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Abstract 18 

Actions are biased by the outcomes they can produce: Humans are more likely to show action under 19 

reward prospect, but hold back under punishment prospect. Such motivational biases derive not only 20 

from biased response selection, but also from biased learning: humans tend to attribute rewards to 21 

their own actions, but are reluctant to attribute punishments to having held back. The neural origin 22 

of these biases is unclear; in particular, it remains open whether motivational biases arise solely from 23 

an evolutionarily old, subcortical architecture or also due to younger, cortical influences. 24 

Simultaneous EEG-fMRI allowed us to track which regions encoded biased prediction errors in which 25 

order. Biased prediction errors occurred in cortical regions (ACC, vmPFC, PCC) before subcortical 26 

regions (striatum). These results highlight that biased learning is not a mere feature of the basal 27 

ganglia, but arises through prefrontal cortical contributions, revealing motivational biases to be a 28 

potentially flexible, sophisticated mechanism. 29 

Teaser 30 

 31 

Cortical influences on subcortical learning explain why we attribute rewards to actions, but not 32 

punishments to inactions. 33 
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Introduction 34 

Human action selection is biased by potential action outcomes: reward prospect drives us to 35 

invigorate action, while threat of punishment holds us back (1–3). These motivational biases have 36 

been evoked to explain why humans are tempted by reward-related cues signaling the chance to 37 

gain food, drugs, or money, as they elicit automatic approach behavior. Conversely, punishment-38 

related cues suppress action and lead to paralysis, which may even lie at the core of mental health 39 

problems such as phobias and mood disorders (4, 5). While such examples highlight the potential 40 

maladaptiveness of biases in some situations, they confer benefits in other situations: Biases could 41 

provide sensible “default” actions before context-specific knowledge is acquired (1, 6). They may also 42 

provide ready-made alternatives to more demanding action selection mechanisms, especially when 43 

speed has to be prioritized (7). 44 

Previous research has assumed that motivational biases arise because the valence of prospective 45 

outcomes influences action selection (8). However, we have recently shown that not only action 46 

selection, but also the updating of action values based on obtained outcomes is subject to valence-47 

dependent biases (3, 9, 10): humans are more inclined to ascribe rewards to active responses, but 48 

have problems with attributing punishments to having held back. One the one hand, such biased 49 

learning might be adaptive in combining the flexibility of instrumental learning with somewhat rigid 50 

“priors” about typical action-outcome relationships. Exploiting lifetime (or evolutionary) experience 51 

might lead to learning that is faster and more robust to environmental “noise”. On the other hand, 52 

biases might be responsible for phenomena of “animal superstition” like auto-shaping or negative 53 

maintenance, where rats and pigeons repeat behavioral patterns that co-occurred with the 54 

attainment of (factually random) rewards and keep showing such behavior even if it delays or 55 

decreases rewards (1, 11, 12). While reward attainment can lead to an illusory sense of control over 56 

outcomes, control is underestimated under threat of punishment: Humans find it hard to 57 

comprehend how inactions can cause negative outcomes, which makes them more lenient in judging 58 

harms caused by others’ inactions (13, 14). Taken together, also credit assignment is subject to 59 

motivational biases, with enhanced credit for rewards given to actions, but diminished credit for 60 

punishments given to inactions. 61 

While evident in behavior, the neural mechanisms subserving such biased credit assignment are 62 

unclear. One strong candidate region is the striatum, part of the evolutionarily old basal ganglia 63 

system. Influential computational models of basal ganglia function (15, 16) (henceforth called 64 

“asymmetric pathways model”) predict such motivational learning biases: Positive prediction errors, 65 

elicited by rewards, lead to long-term potentiation in the striatal direct “Go” pathway (and long term 66 

depression in the indirect pathway), allowing for a particularly effective acquisition of Go responses 67 

after rewards. Conversely, negative prediction errors, elicited by punishments, lead to long term 68 

potentiation in the “NoGo” pathway, impairing the unlearning of NoGo responses after punishments. 69 

This account suggests that motivational biases arise within the same pathways involved in standard 70 

reinforcement learning (RL). An alternative candidate model is that biases arise through the 71 

modulation of these evolutionarily old RL systems by external, evolutionarily younger areas that also 72 

track past actions, putatively the prefrontal cortex (PFC). Past research has suggested that standard 73 

RL can be biased by information stored in PFC, such as explicit instructions (17, 18) or cognitive-map 74 

like models of the environment (19–21). Most notably, the anterior cingulate cortex (ACC) has been 75 

found to reflect the impact of explicit instructions (18) and of environmental changes on prediction 76 

errors (22, 23). 77 
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Both candidate models predict that BOLD signal in striatum should be better described by 78 

biased compared with “standard” prediction errors. In addition, the model proposing a prefrontal 79 

influence on striatal processing makes a notable prediction about the timing of signals: information 80 

about the selected action and the obtained outcome should be present first in prefrontal circuits to 81 

then later affect processes in the striatum. While fMRI BOLD recordings allow for unequivocal access 82 

to striatal activity, the sluggish nature of the BOLD signal prevents clear inferences about temporal 83 

precedence of signals from different regions. We thus combined BOLD with simultaneous EEG 84 

recordings which allowed us to precisely characterize learning signals in both space and time. 85 

The key question is whether biased credit assignment arises directly from biased RL through 86 

the asymmetric pathways in the striatum, or whether striatal RL mechanisms are biased by external 87 

prefrontal sources, with the ACC as likely candidate. To this end, participants performed a 88 

motivational Go/ NoGo learning task that is well-established to evoke motivational biases of action 89 

(3, 9, 24). We expected to observe biased PEs in striatum and frontal cortical areas. By 90 

simultaneously recording fMRI and EEG and correlating trial-by-trial BOLD signal with EEG time-91 

frequency power, we were able to time-lock the peaks of EEG-BOLD correlations for regions 92 

reflecting biased PEs and infer their relative temporal precedence. We focused on two well-93 

established electrophysiological signatures of RL, namely theta and delta power (25–30) as well as 94 

beta power (25, 31) over midfrontal electrodes. 95 

Results 96 

Thirty-six participants performed a motivational Go/ NoGo learning task (3, 9) in which required 97 

action (Go/ NoGo) and potential outcome (reward/ punishment) were orthogonalized (Fig. 1A-D). 98 

They learned by trial-and-error for each of eight cues whether to perform a left button press (GoLEFT), 99 

right button press (GoRIGHT), or no button press (NoGo), and whether a correct action increased the 100 

chance to win a reward (Win cues) or to avoid a punishment (Avoid cues). Correct actions lead to 101 

80% favorable outcomes (reward, no punishment), with only 20% favorable outcomes for incorrect 102 

actions. Participants performed two sessions of 320 trials, with separate cue sets, which were 103 

counterbalanced across participants. 104 

 105 

 

Figure 1. Motivational Go/ NoGo learning task design. (A) On each trial, a Win or Avoid cue appears; valence of the cue is 

not signaled but should be learned. Cue offset is also the response deadline. Response-dependent feedback follows after a 

jittered interval. Each cue has only one correct action (GoLEFT, GoRight, or NoGo), which is followed by the favorable outcome 

80% of the time. For Win cues, actions can lead to rewards or neutral outcomes; for Avoid cues, actions can lead to neutral 

outcomes or punishment. Rewards and punishments are depicted by money falling into/ out of a can. (B) There are eight 

different cues, orthogonalizing cue valence (Win versus Avoid) and required action (Go versus NoGo). The motivationally 

incongruent cues, for which the motivational action tendencies are incongruent with the instrumental requirements, are 

highlighted in gray. (C) Feedback is probabilistic: Correct actions to Win cues lead to rewards in 80% of cases, but neutral 

outcomes in 20% of cases. For Avoid cues, correct actions lead to neutral outcomes in 80% of cases, but punishments in 
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20% of cases. For incorrect actions, these probabilities are reversed.  

 106 

Regression analyses of behavior 107 

We performed regression analyze to test whether a) responses were biased by the valence of 108 

prospective outcomes (Win/ Avoid), reflecting biased responding and/ or learning, and b) whether 109 

response repetition after favorable vs. non-favorable outcomes was biased by whether a Go vs. 110 

NoGo response was performed, selectively reflecting biased learning. 111 

For the first purpose, we analyzed choice data (Go/ NoGo) using mixed-effects logistic 112 

regression that included factors required action (Go/ NoGo; note that this approach collapses across 113 

GoLEFT  and GoRIGHT responses), cue valence (Win/ Avoid), and their interaction (also reported in)(32). 114 

Participants learned the task, i.e., they performed more Go responses towards Go than NoGo cues 115 

(main effect of required action: b = 0.815, SE = 0.113, χ2(1) = 32.008, p < .001). In contrast to previous 116 

studies (3, 9), learning did not asymptote (Fig. 2A), which provided greater dynamic range for the 117 

biased learning effects to surface. Furthermore, participants showed a motivational bias, i.e., they 118 

performed more Go responses to Win than Avoid cues (main effect of cue valence, b = 0.423, SE = 119 

0.073, χ
2
(1) = 23.695, p < .001). Replicating other studies with this task, there was no significant 120 

interaction between required action and cue valence (b = 0.030, SE = 0.068, χ2(1) = 0.196, p = .658, 121 

Fig. 2A-B), i.e., there was no evidence for the effect of cue valence (motivational bias) differing in size 122 

between Go or NoGo cues. 123 

Secondly, as a proxy of (biased) learning, we analyzed cue-based response repetition 124 

(probability of repeating a response on the next encounter of the same cue) as a function of outcome 125 

valence (favorable vs non-favorable outcome), performed action (Go vs. NoGo), and outcome 126 

salience (salient: reward or punishment vs. neutral: no reward or no punishment). As expected, 127 

people were more likely to repeat the same response following a favorable outcome (main effect of 128 

outcome valence: b = 0.504, SE = 0.053, χ2(1) = 45.595, p < .001). Most importantly, after salient 129 

outcomes, participants adjusted their responses to a larger degree following Go responses than 130 

NoGo responses, revealing the presence of a learning bias (Fig. 2C; interaction of valence x action x 131 

salience: b = 0.248, SE = 0.048, χ
2
(1) = 19.732, p < .001). When selectively analyzing trials with salient 132 

outcomes only, rewards (compared to punishments) led to a higher proportion of choice repetitions 133 

following Go relative to NoGo responses (valence x response: b = 0.308, SE = 0.064, χ2(1) = 17.798, p 134 

< .001; valence effect for Go only: b = 1.276, SE = 0.115, χ2(1) = 53.932, p < .001; valence effect for 135 

NoGo only: b = 0.637, SE = 0.127, χ2(1) = 18.228, p < .001; see full results in S02). 136 

Taken together, these results suggest that behavioral adaptation following rewards and 137 

punishments is biased by the type of action that led to this outcome (Go or NoGo). However, these 138 

analyses only consider behavioral adaptation on the next trial, and cannot pinpoint the precise 139 

algorithmic nature of this learning bias. More importantly, it does not provide trial-by-trial estimates 140 

of action values as required for model-based fMRI and EEG analyses to test for regions or time points 141 

that reflect biased learning. We thus analyzed the impact of past outcomes on participants’ choices 142 

using computational RL models. 143 

Computational modeling of behavior 144 

In line with previous work (3, 9), we fitted a series of increasingly complex RL models. We started 145 

with a simple Rescorla Wagner model featuring learning rate and feedback sensitivity parameters 146 

(M1). We next added a Go bias, capturing participants’ overall propensity to make Go responses 147 

(M2), and a Pavlovian response bias (M3), reflecting participants’ propensity to adjust their likelihood 148 
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of emitting a Go response in response to Win vs. Avoid cues (3). Alternatively, we added an 149 

instrumental learning bias (M4), amplifying the learning rate after rewarded Go responses and 150 

dampening it after punished NoGo responses (3), in line with the asymmetric pathways model. In the 151 

final model (M5), we added both a response bias and a learning bias. For the full model space (M1-152 

M5) and model definitions, see the Methods section. For a comparison with an alternative learning 153 

bias specification based on the idea that active responses enhance credit assignment (33), see S04. 154 

Model comparison showed clear evidence in favor of the full asymmetric pathways model 155 

featuring both response and learning biases (M5; model frequency: 86.43%, protected exceedance 156 

probability: 100%, see Fig. 2D, H; for model parameters and fit indices, see S03). Posterior predictive 157 

checks involving one-step-ahead predictions and model simulations showed that this model captured 158 

key behavioral features (Fig. 2E, F), including motivational biases and a greater behavioral adaptation 159 

after Go responses followed by salient outcomes than after NoGo responses followed by salient 160 

outcomes (Fig. 2 G). This pattern could not be captured by the alternative learning bias model (S04). 161 

 162 

 

Figure 2. Behavioral performance. (A) Trial-by-trial proportion of Go responses (±SEM across participants) for Go cues 

(solid lines) and NoGo cues (dashed lines). The motivational bias is already present from very early trials onwards, as 

participants made more Go responses to Win than Avoid cues (i.e., green lines are above red lines). Additionally, 

participants clearly learn whether to make a Go response or not (proportion of Go responses increases for Go cues and 

decreases for NoGo cues). (B) Mean (±SEM across participants) proportion Go responses per cue condition (points are 

individual participants’ means). (C) Probability to repeat a response (“stay”) on the next encounter of the same cue as a 

function of action and outcome. Learning is reflected in higher probability of staying after positive outcomes than after 

negative outcomes (main effect of outcome valence). Biased learning is evident in learning from salient outcomes, where 

this valence effect was stronger after Go responses than NoGo responses. Dashed line indicates chance level choice (pStay = 

0.33). (D) Log-model evidence favors the asymmetric pathways model (M5) over simpler models (M1-M4). (E-G) Trial-by-

trial proportion of Go responses, mean proportion Go responses, and probability of staying based on one-step-ahead 

predictions using parameters (hierarchical Bayesian inference) of the winning model (asymmetric pathways model, M5). 

(H) Model frequency and protected exceedance probability indicate best fit for model M5 (asymmetric pathways model), in 

line with log model evidence. 

  163 
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fMRI: Basic quality control analyses 164 

First, we performed a GLM as a quality-check to test which regions encoded favorable 165 

(rewards, no punishments) vs. unfavorable (no reward/ punishment) outcomes in a “model-free” 166 

way, independent of any model-based measure derived from a RL model (for full description of the 167 

GLM regressors and contrasts, see S06). Favorable outcomes elicited a higher BOLD response in 168 

regions including ventromedial PFC (vmPFC), ventral striatum, and right hippocampus, while 169 

unfavorable outcomes elicited higher BOLD in bilateral dorsolateral PFC (dlPFC), left ventrolateral 170 

PFC, and precuneous (Fig. 3A, see full report of significant clusters in S07). 171 

We also assessed which regions encoded Go vs. NoGo as well GoLEFT vs. GoRIGHT responses. 172 

There was higher BOLD for Go than NoGo responses at the time of response in PFC, ACC, striatum, 173 

thalamus, motor cortices, and cerebellum, while BOLD was higher for NoGo than Go responses in 174 

right IFG (Fig. 6C left panel; see S04)(32). For lateralized Go responses, there was higher BOLD signal 175 

in contralateral motor cortex and operculum as well as ipsilateral cerebellum when contrasting hand 176 

responses against each other (Fig. 6C, right panel). These results are in line with previous results on 177 

outcome processing and response selection and thus assure the general data quality. 178 

fMRI: Biased learning in prefrontal cortex and striatum 179 

To test which brain regions were involved in biased learning, we performed a model-based 180 

GLM featuring the trial-by-trial PE update as a parametric regressor (see GLM notation in S06). We 181 

used the group-level parameters of the best fitting computational model (M5) to compute trial-by-182 

trial belief updates (i.e., prediction error * learning rate) for every participant. In assessing neural 183 

signatures of biased learning, we faced the complication that standard (Rescorla-Wagner learning in 184 

M1) and biased PEs (winning model M5) are highly correlated. A mean correlation of 0.92 across 185 

participants (range 0.88–0.95) made it difficult to neurally distinguish biased from standard learning. 186 

To circumvent this collinearity problem, we decomposed the biased PE (computed using model M5) 187 

into the standard PE (computed using model M1) plus a difference term (19, 34): 188 ������ � ����� � �����  

A neural signature of biased learning should, significantly and with the same sign, encode 189 

both components of this biased PE term. Standard PEs and difference term were uncorrelated (mean 190 

correlation of -0.02 across participants; range -0.33–0.24). We tested for biased PEs PEBIAS by 191 

computing which regions significantly encoded the conjunction of both its components, i.e., standard 192 

prediction errors PESTD and the difference to biased PEs PEDIF. While PESTD was encoded in a range of 193 

cortical and subcortical regions (Fig. 3B, S07) previously reported in the literature (35), significant 194 

encoding of both PESTD and PEDIF (conjunction) occurred in striatum (caudate, nucleus accumbens), 195 

vmPFC/ perigenual ACC (area 32d), ventral ACC (area 23/24), posterior cingulate cortex (PCC), left 196 

motor cortex, left inferior temporal gyrus, and early visual regions (Fig. 3C; see full report of 197 

significant clusters in S07). Thus, BOLD signal in these regions was better described (i.e., more 198 

variance explained) by biased learning than by standard prediction error learning. 199 

 200 
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Figure 3. BOLD signal reflecting outcome processing. BOLD effects displayed using a dual-coding visualization: color 

indicates the parameter estimates and opacity the associated z-statistics. Significant clusters are surrounded by black 

edges. (A) significantly higher BOLD signal for favorable outcomes (rewards, no punishments) compared with unfavorable 

outcomes (no rewards, punishments) was present in a range of regions including bilateral ventral striatum and vmPFC. Bar 

plots show mean parameter estimates per condition (±SEM across participants; dots indicating individual participants) (B) 

BOLD signals correlated positively to “standard” RL prediction errors in several regions, including the ventral striatum, 

vmPFC, PCC and ACC. (C) Left panel: Regions encoding both the standard PE term and the difference term to biased PEs 

(conjunction) at different cluster-forming thresholds (1 < z < 5, color coding; opacity constant). Clusters significant at a 

threshold of z > 3.1 are surrounded by black edges. In bilateral striatum, ACC, vmPFC, PCC, left motor cortex, left inferior 

temporal gyrus, and primary visual cortex, BOLD is significantly better explained by biased learning than by standard 

learning. Right panel: 3D representation with all seven regions encoding biased learning (used in fMRI-informed EEG 

analyses). 

 201 

EEG: Biased learning in midfrontal delta, theta, and beta power 202 

Similar to the fMRI analyses, we next tested whether midfrontal power encoded biased PEs 203 

rather than standard PEs. While fMRI provides spatial specificity of where PEs are encoded, EEG 204 

power provides temporal specificity of when signals encoding prediction errors occur (26, 31). In line 205 

with our fMRI analysis, we used the standard PE term ����� and the difference to the biased PE 206 

term �����  as trial-by-trial regressors for EEG power at each channel-time-frequency bin for each 207 

participant and then performed cluster-based permutation tests across the b-maps of all 208 

participants. Note that differently from BOLD signal, EEG signatures of learning typically do not 209 
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encode the full prediction error. Instead, PE sign (favorable vs. unfavorable outcomes) and PE 210 

magnitude (saliency, surprise) have been found encoded separately in the theta and delta band, 211 

respectively  (28–30). We thus added PE sign as an additional regressor to test for separate correlates 212 

of PE sign and PE magnitude. Note that PE sign is identical for standard and biased PEs; only PE 213 

magnitude distinguishes both learning models. 214 

Both midfrontal theta and beta power reflected PE sign: Theta power was higher for 215 

unfavorable than favorable outcomes (225–475 ms, p = .006; Fig. 4A-B), while beta power was higher 216 

for favorable than unfavorable outcomes (300–1,250 ms, p = .002; Fig. 4A, C). Differences in theta 217 

power were clearly strongest over frontal channels, while the effect in the beta range was more 218 

diffuse, spreading over frontal and parietal channels (Fig. 4B-C). All results held when the condition-219 

wise ERP was removed from the data (see S08), suggesting that differences between conditions were 220 

due to induced (rather than evoked) activity (for results in the time domain, see S09). 221 

Delta power was indeed positively, though not significantly correlated with both �����  (p = 222 

0.074, Fig. 4E) and �����  (p = 0.185; Fig. 4F). Only the sum of both terms, i.e., the ������  term, was 223 

significantly encoded by delta power (225–475 ms; p = .017; Fig. 4D). For a similar observation in the 224 

time-domain EEG signal, see S10. Beyond delta power, beta power correlated positively, though not 225 

significantly with �����  (p = 0.110, Fig. 4E) and significantly negatively with �����  (p = .001, 425 – 226 

850 ms). Encoding of  ������ was not significant either (p = 0.550, Fig 4D).  227 

In sum, both midfrontal theta power (negatively) and beta power (positively) encoded PE 228 

sign. In addition, delta power encoded PE magnitude (positively). This encoding was only significant 229 

for biased PEs, but not standard PEs. Taken together, as was the case for BOLD signal, midfrontal EEG 230 

power also reflected biased learning. As a next step, we tested whether the identified EEG 231 

phenomena were correlated with trial-by-trial BOLD signal in identified regions. Crucially, this 232 

allowed us to test whether EEG correlates of cortical learning precede EEG correlates of subcortical 233 

learning. 234 

 
Figure 4. EEG time-frequency power over midfrontal electrodes (Fz/ FCz/ Cz). reflecting outcome processing. (A) Time-

frequency plot (logarithmic y-axis) displaying higher theta (4–8 Hz) power for unfavorable outcomes and higher beta 

power (16–32 Hz) for favorable outcomes. Black square dot boxes indicate clusters above threshold that drive 

significance in a-priori defined frequency ranges. (B). Theta power transiently increases for any outcome, but more so 

for unfavorable outcomes (especially punishments) around 225–475 ms after feedback onset. Black horizontal lines 
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indicate the time range for which the cluster driving significance is above threshold. (C) Beta power is higher for 

favorable than unfavorable outcomes over a long time period around 300–1,250 ms after feedback onset. (D-F). 

Correlations between midfrontal EEG power and trial-by-trial PEs controlling for PE sign. Solid black lines indicate 

clusters above threshold. Biased PEs were significantly positively correlated with midfrontal delta power (D). The 

correlations of delta with the standard PEs (E) and the difference term to biased PEs (F) were positive as well, though 

not significant. Beta power only encoded the difference term to biased PEs (F). ** p < 0.01. 

 235 

Combined EEG-fMRI: Prefrontal cortex signals precede striatum during biased 236 

outcome processing 237 

The observation that also cortical areas (vmPFC, ACC, PCC) show biased PEs is consistent with the 238 

“external model” of cortical signals biasing learning processes in the striatum. However, this model 239 

makes the crucial prediction that these bias signals should be present first in cortical areas and only 240 

later in the striatum. Next, we used trial-by-trial BOLD signal from those regions encoding biased PE 241 

to predict midfrontal EEG power. By determining the time points at which different regions 242 

correlated with EEG power, we were able to infer the relative order of biased PE processing across 243 

cortical and subcortical regions, revealing whether cortical processing preceded striatal processing. 244 

We used trial-by-trial BOLD signal from the seven regions encoding biased PEs, i.e., striatum, ACC, 245 

left motor cortex, vmPFC, PCC, left ITG, and primary visual cortex (see masks in S05) as regressors on 246 

average EEG power over midfrontal electrodes (Fz/ FCz/ Cz). We controlled for biased PEs themselves 247 

to capture additional variance in EEG explained by BOLD signal beyond the task regressors. As the 248 

timeseries of all seven regions were included in one single regression, their regression weights reflect 249 

each region’s unique contribution, controlling for any shared variance. In line with the “external 250 

model”, BOLD signal from prefrontal cortical regions correlated with midfrontal EEG power earlier 251 

after outcome onset than did striatal BOLD signal:  252 

First, ACC BOLD was significantly negatively correlated with alpha/ theta power early after 253 

outcome onset (100–575 ms, 2 – 17 Hz, p = .016; Fig. 5A). This cluster started in the alpha/ theta 254 

range and then spread into the theta/delta range (henceforth called “lower alpha band power”). It 255 

was not observed in the EEG-only analyses reported above. 256 

Second, while vmPFC/ perigenual ACC BOLD did not correlate significantly with midfrontal EEG 257 

power (p = .184), BOLD in PCC was negatively correlated with theta/ delta power (Fig. 5B; 175–500 258 

ms, 1–6 Hz, p = .014). This finding bears resemblance in terms of time-frequency space to the cluster 259 

of (negative) PE sign encoding in the theta band and (positive) PE magnitude encoding in the delta 260 

band identified in the EEG-only analyses (Fig. 4A). As a reverse check of this link, we added the trial-261 

by-trial power in the EEG-only theta/delta band cluster as a regressor to the fMRI GLM featuring 262 

prediction errors, which yielded significant clusters of negative EEG-BOLD correlation in vmPFC and 263 

PCC (Fig. 5F; S13). We thus discuss vmPFC and PCC together in the following. 264 

Third, there was a significant positive correlation between striatal BOLD and midfrontal beta/ 265 

alpha power (driven by a cluster at 100–800 ms, 7–23 Hz, p = .010; Fig. 5C). This finding bears 266 

resemblance in time-frequency space to the cluster of positive PE sign encoding in beta power 267 

identified in the EEG-only analyses (Fig. 4A). Again, to substantiate this link, we performed the 268 

reverse approach of using trial-by-trial power in the EEG-only beta band cluster as a regressor added 269 

to the fMRI GLM. Clusters of positive EEG-BOLD correlations in right dorsal caudate (and left 270 

parahippocampal gyrus) as well as clusters of negative correlations in bilateral dorsolateral PFC 271 

(dlPFC) and supramarginal gyrus (SMG; Fig. 5G; see S13) confirmed the positive striatal BOLD-beta 272 
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power association. Given that the striatum is unlikely to be the source of midfrontal beta power over 273 

the scalp, this analysis suggests dlPFC and SMG as likely candidate sources. 274 

Finally, regarding the other three regions that showed a significant BOLD signature of biased PEs: 275 

BOLD in left motor cortex was significantly negatively correlated with early midfrontal beta power (p 276 

= .002; around 0 – 625 ms; see S11). There were no significant correlations between midfrontal EEG 277 

power and left inferior temporal gyrus or primary visual cortex BOLD (see S11). All results were 278 

robust to different analysis approaches including shorter trial windows, different GLM specifications, 279 

inclusion of task-condition and fMRI motion realignment regressors, and individual modelling of each 280 

region, and were not reducible to phenomena in the time domain (see S12).  281 

In sum, there were negative correlations between ACC BOLD and midfrontal lower alpha band 282 

power early after outcome onset, negative correlations between PCC BOLD and midfrontal theta/ 283 

delta power at intermediate time points, and positive correlations between striatal BOLD and 284 

midfrontal beta power at late time points (Fig. 5D, H). These results are consistent with an “external 285 

model” of motivational biases arising from early cortical processes biasing later learning processes in 286 

the striatum. 287 

 

 
Figure 5. fMRI-informed EEG analyses. Unique temporal contributions of BOLD signal in (A) ACC, (B) PCC, and (C) striatum 

to average EEG power over midfrontal electrodes (Fz/ FCz/ Cz). Group-level t-maps display the modulation of the EEG 

power by trial-by-trial BOLD signal in the selected ROIs. ACC BOLD correlates negatively with early alpha/ theta power, PCC 

BOLD negatively with theta/ delta power, striatal BOLD positively with beta/ alpha power. Areas surrounded by a black 

edge indicate clusters of |t| > 2 with p < .05 (cluster-corrected). Topoplots indicate the topography of the respective 

cluster. (D) Time course of ACC, PCC, and striatal BOLD correlations, normalized to the peak of the time course of each 

region. ACC-lower alpha band correlations emerge first, followed by (negative) PCC-theta correlations and finally positive 

striatum-beta correlations. Reverse approach using lower alpha (E), theta (F) and beta (G) power as trial-by-trial regressors 

in fMRI GLMs. These EEG-informed fMRI analyses corroborate the fMRI-informed EEG analyses: Lower alpha band power 

correlated negatively with the ACC BOLD, theta power negatively with vmPFC and PCC BOLD, and beta power positively 

with striatal BOLD. (H) Schematic overview of the main EEG-fMRI results: ACC encodes the previously performed response 

and correlates with early midfrontal lower alpha band power. vmPFC/ PCC (correlated with theta power) and striatum 

(correlated with beta power) both encode outcome valence, but have opposite effects on subsequent behavior. Note that 

activity in these regions temporally overlaps; boxes are ordered in temporal precedence of peak activity. 

 288 
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ACC BOLD and midfrontal lower alpha band power encode the previously 289 

performed action during outcome presentation 290 

While the clusters of EEG-fMRI correlation in the theta/ delta and beta range matched the 291 

clusters identified in EEG-only analyses, the cluster of negative correlations between ACC BOLD and 292 

early midfrontal lower alpha band power was novel and did not match our expectations. Given that 293 

these correlations arose very soon after outcome onset, we hypothesized that ACC BOLD and 294 

midfrontal lower alpha band power might reflect a process occurring even before outcome onset, 295 

such as the maintenance (“eligibility trace”) of the previously performed response to which credit 296 

may later be assigned. We therefore assessed whether information of the previous response was 297 

present in ACC BOLD and in the lower alpha band around the time of outcome onset.  298 

First, we tested for BOLD correlates of the previous response at the time of outcomes (eight 299 

outcome-locked regressors for every Go/ NoGo x reward/ no reward/ no punishment/ punishment 300 

combination) while controlling for motor-related signals at the time of the response (response-locked 301 

regressors for left-hand and right-hand button presses). At the time of outcomes, there was higher 302 

BOLD signal for NoGo than Go responses across several cortical and subcortical regions, peaking in 303 

both the ACC and striatum (Fig. 6E). This inversion of effects—higher BOLD for Go than NoGo 304 

responses at the time of response (see quality checks), but the reverse at the time of outcome—was 305 

also observed in the upsampled raw BOLD and was independent of the response of the next trial 306 

(S14). In sum, large parts of cortex, including the ACC, indeed encoded the previously performed 307 

response at the moment outcomes were presented, in line with the idea that the ACC maintains an 308 

“eligibility trace” of the previously performed response. 309 

Second, we tested for differences between Go and NoGo responses at the time of outcomes 310 

in midfrontal broadband EEG power. Power was significantly higher on trials with Go than on trials 311 

with NoGo responses, driven by clusters in the lower alpha band (spreading into the theta band; 312 

around 0.000–0.425 sec., 1–11 Hz, p = .012) and in the beta band (around 0.200–0.450 sec., 18–27 313 

Hz, p = .022; Fig. 6A, B). The first cluster matched the time-frequency pattern of ACC BOLD-alpha 314 

power correlations (Fig. 5A).  315 

If this activity cluster contained a signature of the previously performed response, it might have 316 

been present throughout the delay between cue offset and outcome onset. When repeating the 317 

above permutation test including the last second before outcome onset, there were significant 318 

differences again, driven by a sustained cluster in the beta band (-1–0 sec., 13–33 Hz, p = .002) and 319 

two clusters in the alpha/ theta band (Cluster 1: -1.000– -0.275 sec., 1–10 Hz, p = 0.014; Cluster 2: -320 

0.225–0.425 sec., 1–11 Hz, p = .022; Fig. 6B). These findings suggest that lower alpha band power 321 

might reflect a sustained memory of the previously performed response. Supplemental analyses 322 

(S14) yielded that this Go-NoGo trace during outcome processing did not change over the time 323 

course of the experiment, suggesting that it did not reflect typical fatigue/ time-on task effects often 324 

observed in the alpha band. 325 

Again, we performed the reverse EEG-fMRI analysis using trial-by-trial power in the identified 326 

lower alpha band cluster (Fig. 6B) as an additional regressor in the quality-check fMRI GLM. Clusters 327 

of negative EEG-BOLD occurred correlation in a range of cortical regions, including ACC and 328 

precuneous (Fig. 5E; see S13). In sum, both ACC BOLD signal and midfrontal lower alpha band power 329 

contained information about the previously performed response, consistent with the idea that both 330 

signals reflect an “eligibility trace” of the response to which credit is assigned once an outcome is 331 

obtained. 332 
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Figure 6. Exploratory follow-up analyses on ACC BOLD signal and midfrontal lower alpha band power. (A) Midfrontal 

time-frequency response-locked (left panel) and outcome-locked (right panel). Before and shortly after outcome onset, 

power in the lower alpha band is higher on trials with Go actions than on trials with NoGo actions. The shape of this 

difference resembles the shape of ACC BOLD-EEG TF correlations (small plot; note that this plot depicts BOLD-EEG 

correlations, which are negative). Note that differences between Go and NoGo trials occurred already before outcome 

onset in the alpha and beta range, reminiscent of delay activity, but were not fully sustained throughout the delay 

between response and outcome. (B) Midfrontal power in the lower alpha band per action x outcome condition. Lower 

alpha band power is consistently higher on trials with Go actions than on trials with NoGo actions, starting already before 

outcome onset. (C) BOLD signal differences between Go and NoGo actions (left panel) and left vs. right hand responses 

(right panel) at the time or responses. Response-locked ACC BOLD is significantly higher for Go than NoGo actions. (D) 

BOLD signal differences between Go and NoGo actions at the time of outcomes. Outcome-locked ACC BOLD (and BOLD in 

other parts of cortex) is significantly lower on trials with Go than on trials with NoGo actions. 

 333 

Striatal and vmPFC/ PCC BOLD differentially relate to action policy updating 334 

EEG correlates of PCC BOLD and striatal BOLD occurred later than for the ACC BOLD, and 335 

overlapped with classical feedback-related midfrontal theta and beta power responses. We 336 

hypothesized that those neural signals might be more closely related to updating of action policies 337 

(i.e., which action to perform for each cue) and might thus predict the next response to the same cue 338 

(27, 36). We thus used the trial-by-trial BOLD responses in ACC, PCC, vmPFC and striatum to predict 339 

whether participants would repeat the same response on the next trial with the same cue (“stay”) or 340 

switch to another response (“shift”). Mixed-effects logistic regression yielded that ACC BOLD did not 341 

significantly predict response repetition (b = -0.019, SE = 0.016, χ2(1) = 1.294, p = .255). In contrast, 342 

BOLD in PCC/ vmPFC and striatum did predict response repetition, though in opposite directions: 343 

Participants were significantly more likely to repeat the same response when striatal BOLD was high 344 

(b = 0.067, SE = 0.024, χ
2
(1) = 9.051, p = .003), but more likely to switch to another response when 345 

vmPFC BOLD (b = -0.076, SE = 0.017, χ2(1) = 15.559, p < .001) or PCC BOLD (b = -0.036, SE = 0.016, 346 

χ2(1) = 3.691, p = .030; Fig. 5H) was high (for plots, see S15). We also inspected the raw upsampled 347 

HRF shapes per region per condition, confirming that differential relationships were not driven by 348 

differences in HRF shapes across regions. 349 
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 We also tested whether trial-by-trial midfrontal lower alpha band, theta, or beta power 350 

(within the clusters identified in the EEG-only analyses) predicted action policy updating. Participants 351 

were significantly more likely to repeat the same response when beta power was high (b = 0.145, SE 352 

= 0.041, χ2(1) = 11.886, p < .001), but more likely to switch when theta power was high (b = -0.099, SE 353 

= 0.047, χ2(1) = 4.179, p = .041). Notably, unlike its BOLD correlate in ACC, lower alpha band power 354 

did predict response repetition, with more repetition when alpha power was high (b = .0.179, SE = 355 

0.052, χ2(1) = 10.711, p = .001; for plots, see S15). 356 

 In sum, high striatal BOLD and midfrontal beta power predicted that the same response 357 

would be repeated on the next encounter of a cue, while high vmPFC and PCC BOLD and high theta 358 

power predicted that participants would switch to another response. Thus, although both striatal and 359 

vmPFC/PCC BOLD positively encoded biased prediction errors, these two sets of regions had opposite 360 

roles in learning: while the striatum reinforces previous responses, vmPFC/PCC trigger the shift to 361 

another response strategy (Fig. 5H). 362 

 363 

Discussion 364 

We investigated neural correlates of biased learning for Go and NoGo responses. In line with 365 

previous research (3, 9), participants’ behavior was best described by a computational model 366 

featuring faster learning from rewarded Go responses and slower learning from punished NoGo 367 

responses. Neural correlates of biased PEs were present in BOLD signals in several regions, including 368 

ACC, PCC, vmPFC, and striatum. These regions exhibited distinct midfrontal EEG power correlates. 369 

Most importantly, correlates of prefrontal cortical BOLD preceded correlates of striatal BOLD: Trial-370 

by-trial ACC BOLD correlated with lower alpha band power immediately after outcome onset, 371 

followed by PCC (and vmPFC) BOLD correlated with theta power, and finally striatal BOLD correlated 372 

with beta power. These results are in line with a model of PFC biasing striatal outcome processing, 373 

giving rise to motivational learning biases in behavior. 374 

 375 

Biased learning in PFC precedes the striatum 376 

 The dominant idea about the origin of motivational biases has been that these biases are an 377 

emergent feature of the asymmetric direct/ indirect pathway architecture in the basal ganglia (2, 16). 378 

We find evidence that these biases are present first in prefrontal cortical areas, notably ACC and 379 

vmPFC. This argues against biases purely being a “fixed” leftover of evolutionary ancient, subcortical 380 

circuits. Rather, motivational learning biases might be an instance of sophisticated, even “model-381 

based” learning processes in the striatum instructed by the prefrontal cortex (37, 38). An influence of 382 

PFC on striatal RL has prominently been observed in the case of model-based vs. model-free learning 383 

(20, 21) and has been stipulated as a mechanism of how instructions can impact RL learning (17, 18). 384 

Although there are reports of striatal processes preceding prefrontal processes within learning tasks 385 

(39, 40), the opposite pattern of PFC preceding striatum has been observed as well (41) and a causal 386 

impact of PFC on striatal learning is well established (42, 43).  387 

The particular subregion of PFC showing the earliest EEG correlates was the ACC. This 388 

observation is in line with an earlier EEG-fMRI study reporting ACC to be part of an early valuation 389 

system preceding a later system comprising vmPFC and striatum (44). The ACC has been suggested to 390 

encode models of agents’ environment (45, 46) that are relevant for interpreting outcomes. ACC 391 

BOLD has been found to scale with the size of PEs (22, 23), indexing how much should be learned 392 

from new outcomes. We hypothesize that, at the moment of outcome, ACC maintains an “eligibility 393 

trace” of the previously performed response (47), which might modulate the processing of outcomes 394 
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as soon as they become available (48, 49). Notably, ACC exhibited stronger BOLD signal for Go than 395 

NoGo responses at the time of participants’ response, but this pattern reversed at the time of 396 

outcomes. This reversal rules out the possibility that response-locked BOLD signal simply spilled over 397 

into the time of outcomes. Future research will be necessary to corroborate such a motor “eligibility 398 

trace” in ACC. 399 

In sum, the ACC might be in a designated position to inform subsequent outcome processing 400 

in downstream regions by modulating the learning rate as a function of previously performed 401 

response and the obtained outcome. Rather than striatal circuits being sufficient for the emergence 402 

of motivational biases, the more “flexible” PFC seems to play role in instructing downstream striatal 403 

learning processes. 404 

 405 

Striatum and midfrontal beta power signal maintenance of action policies 406 

  Striatal, vmPFC and PCC BOLD encoded biased PEs. In line with previous research, striatal 407 

BOLD positively linked to midfrontal beta power (50, 51), which positively encoded PE sign (25, 31, 408 

52). PCC and vmPFC BOLD negatively linked to midfrontal theta/ delta power (32, 53, 54), which 409 

encoded PE sign negatively, but PE magnitude positively. Notably, theta/ delta power correlates of 410 

vmPFC/ PCC BOLD preceded beta power correlates of striatal BOLD in time, which aligns with 411 

previous findings of motivational response biases being first visible in the vmPFC BOLD before they 412 

impact striatal action selection (32). 413 

Positive encoding of prediction errors in striatal BOLD signal is a well-established phenomenon 414 

(35, 55). Striatal BOLD was better described by biased PEs than by standard PEs, corroborating the 415 

presence of motivational learning biases also in striatal learning processes. Notably, EEG correlates of 416 

striatal BOLD peaked rather late, suggesting that these processes are informed by early sources in 417 

PFC which are connected to the striatum via recurrent feedback loops (15, 56). Positive prediction 418 

errors increase the value of a performed action and thus strengthen action policies. Hence, it is not 419 

surprising that high striatal BOLD signal and midfrontal beta power predicted action repetition (57, 420 

58). 421 

 422 

vmPFC and midfrontal theta/ delta power signal updating of action policies 423 

In contrast to striatal learning signals, the PCC and vmPFC BOLD as well as midfrontal theta 424 

and delta power signals were more complicated: Theta encoded PE sign, delta encoded PE 425 

magnitude. Both correlates showed opposite polarities. This observation is in line with previous 426 

literature suggesting that midfrontal theta and delta power (resp. the feedback-related negativity 427 

and reward positivity components in the time domain EEG signal) might reflect the “saliency” or 428 

“surprise” aspect of PEs (28, 29, 59). Surprises have the potential to disrupt an ongoing action policy 429 

(60) and motivate a shift to another policy, which might explain why these signals predicted 430 

switching to another response (61, 62). Notably, this EEG surprise signal was only significantly 431 

correlated with the biased (but not the standard) PE term, corroborating that the surprise attributed 432 

to outcomes depends on previously performed response, reflecting motivational learning biases. In 433 

sum, both vmPFC and striatum encode biased PEs, though with different consequences for future 434 

action policies. 435 

 436 

Limitations 437 

Taken together, distinct brain regions processed outcomes in a biased fashion at distinct time 438 

points with distinct EEG power correlates. Simultaneous EEG-fMRI recordings allowed us to infer 439 

when those regions reached their peak activity (63). However, the correlational nature of BOLD-EEG 440 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.03.462927doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.03.462927
http://creativecommons.org/licenses/by/4.0/


MOTIVATIONAL BIASES IN FRONTO-STRIATAL CIRCUITS          15 
 

links precludes strong statements about these regions actually generating the respective power 441 

phenomena. Alternatively, activity in those regions might merely modulate the amplitude of time-442 

frequency responses originating from other sources. Furthermore, while the observed associations 443 

align with previous literature (32, 50, 51, 53, 54), the considerable distance of the striatum to the 444 

scalp raises the question whether scalp EEG could in principle reflect striatal activity, at all (64, 65). 445 

Intracranial recordings have observed beta oscillations during outcome processing in the striatum 446 

before (58, 66, 67). Also, our analysis controlled for BOLD signal in motor cortex, an alternative 447 

candidate source for beta power, suggesting that late midfrontal beta power does not merely reflect 448 

motor cortex beta. Even if the striatum is not the generator of the beta oscillations over the scalp, 449 

their true (cortical) generator might be tightly coupled to the striatum and thus act as a “transmitter” 450 

of striatal beta oscillations. In fact, the analyses using trial-by-trial beta power to predict BOLD 451 

yielded significant clusters in dlPFC and SMG, two candidate regions for such a “transmitter”. 452 

Finally, the correlational nature of the study prevents strong statements over any causal 453 

interactions between the observed regions. We assume here that a region showing an earlier 454 

midfrontal EEG correlate influences other regions showing later midfrontal EEG correlates, and such 455 

an influence is plausible given findings of feedback loops between prefrontal regions and the 456 

striatum (56). Future studies targeting those regions via selective causal manipulations will be 457 

necessary to test for the causal role of PFC in informing striatal learning. 458 

 459 

The role of motivational biases in credit assignment and learning 460 

In conclusion, biased learning—increased credit assignment to rewarded action, decreased credit 461 

assignment to punished inaction—was visible both in behavior and in BOLD signal in a range of 462 

regions. EEG correlates of prefrontal cortical regions, notably ACC and vmPFC, preceded correlates of 463 

the striatum, consistent with a model of the PFC biasing RL in the striatum. The ACC appeared to hold 464 

a “motor eligibility trace” of the past response, biasing early outcome processing. Subsequently, 465 

biased learning was also present in vmPFC/ PCC and striatum, with opposite roles in adjusting vs. 466 

maintaining action policies. These results refine previous views on the neural origin of these learning 467 

biases, which might not purely be “naïve” remnants of evolutionary ancient, “primitive” parts of the 468 

brain, but rather incorporate sophisticated, even “model-based” processes relying on frontal inputs. 469 

The PFC is typically believed to facilitate goal-directed over instinctive processes. Hence, PFC 470 

involvement into biased learning suggests that these biases are not necessarily agents’ inescapable 471 

“fate”, but rather likely act as global “priors” that facilitate learning of more local relationships. They 472 

allow for combining “the best of both worlds”—long-term experience with consequences of actions 473 

and inactions together with flexible learning from rewards and punishments. 474 

Materials and methods 475 

Participants 476 

Thirty-six participants (Mage = 23.6, SDage = 3.4, range 19–32; 25 women; all right-handed; all normal 477 

or corrected-to-normal vision) took part in a single 3-h data collection session, for which they 478 

received €30 flat fee plus a performance-dependent bonus (range €0–5, Mbonus = €1.28, SDbonus = 479 

1.54). The study was approved by the local ethics committee (CMO2014/288; Commissie 480 

Mensengeboden Onderzoek Arnhem-Nijmegen) and all participants provided written informed 481 

consent. Exclusion criteria comprised claustrophobia, allergy to gels used for EEG electrode 482 

application, hearing aids, impaired vision, colorblindness, history of neurological or psychiatric 483 

diseases (including heavy concussions and brain surgery), epilepsy and metal parts in the body, or 484 

heart problems. Sample size was based on previous EEG studies with a comparable paradigm (9, 68). 485 
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  Behavioral and modeling results include all 36 participants. The following participants were 486 

excluded from analyses of neural data: For two participants, fMRI functional-to-standard image 487 

registration failed; hence, all fMRI-only results are based on 34 participants (Mage = 23.47, 25 488 

women). Four participants exhibited excessive residual noise in their EEG data (> 33% rejected trials) 489 

and were thus excluded from all EEG analyses; hence, all EEG-only analyses are based on 32 490 

participants (Mage = 23.09, 23 women). For combined EEG-fMRI analyses, we excluded the above-491 

mentioned six participants plus one more participant whose regression weights for every regressor 492 

were about ten times larger than for other participants, leaving 29 participants (Mage = 23.00, 22 493 

women). Exclusions were in line with a previous analysis of this data set (32). fMRI- and EEG-only 494 

results held when analyzing only those 29 participants (see S01). 495 

Task 496 

Participants performed a motivational Go/ NoGo learning task (3, 9) administered via 497 

MATLAB R2014b (MathWorks, Natick, MA, United States) and Psychtoolbox-3.0.13. On each trial, 498 

participants saw a gem-shaped cue for 1300 ms, which signaled whether they could potentially win a 499 

reward (Win cues) or avoid a punishment (Avoid cues), and whether they had to perform a Go (Go 500 

cue) or NoGo response (NoGo cue). They could press a left (GoLEFT), right (GoRIGHT), or no (NoGo) 501 

button while the cue was presented. Only one response option was correct per cue. Participants had 502 

to learn both cue valence and required action from trial-and-error. After a variable inter-stimulus-503 

interval of 1,400–1,600 ms, the outcome was presented for 750 ms. Potential outcomes were a 504 

reward (symbolized by coins falling into a can) or neutral outcome (can without money) for Win cues, 505 

and a neutral outcome or punishment (symbolized by money falling out of a can) for Avoid cues. 506 

Feedback validity was 80%, i.e., correct responses were followed by favorable outcomes (rewards/ 507 

no punishments) on only 80% of trials, while incorrect responses were still followed by favorable 508 

outcomes on 20% of trials. Trials ended with a jittered inter-trial interval of 1250–2000 ms, yielding 509 

total trial lengths of 4700–6650 ms. 510 

Participants gave left and right Go responses via two button boxes positioned lateral to their 511 

body. Each box featured four buttons, but only one button per box was required in this task. When 512 

participants accidentally pressed a non-instructed button, they received the message “Please press 513 

one of the correct keys” instead of an outcome. In the analyses, these responses were recoded into 514 

the instructed button on the respective button box. In the fMRI GLMs, such trials were modeled with 515 

a separate regressor. 516 

Before the task, participants were instructed that each cue could be followed by either 517 

reward or punishment, each cue had one optimal response, feedback was probabilistic, and that the 518 

rewards and punishments were converted into a monetary bonus upon completion of the study. 519 

They performed an elaborate practice session in which they got familiarized first with each condition 520 

separately (using practice stimuli) and finally practiced all conditions together. They then performed 521 

640 trials of the main task, separated into two sessions of 320 trials with separate cue sets. 522 

Introducing a new set of cues allowed us to prevent ceiling effects in performance and investigate 523 

continuous learning throughout the task. Each session featured eight cues that were presented 40 524 

times. After every 100–110 trials (~ 6 min.), participants could take a self-paced break. The 525 

assignment of the gems to cue conditions was counterbalanced across participants, and trial order 526 

was pseudo-random (preventing that the same cue occurred on more than two consecutive trials). 527 
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Behavior analyses 528 

We used mixed-effects logistic regression (as implemented in the R package lme4) to analyze 529 

behavioral responses (Go vs. NoGo) as a function of required action (Go/ NoGo), cue valence (Win/ 530 

Avoid), and their interaction. We included a random intercept and all possible random slopes and 531 

correlations per participant to achieve a maximal random-effects structure (69). Sum-to-zero coding 532 

was employed for the factors. Type 3 p-values were based on likelihood ratio tests (implemented in 533 

the R package afex). We used a significance criterion of α = .05 for all the analyses. 534 

Furthermore, we used mixed-effects logistic regression to analyze “stay behavior”, i.e., 535 

whether participants repeated an action on the next encounter of the same cue, as a function of 536 

outcome valence (positive: reward or no punishment/ negative: no reward or punishment), outcome 537 

salience (salient: reward or punishment/ neutral: no reward or no punishment), and performed 538 

action (Go/ NoGo). We again included all possible random intercepts, slopes, and interactions. 539 

Computational modeling 540 

We fit a series of increasingly complex RL models to participants’ choices to decide between different 541 

algorithmic explanations for the emergence of motivational biases in behavior. We employed the 542 

same set of nested models as in previous studies using this task (3, 9). For tests of alternative biases 543 

specifications, see S03. 544 

Model space  545 

To determine whether a Pavlovian response bias, an instrumental learning bias, or both 546 

biases jointly predicted behavior best, we fitted a series of increasing complex computational 547 

models. In each trial (t), choice probabilities for all three response options (a) given the displayed cue 548 

(s) were computed from their action weights (modified Q-values) using a softmax function: 549 ����|	�
 � 	
� 
�
��,����

∑ 	
� 
�
��,�����

       (1) 550 

After each response, action values were updated with the prediction error based on the 551 

obtained outcome � 
  ��1; 0; 1�. As the starting model (M1), we fitted an standard delta-learning 552 

model (70) in which action values were updated with prediction errors, i.e.,the deviation between 553 

the experienced outcome and expected outcome. This model contained two free parameters: the 554 

learning rate (ε) scaling the updating term and the feedback sensitivity (ρ) scaling the received 555 

outcome: 556 �����, 	�
 � �������, 	�
 � ���� � �������, 	�

   (2) 557 

In this model, choice probabilities were fully determined by action values, without any bias. 558 

We assigned cue valence Vs to 0.5 for Win cues and -0.5 for Avoid cues and used cue valence scaled 559 

by participants’ individual feedback sensitivity as initial action values Q0. Unlike previous versions of 560 

the task (3), cue valences were not instructed, but had to be learned from outcomes, as well (9). 561 

Thus, until experiencing the first reward/ punishment for a cue, participants could not know its 562 

valence (and not learn from neutral feedback). Hence, for these trials, action values were multiplied 563 

with zero when computing choice probabilities. After the first encounter of a valenced outcome, 564 

action values were “unmuted” and started to influence choices probabilities, retrospectively 565 

considering all previous outcomes. 566 

In M2, we added the Go bias parameter b, which accounted for individual differences in 567 

participants’ overall propensity to make Go responses, to the action values Q, resulting in action 568 

weights w: 569 

����, 	�
 � ������, 	�
 � �                 �� � � �������, 	�
                                     !	 "   (3) 570 
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In M3, we added a Pavlovian response bias π, scaling how positive/ negative cue valence 571 

(Pavlovian values) increased/ decreased the weights of Go responses: 572 

����, 	�
 � ������, 	�
 � � � #$�	
               �� � � �������, 	�
                                                    !	 "  (4) 573 

We assigned cue valence to 0.5 for Win cues and -0.5 for Avoid cues. Cue valence became 574 

effective only once the participant had experienced the first reward/ punishment for that cue; 575 

beforehand, it was treated as zero. The Pavlovian response bias affected left-hand and right-hand Go 576 

responses similarly and thus reflected generalized activation/ inactivation by the cue valence. 577 

In M4, we added an instrumental learning bias κ, increasing the learning rate for rewards 578 

after Go responses and decreasing it for punishments after NoGo responses: 579 

� � %�� � &     �� �� � 1 �'( � � )��� � &   ���� � �1 �'( � � '�)���                                                    !	 "    (5) 580 

The instrumental learning bias was specific to the response shown, thus reflecting a specific 581 

enhancement in action learning/ impairment in unlearning for that particular response. 582 

In the model M5, we included both the Pavlovian response bias and the instrumental 583 

learning bias. 584 

The hyperpriors were *�~,�2,3
, *�~,�0,2
, *�,�,�~,�0,3
. For computing the 585 

participant-level parameters, ρ was exponentiated to constrain it to positive values, and the inverse-586 

logit transformation was applied to ε to constraint it to the range [0 1]. We made sure that the effect 587 

of κ on ε was symmetrical by computing it as: 588 

        � � / �� � �'0. !�)�1��
                          ���� �!"# $%&% � �'0. !�)�1�� � &
                    �� �� 2 .5  �'"��'#"# &% � �� � 4�� � ���� �!"# $%&%5 �� �� 2 .5 "  (6) 589 

� � � �'"��'#"# &% � �'0. !�)�1�� � &
                   �� �� 6 .5  ���� �!"# $%&% � �� � ��� � �'"��'#"# &%
    �� �� 6 .5      " 
Model fitting and comparison 590 

For model fitting and comparison, we used Hierarchical Bayesian inference as implemented 591 

in the CBM toolbox in Matlab (71). This approach combines hierarchical Bayesian parameter 592 

estimation with random-effects model comparison (72). The fitting procedure involves two steps, 593 

starting with the Laplace approximation of the model evidence to compute the group evidence, 594 

which quantifies how well each model fits the data while penalizing for model complexity. Both 595 

group-level and individual-level parameters are estimated using an iterative algorithm. We used wide 596 

Gaussian priors (see hyperpriors above) and exponential and sigmoid transforms to constrain 597 

parameter spaces. Subsequent random-effects model selection allows for the possibility that 598 

different models generated the data for different participants. Participants contribute to the group-599 

level parameter estimation in proportion to how well a given model fits their data, quantified via a 600 

responsibility measure (i.e., the probability that the model at hand is responsible for generating data 601 

of the respective participant). This model-comparison approach has been shown to be less 602 

susceptible to the influence of outliers (71). We selected the “winning” model based on the 603 

protected exceedance probability.  604 

Model validation 605 

We assured that the winning model was able to reproduce the data, using the sampled 606 

combinations of participant-level parameter estimates to create 3,600 agents that “played” the task. 607 
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We employed two approaches to simulate the task: posterior predictive model simulations and one-608 

step-ahead model predictions. In the posterior predictive model simulations, agents’ choices were 609 

sampled probabilistically based on their action values, and outcomes probabilistically sampled based 610 

on their choices. This method ignores participant-specific choice histories and can thus yield choice/ 611 

outcome sequences that diverge considerably from participants’ actual experiences. In contrast, one-612 

step-ahead predictions use participants’ actual choices and experienced outcomes in each trial to 613 

update action values. We simulated choices for each participant using both methods, which 614 

confirmed that the winning model M5 (“asymmetric pathways model”) was able to qualitatively 615 

reproduce the data, while an alternative implementation of biased learning (“action priming model”) 616 

failed to do so (see S03). 617 

fMRI data acquisition 618 

fMRI data were collected on a 3T Siemens Magnetom Prisma fit MRI scanner with a 64-619 

channel head coil. During scanning, participants’ heads were restricted using foam pillows and strips 620 

of adhesive tape were applied to participants’ forehead to provide active motion feedback and 621 

minimize head movement (73). After two localizer scans to position slices, we collected functional 622 

scans with a whole-brain T2*-weighted sequence (68 axial-oblique slices, TR = 1400 ms, TE = 32 ms, 623 

voxel size 2.0 mm isotropic, interslice gap 0 mm, interleaved multiband slice acquisition with 624 

acceleration factor 4, FOV 210 mm, flip angle 75°, A/ P phase encoding direction). The first seven 625 

volumes of each run were automatically discarded. This sequence was chosen because of its balance 626 

between a short TR and relatively high spatial resolution, which was required to disentangle cue and 627 

outcome-related neural activity. Pilots using different sequences yielded that this sequence 628 

performed best in reducing signal loss in striatum.  629 

Furthermore, after task completion, we removed the EEG cap and collected a high-resolution 630 

anatomical image using a T1-weighted MP-RAGE sequence (192 sagittal slices per slab, GRAPPA 631 

acceleration factor = 2, TI = 1100 ms, TR = 2300 ms, TE = 3.03 ms, FOV 256 mm, voxel size 1.0 mm 632 

isotropic, flip angle 8°) which was used to aid image registration, and a gradient fieldmap (GRE; TR = 633 

614 ms, TE1 = 4.92 ms, voxel size 2.4 mm isotropic, flip angle 60°) for distortion correction. For one 634 

participant, no fieldmap was collected due to time constraints. At the end of each session, an 635 

additional DTI data collection took place; results will be reported elsewhere. 636 

fMRI preprocessing 637 

All fMRI pre-processing was performed in FSL 6.0.0. After cleaning images from non-brain 638 

tissue (brain-extraction with BET), we performed motion correction (MC-FLIRT), spatial smoothing 639 

(FWHM 3 mm), and used fieldmaps for B0 unwarping and distortion correction in orbitofrontal areas. 640 

We used ICA-AROMA (74) to automatically detect and reject independent components associated 641 

with head motion. Finally, images were high-pass filtered at 100 s and pre-whitened. After the first-642 

level GLM analyses, we computed and applied co-registration of EPI images to high-resolution images 643 

(linearly with FLIRT using boundary-based registration) and to MNI152 2mm isotropic standard space 644 

(non-linearly with FNIRT using 12 DOF and 10 mm warp resolution). 645 

ROI selection 646 

For fMRI-informed EEG analyses, we first created a functional mask as the conjunction of the 647 

PESTD and PEDIF contrasts by thresholding both z-maps at z > 3.1, binarizing, and multiplying them (see 648 

S05). After visual inspection of the respective clusters, we created seven anatomical masks based on 649 

the probabilistic Harvard-Oxford Atlas (thresholded at 10%): striatum and ACC (see above), vmPFC 650 
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(combined frontal pole, frontal medial cortex, and paracingulate gyrus), motor cortex (combined 651 

precentral and postcentral gyrus), PCC (Cingulate Gyrus, posterior division), ITG (Inferior Temporal 652 

Gyrus, posterior division, and Inferior Temporal Gyrus, temporooccipital part) and primary visual 653 

cortex (Lingual Gyrus, Occipital Fusiform Gyrus, Occipital Pole). We then multiplied this functional 654 

mask with each of the seven anatomical masks, returning seven masks focused on the respective 655 

significant clusters, which were then used for signal extraction. For the ACC mask, we manually 656 

excluded voxels in subgenual ACC belonging to a distinct cluster. Masks were back-transformed to 657 

each participant’s native space. 658 

For bar plots in Fig. 3A, we multiplied the anatomical masks of vmPFC and striatum specified 659 

above with the binarized outcome valence contrast.  660 

fMRI analyses 661 

For each participant, data were modelled using two event-related GLMs. First, we performed 662 

a model-based GLM in which used trial-by-trial estimates of biased PEs as regressors. Second, we 663 

used another model-free GLM in which we model all possible action x outcome combinations via 664 

outcome-locked categorical regressors while at the same time modeling response-locked left- and 665 

right-hand response regressors. This model free GLM also contained the valence contrast reported as 666 

an initial manipulation check. 667 

In the model-based GLM, we used two model-based regressors that reflected the trial-by-668 

trial prediction error (PE) update term. For this purpose, we extracted the group-level parameters of 669 

the best fitting computational model M5 (asymmetric pathways model) and used those parameters 670 

to compute the prediction error on every trial for every participant. Using the same parameter for 671 

each participant is warranted when testing for the same qualitative learning pattern across 672 

participants (75). Given that both standard (base model M1) and biased (winning model M5) PEs 673 

were highly correlated (mean correlation of 0.921 across participants, range 0.884–0.952), it 674 

appeared difficult to distinguish standard learning from biased learning. As a remedy, we 675 

decomposed the biased PE into the standard PE plus a difference term as ������ � ����� � ����� 676 

(19, 34). Any region displaying truly biased learning should significantly encode both the standard PE 677 

term and the difference term. The standard PE and difference term were much less correlated (mean 678 

correlation of -0.020, range -0.326–0.237). To control for cue-related activation, we furthermore 679 

added four regressors spanned by crossing cue valence and performed action (Go response to Win 680 

cue, Go response to Avoid cue, NoGo response to Win cue, NoGo response to Avoid cue). 681 

The model-free GLM included a separate regressor for each of the eight conditions obtained 682 

when crossing performed action (Go/ NoGo) and obtained outcome (reward/ no reward/ no 683 

punishment/ punishment). We fitted four contrasts: 1) one contrast comparing conditions with 684 

favorable (reward/ no punishment) and non-favorable (no reward/ punishment) outcomes, used as a 685 

quality check to identify regions that encoded outcome valence; 2) one contrast comparing Go vs. 686 

NoGo responses at the time of the outcome; 3) one contrast summing of left- and right-hand 687 

responses, reflecting Go vs. NoGo responses at the time of the response; and 4) one contrast 688 

subtracting right- from left-handed responses, reflecting lateralized motor activation. As this GLM 689 

resulted in empty regressors for several participants when fitted on a block level, making it 690 

impossible to use the data of the respective blocks on a higher level, we instead concatenated blocks 691 

and performed a single GLM per participant. We therefore registered the data from all blocks to the 692 

middle image of the first block (default reference volume in FSL) using MCFLIRT. The first and last 20 693 
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seconds of each block did not feature any task-related events, such that carry-over effects of task 694 

events in the design matrix from one block to another were not possible. 695 

In both GLMs, we added four regressors of no interest: one for the motor response (left = +1, 696 

right = -1, NoGo = 0), one for error trials, one for outcome onset, and one for trials with invalid motor 697 

response (and no outcome respectively). We also added nine or more nuisance regressors: the six 698 

realignment parameters from motion correction, mean cerebrospinal fluid (CSF) signal, mean out-of-699 

brain (OBO) signal, and a separate spike regressor for each volume with a relative displacement of 700 

more than 2 mm (occurred in 10 participants; in those participants: M = 7.40, range 1–29). For the 701 

model-free GLM, nuisance regressors were added separately for each block as well as an overall 702 

intercept per block. We convolved task regressors with double-gamma haemodynamic response 703 

function (HRF) and high-pass filtered the design matrix at 100 s. 704 

First-level contrasts were fit in native space. Afterwards, co-registration and reslicing was 705 

applied to participants’ contrast maps, which were then combined on a (participant and) group level 706 

using FSL’s mixed effects models tool FLAME with a cluster-forming threshold of z > 3.1 and cluster-707 

level error control at α < .05 (i.e., two one-sided tests with α < .025).  708 

EEG data acquisition 709 

We recorded EEG data with 64 channels (BrainCap-MR-3-0 64Ch-Standard; Easycap GmbH; 710 

Herrsching, Germany; international 10-20 layout, reference electrode at FCz) plus channels for 711 

electrocardiogram, heart rate, and respiration (used for MR artifact correction) at a sampling rate of 712 

1000 Hz. We placed MRI-compatible EEG amplifiers (BrainAmp MR plus; Brain Products GmbH, 713 

Gilching, Germany) behind the MR scanner and attached cables to the participants once they were 714 

located in final position in the scanner. Furthermore, we fixated cables using sand-filled pillows to 715 

reduce artifacts induced through cable movement in the magnetic field. During functional scans, the 716 

MR helium pump was switched off to reduce EEG artifacts. After the scanning, we recorded the exact 717 

EEG electrode locations on participants’ heads relative to three fiducial points using a Polhemus 718 

FASTRAK device. For four participants, no such data were available due to time constraints/ technical 719 

errors, in which case we used the average electrode locations of the remaining 32 participants. 720 

 EEG pre-processing 721 

First, raw EEG data were cleaned from MR scanner and cardioballistic artifacts using 722 

BrainVisionAnalyzer (76). The rest of the pre-processing was performed in Fieldtrip (77). After 723 

rejecting channels with high residual MR noise (mean 4.8 channels per participant, range 1–13), we 724 

epoched trials into time windows of -1,400–2,000 ms relative to the onset of outcomes. Timing of 725 

this epochs was determined by the minimal inter-stimulus interval beforehand until the minimal 726 

inter-trial interval afterwards. Data was re-referenced to the grand average, which allowed us to 727 

recover the reference as channel FCz, and then band-pass filtered using a two-pass 4th order 728 

Butterworth IIR filter (Fieldtrip default) in the range of 0.5–35 Hz. These filter settings allowed us to 729 

distinguish the delta, theta, alpha, and beta band, while filtering out residual high-frequency MR 730 

noise. This low-pass filter cut-off was different from a previous analysis of this data in which we set it 731 

at 15 Hz (32) because in this analysis, we had a hypothesis on outcome valence encoding in the beta 732 

range. We then applied linear baseline correction based on the 200 ms prior to cue onset and used 733 

ICA to detect and reject independent components related to eye-blinks, saccades, head motion, and 734 

residual MR artifacts (mean number of rejected components per participant: 32.694, range 24–45). 735 

Afterwards, we manually rejected trials with residual motion (for all 36 participants: M = 117.722, 736 

range 11–499). Based on trial rejection, four participants for which more than 211 (33%) of trials 737 
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were rejected were excluded from any further analyses (rejected trials after excluding those 738 

participants: M = 81.875, range 11–194). Finally, we computed a Laplacian filter with the spherical 739 

spline method to remove global noise (using the exact electrode positions recorded with Polhemus 740 

FASTRAK), which we also used to interpolate previously rejected channels. This filter attenuates 741 

more global signals (e.g., signal from deep sources or global noise) and noise (heart-beat and muscle 742 

artifacts) while accentuating more local effects (e.g., superficial sources). 743 

EEG TF decomposition 744 

We decomposed the trial-by-trial EEG time series into their time-frequency representations using 745 

33 Hanning tapers between 1 and 33 Hz in steps of 1 Hz, every 25 ms from -1000 until 1,300 ms 746 

relative to outcome onset. We first zero-padded trials to a length of 8 sec. and then performed time-747 

frequency decomposition in steps of 1 Hz by multiplying the Fourier transform of the trail with the 748 

Fourier transform of a Hanning taper of 400 ms width, centered around the time point of interest. 749 

This procedure results in an effective resolution of 2.5 Hz (Rayleigh frequency), interpolated in 1 Hz 750 

steps, which is more robust to the choice of exact frequency bins. To exclude the possibility of slow 751 

drifts in power over the time course of the experiment, we performed baseline correction across 752 

participants and trials by fitting a linear model for each channel/ frequency combination with trial 753 

number as predictor and the average power 250–50 ms before outcome onset as outcome, and 754 

subtracting the power predicted by this model from the data. This procedure is able to remove slow 755 

linear drifts in power over time from the data. In absence of such drifts, it is equivalent to correcting 756 

all trials by the grand mean across trials per frequency in the selected baseline time window. 757 

Afterwards, we averaged power over trials within each condition spanned by performed action (Go/ 758 

NoGo) and outcome (reward/ no reward/ no punishment/ punishment). We finally converted the 759 

average time-frequency data per condition to decibel to ensure that data across frequencies, time 760 

points, electrodes, and participants were on same scale. 761 

EEG analyses 762 

All analyses were performed on the average signal of a-priori selected channels Fz, FCz, and 763 

Cz based on (9, 32). We again performed model-free and model-based analyses. For the model-free 764 

analyses, we sorted trials based on the performed action (Go/ NoGo) and obtained outcome 765 

(reward/ no reward/ no punishment/ punishment) and computed the mean TF power across trials 766 

for each of the resultant eight conditions for each participant. We tested whether theta power 767 

(average power 4–8 Hz) and beta power (average power 13–30 Hz) encoded outcome valence by 768 

contrasting favorable (reward/ no punishment) and unfavorable (no reward/ punishment) conditions 769 

(irrespective of the performed action). We also tested for differences between Go and NoGo 770 

responses in the lower alpha band (6–10 Hz). For all contrasts, we employed two-sided cluster-based 771 

permutation tests in a window from 0–1,000 ms relative to outcome onset. For beta power, results 772 

were driven by a cluster that was at the edge of 1,000 ms; to more accurately report the time span 773 

during which this cluster exceeded the threshold, we extended the time window to 1,300 ms in this 774 

particular analysis. Such tests are able to reject the null hypothesis of exchangeability of two 775 

experimental conditions, but they are not suited to precisely locate clusters in time-frequency space. 776 

Hence, interpretations are mostly based on the visual inspection of plots of the signal time courses. 777 

For model-based analyses, similar to fMRI analyses, we used the group-level parameters 778 

from the best fitting computational model M5 to compute the trial-by-trial biased PE term and 779 

decomposed it into the standard PE term and the difference to the biased PE term. We used both 780 

terms as predictors in a multiple linear regression for each channel-time-frequency bin for each 781 
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participant, and then performed one-sample cluster-based permutation-tests across the resultant b-782 

maps of all participants (78). For further details on this procedure, see fMRI-inspired EEG analyses.  783 

fMRI-informed EEG analyses 784 

The BOLD signal is sluggish. It is thus hard to determine when different brain regions become 785 

active. In contrast, EEG provides much higher temporal resolution. A fruitful approach can be to 786 

identify distinct EEG correlates of the BOLD signal in different regions, allowing to test hypotheses 787 

about the temporal order in which regions might become active and modulated EEG power (32, 63). 788 

Furthermore, by using the BOLD signal from different regions in a multiple linear regression, one can 789 

control for variance shared among regions (e.g., changes in global signal; variance due to task 790 

regressors) and test which region is the best unique predictor of a certain EEG signal. In such an 791 

analysis, any correlation between EEG and BOLD signal from a certain region reflects an association 792 

above and beyond those induced by task conditions.  793 

We used the trial-by-trial BOLD signal in selected regions in a multiple linear regression to predict 794 

EEG signal over the scalp (32, 63) (building on existing code from https://github.com/tuhauser/TAfT). 795 

As a first step, we extracted the volume-by-volume signal (first eigenvariate) from each of the seven 796 

regions identified to encode biased PEs (conjunction of PESTD and PEDIF: striatum, ACC, vmPFC, left 797 

motor cortex, PCC, left ITG, and primary visual cortex). We applied a highpass-filter at 128 s and 798 

regressed out nuisance regressors (6 realignment parameters, CSF, OOB, single volumes with strong 799 

motion, same as in the fMRI GLM). We then upsampled the signal by a factor 10, epoched it into 800 

trials of 8 s duration, and fitted a separate HRF (based on the SPM template) to each trial (58 801 

upsampled data points), resulting in trial-by-trial regression weights reflecting the respective BOLD 802 

response. We then combined the regression weights of all trials and regions of a certain participant 803 

into a design matrix with trials as rows and the seven ROIs as columns, which we used to predict 804 

power at each time-frequency-channel bin. As further control variables, we added the behavioral 805 

PESTD and PEDIF regressors to the design matrix. All predictors and outcomes were demeaned such 806 

that the intercept became zero. Such a multiple linear regression was performed for each participant, 807 

resulting in a time-frequency-channel-ROI b-map reflecting the association between trial-by-trial 808 

BOLD signal and TF power at each time-frequency-channel bin. B-maps were Fisher-z transformed, 809 

which makes the sampling distribution of correlation coefficients approximately normal and allows 810 

for combining them across participants, and analyzed with a cluster-based one-sample permutation 811 

t-test (78) on the mean regression weights over channels Fz, FCz, and Cz across participants in the 812 

range of 0–1000 ms, 1–33 Hz. We first obtained a null distribution of maximal cluster mass statistics 813 

from 10000 permutations. For each permutation, we flipped the sign of the b-map of a random 814 

subset of participants, computed a separate t-test at each time-frequency bin (bins of 25 ms, 1 Hz) 815 

across participants (results in t-map), thresholded these maps at |t| > 2, and finally computed the 816 

maximal cluster mask statistic (sum of all t-values) for any cluster (adjacent voxels above threshold). 817 

Afterwards, we computed the same t-map for the real data, identified the cluster with the biggest 818 

cluster-mass statistic, and computed the corresponding p-value as number of permutations in the 819 

null distribution that were larger than the maximal cluster mass statistic in the real data. 820 

EEG-informed fMRI analyses 821 

For the EEG-informed fMRI analyses, we fit three additional GLMs for which we entered the 822 

trial-by-trial theta/ delta power (1–8 Hz), beta power (13–30 Hz), and lower alpha band power (6–10 823 

Hz) as parametric regressors on top of the task regressors of the model-free GLM. These measures 824 

were created by using the 3-D (time-frequency-channel) t-map obtained when contrasting positive 825 
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vs. negative outcomes (theta/ delta and beta) and Go vs. NoGo conditions (lower alpha band) as a 826 

linear filter. We enforced strict frequency cut-offs. For lower alpha band and beta, we used 827 

midfrontal channels (Fz/ FCz/ Cz). For theta/ delta power, given the topography that reached far 828 

beyond midfrontal channels and over the entire frontal scalp, we used a much wider ROI (AF3/ AF4/ 829 

AF7/ AF8/ F1/ F2/ F3/ F4/ F5/ F6/ F7/ F8/ FC1/ FC2/ FC3/ FC4/ FC5/ FC6/ FCz/ Fp1/ Fp2/ Fpz/ Fz). We 830 

extracted those maps and retained all voxels with t > 2. These masks were applied to the trial-by-trial 831 

time-frequency data to create weighted summary measures of the average power in the identified 832 

clusters in each trial. For trials for which EEG data was rejected, we imputed the participant mean 833 

value of the respective action (Go/ NoGo) x outcome (reward/ no reward/ no punishment/ 834 

punishment) condition. Note that this approach accentuates differences between conditions, which 835 

are already captured by the task regressors in the GLM, but decreases trial-by-trial variability within 836 

each condition, which is of interest in this analysis. This imputation approach is thus conservative. 837 

While trial-by-trial beta and theta power were largely uncorrelated, mean r = 0.104, range -0.118–838 

0.283 across participants, and so were beta and alpha, mean r = 0.097, range -0.162–0.284 across 839 

participants, theta and alpha power moderately correlate, mean r = 0.412, range 0.121–0.836 across 840 

participants, warranting the use of a separate channel ROI for theta and using separate GLMs for 841 

each frequency band. 842 

Analyses of behavior as a function of BOLD signal and EEG power 843 

We used mixed-effects logistic regression to analyze “stay behavior”, i.e., whether 844 

participants repeated an action on the next encounter of the same cue, as a function of BOLD signal 845 

and EEG power in selected regions. For analyses featuring BOLD signal, we used the trial-by-trial HRF 846 

amplitude also used for fMRI-informed EEG analyses. For analyses featuring EEG, we used the trial-847 

by-trial EEG power also used in the EEG-informed fMRI analyses. 848 
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S01: Behavioral, fMRI, and EEG analyses with only the 29 participants 1151 

included in EEG-fMRI analyses 1152 

We repeated the behavioral, fMRI, and EEG analyses reported in the main text while 1153 

excluding the seven participants that were also not included in the fMRI-inspired EEG analyses in the 1154 

main text: (a) two  participants due to fMRI co-registration failure, which were also not included in 1155 

the fMRI-only analyses; (b) four further participants who exhibited excessive residual noise in their 1156 

EEG data (> 33% rejected trials) and were thus also not included in the EEG-only analyses, and finally 1157 

(c) one more participant who (together with four other participants already excluded) exhibited 1158 

regression weights for every regressor about ten times larger than for other participants. 1159 

Participants in this subgroup learned the task, reflected in a significant main effect of 1160 

required action on responses, b = 0.896, SE = 0.129, χ
2
(1) = 28.398, p < .001, and exhibited 1161 

motivational biases, reflected in a significant main effect of cue valence on responses, b = 0.439, SE = 1162 

0.084, χ2(1) = 19.308, p < .001. The interaction between required action and cue valence was not 1163 

significant, b = 0.025, SE = 0.085, χ2(1) = 0.111, p = .739. 1164 

Participants in this subgroup also showed biased learning: They were more likely to repeat an 1165 

action after a favorable outcome (main effect of outcome valence: b = .0553, SE = 0.059, χ2(1) = 1166 

40.920, p < .001. After salient outcomes, they adjusted their responses more strongly after feedback 1167 

on Go than on NoGo responses, in line with our model of biased learning and as reflected in a 1168 

significant three-way interaction between action, salience, and valence, b = 0.266, SE = 0.055, χ
2
(1) = 1169 

16.862, p < .001. When only analyzing trials with salient outcomes, outcome valence was more likely 1170 

to affect response repetition following Go relative to NoGo responses, b = 0.324, SE = 0.079, χ2(1) = 1171 

13.266, p < .001, with a stronger effect of outcome valence after Go responses, b = 1.342, SE = 0.120, 1172 

χ2(1) = 49.003, p = .001, than NoGo responses, b = 0.693, SE = 0.129, χ2(1) = 18.988, p < .001. 1173 

In this subgroup of participants, Bayesian model selection clearly favored the full asymmetric 1174 

pathways models featuring response and learning biases (M5, model frequency: 81.81%, protected 1175 

exceedance probability: 100%). In sum, behavioral results were qualitatively identical when analyzing 1176 

only this subgroup of only 29 participants.  1177 

 1178 
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Figure S01A. Behavioral performance in the subgroup of 29 participants included in the fMRI-inspired EEG analyses. (A) 

Trial-by-trial proportion of Go responses (±SEM across participants) for Go cues (solid lines) and NoGo cues (dashed lines). 

The motivational bias is already present from very early trials onwards, as participants made more Go responses to Win 

than Avoid cues (i.e., green lines are above red lines). Additionally, participants clearly learn whether to make a Go 

response or not (proportion of Go responses increases for Go cues and decreases for NoGo cues). (B) Mean (±SEM across 

participants) proportion Go responses per cue condition (points are individual participants’ means). C) Probability to repeat 

a response (“stay”) on the next encounter of the same cue as a function of action and outcome. Learning is reflected in 

higher probability of staying after positive outcomes than after negative outcomes (main effect of outcome valence). 

Biased learning is evident in learning from salient outcomes, where this valence effect was stronger after Go responses 

than NoGo responses. Dashed line indicates chance level choice (pStay = 0.33). (D) Log-model evidence favors the 

asymmetric pathways model (M5 over simpler models (M1-M4). (E-G) Trial-by-trial proportion of Go responses, mean 

proportion Go responses, and probability of staying based on one-step-ahead predictions using parameters (hierarchical 

Bayesian inference) of the winning model (asymmetric pathways model, M5). (H) Model frequency and protected 

exceedance probability indicate best fit for model M5 (asymmetric pathways model), in line with log model evidence. 

 1179 

Regarding fMRI findings, we first repeated the model-free GLM just contrasting favorable and 1180 

non-favorable outcomes. BOLD signal was higher for favorable than non-favorable outcomes in five 1181 

clusters, namely in vmPFC, striatum, amygdala, and hippocampus (zmax = 5.65, p = 2.24e-25, 6110 1182 

voxels, MNI coordinates xyz = [6 30 -12]), left superior lateral occipital cortex (zmax = 4.40, p = .00144, 1183 

367 voxels, xyz = [-46 -68 46]), right occipital pole (zmax = 4.45, p = .00154, 363 voxels, xyz = [12 -92 -1184 

12]), posterior cingulate cortex (zmax = 4.36, p = .00181, 353 voxels, xyz = [-2 -48 28]), and left middle 1185 

temporal gyrus (zmax = 4.63, p = .00548, 289 voxels, xyz = [-60 -10 -16]). The clusters in left slOCC, PCC, 1186 

and left MTG emerged anew compared to the original analysis comprising 34 participants. Also, 1187 

compared to the original analysis, clusters in left orbitofrontal cortex and left superior frontal gyrus 1188 

were merged with the cluster in vmPFC. In sum, all clusters from the original analysis were found 1189 

back, plus some additional clusters. 1190 

There was also one cluster in right orbitofrontal cortex (zmax = 4.37, p = .0209, 217 voxels, xyz 1191 

= [30 62 -2]) in which BOLD signal was higher for non-favorable than favorable outcomes. Compared 1192 

to the original analysis comprising 34 participants, clusters in precuneous and right superior frontal 1193 

gyrus were not significant. 1194 
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In the model-based GLM featuring regressors for standard PEs and the difference term 1195 

towards biased PEs, BOLD signal correlated with standard PEs in ten clusters, namely in vmPFC, 1196 

striatum, bilateral amygdala and hippocampus (zmax = 6.04, p = .4.78e-44, 8848 voxels, xyz = [12 14 -1197 

6]), left superior frontal gyrus (zmax = 5.58, p = 3.5e-10, 1043 voxels, xyz = [-18 34 52]), left occipital 1198 

pole and lingual gyrus (zmax = 6.23, p = 7.18e-10, 998 voxels, xyz = [10 -92 -10]), posterior cingulate 1199 

cortex (zmax = 5.12, p = 8.57e-10, 987 voxels, xyz = [4 -36 48]), left inferior temporal gyrus (zmax = 5.03, 1200 

p = 7.07e-09, 859 voxels, xyz = [-52 -46 -10]), right anterior middle temporal gyrus (zmax = 5.32, p = 1201 

.000292, 314 voxels, xyz = [62 -4 -16]), right cerebellum (zmax = 5.32, p = .002228, 231 voxels, xyz = [44  1202 

-72 -40]), left superior lateral occipital cortex (zmax = 4.69, p = .00322, 218 voxels, xyz = [-46 -74 -38]), 1203 

right caudate (zmax = 4.33, p = .00538, 199 voxels, xyz = [20 12 22]), and right middle temporal gyrus 1204 

(zmax = 4.09, p = .0129, 189 voxels, xyz = [54 -38 -12]). The clusters in left superior lateral occipital 1205 

cortex, right caudate, and right posterior middle temporal gyrus emerged anew by splitting from 1206 

larger clusters visible in the original analysis based on 34 participants. Vice versa, the cluster in left 1207 

middle temporal gyrus reported for the original analysis was merged with a bigger cluster in the 1208 

analysis of only 29 participants. The clusters in postcentral gyrus and ACC observed in the original 1209 

analysis based on 34 participants were not significant anymore; however, they were still visible at a 1210 

level of z > 3.1 uncorrected.  1211 

 BOLD signal correlated significantly negatively with standard PEs in a single cluster in right 1212 

superior frontal gyrus (zmax = 5.04, p = .00771, 186 voxels, xyz = [6 26 64]), similar to the respective 1213 

cluster reported in the original analysis. In contrast, the clusters in right occipital pole, intracalcarine 1214 

cortex, and left inferior lateral occipital cortex were not significant any more, though visible at a level 1215 

of z > 3.1 uncorrected. 1216 

 BOLD signal in six clusters correlated significantly positively with the difference term towards 1217 

biased PEs, namely in large parts of cortex and subcortex including striatum (zmax = 6-54, p = 0, 29428 1218 

voxels, xyz = [34 -84 20]), dorsomedial prefrontal cortex (zmax = 5.94, p = 2.69e-40, 7001 voxels, xyz = 1219 

[6 22 34]), right insula (zmax = 5.76, p = 7.84e-27, 3847 voxels, xyz = [34 20 -8]), thalamus and 1220 

brainstem (zmax = 5.10, p = 4.06e-18, 2169 voxels, xyz = [4 -30 0]), left caudate (zmax = 4.71, p = 1221 

.000188, 305 voxels, xyz = [-12 8 6]) and another cluster in brainstem (zmax = 4.05, p = .0151, 160 1222 

voxels, xyz = [4 -30 -30]). Clusters in dmPFC, right insula, and left caudate split from larger clusters 1223 

reported in the original analysis. Vice versa, the cluster in left insula reported in the original analysis 1224 

merged with the largest cluster. The clusters in right middle temporal gyrus and right insula were 1225 

missing in the analysis of only 29 participants, but visible at a level of z > 3.1 uncorrected. 1226 

BOLD signal in three clusters correlated significantly negatively with the difference term 1227 

towards biased PEs, namely in vmPFC (zmax = 4.23, p = .0051, 185 voxels, xyz = [-12 48 -6]), left 1228 

hippocampus (zmax = 4.58, p = .00857, 168 voxels, xyz = [-26 -14 -22]), and left medial temporal gyrus 1229 

(zmax = 4.30, p = .0172, 146 voxels, xyz = [-62 -4 -16]). Compared to the original analysis, the cluster in 1230 

vmPFC emerged anew. 1231 

 When computing the conjunction between both (positive) contrasts, BOLD signal encoded 1232 

both the standard and the difference in four clusters, namely in vmPFC, bilateral striatum, bilateral 1233 

ITG, and V1. Clusters in ACC, left motor cortex, and PCC were not significant any more (because they 1234 

were z > 3.1, but not significant after cluster correction in the standard PE contrast). However, new 1235 

(though rather small) clusters of biased PE encoding emerged in right insula, left amygdala, and left 1236 

OFC. In sum, results when analyzing only this subgroup of only 29 participants were largely similar to 1237 

results based on the full sample; however, clusters of biased PE encoding in left motor cortex, ACC, 1238 

and PCC were small and thus did not survive cluster correction in this subgroup. 1239 
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 1240 

 

Figure S01B. BOLD signal reflecting outcome processing in the subgroup of 29 participants included in the fMRI-inspired 

EEG analyses. (A) BOLD signal was higher for favorable outcomes (rewards, no punishments) compared with unfavorable 

outcomes (no rewards, punishments) in a range of regions including bilateral ventral striatum and vmPFC. BOLD effects 

displayed using a dual-coding data visualization approach with color indicating the parameter estimates and opacity the 

associated z-statistics. Significant clusters are surrounded by black edges. Bar plots show parameter estimates per action x 

outcome condition (±SEM across participants) (B) When using the trial-by-trial PEs participants experienced as model-based 

regressors in our GLM, positive PE correlations occurred in several regions including importantly the ventral striatum, 

vmPFC, PCC and ACC. (C) Left panel: Regions encoding both the standard PE term and the difference term to biased PEs 

(conjunction) at different cluster-forming thresholds (color). Clusters significant at a threshold of z > 3.1 are surrounded by 

black edges. In bilateral striatum, vmPFC, bilateral ITG, and primary visual cortex, BOLD is significantly better explained by 

biased learning than by standard learning. Clusters in ACC, left motor cortex, and PCC are not significant any more. 

 1241 

Regarding EEG findings in this subgroup, both midfrontal theta and beta power reflected 1242 

outcome valence: Theta power was higher for unfavorable than favorable outcomes (driven by a 1243 

cluster around 225–500 ms, p = .002), while beta power was higher for favorable than unfavorable 1244 

outcomes (driven by a cluster around 325–1000 ms, p = .002). When using PE terms as regressor for 1245 

midfrontal EEG power while controlling for PE valence, delta power did not encode �����  positively, 1246 

though not significant (p = .056), and also the positive encoding of �����  was non-significant (p = 1247 

.053). The positive correlation of beta power with �����  was not significant anymore (p = .059), 1248 

while the negative correlation with �����  remained (p = .001, 450–950 ms). When adding �����  and 1249 �����  together to achieve ������ , theta/delta power indeed significantly encoded ������ , first 1250 
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positively (p = .032, 224–475 ms) and then negatively (p = .019, 600 – 1,000 ms; around 8 Hz and thus 1251 

rather in the alpha band). Also, beta power was significantly negatively correlated with ������  (p = 1252 

.008, 450 – 975 ms). 1253 

In sum, all findings reported in the main text also held when analyzing only this subgroup of 1254 

only 29 participants. In addition, also late beta power and theta/alpha power appeared to negatively 1255 

encode the ������ term. 1256 

 
Figure S01C. EEG time-frequency power midfrontal electrodes (Fz/ FCz/ Cz) reflecting outcomes processing in the 

subgroup of 29 participants included in the fMRI-inspired EEG analyses. (A) Time-frequency plot (logarithmic y-axis) 

displaying high theta (4–8 Hz) power for unfavorable outcomes and higher beta power (16–32 Hz) for favorable 

outcomes. (B). Theta power transiently increases for any outcome, but more so for unfavorable outcomes (especially 

punishments) around 225–475 ms after feedback onset. (C) Beta is higher for favorable than unfavorable outcomes 

(especially punishments) over a long time period around 300–1,250 ms after feedback onset. (D-F). Correlations 

between midfrontal EEG power and trial-by-trial PEs. Solid black lines indicate clusters above threshold. Biased PEs were 

significantly positively correlated with midfrontal theta power, but also negatively correlated with later alpha and beta 

power (D). The correlations of theta with the standard PEs (E) and the difference term to biased PEs (F) were also 

positive, though not significant. Beta power only encoded the difference term to biased PEs (F). ** p < 0.01.** p < 0.01. 

 1257 

Regarding fMRI correlates of the past action, similar to the original analysis comprising 34 1258 

participants, there were no clusters with higher BOLD after Go than NoGo actions at the time of 1259 

outcomes, but vice versa, large parts of cortex and subcortex showed higher BOLD after NoGo than 1260 

Go actions, highly similar to the original analysis (zmax = 7.65, p = 0, 124629 voxels, xyz = [-58 18 22]).  1261 

Furthermore, there were four clusters with higher BOLD for Go than NoGo actions at the 1262 

time of the response, namely one large cluster across lateral prefrontal cortex, anterior cingulate 1263 

cortex, striatum, thalamus, angular gyrus, cerebellum, left operculum and motor cortex, 1264 

intracalcarine cortex, and occipital pole (zmax = 7.45, p = 0, 61057 voxels, xyz = [32 -4 -4]), one in right 1265 

middle temporal gyrus (zmax = 4.90, p = 8.66e-05, 493 voxels, xyz = [66 -32 -12]), one in left inferior 1266 

temporal gyrus (zmax = 4.43, p = .00294, 293 voxels, xyz = [-60 -44 -18]), and one in precuneous (zmax = 1267 

2.39, p = .0041, 276 voxels, xyz = [-8 -70 38]). All these regions were also found in the original analysis 1268 

comprising 34 participants. Vice versa, BOLD signal was higher NoGo than Go actions at the time of 1269 

the response in two clusters in vmPFC and subcallosal cortex (zmax = 4.23, p = .00864, 239 voxels, xyz 1270 
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= [-2 18 -6]) and right anterior temporal gyrus/ temporal pole (zmax = .4.14, p = .0193, 201 voxels, xyz 1271 

= [48 -6 -8]), identical to the original analysis comprising 34 participants.  1272 

Finally, there was higher BOLD signal for left hand compared to right hand responses at the 1273 

time of response in two clusters in right precentral and postcentral gyrus, superior parietal lobule, 1274 

and operculum (zmax = 6.66, p = 0, 11597 voxels, xyz = [46 -24 64]) and left cerebellum (zmax = 6.76, p = 1275 

1.05e-18, 2672 voxels, xyz = [-18 -54 -16]), identical to the original analysis comprising 34 1276 

participants. Vice versa, there was higher BOLD signal for right hand than left hand responses at the 1277 

time of responses in five clusters in left precentral and postcentral gyrus, superior parietal lobule, 1278 

operculum, and thalamus (zmax = 6.4, p = 0, 12372 voxels, xyz = [-36 -20 66]), right cerebellum (zmax = 1279 

7.17, p = 3.41e-21, 3206 voxels, xyz = [20 -54 -20]), right superior lateral occipital cortex (zmax = 4.84, 1280 

p = 2.28e-09, 988 voxels, xyz = [48 -86 -4]), right angular gyrus (zmax = 4.11, p = 7.68e-05, 396 voxels, 1281 

xyz = [66 -50 28]), and left superior lateral occipital cortex (zmax = 5.03, p = .019, 164 voxels, xyz = [-18 1282 

-82 48]). The clusters in right occipital pole/ intracalcarine cortex and in right posterior cerebellum 1283 

observed in the original analysis comprising 34 participants were not observed in this analysis. In 1284 

sum, all major findings also held when analyzing only this subgroup of only 29 participants. 1285 

Regarding EEG time-frequency correlates of the past action, when testing for differences in 1286 

broadband after outcome onset, there was no significant difference after Go and NoGo responses, p 1287 

= .283. When restricting analyses to the low alpha range, the permutation test was marginally 1288 

significant, p = .056, driven by a cluster around 0–100 ms around 7–10 Hz). When repeating the 1289 

permutation test for the broadband signal including the last second before outcome onset, there was 1290 

a significant difference after Go and NoGo responses, driven by clusters in the beta band. p = 0.002, -1291 

1000 – -275 ms, 13–32 Hz, and in the theta/ low alpha band, p = 0.020, -1000 – -525 ms, 4–10 Hz. 1292 

 
Figure S01D. Exploratory follow-up analyses on ACC BOLD signal and midfrontal low-alpha power in the subgroup of 29 

participants included in the fMRI-inspired EEG analyses. (A) Midfrontal time-frequency response-locked (left panel) and 

outcome-locked (right panel). Before and shortly after outcome onset, power in the lower alpha band is higher on trials 

with Go actions than on trials with NoGo actions. The shape of this difference resembles the shape of ACC BOLD-EEG TF 

correlations (small plot; note that this plot depicts BOLD-EEG correlations, which are negative). Note that differences 

between Go and NoGo trials occurred already before outcome onset in the alpha and beta range, reminiscent of delay 

activity; but were not fully sustained since the actual response. (B) Midfrontal power in the lower alpha band per action x 

outcome condition. Lower alpha band power is consistently higher on trials with Go actions than on trials with NoGo 
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actions, starting already before outcome onset. (C) BOLD signal differences between Go and NoGo actions (left panel) and 

left vs. right hand responses (right panel) at the time or responses. Response-locked ACC BOLD is significantly higher for Go 

than NoGo actions. (D) BOLD signal differences between Go and NoGo actions at the time of outcomes. Outcome-locked 

ACC BOLD (and BOLD in other parts of cortex) is significantly lower on trials with Go than on trials with NoGo actions. 

 1293 

When linking trial-by-trial BOLD signal in selected ROIs as well as midfrontal EEG TF power to 1294 

response repetition on the next trial with the same cue, ACC BOLD signal did not significantly predict 1295 

the response repetition, b = -0.013, SE = 0.018, χ
2
(1) = 0.524, p = .469, and neither did PCC BOLD 1296 

signal, b = -0.037, SE = 0.018, χ2(1) = 2.079, p = .149. However, participants in this subgroup were 1297 

significantly more likely to repeat the sample action when striatal BOLD signal was high, b = 0.097, SE 1298 

= 0.025, χ2(1) = 12.043, p < .001, but more likely to switch when vmPFC BOLD was high, b = -0.075, SE 1299 

= 0.019, χ2(1) = 13.170, p < .001.  1300 

When linking trial-by-trial midfrontal EEG TF power to response repetition on the next trial 1301 

with the same cue, participants in this subgroup were more likely to repeat the same response when 1302 

beta power was high, b = 0.124, SE = 0.036, χ
2
(1) = 3.502, p < .001, or when low alpha power was 1303 

high, b = 0.135, SE = 0.044, χ2(1) = 8.789, p = .003, but more likely to switch to another response 1304 

when theta power was high, b = -0.090, SE = 0.040, χ2(1) = 4.812, p = .028. 1305 

 1306 

 1307 

 1308 

 1309 

 1310 

 1311 

 1312 

 1313 

 1314 

 1315 

 1316 

 1317 

 1318 

 1319 

 1320 

 1321 

 1322 

 1323 

 1324 

 1325 

 1326 

 1327 

 1328 

 1329 

 1330 

 1331 

S02: Stay behavior as a function of action, salience, and valence 1332 

 1333 
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Effect χ
2
 Df p-value 

Action 0.01 1    .924 

Salience 5.15 1    .021 

Valence 45.59 1 < .001 

Action x Salience 0.12 1    .728 

Action x Valence 3.24 1    .067 

Salience x Valence 30.95 1 < .001 

Action x Valence x Salience 19.73 1 < .001 

    

Salient outcomes only:    

Action 0.01 1    .960 

Valence 46.36 1 < .001 

Action x Valence 17.80 1 < .001 

    

Neutral outcomes only:    

Action .102 1    .750 

Valence .830 1    .362 

Action x Valence 12.32 1 < .001 

    

Go with salient outcomes only:    

Valence 53.93 1 < .001 

NoGo with salient outcomes only:    

Valence 18.23 1 < .001 

Go with neutral outcomes only:    

Valence 0.13 1    .050 

NoGo with neutral outcomes only:    

Valence 7.21 1    .007 

Table S02. Full report of model of stay behavior. Mixed-effects logistic regression of stay vs. switch behavior (i.e., 

repeating vs. changing an action on the next occurrence of the same cue) as a function of performed action (Go vs. 

NoGo), outcome salience (salient: reward or punishment vs. neutral: no reward or no punishment), and outcome 

valence (positive: reward or no punishment vs. negative: no reward or punishment). Follow-up analyses are performed 

on trials with salient vs. neutral outcomes separately, and then separately based on Go vs. NoGo actions and salient vs. 

neutral outcomes.  P-values are computed using likelihood ratio tests using the mixed-function (option “LRT”) from 

package afex. 
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S03: Model parameters and fit indices for models M1-M6 1351 
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 M1 M2 M3 M4 M5 

(Asymmetric 

pathways) 

M6 

(Action 

priming) 

Mean log model 

evidence 

-609.30 -597.95 -554.46 -532.40 -528.13 -540.84 

Model frequency 0 0.0278 0 0.0488 0.6815 0.2419 

Protected 

exceedance 

probability 

0 0 0 0 .9970 .0030 

ρ 7.75 

[0.53 – 38.68] 

6.81 

[0.48 – 37.74] 

6.38 

[0.49 – 35.71] 

10.05 

[1.26 – 40.60] 

9.41 

[0.98 – 31.22] 

6.64 

[0.71 – 22.83] 

ε0 0.17 

[0.002 – 0.77] 

0.20 

[0.003 – 0.82] 

0.21 

[0.003 – 0.85] 

0.09 

[0.003 – 0.38] 

0.08 

[0.003 – 0.41] 

0.039 

[0.003 – 0.11] 

b  -0.05 

[-1.23 – 0.82] 

-0.01 

[-1.23 – 1.09] 

0.13 

[-1.16 – 1.03] 

0.14 

[-1.18 – 1.10] 

0.16 

[-1.22 – 1.40] 

π   0.77 

[-0.78 – 3.73] 

 0.17  

[-1.25 – 2.70] 

-1.11 

[-3.29 – 1.23] 

ε rewarded Go (ε0+κ)    0.749 

[0.29 – 0.99] 

0.833 

[0.43 – 0.99] 

 

ε punished NoGo (ε0–κ)    0.001 

[0.001 – 0.02] 

0.003 

[0.001 – 0.09] 

 

ε salient Go      0.49 

[0.05 – 0.90] 

Table S03. Model parameters for fitted models. Mean [minimum – maximum] of participant-level parameter estimates in 

model space, fitted with hierarchical Bayesian inference (only the respective model included in the fitting process). Model 

frequency and protected exceedance probability are based on a model comparison that involves models M1-M6. Note that Fig. 

2 in the main text does not include M6. 
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S04: Simulations for asymmetric pathways and action priming model 1376 

Motivational learning biases are predicted by the asymmetric pathways model (15, 16): Positive PEs, 1377 

elicited by rewards, lead to long-term potentiation in the striatal direct “Go” pathway (and long term 1378 

depression in the indirect pathway), allowing for a particularly effective acquisition of Go actions to 1379 

obtain rewards. Conversely, negative PEs, elicited by punishments, lead to long term potentiation in 1380 

the NoGo pathway, impairing the unlearning of NoGo actions in face of punishments.  1381 

An alternative account has recently suggested that self-generated (Go) actions lead to 1382 

preferential learning (relative to non-self-generated actions, including inaction), more generally 1383 

(henceforth called “action priming model”)(33). A self-generated action could “prime” basal ganglia 1384 

circuits and lead to subsequently larger PEs and thus faster learning. The main differential prediction 1385 

between these two models is how they account for the failure to learn “Go” actions to avoid 1386 

punishment: In the first model, this is due to a failure to unlearn punished “NoGo” actions, while in 1387 

the second model, this is due increased unlearning of punished “Go” actions.  1388 

Here, we directly tested both models against each other. As an alternative model M6 1389 

(Cockburn et al. 2014), we specified a model with two separate learning rates, one learning rate for 1390 

trials where self-generated (Go) action selection should prime the processing of any following salient 1391 

outcome (i.e., Go actions followed by rewards/ punishments), and one learning rate for any other 1392 

action-outcome combination. In this model, equation (6) is substituted by equation (7): 1393 

 1394 

� � ����(&% ��� �'7 �� �81��' ��19 	�!� '1 �:18�; 	��                                                                                   !	 "    (7) 1395 

 1396 

When comparing all models M1–M6 using Bayesian model selection, M5 (the asymmetric pathways 1397 

model) received highest support (model frequency: 68.15%; protected exceedance probability: 1398 

99.70%), also compared to M6 (the action priming model; model frequency: 24.19%; protected 1399 

exceedance probability: 0.30%). In fact, as visible in Fig. S04E-H, the action priming did not reproduce 1400 

the motivational biases in learning curves and bar plots, which constitutes a case of qualitative model 1401 

falsification (79, 80). If anything, it seems that the action priming model trades off both biases, 1402 

leading to negative response biases for a majority of participants. In contrast, the asymmetric 1403 

pathways model (M5) was well able to capture the qualitative patterns observed in the data (Fig. 1404 

S04A-D). We conclude that only the asymmetric pathways model is able to qualitatively reproduce 1405 

core characteristics of our data. 1406 

 1407 
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Figure S04. Model comparison and validation of asymmetric pathways (M5) and action priming (M6) model. (A-C) One-

step-ahead predictions using parameters (hierarchical Bayesian inference) of the winning model asymmetric pathways 

model (M5). (A) Trial-by-trial proportion of Go responses (±SEM across participants) for Go cues (solid lines) and NoGo cues 

(dashed lines); (B) Mean (±SEM across participants) proportion Go responses per cue condition (points are individual 

participants’ means); (C) Probability to repeat a response (“stay”) on the next encounter of the same cue as a function of 

action and outcome. The asymmetric pathways model is well able to capture core characteristics of the empirical data (see 

Fig. 2 in the main text). (D) Log-model evidence favors the asymmetric pathways model (M5), even over the action priming 

model (M6). (E-G) Trial-by-trial proportion of Go responses, mean proportion Go responses, and probability of for the 

action priming model (M6). This model does not reproduce motivational biases (i.e., the difference between green and red 

lines and bars) well. (H) Model frequency and protected exceedance probability indicate best fit for model M5 (asymmetric 

pathways model), in line with log model evidence. 
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S05: Anatomical masks and conjunctions of anatomical and 1427 

functional masks 1428 

 1429 

 
Figure S05A. Conjunctions of anatomical masks with functional contrasts from fMRI GLM analyses used for fMRI-

informed EEG analyses. Anatomical masks are based on the Harvard-Oxford Atlas. Functional contrasts involve outcome 

Valence and conjunction of PESTD and PEDIF. (A) Anatomical AAC contrast (pink, cingulate gyrus, anterior division); (B) vmPFC 

outcome valence contrast (dark blue, conjunction of frontal pole, frontal medial cortex, and paracingulate gyrus); (C) 

striatum outcome valence contrast (yellow, conjunction of bilateral nucleus accumbens, caudate, and putamen); (D) vmPFC 

PESTD � PEDIF contrast (dark blue); and (E) and striatum PESTD � PEDIF contrast (yellow). All anatomical masks were extracted 

from the probabilistic Harvard-Oxford Atlas, thresholded at 10%. Note that images are in radiological orientation (i.e., left 

brain hemisphere presented on the right and vice versa). 
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 1430 

 
Figure S05B. Conjunctions of anatomical masks with functional contrasts from fMRI GLM analyses used for fMRI-

informed EEG analyses: (A) AAC PESTD � PEDIF contrast (red, cingulate gyrus, anterior division); (B) PCC PESTD � PEDIF 

contrast (light blue, cingulate gyrus, posterior division); (C) left motor cortex PESTD � PEDIF contrast (orange, conjunction 

of precentral and postcentral gyrus); (D) Left inferior temporal gyrus PESTD � PEDIF contrast (turquoise, conjunction of 

inferior temporal gyrus, posterior division, and inferior temporal gyrus, temporooccipital part); and (E) primary visual 

cortex PESTD � PEDIF contrast (green, conjunction of lingual gyrus, occipital fusiform gyrus, occipital pole). All anatomical 

masks were extracted from the probabilistic Harvard-Oxford Atlas, thresholded at 10%. Note that images are in 

radiological orientation (i.e., left brain hemisphere presented on the right and vice versa). 
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S06: Regressors and contrast in fMRI analyses 1435 

 1436 

Model-based GLM with PESTD and PEDIF regressor: 1437 

• WinGoOnset: for every trial with Win cue and Go action, at cue onset, duration 1, value +1 1438 

• AvoidGoOnset: for every trial with Avoid cue and Go action, at cue onset, duration 1, value 1439 

+1 1440 

• WinNoGoOnset: for every trial with Win cue and NoGo action, at cue onset, duration 1, value 1441 

+1 1442 

• AvoidNoGoOnset: for every trial with Avoid cue and NoGo action, at cue onset, duration 1, 1443 

value +1 1444 

• Handedness: for every trial, at cue onset, duration 1, value +1 for left hand response, 0 for 1445 

NoGo 10 response, -1 for right hand response 11  1446 

• Error: for every trial, at cue onset, duration 1, value +1 for incorrect response, 0 for correct 1447 

response  1448 

• OutcomeOnset: for every trial, at outcome onset, duration 1, value +1 for every trial  1449 

• PESTD: for every trial, at outcome onset, duration 1, value is demeaned PE times learning rate 1450 

for model M1 1451 

• PEDIF: for every trial, at outcome onset, duration 1, value is demeaned difference between 1452 

(PE times learning rate) for model M1 and (PE times learning rate) for model M5 1453 

• Invalid: for trials where uninstructed button was pressed, at outcome onset, duration 1, 1454 

value 1  1455 
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1 PESTD        1   

2 PEDIF         1  
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Model-free GLM using response-locked and outcome-locked response regressors: 1471 

• GoReward: for every trial with Go action and reward obtained, at outcome onset, duration 1, 1472 

value +1 1473 

• GoNoReward: for every trial with Go action and no reward obtained, at outcome onset, 1474 

duration 1, value +1 1475 

• GoNoPunishment: for every trial with Go action and no punishment obtained, at outcome 1476 

onset, duration 1, value +1 1477 

• GoPunishment: for every trial with Go action and punishment obtained, at outcome onset, 1478 

duration 1, value +1 1479 

• NoGoReward: for every trial with NoGo action and reward obtained, at outcome onset, 1480 

duration 1, value +1 1481 

• NoGoNoReward: for every trial with NoGo action and no reward obtained, at outcome onset, 1482 

duration 1, value +1 1483 

• NoGoNoPunishment: for every trial with NoGo action and no punishment obtained, at 1484 

outcome onset, duration 1, value +1 1485 

• NoGoPunishment: for every trial with NoGo action and punishment obtained, at outcome 1486 

onset, duration 1, value +1 1487 

• LeftHand: for very trial with left hand response, at response onset, duration 1, value + 1 1488 

• RightHand: for very trial with right hand response, at response onset, duration 1, value + 1 1489 

• Error: for every trial, at cue onset, duration 1, value +1 for incorrect response, 0 for correct 1490 

response  1491 

• OutcomeOnset: for every trial, at outcome onset, duration 1, value +1 for every trial  1492 

• Invalid: for trials where uninstructed button was pressed, at outcome onset, duration 1, 1493 

value 1  1494 

 1495 
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1 Valence 1 -1 1 -1 1 -1 1 -1      

2 Action 1 1 1 1 -1 -1 -1 -1      

3 Hand Sum         1 1    

4 Hand Dif         1 -1    
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S07: Significant clusters in BOLD-GLMs with behavioral regressors 1503 

only 1504 

Model-based GLM with PESTD and PEDIF regressor: 1505 

 1506 

 Contrast    Peak coordinates 

No Brain region Maximal Z-

value 

Cluster size 

(voxels) 

Corrected p x y z 

 PESTD Positive       

1 Ventromedial prefrontal cortex,  

Nucleus accumbens, caudate,  

putamen, 

bilateral amygdala, bilateral 

hippocampus 

6.47 8762 1.02e-43 12 14 -6 

2 Occipital pole,  

lingual gyrus,  

occipital fusiform gyrus 

6.64 1012 6.10e-10 10 -92 -10 

3 Posterior cingulate cortex 4.72 985 9.40e-10 4 -50 18 

4 Left superior frontal gyrus 5.56 910 3.19e-09 -18 34 50 

5 Right middle temporal gyrus, 

anterior division 

5.48 381 6.47e-05 62 -4 -18 

6 Left inferior temporal gyrus, 

temporooccipital part 

5.16 360 .000103 -52 -46 -10 

7 Left middle temporal gyrus, 

anterior division 

4.70 329 .000209 -60 -10 -14 

8 Left postcentral gyrus 4.33 271 .000838 -52 -28 48 

9 Right cerebellum 4.89 147 .0239 44 -72 -40 

10 Anterior cingulate cortex 4.27 146 .0247 2 6 34 

 PESTD Negative       

1 Right superior frontal gyrus 5.20 351 .000127 6 26 62 

2 Right occipital pole,  

right inferior lateral occipital cortex 

4.76 211 .00391 30 -94 4 

3 Left lingual gyrus 4.21 186 .00776 -22 -64 2 

4 Left inferior lateral occipital cortex 4.28 147 .0239 -44 -86 -10 

 PEDIF Positive       

1 Bilateral superior frontal gyrus, 

paracingulate gyrus, anterior 

cingulate cortex,  

posterior cingulate cortex,  

ventromedial frontal cortex,  

bilateral frontal orbital cortex,  

bilateral frontal pole, bilateral 

supramarginal gyrus,  

bilateral middle temporal gyrus, 

bilateral inferior temporal gyrus, 

bilateral fusiform gyrus, bilateral 

inferior occipital cortex, bilateral 

superior occipital cortex, 

precuneous,  

bilateral cerebellum 

7.11 35109 0 34 -84 20 

2 Right insula,  

right frontal operculum,  

right inferior frontal gyrus,  

right middle frontal gyrus,  

right frontal orbital cortex,  

bilateral caudate,  

bilateral Nucleus accumbens,  

bilateral thalamus, brainstem 

6.36 10364 0 34 20 -8 

3 Left insula,  

left frontal operculum,  

6.51 10132 0 -36 20 -6 
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 1507 

 1508 
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 1510 
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 1518 
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 1521 

 1522 

 1523 

 1524 

 1525 

 1526 

 1527 

 1528 

 1529 

 1530 

 1531 

 1532 

 1533 

 1534 

 1535 

 1536 

 1537 

 1538 

 1539 

 1540 

 1541 

 1542 

 1543 

left inferior frontal gyrus,  

left middle frontal gyrus,  

left frontal orbital cortex 

4 Right middle temporal gyrus, 

posterior division 

4.66 307 .0003 56 -32 -4 

5 Right insula, right planum polare 4.72 

 

143 .0248 40 -8 -12 

 PEDIF Negative       

1 Left middle temporal gyrus, 

anterior division 

4.22 191 .00607 -64 -6 -14 

2 Left hippocampus 4.49 158 .0158 -26 -14 -22 
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Model-free GLM using response-locked and outcome-locked response regressors: 1544 

 1545 

 Contrast    Peak coordinates 

      

No Brain region Maximal Z-

value 

Cluster size 

(voxels) 

Corrected p x y z 

 Favorable > Unfavorable       

1 Ventromedial prefrontal cortex, 

left lateral orbitofrontal cortex, 

Nucleus accumbens, caudate,  

putamen, 

bilateral amygdala, 

bilateral hippocampus 

5.65 3999 2.86e-19 8 12 -4 

2 Left superior frontal gyrus 4.03 331 0.00239 -18 28 60 

3 Left lateral orbitofrontal cortex  4.31 288 0.00512 -34 40 -8 

4 Right occipital pole 4.59 213 0.0212 18 -92 -16 

 Unfavorable > Favorable       

1 Right lateral orbitofrontal cortex 4.59 367 0.00142 30 62 -2 

2 Precuneous 4.58 356 0.00170 8 -66 58 

3 Right superior frontal gyrus 4.32 340 0.00223 12 14 72 

 Go > NoGo  

outcome-locked 

      

 No significant clusters       

 NoGo > Go  

outcome-locked 

      

1 Bilateral lateral orbitofrontal 

cortex, 

Bilateral superior frontal gyrus, 

anterior cingulate cortex, 

posterior cingulate cortex, 

pre-SMA, 

bilateral precentral gyrus,  

bilateral postcentral gyus, 

bilateral supramarginal gyrus, 

bilateral operculum, 

bilateral planum temporale,  

bilateral superior temporal gyrus, 

bilateral middle temporal gyrus, 

bilateral inferior temporal gyrus, 

bilateral superior lateral occipital 

cortex, 

bilateral inferior lateral occipital 

cortex, 

bilateral thalamus 

7.32 114090 0 -42 -6 12 

 Go (left + right hand response) > 

NoGo  

response-locked  

      

1 Cerebellum, bilateral thalamus, 

bilateral putamen, bilateral 

caudate, bilateral Nucleus 

Accumbens, posterior cingulate 

cortex, right operculum, right 

angular gyrus, right superior 

parietal lobule. anterior cingulate 

cortex, paracingulate gyrus, 

bilateral ventrolateral frontal 

cortex, right middle frontal gyrus 

7.08 46437 0 32 -4 -6 

2 Left operculum, left angular gyrus, 

left superior parietal lobule 

5.88 3936 3.13e-17 -46 -24 26 

3 Intracalcarine cortex 3.79 374 0.00248 -12 -88 6 

4 Right middle temporal gyrus 4.63 287 0.00956 68 -32 -12 
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 1546 

 1547 

 1548 

 1549 

 1550 

 1551 

 1552 

 1553 

 1554 

 1555 

 1556 

 1557 

 1558 

 1559 

 1560 

 1561 

 1562 

 1563 

 1564 

 1565 

 1566 

 1567 

 1568 

 NoGo > Go (left + right hand 

response) response-locked 

      

1 Right medial temporal gyrus, right 

temporal pole 

4.09 465 0.000636 50 -8 -16 

2 vmPFC, subcallosal cortex 3.95 435 0.000973 0 40 -12 

 Left Hand > Right Hand Response 

response-locked 

      

1 Right precentral gyrus, right 

postcentral gyrus, right superior 

parietal lobule, right operculum 

7.05 9460 9.41e-39 46 -24 64 

2 Left cerebellum 7.18 2208 2.1e-14 -18 -54 -18 

 Right Hand > Left Hand Response 

response-locked 

      

1 left precentral gyrus, left 

postcentral gyrus, left superior 

parietal lobule, left operculum, left 

thalamus 

7.06 14870 0 -36 -20 66 

2 Right anterior cerebellum 7.90 3735 1.44e-20 18 -54 -20 

3 Right inferior lateral occipital 

cortex, right superior lateral 

occipital cortex 

4.96 1452 9.66e-11 48 -86 -4 

4 Right angular gyrus 4.98 551 2.06e05 66 -50 28 

5 Left occipital pole, right 

intracalcarine cortex 

3.93 409 0.000236 -4 -96 26 

6 Right posterior cerebellum 4.64 200 0.0157 48 -78 -32 
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S08: EEG time-frequency results after ERPs are removed 1569 

 Given that differences in theta power between favorable and unfavorable outcomes as well 1570 

as differences in lower alpha band power after Go and NoGo responses occurred quite soon after cue 1571 

onset, we aimed to test whether these effects reflected differences in evoked rather than induced 1572 

activity. For this purpose, we removed evoked components from our data by computing the ERP for 1573 

each of the eight conditions (action x outcome) for each participant and then subtracting the 1574 

condition-specific ERP from the trial-by-trial data (81). Only afterwards, we performed time-1575 

frequency decomposition. 1576 

In line with the results reported in the main text, power was higher for unfavorable 1577 

compared to favorable outcomes in the theta band (p =.018, driven by cluster at 225–475 ms; Fig. 1578 

S08B), but higher for favorable than unfavorable outcomes in the beta band (p < .001, driven by 1579 

cluster at 0–1250 ms; Fig. S08C). Notably, unlike the results reported in the main text (Fig. 4A), the 1580 

cluster of high power for unfavorable compared to favorable outcomes was constrained to the theta 1581 

range, and did not extend further into the delta range (Fig. S08A). 1582 

When using the trial-by-trial PEs (both the standard PE and the difference term to a biased 1583 

PE) as predictors in a multiple linear regression at each time-frequency-channel bin while controlling 1584 

for PE valence, delta power encoded �����  positively, though not significantly (p = .198). However, 1585 

at a later time point around outcome offset, delta (and theta) power in fact correlated negatively 1586 

with ����� (575–800 ms, p = .002; Fig. S08E). The correlation between delta and the �����  term was 1587 

still positive, but not significant (p = .228, Fig. S08F). Similarly, the correlation of the ������  term 1588 

with delta power was positive, but not significant (p = .084; Fig. S08D). 1589 

Regarding beta power, there was a positive, though non-significant correlation of beta power 1590 

with ����� (p = .096). There was again a significantly negative correlation of beta power with �����  1591 

(425–875 ms, p < .001, Fig. S08B). Likewise, beta power correlated significantly negatively with 1592 ������  (450–800 ms, p = .018), driven by the correlation with ����� . 1593 

In sum, after subtracting the condition-wise ERP from each trial before time-frequency 1594 

decomposition, supposedly removing the phase-locked aspect of power, both beta and theta still 1595 

encoded PE valence. However, the encoding of PE magnitude by delta power was attenuated and not 1596 

significant any more.  1597 

This reduction in magnitude encoding might occur of several reasons. Firstly, it might be that 1598 

this correlation in the delta range is in fact (partly) reflecting correlations with phase-locked, i.e., 1599 

evoked activity (ERPs), especially in the N2 (FPN)/ P3 (RewP) time range (see S09) (26, 28–30, 82–87). 1600 

Nonetheless, a positively correlation between delta power and biased PEs is still visible in Fig. S08D, 1601 

suggesting that at least part of the signal encoding biased PEs is not phase-locked. Secondly, it might 1602 

be that the removal of the condition-wise ERPs has introduced additional noise in the data, 1603 

attenuating any true correlation. Thirdly, there was a negative correlation between ����� and theta/ 1604 

delta power at later time points which was visible, though not significant in the results reported in 1605 

the main text (Fig. 4D). Subtraction of an ERP-like template acts like a high-pass filter. High-pass 1606 

filtering at relatively high cut-offs (> 0.5 Hz) can artificially postpone or induce effects at later points 1607 

(88). It is possible that in this case, ERP subtraction attenuated a positive correlation in the theta/ 1608 

delta range, but enhanced a later negative correlation.  1609 

Taken together, it is possible that part of the PE magnitude encoding in the theta/ delta 1610 

range is due to correlations with the phase-locked (ERP) signal. However, this finding does not 1611 

compromise the conclusion that overall, theta/delta power seemed to be more strongly associated 1612 

with the ������ term than the �����  term. Our primary goal is not to pinpoint the precise nature of 1613 
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electrophysiological correlates of biased learning, but rather test the relative temporal order of when 1614 

different regions exhibiting biased learning signals become active.  1615 

Finally, we tested whether after ERP subtraction, low alpha (and beta power) still encoded 1616 

the previously performed action. When testing for differences in broadband power after Go and 1617 

NoGo responses, power was indeed significantly different between conditions, driven by clusters in 1618 

beta band (p = 0.002, 0.125 – 625 ms; p = 0.052, 700 - 1000 ms, 23 - 29 Hz) and theta/ low alpha 1619 

band (p = 0.024, 575 – 1000 ms, 5–9 Hz; p = 0.056, 0 –225 ms, 6–11 Hz). For power before outcome 1620 

onset, there were again broadband differences between Go and NoGo (p = 0.002, -1000 – +225 ms, 1 1621 

–33 Hz), but note that there was no ERP subtracted before outcome onset. We thus conclude that 1622 

the differences between Go and NoGo responses were attributable to differences in induced rather 1623 

than evoked activity. 1624 

 1625 

 
Figure S08. EEG time-frequency power over midfrontal electrodes (Fz/ FCz/ Cz) after the (action x outcome) condition-

wise ERPs has been removed. (A) Time-frequency plot (logarithmic y-axis) displaying high theta (4–8 Hz) power for 

unfavorable outcomes and higher beta power (16–32 Hz) for favorable outcomes. (B). Theta power transiently increases 

for any outcome, but more so for unfavorable outcomes (especially punishments) around 225–475 ms after feedback 

onset. (C) Beta is higher for favorable than unfavorable outcomes (especially punishments) over a long time period around 

300–1,250 ms after feedback onset. (D-F). Correlations between midfrontal EEG power and trial-by-trial PEs. Solid black 

lines indicate clusters above threshold. There still was a visible positive correlation between biased PEs and midfrontal 

delta power, but this correlation was not significant (D). The correlation of delta with the standard PEs (E) was also 

positive, though not significant; in fact, at a later time point around stimulus offset, delta power correlated significantly 

negatively with standard PEs. The difference term to biased PEs (F) also correlated positively, though not significantly with 

delta power. Beta power encoded the difference term and biased PEs themselves (F). ** p < 0.01. 

 1626 

 1627 

 1628 

 1629 

 1630 
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S09: ERPs as a function of action and outcome 1631 

 In addition to the induced activity in time-frequency power reported in the main text, we 1632 

also analyzed the data in the time domain to test for differences in evoked activity. These analyses 1633 

were particularly motivated given that differences in time-frequency power between favorable and 1634 

unfavorable outcomes (theta/delta range) and after Go and NoGo responses (lower alpha/ theta 1635 

range) occurred soon after outcome onset, warranting the assumption that differences might also 1636 

occur in evoked activity. A large range of previous research has reported a modulation of evoked 1637 

potentials by outcome valence in form of the feedback-reduced negativity (29, 64, 82–87), i.e., a 1638 

stronger N2 component for negative compared to positive outcomes around ~ 250 post-cue over 1639 

midfrontal electrodes, recently also characterized as rather constituting a reward positivity (RewP) 1640 

(82). Also, some studies have reported a modulation of the P3 by outcome valence, which has been 1641 

attributed to outcome magnitude or salience rather than valence (85–87, 89). 1642 

 Similar to the analysis of time frequency power, we sorted trials into the eight conditions 1643 

spanned by the performed action (Go/ NoGo) and the obtained outcome (reward/ no reward/ no 1644 

punishment/ punishment), computed the average ERP for each condition per participant, and tested 1645 

for differences between favorable (reward/ no punishment) and unfavorable (no reward/ 1646 

punishment) outcomes as well as conditions of relative stronger (rewarded Go and punished Go) vs. 1647 

relatively weaker learning (rewarded NoGo and punished NoGo). We used cluster-based permutation 1648 

tests on the average signal over midfrontal electrodes (Fz/ FCz/ Cz) in the time range of 0–700 ms 1649 

after outcome onset (where evoked potentials visible in condition-averaged plot). 1650 

 First, midfrontal ERPs were significantly different between favorable and unfavorable 1651 

outcomes, driven by two separate clusters of differences above threshold (Cluster 1: around 246 – 1652 

294 ms, p = .034; Cluster 2: around 344 – 414 ms, p =.004, Fig. S09A panel A, C). The first cluster the 1653 

classical feedback-related negativity, i.e., a stronger N2 component for unfavorable compared to 1654 

favorable outcomes. The second cluster reflected weaker P3 component for unfavorable compared 1655 

to favorable outcomes, similar the reward positivity reported before. In fact, the N3 was rather 1656 

absent for unfavorable outcomes (Fig. S09B). Both effects were clearly focused on midfrontal 1657 

electrodes. These findings replicate previous findings of outcome valence modulating N2 (feedback-1658 

related negativity) and P3 components, and complement our time-frequency findings of theta and 1659 

beta power reflecting outcome valence. 1660 

 Second, when contrasting trials with Go vs. NoGo responses, no significant difference was 1661 

observed (p = .358; Fig. S09A panel D). Visual inspection of the topoplot yielded that, if anything, 1662 

differences emerged over right occipital electrodes. If one performed a test over those right occipital 1663 

electrodes (O2, 04, PO4; Fig. S09A panel F; note that this procedure constitutes double-dipping 1664 

because the test was informed by first looking at the data), this test would have yielded significant 1665 

results (p = .016) driven by cluster around 423–466 ms, reflecting a slightly larger P3 after Go than 1666 

NoGo responses (Fig. S09A panel E). This finding appears to be the strongest (if any) difference in 1667 

amplitude after outcome onset between Go and NoGo actions. Given that this difference was not 1668 

hypothesized and occurred far away from our a-priori selected channels of interest, we are careful 1669 

not to over-interpret those differences. 1670 

 Third, contrasting trials with favorable and unfavorable at the same right occipital electrodes 1671 

yielded a significant difference, driven by clusters around 46–103 ms (p = 0.034), 141–255 ms (p = 1672 

.002), and 519 – 580 ms (p = .034). Most notably, the P1 amplitude was much larger for favorable 1673 

than unfavorable outcomes (Fig. S09A panel B). However, given that these differences were not 1674 
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hypothesized and occurred far away from our a-priori selected channels of interest, we are careful 1675 

not to over-interpret those differences. 1676 

  Taken together, we found a bigger midfrontal N2/ FRN for unfavorable compared to 1677 

favorable outcomes, and a bigger midfrontal P3/ RewP for favorable compared to unfavorable 1678 

outcomes, in line with a vast literature of previous findings (29, 64, 82–87, 89). Midfrontal voltage did 1679 

not significantly differ after Go or NoGo responses. If anything, differences after Go and NoGo 1680 

responses were maximal over right occipital electrodes, with a larger P3 after Go than after NoGo 1681 

responses. Signal at these channels also differed between favorable and unfavorable outcomes, most 1682 

notably with a bigger P1 after favorable than unfavorable outcomes. In sum, we replicate classical 1683 

reward learning ERP effects, which shows that the motivational Go/NoGo learning task taps into 1684 

reward learning processes reported before, but these processes appeared to be unaffected by the 1685 

previously performed action. 1686 

 1687 

 
Figure S09A. ERPs reflecting outcome valence and performed action. (A) Voltage (±SEM) over midfrontal electrodes 

(Fz/FCz/Cz) was lower for unfavorable than favorable outcomes around 246–294 ms (stronger N2, FRN) and higher for 

favorable than unfavorable outcomes around 344 – 414 ms (stronger P3/ RewP). (B) Over right occipital electrodes, the P3 

was slightly bigger for favorable than unfavorable outcomes. ** p < 0.01. * p < .05 (C) Topoplots of difference in voltage 

between trials with favorable and unfavorable outcomes over selected time windows. (D) There was no difference in 

voltage over midfrontal electrodes between trials with Go and NoGo responses. (E) Over right occipital electrodes, the P3 

was slightly stronger after Go than NoGo actions (no p-value because ROI selected based on visual inspection). (F) 

Topoplots of difference in voltage between trials with Go and NoGo actions over selected time windows. 

 1688 
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Figure S09B. ERPs per action x outcome condition. Biggest differences occurred around the time of the N2 (FRN) and P3 

(RewP). N2 and P3 exhibited larger amplitudes on trials with punishments. There was no apparent modulation by the 

previous action (Go/ NoGo). 
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S10: Model-based EEG analyses in the time domain 1714 

 In addition to testing whether midfrontal time-frequency power reflected signatures of 1715 

biased learning (see main text), we also tested whether the midfrontal time domain signal reflected 1716 

biased learning. Again, we used the standard PE term and the difference term to biased PEs as 1717 

regressors in a multiple linear regression on each channel-time bin.  1718 

Focusing on midfrontal electrodes, and controlling for outcomes valence, first, the �����  1719 

term was negatively correlated with midfrontal voltage around 529–575 ms (p = .039; Fig. S10B). 1720 

Note that so late after outcome onset, signal was not part of any “classical” ERP component any 1721 

more. Second, the �����  correlated negatively with midfrontal voltage around 123–166 ms (p = .029) 1722 

in the time range of the N1 and later positively around 365–443 ms (p < .001; Fig S10C) in the time 1723 

range of the P3/ RewP. Third, a similar pattern of correlations occurred for the ������ term (Cluster 1724 

1: negative, 111–184 ms, p = .004; Cluster 2: positive, 346–449 ms, p < .001; Fig. S10A).  Fourth, 1725 

around these same time windows, midfrontal voltage also encoded outcome valence itself, but with 1726 

opposite sign (Cluster 1: positive, 99–184 ms, p < .001; Cluster 2: negative, 308–448 ms, p < .001; see 1727 

S09).  1728 

In sum, similar to analyses of midfrontal power reported in the main text, PE sign and 1729 

magnitude were encoded in midfrontal voltage around the same time, but with opposite polarity: 1730 

Signal around the time of the N1 encoded PE sign positively, but PE magnitude negatively. Vice versa, 1731 

signal around the time of the P3/ RewP encoded PE sign negatively, but PE magnitude positively. The 1732 

same phenomenon of separate valence and magnitude encoding in midfrontal EEG signal has been 1733 

reported before (28–30). Notably, magnitude encoding in midfrontal voltage emerged for the ������  1734 

term, but not the ����� , indicating that this correlation was driven by the �����  term and that 1735 

biased learning described midfrontal voltage better than standard learning. These results 1736 

complement our findings of theta/delta power encoding outcome valence and magnitude with 1737 

opposite polarities (see main text). 1738 

 
Figure S10. Modulation of EEG voltage by biased PEs and decomposition into the standard PE term and the difference 

term to biased PEs. (A) Mean EEG voltage over midfrontal electrodes (Fz, FCz, Cz) was significantly modulated by biased 

PEs around 111–184 (negatively) and 353–414 ms (positively) after outcome onset. (B) Correlations with the standard PE 

term only emerged around 529 – 575 ms (negatively). (C) Correlations with the difference term to biased PEs were similar 

to correlations for the biased PE term itself, i.e., around 123–166 (negatively) and 365–443 ms (positively). 

Bottom row: Topoplots displaying t-values of beta-weights for the respective regressor over the entire scalp in steps of 100 

ms from 0 to 800 ms. 
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S11: Supplementary fMRI-inspired EEG results in time-frequency 1739 

space 1740 

Besides the results for striatum, ACC, and PCC reported in the main text, there were also 1741 

significant EEG correlates over midfrontal electrodes for trial-by-trial BOLD signal from left motor 1742 

cortex (p = .002, around 0–625 ms, 16–27 Hz; Fig. S11A). There were however no significant EEG 1743 

correlates over midfrontal electrodes for BOLD signal from vmPFC/ subgenual ACC (p = .174; Fig. 1744 

S11B), left inferior temporal gyrus (p = .097; Fig. S11C), and primary visual cortex (p = .017; Fig. 1745 

S11D). 1746 

As quality checks, we checked whether visual cortex BOLD correlated negatively with alpha 1747 

over occipital electrodes (90, 91) and whether motor cortex BOLD correlated negatively with beta 1748 

power over central electrodes (92, 93). Both was the case (see Fig. S11E and F), showing that our 1749 

data was of sufficient quality to detect these well-established associations. 1750 

 
Figure S11. Supplementary fMRI-informed EEG results in the time-frequency domain. Unique temporal contributions of 

BOLD signal in (A) left motor cortex, (B) vmPFC, (C) left ITG and (D) primary visual cortex to midfrontal EEG power. Group-

level t-maps display the modulation of the EEG power over midfrontal electrodes (Fz/ FCz/ Cz) by trial-by-trial BOLD signal 

in the selected ROIs. There significant correlations between midfrontal EEG TF power in the beta range and left motor 

cortex BOLD signal (p = .002), but no significant midfrontal EEG correlates for BOLD signal from other ROIs. (E) Topoplot 

displaying t-values of left motor cortex BOLD over the entire scalp between 13 and 30 Hz (beta band) in steps of 100 ms 

from 0 to 800 ms. There are significant negatively correlates over central electrodes, especially round 300–500 ms. (F) 

Topoplot displaying t-values of primary visual cortex BOLD over the entire scalp between 8 and 13 Hz (alpha band) in steps 

of 100 ms from 0 to 800 ms. There are significant negatively correlates over occipital electrodes throughout outcome 

presentation.  

 1751 

 1752 

 1753 

 1754 

 1755 
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S12: Supplementary fMRI-inspired EEG results in the time domain 1756 

For fMRI-inspired analysis of the EEG signal in the time domain (voltage), we applied the 1757 

same approach as reported in main text, but with voltage signal (time-domain) instead of time-1758 

frequency power as dependent variable. As independent variables, we entered the trial-by-trial BOLD 1759 

signal from all seven regions encoding biased PEs plus the trial-by-trial standard PE and the different 1760 

term towards the biased PE (exact same procedure as for EEG TF analyses), all in one single multiple 1761 

linear regression. On a group-level, we again focused on the mean signal over midfrontal electrodes 1762 

(Fz/ FCz/ Cz) in a time range of 0–700 ms, for which ERPs had been visible in the condition-averaged 1763 

plots (see S09).  1764 

First, trial-by-trial striatal BOLD correlated significantly with midfrontal voltage at two time 1765 

points, namely positively around 152–196 ms (p = .017) in the time range of the N1 and again 1766 

negatively around 316–383 ms (p < .001, see Fig. S12A) in the time range of the N2/ FRN and 1767 

P3/RewP. Second, trial-by-trial vmPFC BOLD correlated significantly positively with midfrontal 1768 

voltage around 347–412 ms (p = .006, see Fig. S12A) in the time range of the N2/ FRN and P3/RewP. 1769 

Third, trial-by-trial BOLD from primary visual cortex correlated significantly positively with midfrontal 1770 

voltage around 307–367 ms (p = .011, see Fig. S12B), overlapping with (but slightly earlier than) 1771 

correlations from vmPFC BOLD, i.e., in the time range of the N2/ FRN and P3/RewP. For midfrontal 1772 

voltage split up per high vs. low BOLD signal (revealing which ERP components are respectively 1773 

modulated), see Fig. S12C-E. There were no significantly correlations between midfrontal voltage and 1774 

trial-by-trial BOLD from ACC (p = .927, see Fig. S12A), left motor cortex (p = .649, see Fig. S12B), PCC 1775 

(p = .796, see Fig. S12A), or left inferior temporal gyrus (p = .649, see Fig. S12B). For further details on 1776 

BOLD-EEG voltage correlations in the time domain, see Fig. S12F–L.  1777 

Taken together, trial-by-trial BOLD signal in striatum, vmPFC, and V1 all correlated with FRN/ 1778 

RewP amplitude, which is the dominant phenomenon over midfrontal electrodes reflecting outcome 1779 

valence (see S09 and S10). Notably, correlations with striatal and vmPFC BOLD were of opposite 1780 

signs, which aligns with the finding that striatal and vmPFC BOLD predicted opposite behavioral 1781 

tendencies on future trials (see main text; see S15). However, crucially, the time domain signal did 1782 

not allow for a temporal dissociation of these different regions. Possibly, the midfrontal evoked 1783 

signal (i.e., the part of the signal that is phase-locked to outcome onset) is so stereotyped that only 1784 

the FRN/RewP complex shows enough variation across trials to allow for substantial correlations with 1785 

trial-by-trial BOLD signal. This finding demonstrates that the time-frequency domain signal (i.e., the 1786 

part of the signal that is not necessarily phase-locked to outcome onset) might be more suited for 1787 

dissociating the activity of different regions in time. 1788 
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Figure S12. fMRI-informed EEG analyses in the time-domain. Group-level t-value time courses display the modulation of 

the EEG voltage over midfrontal electrodes (Fz/ FCz/ Cz) by trial-by-trial BOLD signal in the selected ROIs. (A) Correlations 

between midfrontal voltage and trial-by-trial BOLD signal from core value regions, i.e., striatum, ACC, vmPFC, and PCC. 

Striatal BOLD modulates the amplitude of the N1 and P3, while the P3 amplitude is also modulated by vmPFC BOLD. (B) 

Correlations between midfrontal voltage and trial-by-trial BOLD signal from other regions, i.e., left motor cortex, left 

inferior temporal gyrus, and primary visual cortex. Visual cortex BOLD modulates the amplitude of the P3, as well. (E-F) 

Midfrontal voltage split up for high vs. low BOLD signal (median split) from regions significantly modulating voltage. Striatal 

BOLD modulates N1 and P2 amplitude, while vmPFC BOLD and visual cortex BOLD modulate N2 (FRN) amplitude. (G-L) 

Topoplots displaying t-values of correlations between midfrontal voltage and trial-by-trial BOLD for all regions in steps of 

100 ms from 0 to 800 ms.  
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S13: Full list of significant clusters with EEG regressors in fMRI GLMs 1793 

 Contrast    Peak coordinates 

No Brain region Maximal Z-

value 

Cluster size 

(voxels) 

Corrected p x y z 

 Central Lower Alpha Band Positive       

 No significant clusters       

 Central Lower Alpha Band 

Negative 

      

1 Precuneous, 

cuneal cortex, 

right superior lateral occipital 

cortex 

5.78 8346 2.50e-33 6 -60 66 

2 Anterior cingulate gyrus, 

right superior frontal gyrus 

4.77 2449 1.75e-14 24 12 66 

3 Left middle frontal gyrus,  5.59 1828 7.63e-12 -38 8 34 

4 Right insula,  

right central opercular cortex 

4.71 1794 1.08e-11 42 2 28 

5 Right frontal pole, 

right middle frontal gyrus, 

right inferior frontal gyrus, pars 

triangularis 

5.43 1300 2.37e-09 30 40 20 

6 Left supramarginal gyrus, anterior 

division 

4.61 959 1.19e-07 -64 -36 42 

7 Left angular gyrus 5.83 916 2.38e-07 -48 -52 18 

8 Right cerebellum, anterior 4.79 480 .000131 42 -38 -38 

9 Posterior cingulate cortex, 

parahippocampal gyrus,  

right thalamus 

4.41 424 .000328 14 -38 -2 

10 Left temporal pole,  

left inferior frontal gyrus, pars 

opercularis 

left insula 

4.08 413 .000394 -56 16 -6 

11 Left cerebellum, anterior 5.44 263 .00598 -30 -40 -42 

12 Right lingual gyrus 3.43 235 .0104 10 -74 -10 

13 Left cerebellum, posterior 5.74 215 .0158 -14 -76 -42 

14 Brainstem 4.35 207 .0186 8 -34 -20 

 Frontal Theta Band Positive       

1 Right bilateral precentral gyrus 4.82 394 .000577 12 -16 80 

2 Left bilateral precentral gyrus 5.25 357 .0011 -20 -28 78 

 Frontal Theta  Band Negative       

1 Right supramarginal gyrus, 

posterior division,  

right superior lateral occipital 

cortex 

3.94 1002 1.10e-07 -54 -50 44 

2 Left supramarginal gyrus, posterior 

division,  

Left superior lateral occipital cortex 

4.39 508 8.96e-05 56 -50 20 

3 Posterior cingulate cortex 4.58 419 .000378 -6 -30 38 

4 Ventromedial prefrontal cortex 4.03 342 .00143 0 42 4 

 Central Beta Band Positive       

1 Right caudate 4.19 258 .00481 16 30 6 

2 Left parahippocampal gyrus, 

posterior divison 

4.86 221 .0106 -38 -36 -8 

 Central Beta Band Negative       

1 Right frontal pole,  

right middle frontal gyrus,  

right superior frontal gyrus 

5.49 6599 7.06e-30 -32 8 28 

2 Left frontal pole, 

left middle frontal gyrus,  

Left superior frontal gyrus 

5.51 6144 1.82e-28 40 38 36 

3 Left supramarginal gyrus, posterior 5.51 5175 2.43e-25 -66 -44 28 
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 1823 

S14: Go/NoGo difference in alpha (and beta) over time 1824 

We observed differences between trials with Go responses and trials with NoGo responses in 1825 

the low alpha power before and shortly after outcome onset (Fig. 6A, B main text). Alpha typically 1826 

division, 

left superior parietal lobule, 

left superior lateral occipital cortex, 

Left middle temporal gyrus, 

temporooccipital part 

4 Right supramarginal gyrus, 

posterior division, 

Right superior parietal lobule, 

right superior lateral occipital 

cortex 

5.13 3264 1.62e-18 30 -74 54 

5 Left superior frontal gyrus, 

paracingulate gyrus, 

precuneous 

4.54 1235 1.80e-09 -4 12 52 

6 Right superior temporal gyrus, 

posterior division 

4.59 1076 1.33e-08 48 -14 -10 

7 Left temporal pole,  

left planum temporale 

4.96 320 .00139 -46 4 -18 
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increases over the time course of an experiment, potentially related to fatigue and decreasing 1827 

arousal (94). If the ratio of Go and NoGo responses changed over time, as well, such an increase over 1828 

time could spuriously lead to a difference between Go and NoGo responses (though note that this 1829 

ratio did not noticeably change over time; Fig. S14D). To exclude this possibility, we extracted trial-1830 

by-trial time-frequency power from the three significant clusters report in the main text in which 1831 

power differed between Go and NoGo responses: a) lower alpha band power after outcome onset, b) 1832 

lower alpha band power before and after outcome onset, c) beta band power before outcome onset. 1833 

We transformed this data to decibel and analyzed it as a function of the performed response (factor), 1834 

block number (1–6; z-standardized), and the interaction between both. We reasoned that if power 1835 

differences occurred merely due to fatigue effects, the main effect of performed response should not 1836 

be significant when accounting for time on task (i.e., block number). 1837 

 For lower alpha band power after outcome onset, there was a significant main effect of 1838 

performed response, b = 0.035, SE = 0.015, χ2(1) = 5.350, p = .021, with higher power for Go than 1839 

NoGo responses, a significant main effect of block number with lower alpha band power increasing 1840 

over time, b = 0.052, SE = 0.019, χ
2
(1) = 6.645, p = .010, but no significant interaction, b = 0.003, SE = 1841 

0.008, χ
2
(1) = 0.156, p = .693. As Fig. S14A reveals, lower alpha band power was consistently higher 1842 

after Go than after NoGo responses for every block of the task, suggesting that differences in lower 1843 

alpha band power were not merely due to time on task.  1844 

For lower alpha band power before and after outcome onset, as well, there was a significant 1845 

main effect of performed response, b = 0.068, SE = 0.030, χ2(1) = 5.010, p = .025, with higher power 1846 

after Go than NoGo responses, a significant main effect of block number with lower alpha band 1847 

power increasing over time, b = 0.072, SE = 0.029, χ
2
(1) = 6.757, p = .016, but no significant 1848 

interaction, b = 0.010, SE = 0.009, χ
2
(1) = 1.184, p = .277 (Fig. S14B), leading to identical conclusions. 1849 

For beta band power before and after outcome onset, there was a significant main effect of 1850 

performed response, b = 0.083, SE = 0.032, χ2(1) = 6.301, p = .012, with higher power after Go than 1851 

NoGo responses, a significant main effect of block number with beta power decreasing over time, b = 1852 

-0.042, SE = 0.021, χ2(1) = 4.007, p = .045, but no significant interaction, b = 0.001, SE = 0.007, χ2(1) = 1853 

0.030, p = .864 (Fig. S14C). In sum, even in presence of changes in power over the time course of the 1854 

task, lower alpha band and beta band power were consistently higher after Go responses than after 1855 

NoGo responses, suggesting that these effects were not due to time on task. 1856 

 Furthermore, we asked whether differences in ACC BOLD between trials with Go and trials 1857 

with NoGo response at the time of the outcome were due to outcome-related activity or might 1858 

rather the reflect action on the next trial. We thus plotted the “raw” BOLD signal per action x 1859 

outcome condition. We used the first eigenvariate of the BOLD in signal in the ACC cluster that 1860 

reflected biased learning, upsampled the BOLD signal, epoched it into trials relative to outcome 1861 

onset (same procedure as for fMRI-informed EEG analyses), and averaged the signal across trials and 1862 

participants separately per performed action (Go/NoGo) and outcome valence (positive/ negative). 1863 

This plot yielded higher ACC BOLD signal on trials with NoGo responses than on trials with Go 1864 

responses at the time of outcomes (Fig. S14E). However, this difference could potentially be driven 1865 

by the response on the following task, so we further split the data according to whether the action 1866 

on the following trial was a Go or a NoGo response. Irrespective of the action on the following trial, 1867 

ACC BOLD signal was higher when the action on the current trial was a NoGo response compared to a 1868 

Go response (Fig. S15F). In sum, these analyses corroborate that ACC BOLD signal was indeed higher 1869 

after NoGo than Go responses at the time of outcomes. 1870 

 1871 
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Figure S14. Control analyses excluding temporal confounds in midfrontal lower alpha band power and ACC BOLD. (A) 

Mean midfrontal low alpha power (±SEM across participants) after outcome onset, (B) before and after outcome onset, and 

(C) beta power before outcome onset as a function of the performed action and block number (i.e., time on task). While 

low alpha power increases and beta power decreases over the time course of the task, power is always consistently higher 

for trials with Go than trials with NoGo responses, suggesting that action effects are not reducible to time on task. (D) 

Response for each participant (rows) on each trial (columns). There is no noticeable change in the overall ratio of Go to 

NoGo responses over time. The vertical blue line indicates the start of the second session featuring new stimuli. (E) Mean 

upsampled ACC BOLD signal (±SEM across participants) at the time of the outcome, split per performed action (Go/NoGo) 

and outcome valence (positive/negative). BOLD signal is higher after NoGo than Go responses. (F) Same plot as (E), but split 

based on whether the next action is a Go (left panel) or an NoGo (right panel) response. Even if the next response is NoGo, 

BOLD signal is higher for trials with NoGo responses (on the current trial) than trials Go responses. 
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S15: Stay behavior as a function of BOLD and EEG TF power 1875 

 
Figure S15. Probability of repeating the same response (“stay”) on the next cue encounter as a function of outcome-

related BOLD and EEG signal. (A-C) Probability of repeating the same action (“staying”) as a function of BOLD signal from 

(A) ACC, (B) vmPFC, and (C) striatum (split into 5 bins). While ACC BOLD was not significantly linked to the probability to 

stay, high BOLD signal in vmPFC predicted a higher chance to switch to another action, while high BOLD signal in striatum 

predicted a higher probability of staying with the same action. (D-E) Probability of staying as a function of midfrontal time-

frequency power in the (A) low alpha, (B) theta/delta, and (C) beta range. Higher low alpha power and higher beta power 

predict a higher probability of staying with the same action, while higher theta power predicts a higher chance to switch to 

another action. Grey circles represent individual per condition-per-participant means. Error bars are very narrow (and thus 

hardly visible) and computed based on the Cousineau-Morey methods based on per-condition-per-participant means. 
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