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Abstract

The brain excels at processing sensory input, even in rich or chaotic environments. Mounting ev-
idence attributes this to the creation of sophisticated internal models of the environment that draw
on statistical structures in the unfolding sensory input. Understanding how and where this model-
ing takes place is a core question in statistical learning. It is unknown how this modeling applies to
random sensory signals. Here, we identify conditional relations, through transitional probabilities, as
an implicit structure supporting the encoding of a random auditory stream. We evaluate this repre-
sentation using intracranial electroencephalography recordings by applying information-theoretical
principles to high-frequency activity (75 to 145Hz). We demonstrate how the brain continuously en-
codes conditional relations between random stimuli in a network outside of the auditory system fol-
lowing a hierarchical organization including temporal, frontal and hippocampal regions. Our results
highlight that hierarchically organized brain areas continuously attempt to order incoming informa-
tion by maintaining a probabilistic representation of the sensory input, even under random stimuli
presentation.

Efficient encoding of patterns in ongoing sensory input is critical for survival in an ever-changing
environment. The brain is not inherently aware of the underlying structures in the environment and po-
tential regularities in the sensory stream must be assessed with regards to previously encoded regularity
(1–3). Regularity encoding involves continuous updating of internal representations of the environment
based on statistical structures derived from the sensory signal (4–9). Sensitivity to conditional regularity
between events has been observed in humans (10–20) and animals (21–26). Because events in the envi-
ronment rarely occur independently, this pattern extraction is necessary for fast and efficient processing
of sensory information.
A mathematical representation of such conditional regularity is transitional probabilities (TPs). TPs

describe how likely one event predicts another, that is, the ratio of the directional co-occurrence of events
given their frequency (6, 27–29). As an example, experimental studies in infants and adults have shown
that the TPs between syllables constitute patterns that facilitate the identification of word-like units (10,
29–33), thus making TP encoding essential for language development (6, 7, 28, 31, 34–36).
While the brain’s sensitivity to conditional regularities has been observed in experimental studies across

sensory domains, themechanisms underlying this sensitivity remain poorly understood (6, 30, 31, 37–45).
Studies on sensory processing and statistical learning have reported engagement of multiple brain struc-
tures, suggesting that the perception and learning of statistical regularities is not performed by one neural
region, but rather may be supported by multiple regions working in parallel (31, 35, 36, 43, for alternative
hypotheses 31). Sensory modality-general areas, such as the prefrontal cortex and the hippocampus, as
well as lower perceptual or modality-specific regions are proposed to subserve this capacity. However,
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detailed knowledge about the brain regions contributing to this dynamic and adaptive process is limited
(6, 13, 32, 36, 43, 44, 46, 47). In addition to modality specificity, the involved regions depend on the
structure of the input (for example, pure tones or linguistic material for auditory stimuli), its complexity
(ranging from deterministic to random structures), or whether learning occurs implicitly/automatically or
explicitly/attention-dependent (31, 34, 35, 48).
We investigated how different brain regions contribute to statistical learning using the high tempo-

ral and spatial resolution of intracranial electroencephalography (iEEG) by examining the information
content of high-frequency activity (HFA; 75 to 145Hz) event responses in relationship to TPs between
randomly occurring tones. Based on the hypothesis that multiple brain regions engage in auditory statis-
tical learning, we predicted temporal, frontal, insular, and anterior cingulate (ACC) cortices, as well as
peri-central sulci and hippocampus to be sensitive to TPs in our implicit learning listening task (4, 31, 35,
36, 45). We then evaluated whether this sensitivity follows a hierarchical organization within the brain.

Statement of Significance
Humans are biased to perceive patterns in random sensory signals. However, the underlying neurophysio-
logical mechanisms are unknown. Utilizing the high temporal and spatial precision of intracranial electroen-
cephalography, we found that the brain automatically encodes temporal relationships between events when
exposed to random acoustic stimuli. We also revealed a hierarchical structure of brain areas supporting this
mechanism. These results suggest that the brain continuously attempts to predict and provide structure from
events in the environment, even when they are not behaviorally relevant and have no evident relation between
them. Linking the frameworks of statistical learning and predictive coding, our work illuminates an implicit
process that might be crucial for the swift detection of patterns and unexpected events in the environment.

Results
Participants (n=22;Materials and Methods) listened to a stream of tones where a standard tone alternated
with deviant tones (P=0.5; inter-stimulus interval 500ms). Deviant tones varied relative to the standard in
terms of either frequency (P=0.1), intensity (P=0.1), perceived sound-source location (P=0.1), a shortened
duration (P=0.1), or a gap in the middle of the tone (P=0.1; Fig. 1). Within a set of ten tones (five standard
tones and five deviant tones), each of the five deviant types was presented once in random order. For
deviations in location, intensity, and frequency, two stimuli versions were used (P=0.5), namely location
left/right, intensity low/high, and frequency low/high. This resulted in eight potential deviants. During
recording, participants were asked not to pay attention to the sounds while reading a book or magazine.
Across the 22 patients, we recorded 1078 channels (mean: 48, range: 12-104). Data were manually
cleaned. Noisy or epileptic channels or segments were excluded from the analysis. HFA was reliably
extracted from a total of 785 channels within cortical or subcortical structures.

Regions of Interest
Statements about significance were based on a set of regions of interest (ROIs) that typically engage in
auditory processing and statistical learning tasks (4, 31, 35, 36, 45), comprising channels in temporal,
frontal, hippocampal, insular, pre-central sulci, and ACC cortices, respectively (Fig. 2a, Tab. S1). Av-
erage values of the present measure of interest were then determined in the respective analysis for each
ROI.

Encoded Information
We estimated the information content of each deviant tone HFA response in relation to a channel-specific
HFA response to standard tones. Hence, the information content in standard responses was used as a refer-
ence point to measure the information content in deviant responses. This procedure yielded a normalized
measure of encoded information for each deviant response (Fig. 1, bottom; Materials and Methods).
Lower values of encoded information suggest that the information content in deviant responses is similar
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Figure 1: Schematic of the analysis: A multi-feature auditory oddball experiment was presented to participants while recording their event-
related electrical brain activity through intracranial electrodes. The emerging iEEG signal was then analyzed resulting in HFA responses to
standard and deviant tones. Based on the standard responses, a channel-specific mean standard response was computed. Deviant and mean
standard responses were then compressed in order to estimate their differences in normalized encoded information. This measure ranged from
0 to 1 with 1 indicating complete similarity between the mean standard and a respective deviant tone. In the next step, a regression analysis
between this encoded information measure and the TPs, which were based on the stimulus itself, was performed by means of linear models.
After accounting for multiple comparisons, respective channel-specific slope values between encoded information and TP were projected onto
the normalized anatomical space to enable comparison across subjects.

to the information content in the standard responses, whereas higher values indicate that a larger amount
of information is encoded in the responses to deviants compared to standards.
The spatial distribution of the mean encoded information to deviants per channel is shown in Fig. 2a.

The mean encoded information was significantly greater than zero for each ROI (Fig. 2b, one-tailed
Wilcoxon signed-rank test, FDR corrected for multiple comparisons). This indicates that, on average,
the HFA signals in all the ROIs encoded more information in the deviant than in the standard responses.
To further evaluate the level of involvement across ROIs, we computed their median encoded informa-
tion and performed pairwise Mann–Whitney–Wilcoxon tests (Fig. 2b). Notably, the superior temporal
plane and the posterior insula had a significantly greater median value than all other ROIs, suggesting a
relatively stronger responsiveness to acoustic deviance.

Transitional Probability Sensitivity
To determine which brain areas are more sensitive to the temporal relations between stimuli, we evaluated
the relationship between encoded information and the TPs of deviant tones through linear models (Fig. 3a,
each green dot represents a trial). TPs represent the inter-sound relationships between deviant tones
and are determined for each stimulus presentation (that is, they are not uniformly distributed across the
stimuli), where higher TP values indicate a higher transition rate (Fig. 1, Material and Methods). The
signs of the resulting slope values were inverted and defined as the TP sensitivity. TP sensitivity values
acted as an indicator of how sensitive the brain tissue around the channel was towards TPs in the stream
of tones. Zero value TP sensitivity of a channel indicates that the encoded information in the deviant
responses is not affected by the TPs of the events, whereas higher values imply a higher impact.
In the analysis, 453 out of 785 channels across all subjects showed a significant slope (permutation-

based test, FDR corrected for multiple comparisons; Fig. S1). Consequently, these channels tended to
increase the amount of encoded information in the HFA response when the likelihood of an event oc-
currence (i.e., the TP) decreased. The spatial distribution for all TP sensitivity values is illustrated in
Fig. 3c. Subsequently, we investigated possible variations in TP sensitivity across ROIs (Fig. 3d). All
ROIs’ means were significantly greater than zero (one-tailed Wilcoxon signed-rank test; FDR corrected),
indicating that, on average, unexpected events (low TP) evoked a higher degree of encoded information.
Mann–Whitney–Wilcoxon tests were performed across ROIs to study relative differences in TP sensitiv-
ity. Along with the superior temporal plane, channels in the hippocampus showed the greatest median
TP sensitivity values.
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Figure 2: Illustration of the encoded information analysis results. a: Top: ROIs on the inflated brain model (Tab. S1 for full region labels).
Bottom: lateral and medial view of the mean encoded information distribution across 22 subjects projected onto the inflated brain model. The
image on the bottom right shows the transverse plane of the amygdala (gray) and hippocampus (purple), where ”A” stands for the anterior
direction. Each sphere represents one channel. b: Box-plots of the ROIs’ encoded information. In the axis label, the number of channels (first)
and subjects (second) are given for each ROI. The nested brackets indicate a significant difference between median values.

Relation between Mean Encoded Information and Transitional Probability
Sensitivity
We further asked whether brain areas that are more sensitive to deviant stimuli would also be more sensi-
tive to TPs in the stream of tones. Therefore, we examined the relation between slopes (indexing TP sen-
sitivity values) and mean encoded information across all channels. We observed a significant positive
correlation between the two regressors (Fig. 3b; linear mixed-effects model with random effects for sub-
jects: 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝑏0 + 𝜖, with the mean encoded information 𝑦, the TP sensitivity 𝑥, the random
effect for subjects 𝑏0 ∼ 𝑁(0, 𝜎2

𝑏 ) and the observation error 𝜖 ∼ 𝑁(0, 𝜎2); 𝛽0 = 0.19, 95% CI [0.19, 0.20],
𝛽1 = 0.28, 95% CI [0.22 0.33], 𝑝𝛽1 = 0, 𝜎𝑏 = 1.39e − 2, 95% CI [9.46e−3, 2.04e−2], 𝜖 = 4.09e − 2,
95% CI [3.89e−2, 4.29e−2]), reflecting that channels encoding more information are also more sensitive
to TPs.

TP sensitivity Along the Hierarchical Pathway
We utilized inter-areal variations of anatomical hierarchy to investigate changes in TP sensitivity across
the brain regions. Anatomical hierarchy can be defined as a global ordering of cortical areas correspond-
ing to characteristic laminar patterns of inter-areal feedforward and feedback projections (8, 50, 51).
Proxied cortical hierarchy levels that quantify these projections across the cortex were obtained from
open-access structural magnetic resonance imaging (MRI) datasets from the S1200 subject release (49;
Materials and Methods). Methodological constraints in (49) precluded the mapping of the hippocampus
in the present analysis. Areas lower in the hierarchy (with predominantly feedforward projections) are
primarily associated with primary sensory functions, whereas areas higher in the hierarchy are associated
with higher cognitive functions (8, 50, 51). For each contact point, hierarchy level channel-estimates were
determined by taking the average value of all proximal points located within the contact point vicinity.
The TP sensitivity significantly correlated with proxied cortical hierarchy levels in the negative direction
(Fig. 3f; linear mixed-effects model with random effects for subjects: 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝑏0 + 𝜖, with proxied
hierarchy level 𝑦, the TP sensitivity 𝑥, the random effect for subjects 𝑏0 ∼ 𝑁(0, 𝜎2

𝑏 ) and the observation
error 𝜖 ∼ 𝑁(0, 𝜎2); 𝛽0 = 1.25, 95% CI [1.22, 1.28], 𝛽1 = −0.23, 95% CI [-0.37 -0.11], 𝑝𝛽1 = 1.11e − 3,
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Figure 3: Spatial profile of TP in relation to encoded information. a: Spatial mapping of the slope for two example channels resulting from the
robust linear regression between TPs and encoded information (each green dot represents a trial). The slope is an indicator of how sensitive
a region underneath a contact point is towards the variation of TP. The second channel shows a negative slope of -0.31, hence the more often
a transition occurs, the more the information encoded in the deviant response decreases. b: A linear mixed effect model exhibits a positive
relationship between the mean encoded information (Fig. 2a) and TP sensitivity. d: TP sensitivity across ROIs. All ROIs show a significant
sensitivity to TP. The number of channels and subjects within ROIs are given in parentheses in the axis label. Brackets indicate statistical
differences across areas. c: Inflated brain model with lateral and medial views of the right and left hemispheres and a superior view of the
amygdala and hippocampus. Each sphere represents a channel projected onto the surface with the colors indicating its TP sensitivity. The size
of the spheres indicates the p-value corresponding to the performed regression. The p-values are divided such that each interval contains 1/4 of
the p-value set. e: Proxied hierarchy levels obtained from the averaged human T1w/T2w mapping of 1200 subjects (49). f: Proxied hierarchy
levels correlated with TP sensitivity through a linear mixed effect model show greater TP sensitivity in areas lower in the hierarchy.
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𝜎𝑏 = 5.14e− 2, 95% CI [3.58e−2, 7.37e−2], 𝜖 = 0.10, 95% CI [0.10, 0.11]). Accordingly, channels with
contact points located in areas lower in the hierarchy were more sensitive towards the TP courses.

Discussion
We studied how humans passively listening to a multi-feature sequence of random sounds implicitly
encode conditional relations between the sounds. Crucially, our results show that the auditory system
embedded in a distributed hierarchical network, continuously monitors the environment for potential
saliency, maintaining and updating a neural representation of temporal relationships between events.

The Brain Encodes TPs in Random Stimulus Sequences
Participants demonstrated remarkable sensitivity to TPs. From a statistical learning perspective, these
findings suggest an implicit learning process in which TPs are internally inferred. On average, more
frequent deviant transitions exhibited less encoded information in the HFA responses. Conversely, rarer
transitions showed an increase in the encoded information (Fig. 3a & 3b). These results indicate a steady
encoding of TP courses within a randomly ordered sequence of varied auditory stimuli, and are consistent
with previous studies using more structured and stationary stimuli (7, 10–20, 28).
Following the notion of predictive coding, the encoded information in each deviant response can be

interpreted as a bottom-up prediction error signal, that is, the amount of information in each novel event
that is not explained away by top-down prediction signals (9, 41, 52). In this sense, low TP events, that is,
less expected events, elicited a higher amount of encoded information, and hence larger prediction errors
derived from less accurate predictions. Accordingly, this information is used in higher cortical areas to
update internal models for future predictions. On the other hand, high TP events, that is, more expected
events, elicited a lower amount of encoded information. This generates smaller prediction error signals,
and smaller updates of the internal models. Internal representations of TPs between events are funda-
mental to build useful predictions of upcoming events, rather than simpler frequentist representations
(11).
Several studies have shown that the brain implicitly learns patterns within stimulus trains (where pat-

terns were a sub-set of manipulated high TPs among all possible event transitions; (7, 28, 45, 47)). Here,
we show that the brain is also sensitive to TPs in randomly presented stimuli. The sensitivity to TP within
a random sequence indicates that the brain continuously encodes TPs between events in the environment.
The likelihood of occurrence of an event given previous knowledge is quantified in the amount of infor-
mation encoded in the HFA responses of multiple cortical and subcortical areas. This mechanism forms
the basis of a statistical learning system wherein the brain integrates each single event into an internal
representation of the environment based on the statistical relationship between events. Since a-priori, the
presence of patterns within stimuli are unknown, the brain might automatically encode their TP in order
to detect potential structure and violations of such. Artificial grammar learning studies, where subjects
learn patterns of TP to which they were never exposed before, confirm the relevance of this TP encoding
in language learning (15, 31, 32, 36, 53).
The encoding of acoustic deviant transitions is anatomically distributed and not exclusively concen-

trated in auditory cortices (Fig. 3c), which is in accord with previous findings showing that multiple brain
regions are involved in statistical learning (31, 35). Our results suggest that the automatic process of iden-
tifying temporal relationships is subserved by a network consisting of temporal cortices in concert with
the hippocampal, inferior frontal, and insular cortices.
Overall, we observed that the higher the sensitivity to TP, the more the encoded information indexed

distinct responses between deviants and the channel-specific mean standard (Fig. 3b). Notably, channels
in the superior temporal plane showed both the greatest amount of encoded information and the greatest
TP sensitivity (Fig. 3d). This suggests a key role of the supratemporal plane in both the deviance detection
and the implicit learning of transitions between salient auditory events. This finding is consistent with
previous reports about this region being active in conditional statistical learning (16, 36, 46, 47, 54).
This suggests that classic perceptual areas are not limited to operating on the perceptual processing of
individual stimuli, but also contribute to the learning of temporal patterns in streams of stimuli (31).
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Our results indicate that the hippocampus also contributes to encoding of temporal transitions between
salient events. However, in contrast to supratemporal responses, hippocampal responses revealed greater
sensitivity to TPs than to deviants per se (Fig. 2b). This implies that hippocampal activity may reflect
a more generic context sensitivity to the events’ probabilistic structures, that is, learning about event
occurrences within a given structure itself instead of encoding the probability of their actual occurrence
(55). Our results provide new evidence for a role of the hippocampus during implicit learning, consistent
with recent suggestions that this area is a rapid supramodal learner of arbitrary or higher-order associations
in the sensory environment (6, 15, 31, 35, 36, 43–45, 47, 56, 57).
We also observed a sensitivity to transitions between salient events in the inferior frontal cortex. Ev-

idence of inferior frontal involvement in statistics-driven learning processes is sparse (31, 36, 45) and
mainly relies on explicit learning studies using fMRI (1, 46). However, it is commonly described in
the deviance detection literature, where a role of a higher hierarchical node is attributed to this region
(58, 59).
An unexpected observation was the significant TP sensitivity in the occipital lobe, indicating a con-

tribution to TP encoding of the auditory stimuli. It has been shown that during auditory oddball and
statistical learning paradigms, attentional processing can activate visual processing regions, which are
typically engaged in the perception of visual objects (15, 60, 61). When queried, all of our participants
reported that they could focus on the reading material and did not pay attention to the tones. Hence, this
leaves open whether this auditory occipital activation might also be observable during passive listening
tasks and whether this is specific to the sensitivity of our HFA recording. Current evidence is sparse, but
two previous on deviance detection during passive listening showed similar occipital effects using fMRI
and scalp EEG (61, 62).

Hierarchical Organization of TP encoding
Areas lower in the hierarchy are more sensitive to deviant transitions, and conversely, higher hierarchy
locations exhibit lower TP sensitivity (Fig. 3f). Interestingly, our results indicate that the sensitivity to TP
was not strictly confined to specific areas, but distributed across multiple brain regions in a hierarchically
organized manner.
When taking into consideration the positive correlation between encoded information and TP sensi-

tivity (Fig. 3b), it becomes evident that the lower hierarchical levels, which show a preferential repre-
sentation of the stimuli, are also more sensitive to changes in TP. Together, these results are in line with
studies on the hierarchical visual pathway, which indicate that expectation suppression scaled positively
with image preference (63).
In a recent iEEG study presenting 12 syllables within an auditory stream, Henin et al. (15) observed

that TPs are encoded in lower-order areas of the superior temporal plane and not in the hippocampus,
which uniquely represented the identity (i.e., the specific higher-order chunk such as a word) of their
sequences. Therefore, the hippocampus did not appear to engage in forming the neural representation
of TPs, but rather performed operations that build upon them. We found the hippocampus to be a main
contributor among the cortical areas in detecting TPs. However, our study used passive listening with
pure tones, while Henin et al. used active listening with syllables. Even though the hippocampus was
not included in the hierarchical organization analysis, the fact that the sensitivity to TP was the second
highest predicts a low hierarchical level in relationship to the other brain areas. This result is contradic-
tory with studies that position the hippocampus at the apex of the hierarchical organization, integrating
complex information (64). However, the result fits well with previous studies indicating its fundamental
role in statistical learning, and encoding stimuli uncertainty (6, 15, 31, 35, 36, 43–45, 47, 55–57, 65).
This suggests that, depending on attentional characteristics and task demands, the hippocampus might
operate differently. Due to its domain-general learning mechanisms, possible hippocampal involvement
could comprise indirect modulation of lower-level sensory areas or direct computations of hippocampal
representations (31, 35).
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A Systems Perspective on Deviance Detection
Our results suggest a main involvement of the superior temporal plane and posterior insula in a deviance
detection network (Fig. 2b). Previous studies on auditory deviance detection using iEEG, MEG/EEG
source localization, and fMRI have shown similar responses to deviants over the supratemporal plane
(4, 37, 58, 59, 62, 66–71), but detailed information for the insular cortex is sparse. In line with recent
reports about its contribution to auditory processing (67, 72), we found that the posterior part showed
larger differences in encoded information between deviant and standard responses than the anterior part.
We also found that the ACC, middle frontal and pre-central sulcus moderately engaged in change

detection. Although not often observed in auditory experiments, activation of these regions has been
previously reported in the context of pre-attentive oddball paradigms with frequency (or duration) de-
viants using EEG (62, 62, 69, 73) or fMRI (61, 71). In our study, the ACC appeared to be more active
in auditory change detection than TP encoding, generally consistent with previous reports (62, 73). It
is presumably more involved in cognitive control or error detection, such as recognizing global patterns
(66, 68). In our pre-attentive paradigm, we speculate that the ACC monitors the high-level structure of
individual deviant occurrences rather than the more automatized detection of TPs.

The brain implicitly parses an auditory stimulus with random features. While automatically assessing
the deviance of events, the brain simultaneously identifies patterns by encoding conditional relations
between events, supporting both statistical learning and predictive coding frameworks. This implicit
and hierarchically organized process involves, in addition to pure sensory areas, inferior frontal cortices,
hippocampus, and other cortical regions.

Methods
Stimuli
Amulti-dimensional auditory oddball paradigmwas used (58, 59, 74, 75) that included a standard tone and
five different deviant tones (Fig. 1). Standards had a duration of 75ms with 7ms up and down ramps and
consisted of three sinusoidal partials of 500, 1000, and 1500Hz. Deviants varied relative to the standard in
the perceived sound-source location (left or right), intensity (±6 dB), frequency (550, 1100, and 1650Hz
or 450, 900, and 1350Hz), gap (25ms silence in the middle), or by a shortened duration (1/3 or 25ms
shorter). Thus there were two stimuli versions for location, intensity, and frequency deviants. During
the sequence, each standard tone was followed by a deviant tone. The deviant tone type was set up such
that within a set of five consecutive deviants, each of the five types was presented once. In consecutive
sets, the same deviant type did not repeat from the end of one set to the beginning of another. For the
three deviants that had two stimuli versions, each version occurred equally often (P=0.5). Except for
deviants varying in duration, all tones had a duration of 75ms and were presented every 500ms in blocks
of 5min consisting of 300 standards and 300 deviants. At the beginning of each block, 15 standards were
played. To capture automatic, stimulus-driven processes, participants were asked not to pay attention
to the sounds while reading a book or magazine. They completed 3 to 10 blocks, providing at least
1800 trials. Tones were presented through headphones using Psychtoolbox-3 (76).

Participants
We recorded data from 22 (self-reported) normal-hearing adults with drug-resistant epilepsy who were
potential candidates for resective surgery of epileptogenic tissue (mean age 31 years, range 19 to 50 years,
6 female). Patients underwent invasive intracranial electrocorticography (ECoG) or stereoelectroen-
cephalography (SEEG) recordings as part of their pre-surgical evaluation. Intracranial depth electrodes
were temporarily implanted to localize the epileptogenic zone and eloquent cortex. The number and
placement of electrodes were guided exclusively by clinical requirements. Data were collected at El
Cruce Hospital (n=15) and Oslo University Hospital (n=7).
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Data Acquisition
Pre-implantation structural MRI and post-implantation CT scans were acquired for each participant.
ECoG or SEEG data were recorded using an Elite (Blackrock NeuroMed LLC, USA), a NicoletOne
(Nicolet, Natus Neurology Inc., USA), or an ATLAS (Neuralynx, USA) system with sampling frequen-
cies of 2000, 512, and 16 000Hz, respectively.

Electrode Localization
Post-implantation CT images were co-registered to pre-implantation MRI images using SPM12 (77).
MRI images were processed using the Free-Surfer standard pipeline (78), and individual cortical par-
cellation images were obtained through the Destrieux atlas (79). Images were spatially normalized to
the MNI-152 Template using SPM12 (80), and electrode coordinates were obtained with the iElectrodes
Toolbox (81). Anatomical labels were automatically assigned to each contact based on the Destrieux
atlas using the aforementioned toolboxes and confirmed by a neurologist/neurosurgeon.

Signal-preprocessing
Monopolar intracranial EEG recordings were visually inspected and channels or epochs showing epilep-
tiform activity or other abnormal signals were removed. Signals from electrodes located in lesional tissue
or tissue that was later resected were also excluded. Bipolar channels were computed as the difference
between signals recorded from pairs of neighboring electrodes in the same electrode array. Subsequently,
we refer to the bipolar channels as ”channels”. Data were low-pass filtered at 180Hz, and line noise was
removed using bandstop filters at 50, 100, and 150Hz. Data were then segmented into 2000ms epochs
(750ms before and 1250ms after tone onset) and demeaned. We visually inspected and rejected epochs
after re-referencing. To eliminate any residual artifact, we rejected trials with an amplitude larger than
5 SD from the mean for more than 25 consecutive Hz, or with a power spectral density above 5 SD from
the mean for more than 6 consecutive Hz. An average of 35% of the trials were rejected, resulting in an
average of 1592 trials analyzed per patient (range 728 to 3723). Data were resampled to 1000Hz. Pre-
processing and statistical analysis were performed in Matlab using the Fieldtrip Toolbox (82) and custom
code. To obtain the HFA, preprocessed data were bandpass filtered into eight bands of 10Hz bandwidth
ranging from 75 to 145Hz. The Hilbert transform was then applied to each filtered signal to obtain the
complex-valued analytic time series. For more information, see (67, Chap. 2).

Information Distance
The notion of applying algorithmic complexity to EEG signals has been successfully employed to dis-
criminate between states of consciousness (83–86). One such algorithmic complexity is the Kolmogorov
Complexity (K-complexity), which can be described as the ultimate compressed version or minimum
description length of an object, delivering its absolute information content (87). If the minimum descrip-
tion length is short (long), the object can be described as ”simple” (”complex”). The theoretically ideal
K-complexity value of an object cannot be computed and is often heuristically estimated, obtaining an
upper-bound approximation. One possible estimate constitutes conventional lossless data compression
programs such as for example gzip and bzip2 (87, 88). To compare different complexity estimates, it is
crucial to apply the same procedure for each object.
Based on the K-complexity, various metrics have been derived. One instance is the Normalized Infor-

mation Distance (NID) or its estimation counterpart, the Normalized Compression Distance (NCD). The
NCD allows the comparison of different pairs of objects with each other and suggests similarity based on
their dominating features (or a mixture of sub-features) (89, 90). For a pair of strings (𝑥, 𝑦), the NCD(𝑥, 𝑦)
can be defined as

NCD(𝑥, 𝑦) = 𝐶(𝑥𝑦) − min(𝐶(𝑥), 𝐶(𝑦))
max(𝐶(𝑥), 𝐶(𝑦)) ,

with 𝐶(𝑥𝑦) denoting the compressed size of the concatenation of 𝑥 and 𝑦, 𝐶(𝑥) standing for the com-
pressed size of 𝑥, and 𝐶(𝑦) for the compressed size of 𝑦 (87–90). Further, the NCD is non-negative, that
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is, it is 0 ≤ NCD(𝑥, 𝑦) ≤ 1 + 𝜖, where the 𝜖 accounts for the imperfection of the employed compression
technique. Small NCD values suggest similar objects, and high values suggest rather different objects.
We used the NCD metric to compare the eight deviant types’ responses to the mean standard response

for each channel (Fig. 1). For the compressor program, we used gzip or bzip2, both showing similar
results. Before the compression of an HFA response, the response itself was discretized into a grid of 128
bins. The indices vector of the bins containing the respective signal values was then compressed with a
compression routine based on Python’s standard library.

Transitional Probability
We estimated conditional statistics describing the inter-sound relationship through transitional probabil-
ities between deviant tones. A TP matrix for each time step was estimated by cumulating all possible
adjacent deviant transitions, yielding a stochastic matrix of size ℝ8×8 (13, 28, 29).

Anatomical Hierarchy
Human T1w/T2w maps were obtained from the Human Connectome Project (HCP) (49). The maps were
then converted from the surface-based CIFTI file format to theMNI-152 inflated cortical surface template
with Workbench Command (91). The structural neuroimaging maps are suggested to be a measure sensi-
tive to regional variation in cortical gray-matter myelin content (50). One function of myelin might be to
act as an inhibitor of intra-cortical circuit plasticity. Early sensory areas may require less plasticity, hence
more myelination, and hierarchically higher association areas, in turn, have less myelination, presumably
enabling greater plasticity (92). Accordingly, T1w/T2w maps may serve as a non-invasive proxy of
anatomical hierarchy across the human cortex through an inverse relationship. The anatomical hierarchy
can be defined as a global ordering of cortical areas corresponding to characteristic laminar patterns of
inter-areal projections (8, 50, 51). In order to directly work with the hierarchy ordering, T1w/T2w maps
were inverted and normalized to the value range of our data set.

Statistical Analysis
For the statistical analysis, the first 30 trials of each recording block were disregarded. To estimate
the TP sensitivity, the distinct tone types were grouped together into one variable. Subsequently, robust
linear regression was performed inMatlab (Fig. 1&3a). TP values greater than 0.7 were excluded. For the
regression itself, an alpha value of 0.05 was considered significant. To correct for multiple comparisons,
false discovery rate (FDR) adjustment was applied with an FDR of 0.05. Further, because our linear
regression model examined the relationship between information content and TPs of all adjacent deviant
transitions we performed surrogate data testing with shuffled surrogates for uncorrelated noise (93).
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