008 0.989±0.006

F1 0.982±0.007 0.949±0.01 0.943±0.012 0.968±0.012 0.988±0.006 0.991±0.005

GM 0.982±0.007 0.949±0.01 0.944±0.011 0.968±0.012 0.988±0.006 0.991±0.005
GDBT

MCC 0.828±0.047 0.439±0.104 0.036±0.071 0.679±0.114 0.89±0.055 0.915±0.039

307 Figure 3 (a-d) shows CLAND outperforms the traditional feature selection methods in terms of stability. 

308 AUCPRC, F1-score, and GM of CLAND all maintained high levels with the increase of IR. Besides, we 

309 also evaluate the performance of different selected features numbers on the BLCA dataset and find the 

310 performance of CLAND is stable and significantly higher than other methods, shown in Figure 3 (e-h). In 

311 contrast, MIFS is most sensitive to IR changes and most unstable. Moreover, when IR or the number of 

312 selected feature changes, CLAND is the least affected, which shows that our proposed method can stably 

313 obtain adequate information. Throughout the four evaluation criteria, CLAND showed the best accuracy 

314 and showed the best stability.

315 4.3 Biological significance of biomarker discovered by CLAND

316 Table 3 lists the top ten cancer genes obtained by CLAND for each cancer type. The genes are ranked by 

317 importance from high to low for distinguishing between cancer and normal samples. The completed results 
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318 of all datasets are shown in Supplementary A.1. Besides classification performance and stability, we also 

319 consider the biological function of selected cancer genes. Take several genes in the table as illustrations. 

320 The gene with the highest score in KICH is UMOD, its variants are associated with chronic kidney disease 

321 in several studies [43], and its expression value is significantly down-regulated in renal cell carcinoma [44]. 

322 Because of the abundant expression in the colon but absence in colonic adenomas and adenocarcinomas, 

323 the SLC26A3 is considered a potential tumor suppressor gene [45, 46]. The gene with the highest score in THCA 

324 is TFF3, which has been proved to be an oncogene in various types of cancers, such as breast, gastric and 

325 colorectal cancers [47, 48]. TFF3 is a gene crucial in the signaling transduction pathway MAPK/ERK, 

326 which plays an essential role in tumor progression and metastasis, and can be used as a clinical therapeutic 

327 target for thyroid cancer [49]. PER1, with the highest score in BLCA, is a core in the generation of 

328 circadian rhythms, an essential regulator of cell division. The over-expression of PER1 makes cancer cells 

329 sensitive to DNA damage-induced apoptosis, while the expression level of PER1 in cancer patients is 

330 usually low [50]. Some other studies have shown that it plays a vital role in tumor occurrence, invasion, 

331 and prognosis[51]. 

332 Table 3. Biomarkers of cancers selected by CLAND

Dataset Top 10 features

KICH UMOD, NEK11, DZIP1, CCDC30, CHRDL1, DNALI1, FLRT3, GABRP, HS3ST3B1, TMEM33

COAD SLC26A3, LPAR1, GLTP, GLP2R, METTL7A, IL6R, CBFB, SCARA5, ABCA8, TRAK2

THCA TFF3, ATP2C2, IGF2BP2, COL23A1, AGPAT4, PAPSS2, PRPS1, BMP1, CCND1, DLG4

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.04.462984doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.04.462984
http://creativecommons.org/licenses/by/4.0/


HNSC CAB39L, QARS, GLT25D1, KRT13, ATP6V1C1, C20orf20, ARHGEF10L, CDCA5, APPL1, PRIM2

ESCA LY6E, MRPL13, CENPW, C5orf22, XPOT, UTP18, KIF22, ENOPH1, PDAP1, PTPN12

BLCA PER1, SMPD4, TPPP3, BCL2, LGI4, FXYD1, ARHGAP39, CYP20A1, EIF2AK1, C16orf5

333 Conclusion

334 This study describes how the class-imbalance problem affects the exploration of reliable biomarkers from 

335 cancer high-dimensional and non-linear omics data. By introducing the causal mechanism, we elucidate 

336 that class-imbalance reduces the stability of feature selection methods by simultaneously affecting the 

337 selected features and class prediction. Moreover, we propose a new feature selection method inspired by 

338 causality theory and technique called CLAND. We believe that the feature selection method should 

339 consider all the difficulties of biological datasets to obtain more valuable biomarkers. Therefore, the 

340 framework of CLAND is a dual-branch structure, including a class-wise causal branch and a sample-wise 

341 causal branch to eliminate the impact of imbalanced distribution. By conducting experiments on six 

342 representative real cancer data sets, CLAND has been proven to have better performance, better stability, 

343 broader applicability than state-of-the-art methods, and can find biomarkers with solid biological 

344 significance. In general, we provide a novel paradigm for feature selection from a causal perspective.
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