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Abstract

Advances in whole-genome genotyping and sequencing have allowed genome-wide

analyses of association, prediction and heritability in many organisms. However, the

application of such analyses to bacteria is still in its infancy, being limited by difficulties

including the plasticity of bacterial genomes and their strong population structure. Here

we propose a suite of genome-wide analyses for bacteria that combines methods from

human genetics and previous bacterial studies, including linear mixed models, elastic

net and LD-score regression. We introduce innovations such as frequency-based allele

coding, testing for both insertion/deletion and nucleotide effects and partitioning

heritability by genome region. Using a previously-published large cohort study, we

analyse three phenotypes of a major human pathogen Streptococcus pneumoniae,

including the first analyses of minimum inhibitory concentrations (MIC) for each of two

antibiotics, penicillin and ceftriaxone. We show that these are very highly heritable

leading to high prediction accuracy, which is explained by many genetic associations

identified under good control of population structure effects. In the case of ceftriaxone

MIC, these results are surprising because none of the isolates was resistant according to

the inhibition zone diameter threshold. We estimate that just over half of the

heritability of penicillin MIC is explained by a known drug-resistance region, which also

contributes around a quarter of the heritability of ceftriaxone MIC. For the within-host

survival phenotype carriage duration, no reliable associations were found but we

observed moderate heritability and prediction accuracy, indicating a polygenic trait.

While generating important new results for S. pneumoniae, we have critically assessed

existing methods and introduced innovations that will be useful for future large-scale

population genomics studies to help decipher the genetic architecture of bacterial traits.

Author summary

Genome-wide association, prediction and heritability analyses in bacteria are beginning

to help unravel the genetic underpinnings of traits such as antimicrobial resistance,

virulence, within-host survival and transmissibility. Progress to date is limited by

challenges including the effects of strong population structure and variable
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recombination, and the many gaps in sequence alignments including the absence of

entire genes in many isolates. More work is required to critically asses and develop

methods for bacterial genomics. We address this task here, using a range of existing

methods from bacterial and human genetics, such as linear mixed models, elastic net

and LD-score regression. We adapt these methods to introduce new analyses, including

separate assessment of gap and nucleotide effects, a new allele coding for association

analyses and a method to partition heritability into genome regions. We analyse

within-host survival and two antimicrobial response traits of Streptococcus pneumoniae,

identifying many novel associations while demonstrating good control of population

structure and accurate prediction. We present both new results for an important

pathogen and methodological advances that will be useful in guiding future studies in

bacterial population genomics.

Introduction 1

The ability to perform genome-wide analyses of DNA variations has enabled detailed 2

investigations of the genetic architecture of traits in many organisms. In human 3

genetics, the study of heritability across the genome has received considerable attention 4

and the main statistical challenges related to robust estimation of SNP heritability are 5

being overcome [1,2]. Similar studies in bacteria are emerging [3, 4], but the pros and 6

cons of the many available methods have not yet been extensively studied. We adopted 7

popular methods from human genetics, using linear mixed models (LMMs) and linkage 8

disequilibrium score regression (LDSC) to investigate genome-wide association and 9

heritability, in combination with elastic-net regression for prediction of three traits (two 10

not previously studied) in Streptococcus pneumoniae. 11

S. pneumoniae, or the pneumococcus, is a Gram-positive human pathogen that can 12

cause several invasive diseases such as pneumonia, meningitis and sepsis, as well as 13

milder diseases such as acute otitis media and tonsillitis. Typically, pneumococci 14

colonise the nasopharynx of a host asymptomatically and transmit effectively between 15

young children, who frequently carry the bacterium until they develop broad natural 16

immunity. This may be supplemented by vaccination with any of the polysaccharide 17

conjugate vaccines (PCVs), which induce effective protection against some common 18
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virulent serotypes. Several population genomic studies have characterized central 19

epidemiological traits of the pneumococcus, including duration of carriage and 20

resistance to commonly used antibiotics. 21

In a pioneering study, Lees et al. [3], found high heritability of the duration of 22

carriage of S. pneumoniae in human hosts. Furthermore, the strong genetic control of 23

the binary trait antimicrobial resistance (AMR) is well established from genome-wide 24

association studies (GWAS) [5–8]. The quantitative trait minimum inhibitory 25

concentration (MIC) has previously been studied in Mycobacterium tuberculosis [9], but 26

not in S. pneumoniae. 27

We critically assess available methods for association, prediction and heritability 28

analyses, and propose novel developments, which we use to investigate carriage duration 29

(CD), ceftriaxone MIC and penicillin MIC in S. pneumoniae, finding many new 30

associations and high predictive accuracy for the two MIC traits. Given the increasing 31

availability of large-scale bacterial GWAS, the developments presented here will provide 32

a useful guide to future studies. 33

Materials and methods 34

Source of data 35

The present study is based on nasopharyngeal swab data collected monthly from infants 36

and their mothers in the Maela refugee camp in Thailand between 2007 and 2010 [10]. 37

Overall, 23 910 swabs were collected during the original cohort study, from which 19 359 38

swabs from 737 infants and 952 mothers were processed according to World Health 39

Organization (WHO) pneumococcal carriage detection protocols [11] and/or the latex 40

sweep method [12]. 41

Penicillin and ceftriaxone susceptibilities were assessed using 1 µg oxacillin disks in 42

accordance with the 2007 CLSI guidelines [13]. Only isolates with an oxacillin zone 43

diameter of <20 mm were subject to benzyl penicillin and ceftriaxone MIC 44

measurements; other isolates were classified as susceptible. 45
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Preparation of phenotypes 46

Following [3], we implemented a hidden Markov model, using the R package msm [14], 47

to obtain maximum-likelihood estimates of CD values. Due to differences in immune 48

response to bacterial infections between adults and infants [15], only data from infants 49

were used for CD analyses, but we analysed all MIC values regardless of the host. To 50

obtain approximate normal distributions, we log-transformed all three phenotypes (see 51

S1 Fig for histograms). 52

Preparation of genetic data 53

We used a published dataset [5] of high quality genome sequences from 2 663 isolates, 54

manually selected and aligned to the ATCC700669 reference genome using the snippy 55

pipeline version 4.4.0 [16], with minimum coverage set at the default 10 reads. Of these, 56

1 612 isolates were sampled during S. pneumoniae positive episodes, on average 1.5 (SD 57

1.0) isolates per episode. For the 337 episodes represented by > 1 genome sequence, we 58

used the sequence from the last isolate sampled. This resulted in 1 047 sequenced CD 59

episodes in 370 host infants (mean 2.8, SD 1.9 episodes per host). The median CD was 60

64 days, with mean 110 and SD 102. MIC data for both penicillin (mean 0.57, SD 0.48 61

µg ml−1) and ceftriaxone (mean 0.36, SD 0.28 µg ml−1) were available for 1 332 isolates, 62

of which 554 also have a CD episode. SNP-sites version 2.5.1 [17] and VCFtools version 63

0.1.16 [18] were used to identify 239 176 variant sites in the CD dataset, and 215 892 in 64

the MIC dataset. 65

A gene was considered a part of the core genome if it was observed in ≥ 95% of 66

isolates, otherwise it was labelled as accessory. Pangenome data were extracted by 67

assembling and annotating the read sequences using Prokka version 1.14.6 [19]. 68

Orthologous and paralogous gene clusters were then inferred using the Panaroo 69

pangenome pipeline version 1.2.4, generating a gene presence/absence matrix [20]. 70

While the core genome was analysed at each variant site, the accessory genome was 71

analysed at the level of genes, using standardised gene counts. The numbers of accessory 72

genes showing variation in the CD and MIC datasets, respectively, were 2 310 and 2 242. 73
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Fig 1. Mapping of association hits to the ATCC700669 reference genome
Working inwards from the outer circle showing basepair positions along the genome, the
subsequent circles show the distributions of gap and minor allele frequencies in the MIC
dataset, annotated core genes (in black), and SNPs associated with ceftriaxone MIC
and penicillin MIC according to the gap test (blue) and SNP test (red). Figure
prepared using circos [21].

Association analyses 74

Testing gap and SNP effects 75

Five alleles are possible at each variant site, the four nucleotides and gap. Gaps are 76

observed at approximately 71% of variant sites (see Fig. 1 for the gap frequency 77

distribution), while two, three and four nucleotide alleles are observed at 71%, 7% and 78

0.4% of variant sites, respectively. In human genetics, multi-allelic SNPs and gaps are 79

both rare and SNP alleles are usually coded as binary, leading to three diploid 80

genotypes that can be coded using two degrees of freedom (df), or 1 df under an 81
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additive model. For haploid bacteria, a general coding would require up to 4 df per SNP. 82

The usual approach in previous analyses is a 1 df binary coding indicating 83

presence/absence of the major allele. This coding loses information if the minor alleles 84

have different effects. In particular, gap and SNP effects can differ, due in part to 85

different local-dependence effects of insertion/deletion lengths and recombination. 86

In previous bacterial GWAS analyses, variant sites with many gaps have often been 87

removed. Reasons include that a gap coding can reflect data quality issues other than a 88

true insertion/deletion sequence state, and that the effects of large insertions or 89

deletions cannot be localised to specific sites. However, gaps can harbour causal 90

variation, and it is of interest to identify them, while recognising that the ultimate cause 91

of the association signal may be difficult to decipher. For the core genome variants, we 92

first used a binary gap/non-gap coding to compute a ‘gap test’ statistic at sites with 93

≥ 10 of both gap and non-gap sequences. The test statistic at the jth variant was the 94

squared standardised effect size: b2j/Var(bj). Next we computed a ‘SNP test’ statistic, 95

omitting gap sequences, at sites with ≥ 10 copies of at least two nucleotides. We used a 96

1 df allele coding equal to the sample frequency of the allele, which assumes that effect 97

sizes vary linearly with allele frequency. For sites with both gap and SNP statistics 98

available, the larger one was used. 99

To ensure a family-wise error rate (FWER) of 0.05, we performed 500 permutations 100

of the ceftriaxone MIC phenotype, each time re-running the association analysis 101

pipeline and recording the largest test statistic. Our significance threshold for the 102

real-data analyses was 24.8, the 25th largest of the 500 maximum test statistics. In 103

comparison, the corresponding Bonferroni threshold based on 133K tests and a χ2
1 null 104

distribution, is 25.8. Therefore, while taking the max of gap and SNP test statistics 105

tends to inflate the null distribution, Bonferroni correction would still be conservative 106

because it ignores the correlations among the statistics. Because of the similarity of the 107

phenotype distributions (S1 Fig), for penicillin MIC we used the permutation threshold 108

derived for ceftriaxone MIC. 109

For comparison, we also employed a 1 df association test based on presence/absence 110

of the major allele at each variant, whether gap or a nucleotide, using the Bonferroni 111

threshold. While this test allows some gap effects to be detected, if gap is not the major 112

allele it assumes that the gap and minor nucleotide effects are the same. If gap is the 113
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major allele then all nucleotide effects are assumed to be the same. 114

Population structure, phylogeny and clustering 115

Levels of recombination vary over bacterial species, but in general asexual reproduction 116

leads to strong population structure, which is challenging for association 117

analyses [22,23]. Population structure refers to groups of individuals (sub-populations) 118

with greater genetic similarity among them than with other individuals, which causes 119

genome-wide genetic correlations that can confound association signals. Sub-populations 120

may also differ in environmental exposures, which can compound the problem. 121

There is no complete solution to the problems caused by population structure, and 122

attempts to address them risk discarding true as well as spurious signal. Most 123

approaches introduce either covariates or a genetic random effect into association 124

models to absorb signals that can be explained by population structure, which then do 125

not contribute to association statistics. The variance-covariance matrix G of a genetic 126

random effect is assumed known a priori based on measures of similarity between pairs 127

of sequences. 128

Sequence clusters can be used to define either G, via cluster distances, or population 129

structure covariates via indicators of cluster membership. Clustering can proceed by 130

constructing a phylogenetic tree that models the evolutionary history of the 131

sequences [24], with nodes of the tree used as cluster identifiers and branch lengths used 132

to define cluster distances. We inferred maximum-likelihood phylogenies of both CD 133

and MIC datasets using IQTree version 2.0.6 [25] under the general time reversible 134

model, with discrete Gamma (+G option) base substitution rates across sites (Fig. 2). 135

The model assumes no recombination, which is false for S. pneumoniae, and 136

consequently the usefulness of the resulting phylogeny has been questioned [26]. 137

FastBAPS, which extends hierBAPS, [30–32] was also used to cluster the isolates, 138

without reference to a phylogeny. This approach generates an initial clustering using 139

between-variant pairwise distances based on Ward’s method [33], then an optimal set of 140

clusters is identified using Bayesian hierarchical clustering [34]. 141

In human studies, G was in the past computed from known pedigrees [35] and now 142

usually as a genome-wide average allelic correlation [36]. For bacteria, G can be defined 143

using allelic correlations under any 1 df allele coding. Despite the success of this 144
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Fig 2. Phylogenies inferred using IQtree2 (A) 1 047 isolates with a carriage
duration (CD) phenotype, indicated by tip colour (in days). (B) 1 332 isolates with MIC
phenotypes, with the penicillin phenotype indicated by tip colour (in µg ml−1). Plots
generated after midpoint rooting using R packages ape [27], phytools [28] and
ggtree [29].

approach in human studies, our preliminary analyses could not identify an allele coding 145

that led to good control of population structure effects, although using the gap 146

presence/absence binary indicator gave the best results among those we tried. 147

Conversely, despite the questionable validity of the phylogeny due to it ignoring 148

recombination, defining G in terms of lengths of shared phylogenetic branches [37] led 149

to good control of population structure, as evidenced by QQ plots. 150

Linear mixed model (LMM) analyses 151

We wish to test bj = 0 within the LMM [38]: 152

y = bjxj + u + ε, u ∼ N (0, σ2
gG), ε ∼ N (0, σ2

eI), (1)

where y is a length-n phenotype vector, xj is the vector encoding alleles at the jth 153

variant, and u and ε are random vectors of genetic and environmental effects, with I the 154

n× n identity matrix. 155

Pyseer [39] has recently been widely used in bacterial GWAS, and an extensive 156

summary of its models with performance benchmarking is available [40]. The Pyseer 157

implementation of (1) is based on FaST-LMM [41], and includes likelihood ratio testing 158

of bj = 0. It requires binary coding of genetic variants, and so can be used for the gap 159

and major-allele tests, but it cannot accommodate the frequency-coding or omission of 160
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the gap sequences at each SNP test. To overcome this problem, we used a two-stage 161

LMM/GLS pipeline for the SNP test, similar to EMMAX [42], in which the phenotype 162

for association testing was the residual from fitting (1) with bj = 0. This first ‘LMM’ 163

stage was performed using lme4qtl [35]. The bj were then estimated in a second stage 164

using generalised least squares regression (GLS). In the CD analyses for the SNP test, 165

we were able to incorporate an extra random effect to model shared host in the 166

LMM/GLS pipeline, but for the gap and major-allele tests performed using 167

Pyseer-LMM, this was replaced by a binary covariate indicating previous carriage. 168

Accessory genome genes were tested using the LMM/GLS pipeline, with a single test 169

based on standardised gene counts. 170

Phylogenetic method treeWAS 171

For comparison, we also implemented the phylogeny-based treeWAS [43] using the 172

major-allele coding. Use of a single phylogeny in treeWAS corresponds to an 173

assumption of negligible recombination. As recommended for recombinant species such 174

as S. pneumoniae [43], we first implemented the ClonalFrameML pipeline (see S2 175

Fig) [44]. Then treeWAS infers the ancestral phenotype and genotype states at each 176

internal node of the phylogeny, before computing three association test statistics: 177

1. Terminal Score: measures sample-wide phenotype-genotype associations 178

between leaves of the phylogeny. 179

2. Simultaneous Score: measures parallel changes in both phenotype and 180

genotype on phylogeny branches. 181

3. Subsequent Score: measures the proportion of the tree within which genotype 182

and phenotype ‘co-exist’. It is equivalent to integrating association scores over all 183

tree nodes. 184

For each test, a significance threshold is estimated from null simulations of genetic data 185

at 10 times as many sites as the observed dataset. 186
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Phenotype prediction: whole genome elastic net (wg-enet) 187

The Pyseer wg-enet prediction model is based on glmnet [45]. To bypass the Pyseer 188

requirement for binary-coded variants, we set up the wg-enet model in glmnet to use a 189

frequency-based allele coding as in the SNP test except that gaps were counted as an 190

allele in this coding. Following Pyseer guidelines [46], we omitted 25% of variants with 191

the largest association p-values, and then removed highly-correlated variants at a 0.75 192

threshold. We verified the finding of [46] that prediction accuracy is improved using 193

weight wi for the ith isolate, where wi is proportional to the inverse of the size of the 194

cluster that includes the isolate, and
∑

i wi = n. After centering the phenotype values 195

to have mean zero, the ith phenotype value is predicted by b̂Txi, where xi is the vector 196

of allele indicators for the ith sequence, and 197

b̂ = argmin
b

λ

[
1−α

2
‖b‖22 + α ‖b‖1

]
+

1

n

n∑
i=1

wi(yi − bTxi)
2. (2)

We use cross-validation (CV) to optimise λ, which controls the penalty on large b values. 198

When λ = 0 we have weighted least-squares regression, while increasing λ introduces 199

bias to reduce overfitting. By default, both Pyseer and our pipeline set α = 0.01. 200

Although this value is close to that for ridge regression (α = 0), which retains all 201

predictors in the model, it is large enough that only about 10% of b̂ entries are non-zero. 202

Ten-fold (10F) and leave-one-strain-out (LOSO) [46] CV were used to assess 203

prediction accuracy. Whereas 10F selects the training sets randomly, which can lead to 204

instances of high similarity between test and training sequences, LOSO is a more 205

challenging prediction task where an entire strain (= FastBAPS cluster) is predicted 206

after training on the other strains. 207

Estimation of heritability 208

Genetic effects at different genome sites can interact (epistasis), but we restrict 209

attention to the narrow-sense heritability h2, with σ2
g assumed to be a sum of 210

contributions from individual sites. The LMM estimates h2 = σ2
g/(σ

2
g + σ2

e) [39]. For 211

the wg-enet heritability estimation, we used α = 0 (ridge regression). Then ĥ2 = R2, 212

the proportion of phenotype variance explained by the model [46]. 213
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We also estimate h2 using a modification of the LDSC model [47]:

E[Sj ] ≈ A+
n−1

m
h2glj where lj =

m∑
k=1

(n−1)r2jk − 1

n− 2
. (3)

Here, Sj is the association test statistic at variant j, and rjk is the sample correlation of 214

frequency-based allele codes at variants j and k (or gene counts for the accessory 215

genome). Following [48], prior to computing pairwise Pearson correlation coefficients we 216

further transformed the allele codes using Gaussian quantile normalisation. 217

The score lj involves a sum over the whole genome. In human genetics applications 218

only a neighbourhood of j is included, but the presence of genome-wide LD in S. 219

pneumoniae makes it difficult to define a suitable neighbourhood. The definition of lj 220

also incorporates a bias adjustment [47] that can lead to lj < 0, but typically lj � 1. To 221

account for heteroskedasticity and correlations among the Sj , the least-squares 222

estimation of A and h2g in (3) used weights 1/max(1, lj). 223

When choosing the testing method to generate the Sj for LDSC, we found that the 224

very strong population structure effects distort the LDSC regression relationship in the 225

absence of any adjustment, yet a fully effective adjustment for population structure was 226

also unsatisfactory because it removed informative signal. The best compromise that we 227

could identify between inadequate control for population structure effects and loss of 228

association signal with effective control, was to compute the major-allele test statistic 229

Sj in the fixed effect model (FEM): 230

y = va+ xjbj + ε, (4)

where v is the first principal component (PC) of the sequence distances (explaining 231

> 90% of genetic variation) and a is the corresponding effect size. For the CD analyses, 232

we also included the previous carriage covariate in (4). We note again that v does not 233

remove all population structure effects and the Sj tend to be inflated, but this is not 234

important for LDSC estimation of h2g which uses the slope of the relationship of lj with 235

Sj . Because of inadequate control of population structure using all approaches that we 236

attempted, which included FastBAPS cluster membership indicators and additional 237

principal components (PC), we do not report association results based on this FEM and 238
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only use the Sj obtained under this model within LDSC. 239

As well as estimating genome-wide h2g, LDSC is useful for estimating the 240

contributions to h2g from specified genome regions. This is challenging because simply 241

omitting variants from a heritability analysis may not exclude their effects due to strong 242

and long range LD. For the MIC phenotypes, we computed ĥ2 in (3) omitting effects 243

from a known drug resistance genome region that includes the important 244

penicillin-binding genes pbp1a and pbp2x. We first identified a set of large effect-size 245

variants with basepair positions between 285 000 and 340 000 by clumping the 246

frequency-coded variants using correlation threshold 0.85. These variants were used as 247

fixed covariates when re-calculating the Sj for this analysis, which prevents tagging of 248

effects from the omitted region. 249

Code and data availability 250

Code is available at https://github.com/Sudaraka88/bacterial-heritability and 251

access details for the genetic data are provided in S1 File. 252

Results 253

Carriage duration (CD) 254

Fig 3. Carriage duration (CD) Manhattan plot for core genome variants.
Accessory genes are not shown. See legend for shading that indicates gap frequency and
symbol shape indicating gap or SNP test. Basepair positions are obtained from the
ATCC700669 reference genome alignment.

None of the 2 310 tested accessory genes were associated with CD. Similarly there 255
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were no genome-wide significant results among the 44 097 gap and 91 822 SNP tests at 256

core genome variants (Fig. 3). The shared-host random effect explained 1.4% of 257

variance for CD, and R2 = 0.0022 for the previous carriage fixed effect (β = −0.097, SE 258

= 0.026). The QQ-plot (S3 Fig) indicates some inflation of test statistics suggestive of 259

population structure effects (genome inflation factor, GIF = 1.44). The LMM 260

major-allele test also identified no associations (GIF = 1.22, S4 Fig) and treeWAS 261

identified 3 hits in 2 genes: purF and polA (S5 Fig). 262

Despite the lack of associations for CD, prediction accuracy (Table 1) and 263

heritability estimates (Table 2) are significantly above zero, suggesting a polygenic trait. 264

As expected, LOSO prediction is less accurate than 10F CV. Pangenome estimates from 265

wg-enet, LMM and LDSC are similar (0.32 ≤ ĥ2 ≤ 0.34) with all methods also agreeing 266

on a negligible contribution to h2 from the accessory genome. LDSC analyses also 267

confirmed only a small contribution to h2 from the known drug-resistance region (see S6 268

Fig for LDSC plots). Furthermore, phenotype prediction with allele frequency-based 269

coding of variants slightly outperformed major allele coding (S2 Appendix and S7 Fig). 270

Table 1. Phenotype prediction. Mean squared error (MSE) and the correlation
between observed and predicted test values using 10-fold (10F) and leave-one-strain-out
(LOSO) cross validation (CV). Predictions were performed using a wg-enet model
(α = 0.01) in glmnet, with frequency-based allele coding (all five alleles coded according
to their frequency). Approximately 2% of available predictors were used for CD and 1%
were used for the two MIC phenotypes. For correpsonding results from major-allele
coded variants, see S2 Appendix.

Phenotype 10F CV LOSO CV
(log scale) MSE (SE) Cor (SE) MSE (SE) Cor (SE)
CD 0.10 (0.004) 0.55 (0.022) 0.12 (0.005) 0.44 (0.025)
Ceftriaxone MIC 0.03 (0.002) 0.91 (0.005) 0.08 (0.003) 0.77 (0.005)
Penicillin MIC 0.04 (0.003) 0.91 (0.005) 0.13 (0.051) 0.69 (0.014)

Table 2. Heritability estimates (ĥ2). The upper and lower values in each cell are
for core genome and pangenome (= core genome plus accessory genes). Under “w/o
DR” are results from analyses that omit effects from a genome region that is known to
be associated with drug resistance.

Phenotype
LDSC

wg w/o DR enet LMM
CD 0.34 0.30 0.34 0.32
with accessory genes 0.34 0.31 0.34 0.32
Ceftriaxone MIC 0.86 0.22 0.92 0.98
with accessory genes 0.87 0.22 0.93 0.98
Penicillin MIC 0.72 0.40 0.94 0.98
with accessory genes 0.72 0.41 0.94 0.98
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We also performed association testing on all 1 612 isolates linked to a carriage 271

episode. This analysis identified four sites at basepair positions 1 522 542–1 522 896, near 272

the previously-reported phage hit based on k-mer analysis [46]. However, our 4 hits are 273

due to the same 15 isolates, of which 6 are from the same long (517 day) episode (see 274

detailed results in S1 Appendix). Furthermore, when the all-isolates dataset was 275

analysed using treeWAS, 9 associations were identified (see S3 Appendix), but these did 276

not include purF and polA (reported above) nor the region identified in our LMM 277

analyses. We conclude that we are unable to reliably identify individual associations for 278

CD, but there is good evidence for it being a moderately-heritable polygenic trait. 279

Minimum inhibitory concentration (MIC) phenotypes 280

Fig 4. Ceftriaxone MIC Manhattan plot. The shading and symbol shapes (see
legend) are the same as for Fig. 3

Fig 5. Penicillin MIC Manhattan plot. See Fig. 4 caption for details.

For both MIC phenotypes, from the 2 242 accessory genes tested, one (with Panaroo 281
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Fig 6. Association test statistics against variant frequency for ceftriaxone
MIC. Each point shows the z2 statistic from (A) gap and (B) SNP test at a core
genome variant. The x-axis shows frequencies of (A) gap and (B) minor nucleotide as a
fraction of all nucleotides. Points are shaded according to the major-allele test statistic
and the red curve shows 7th order regression fit for the 90th percentile [50]. See S8 Fig
for this analysis on the other two phenotypes.

label group 102) showed genome-wide significant association. Gap and SNP tests were 282

performed at 36 020 and 97 224 core genome sites, respectively. For ceftriaxone MIC and 283

penicillin MIC, respectively, 998 and 833 variants showed genome-wide significance 284

(Figs 4, 5), and 688 and 504 of these were within annotated gene regions of the 285

ATCC700669 reference genome [49] (Table 3). Approximately 35% of hits were from the 286

gap test, associations that have largely been ignored in previous analyses. For 287

ceftriaxone MIC and penicillin MIC, GIF = 1.14 and 1.28 respectively, but the QQ 288

plots (S9 Fig) suggest that, rather than genome-wide inflation caused by population 289

structure, GIF > 1 is due to a large fraction of the genome showing causal association 290

with these highly-heritable, polygenic traits.

Table 3. Genes showing significant association with MIC phenotypes.

Phenotype (log) Core genes Acc. gene
Ceftriaxone only mraW, clpL, csrR, rplK, aliB, plr, valS

Both MIC phenotypes
pbp1a, aliA, pbp2x, mraY, recU, gnd, dexB,
luxS, wzg, pbp2b

group 102

Penicillin only
aliB, clpL, wzd, wzh, blpY, galK, hasC,
leuB, leuS, murF, recO

291

For ceftriaxone MIC, the largest statistics are of similar magnitude for gap and SNP 292

tests (Fig. 6), but for low allele frequencies there are few large gap statistics and many 293

large SNP statistics, suggesting that there are few rare deletions, but many rare 294

nucleotides of large effect. There are also few large gap statistics with frequency > 0.6, 295

suggesting few sequence insertions of large effect. Many large SNP statistics with 296

frequency above 0.4 were not recorded as significant under the major-allele test, which 297
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may reflect a benefit of frequency-based allele coding. 298

In comparison, the major-allele LMM test identified 817 core-variant associations for 299

ceftriaxone MIC (S10 Fig), 524 of which were in 22 genes, 13 of them also identified by 300

the gap/SNP test. For penicillin MIC (S11 Fig), 602 associations were identified, 444 of 301

which were mapped to 16 genes, also 13 in common with the gap/SNP test. No 302

accessory gene associations were identified for either MIC phenotype. Overall the 303

gap/SNP test performed better than the major-allele LMM test, identifying more 304

associations (1 831 vs 1 419) with lower GIF (1.14 vs 1.20 and 1.28 vs 1.56). 305

treeWAS identified 140 and 66 core-genome associations (S12 Fig, S13 Fig), in both 306

cases implicating the same four genes (S3 Appendix), a subset of those in Table 3. 307

As expected from the large number of associations, prediction accuracy for both 308

MIC phenotypes is very high under 10F CV (Table 1), but less so for LOSO CV, with 309

high SE values for penicillin MIC indicating hard-to-predict clusters (S14 Fig). 310

The LMM and wg-enet ĥ2 agree closely across the two MIC phenotypes. The 311

wg-enet values are about 5% lower (Table 2), but they are higher than previously 312

reported for binary AMR [4]. The LDSC ĥ2 are lower again, and this was the only 313

method to report a difference ĥ2 between the two MIC traits, consistent with lower 314

LOSO prediction accuracy, and also lower numbers and significance of associations, for 315

penicillin MIC compared with ceftriaxone MIC. Using LDSC we also estimate that just 316

over half of h2 for penicillin MIC can be attributed to the known drug resistance region, 317

which represents only 2.5% of the core genome, whereas the fraction of h2 falls to 318

around a quarter for ceftriaxone MIC (see S6 Fig for LDSC plots). 319

Discussion 320

We have investigated methods for association, prediction and heritability analyses for 321

quantitative bacterial traits, and identified several improvements over previous 322

approaches. We used multiple methods to perform genomic analyses of S. pneumoniae 323

minimum inhibitory concentration (MIC) for the beta-lactam antibiotics ceftriaxone 324

and penicillin, finding many novel associations and high heritability. Prediction of MIC 325

traits was correspondingly accurate under 10F CV. 326

The genome regions identified as associated with the MIC phenotypes overlap those 327

October 2, 2021 17/27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.04.462983doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.04.462983
http://creativecommons.org/licenses/by/4.0/


previousy reported for the binary AMR phenotypes, even in the case of ceftriaxone for 328

which none of the tested isolates was resistant. Many of the associated genes are in the 329

peptidoglycan biosysthesis pathway, including penicillin binding proteins (PBPs: pbp1a, 330

pbp2b, pbp2x ) and transferases required for cell wall biogenesis (mraY and mraW for 331

ceftriaxone MIC). A single heat shock protein (clpL) and a gene from the recombination 332

pathway (recU ) were also identified as associated. When present, the group 102 333

accessory gene is located adjacent to pbp1a, which generates an enzyme involved in cell 334

wall remodelling, which may contribute to the association signal for the MIC 335

phenotypes. However, most of the genes identified for the MIC phenotypes are in tight 336

linkage with the three PBPs and may not represent independent effects. 337

We found no reliable associations for S. pneumoniae carriage duration (CD), but 338

strong evidence that it is a polygenic trait of moderate heritability (ĥ2 ≈ 0.33) that is 339

predictable from the genome sequence (0.55 and 0.44 correlation between predicted and 340

true phenotype under 10F and LOSO CV, respectively). 341

The innovations in our association analysis pipeline include separate testing of gap 342

and SNP effects, with a permutation approach to control FWER and frequency-based 343

allele coding. This approach performed better than the alternatives of major-allele 344

LMM and treeWAS tests, detecting more associations under good control of population 345

structure effects. 346

Our phenotype prediction analysis used frequency-coded variants within a 347

glmnet-based whole genome elastic net model. 348

The previous analysis on CD using data from the same study [3], provided a 349

lower-bound h2 estimate of 0.45 using warped-lmm [51], concluding that CD is a highly 350

heritable trait. Our estimates are lower, which may be due to our use of only one isolate 351

per CD episode (S1 Appendix). 352

Penicillin AMR ĥ2 in the Maela data set was recently reported in the range 353

0.67–0.83 [4]. We find even higher values for the quantitative penicillin MIC phenotype 354

using LMM and wg-enet methods: 0.94–0.98 (Table 2), however, the LDSC ĥ2 = 0.72 355

(S6 Fig) is within the range of the AMR estimates and in better agreement with the 356

LOSO prediction results (Table 1). For ceftriaxone MIC, all three methods estimate h2 357

in the range 0.86–0.98, consistent with the good prediction performance. 358

The reduction in h2 for penicillin MIC by more than half on removing known drug 359
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resistance genome regions in S. pneumoniae contrasts with results from M. tuberculosis, 360

where the largest reduction in h2 (measured using GEMMA [52]) was only 27% [9], 361

which is close to our result for ceftriaxone MIC. 362

Our results support the use of linear mixed models for association analysis, with 363

separate testing of gap and SNP effects, the latter using frequency-based allele coding. 364

We also support the use of wg-enet for prediction of quantitative traits and we find that 365

LDSC performs well for heritability analyses but further work is required to assess 366

optimal strategies for dealing with strong population structure in bacterial genomes. 367

Supporting information 368

S1 Appendix. Results from the carriage duration analysis using the 369

dataset comprising all 1 612 isolates sampled during a positive episode. 370

(PDF) 371

S2 Appendix. Phenotype prediction using major allele frequency coded 372

variants. 373

(PDF) 374

S3 Appendix. Genes identified with major allele tests. 375

(PDF) 376

S1 Fig. Phenotype distribution. Top and bottom rows show the distribution of 377

the three phenotypes before and after log10 transformation. 378

S2 Fig. Phylogenetic trees from the ClonalFrameML analysis. Mid-point 379

rooted, ‘recombination-aware’ tree structure for (A) 1 047 isolates with carriage duration 380

phenotype (measured in days and indicated by tip colour) and (B) 1 332 isolates with 381

MIC phenotype (measured in µg ml−1 and tip colour indicates the distribution of 382

penicillin MIC). 383

(PDF) 384

S3 Fig. QQ plot for carriage duration from the GAP/SNP analysis. 385

(PDF) 386
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S4 Fig. Manhattan plot from major-allele tests of association with CD. 387

Testing was performed with (A) LMM and (B) FEM models. LMM did not identify any 388

significant associations, whereas FEM identified 92 associations with GIF = 2.53, 389

indicating genome-wide inflation due to unsatisfactory control of population structure. 390

In FEM, population structure correction was performed using FastBAPS cluster 391

indicator covariates. Point colour indicates the gap frequency at each site and the 392

horizontal lines indicate Bonferroni corrected significance thresholds. 393

(PDF) 394

S5 Fig. treeWAS analysis for CD. Manhattan plots for (top) Terminal (middle) 395

Simultaneous and (bottom) Subsequent scores are shown, where three hits are identified 396

from the simultaneous test. 397

(PDF) 398

S6 Fig. LDSC analyses for all phenotypes. LDSC plots for (A) CD, (B) 399

ceftriaxone MIC and (C) penicillin MIC. In each figure, subplots correspond to the a. 400

core genome b. pangenome c. core genome w/o DR and d. pangenome w/o DR 401

analyses and the ĥ2 are reported in Table 2. 402

(PDF) 403

S7 Fig. Prediction accuracy with major allele and frequency coding. Allele 404

frequency coding generally increases the correlation and reduces the mean squared error 405

of prediction for all three phenotypes across folds and clusters. Note that the Mean 406

squared error and correlation values here are averaged across folds and clusters, and are 407

different from the overall accuracy results in Table 1 and S2 Appendix 408

(PDF) 409

S8 Fig. Variation in z2 statistics with variant frequency Each point shows the 410

z2 statistic of a (A, C) gap and (B, D) SNP tested core genome variants for (A, B) 411

carriage duration and (C, D) penicillin MIC. The x-axis respectively shows the gap and 412

minor allele frequency for gap and SNP tested variants. Points are shaded according to 413

the z2 statistic from the major allele test and the red curve shows the 4th order 414

regression fit for the 90th percentile of data. 415
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(PDF) 416

S9 Fig. QQ plots for MIC phenotypes from the GAP/SNP analysis. (A) 417

ceftriaxone MIC (B) penicillin MIC. 418

(PDF) 419

S10 Fig. Major-allele test for ceftriaxone MIC. Testing was performed using 420

(A) LMM and (B) FEM models. FEM analysis identified 13 212 hits with GIF = 16.4. 421

See caption in S4 Fig for additional analysis and figure legend details. 422

(PDF) 423

S11 Fig. Major-allele test for penicillin MIC. Testing was performed using (A) 424

LMM and (B) FEM models. FEM analysis identified 23 636 hits with GIF = 17.0. See 425

caption in S4 Fig for additional analysis and figure legend details. 426

(PDF) 427

S12 Fig. treeWAS analysis for ceftriaxone MIC. Manhattan plots for (top) 428

Terminal (middle) Simultaneous and (bottom) Subsequent scores. 429

(PDF) 430

S13 Fig. treeWAS analysis for penicillin MIC. Manhattan plots for (top) 431

Terminal (middle) Simultaneous and (bottom) Subsequent scores. 432

(PDF) 433

S14 Fig. Prediction performance. Prediction performance of (A,B) carriage 434

duration, (C,D) ceftriaxone MIC and (E,F) penicillin MIC phenotypes, assessed using 435

(A,C,E) 10F and (B,D,F) LOSO CV. The x and y axes denote the true and predicted 436

values, respectively and point colour represents the fold or FastBAPS cluster. Mean 437

squared error and correlation values in Table 1 and S2 Appendix are computed using all 438

values shown here. 439

(PDF) 440

S1 File. Metadata for S. penumoniae isolate reads used in this study. 441

(CSV) 442
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possibilities for the analysis of genetic population structure. Bioinformatics.

2004;20(15):2363–2369.

33. Murtagh F, Legendre P. Ward’s hierarchical agglomerative clustering method:

which algorithms implement Ward’s criterion? Journal of classification.

2014;31(3):274–295.

34. Heller KA, Ghahramani Z. Bayesian hierarchical clustering. In: Proceedings of

the 22nd international conference on Machine learning; 2005. p. 297–304.

35. Ziyatdinov A, Vázquez-Santiago M, Brunel H, Martinez-Perez A, Aschard H,

Soria JM. lme4qtl: linear mixed models with flexible covariance structure for

genetic studies of related individuals. BMC bioinformatics. 2018;19(1):1–5.

36. Astle W, Balding DJ. Population structure and cryptic relatedness in genetic

association studies. Statistical Science. 2009;24(4):451–471.

37. Pagel M. Inferring evolutionary processes from phylogenies. Zoologica Scripta.

1997;26(4):331–348.

38. Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL. Advantages and

pitfalls in the application of mixed-model association methods. Nature genetics.

2014;46(2):100–106.

39. Lees JA, Galardini M, Bentley SD, Weiser JN, Corander J. Pyseer: a

comprehensive tool for microbial pangenome-wide association studies.

Bioinformatics. 2018;34(24):4310–4312.

October 2, 2021 25/27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.04.462983doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.04.462983
http://creativecommons.org/licenses/by/4.0/


40. Saber MM, Shapiro BJ. Benchmarking bacterial genome-wide association study

methods using simulated genomes and phenotypes. Microbial genomics. 2020;6(3).

41. Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D. FaST

linear mixed models for genome-wide association studies. Nature methods.

2011;8(10):833–835.

42. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong Sy, Freimer NB, et al. Variance

component model to account for sample structure in genome-wide association

studies. Nature genetics. 2010;42(4):348–354.

43. Collins C, Didelot X. A phylogenetic method to perform genome-wide association

studies in microbes that accounts for population structure and recombination.

PLoS computational biology. 2018;14(2):e1005958.

44. Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in

whole bacterial genomes. PLoS Comput Biol. 2015;11(2):e1004041.

45. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear

models via coordinate descent. Journal of statistical software. 2010;33(1):1.

46. Lees JA, Mai TT, Galardini M, Wheeler NE, Horsfield ST, Parkhill J, et al.

Improved prediction of bacterial genotype-phenotype associations using

interpretable pangenome-spanning regressions. Mbio. 2020;11(4).

47. Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, et al.

LD Score regression distinguishes confounding from polygenicity in genome-wide

association studies. Nature genetics. 2015;47(3):291.

48. Bishara AJ, Hittner JB. Reducing bias and error in the correlation coefficient due

to nonnormality. Educational and psychological measurement.

2015;75(5):785–804.

49. Croucher NJ, Walker D, Romero P, Lennard N, Paterson GK, Bason NC, et al.

Role of conjugative elements in the evolution of the multidrug-resistant pandemic

clone Streptococcus pneumoniae Spain23F ST81. Journal of bacteriology.

2009;191(5):1480–1489.

October 2, 2021 26/27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.04.462983doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.04.462983
http://creativecommons.org/licenses/by/4.0/


50. Koenker R. quantreg: Quantile Regression; 2021. Available from:

https://CRAN.R-project.org/package=quantreg.

51. Fusi N, Lippert C, Lawrence ND, Stegle O. Warped linear mixed models for the

genetic analysis of transformed phenotypes. Nature communications.

2014;5(1):1–8.

52. Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association

studies. Nature genetics. 2012;44(7):821–824.

October 2, 2021 27/27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.04.462983doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.04.462983
http://creativecommons.org/licenses/by/4.0/

