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Abstract

Spinal cord cross-sectional area (CSA) is a relevant biomarker to assess spinal cord atrophy in

various neurodegenerative diseases. However, the considerable inter-subject variability among

healthy participants currently limits its usage. Previous studies explored factors contributing to

the variability, yet the normalization models were based on a relatively limited number of

participants (typically < 300 participants), required manual intervention, and were not

implemented in an open-access comprehensive analysis pipeline. Another limitation is related to

the imprecise prediction of the spinal levels when using vertebral levels as a reference; a

question never addressed before in the search for a normalization method. In this study we

implemented a method to measure CSA automatically from a spatial reference based on the

central nervous system (the pontomedullary junction, PMJ), we investigated various factors to

explain variability, and we developed normalization strategies on a large cohort (N=804).

Cervical spinal cord CSA was computed on T1w MRI scans for 804 participants from the UK

Biobank database. In addition to computing cross-sectional at the C2-C3 vertebral disc, it was

also measured at 64 mm caudal from the PMJ. The effect of various biological, demographic

and anatomical factors was explored by computing Pearson’s correlation coefficients. A

stepwise linear regression found significant predictors; the coefficients of the best fit model were

used to normalize CSA.

The correlation between CSA measured at C2-C3 and using the PMJ was y = 0.98x + 1.78 (R2

= 0.97). The best normalization model included thalamus volume, brain volume, sex and

interaction between brain volume and sex. With this model, the coefficient of variation went

down from 10.09% (without normalization) to 8.59%, a reduction of 14.85%.

In this study we identified factors explaining inter-subject variability of spinal cord CSA over a

large cohort of participants, and developed a normalization model to reduce the variability. We

implemented an approach, based on the PMJ, to measure CSA to overcome limitations

associated with the vertebral reference. This approach warrants further validation, especially in

longitudinal cohorts. The PMJ-based method and normalization models are readily available in

the Spinal Cord Toolbox.
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Abbreviations

BMI - Body Mass Index

COV - Coefficient of Variation

CSA - Cross-Sectional Area

CSF - Cerebrospinal Fluid

GM - Gray Matter

MS - Multiple Sclerosis

PMJ - Pontomedullary Junction

SC - Spinal Cord

SCT - Spinal Cord Toolbox

WM - White Matter
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 1.  Introduction

Various neurodegenerative diseases such as multiple sclerosis (MS) are associated with spinal

cord (SC) atrophy, which is caused by demyelination, neuronal and/or axonal loss (Bonacchi et

al., 2020; Lukas et al., 2013). New techniques have now become available through recent

advancement in magnetic resonance imaging (MRI) and are relevant to assess SC atrophy

(Moccia et al., 2019).

SC atrophy at the upper cervical levels can be defined within its cross-sectional area (CSA)

(Lukas et al., 2013). The use of this metric is yet still limited due to considerable inter-subject

variability. Finding factors that contribute to the observed variability is crucial to improve

sensitivity and specificity of SC CSA and to develop normalization strategies.

Various studies have explored the correlation between SC CSA and demographic, anatomical

and biological factors. Sex was a relevant factor to explain SC CSA variability, with females

having significantly smaller SC CSA than males (Engl et al., 2013; Nico Papinutto et al., 2020;

Solstrand Dahlberg et al., 2020). While the majority of studies have reported this significant

effect, Fradet et al. (2014) found it to be an irrelevant factor and Papinutto et al. (2015) did

observe the trend, but no statistical difference was found. However, the absence of a statistical

difference could be explained by the relatively small sample size (30 participants).

Regarding the effect of age, a decrease of SC CSA was previously reported (Engl et al., 2013;

Ishikawa et al., 2003; Kato et al., 2012; Nico Papinutto et al., 2015, 2020). However, the effect

was not significant (Engl et al., 2013; Nico Papinutto et al., 2015, 2020). This trend is

accentuated for older populations, but the effect of age is still small (Engl et al., 2013). An

increase of SC CSA values followed by a decrease at 45 years old was also reported, but the

effect was not significant (Nico Papinutto et al., 2020). The effect of age on SC CSA needs

further investigation, small sample size and narrow range of age are limiting factors to assess

the effect of age on  SC CSA.

As for height and body weight, no significant effect on SC CSA was found according to recent

studies (Nico Papinutto et al., 2015, 2020; Solstrand Dahlberg et al., 2020). The effect of height

may be driven by sex differences (Nico Papinutto et al., 2020). Body mass index (BMI) was also

tested as a normalization strategy for SC volume, but results were inconclusive as inter-subject

variability was increased (Sanfilipo et al., 2004). In another study, no correlation was found with

BMI by Solstrand Dahlberg et al.(2020).
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Strong correlation between brain metrics and SC CSA were reported in prior studies (Engl et al.,

2013; Nico Papinutto et al., 2015, 2020; Solstrand Dahlberg et al., 2020). White matter (WM)

volume significantly explains upper cervical area variability as opposed to cerebrospinal fluid

(CSF) volume, which was not significant according to Engl et al. (2013). In addition, brain

volume correlated strongly with SC CSA as for intracranial volume (Nico Papinutto et al., 2015;

Solstrand Dahlberg et al., 2020). Papinutto et al. (2020) also found this effect with V-scale

(scaling factor for head size normalization) and considered it as the most promising factor for

normalization strategies. Intracranial volume was also considered for normalization of SC

volume but had limited utility since it generally diminished the ability to detect

clinical-radiological correlations (Healy et al., 2012; Oh et al., 2014). Since SC CSA is a useful

metric to assess SC atrophy and brain volume changes have also been associated with those

pathologies, intracranial volume would be a better factor to consider for normalization strategies

(Kesenheimer et al., 2021). A strong correlation was also found between thalamus volume and

SC CSA by Solstrand Dahlberg et al. (2020). Axial canal area was also a significant factor and

promising for normalization strategies, but has not been explored yet by many (Kesenheimer et

al., 2021; Nico Papinutto et al., 2020). A notable difficulty for computing the axial canal area is

the ability to properly segment it.

Only a few of the previous cited works have explored normalization strategies for SC CSA. SC

length was a relevant factor for SC volume normalization compared to intracranial volume

(Healy et al., 2012; Oh et al., 2014). Mean SC volume in healthy participants was also used to

normalize SC volume of patients with MS (Ruggieri et al., 2021). Regarding SC CSA, age,

intracranial volume and sagittal vertebral area were the most promising independent variables

found by Papinutto et al. (2015), but the method was based on 30 participants only. Another

model later including V-scale, axial canal product (product of maximum axial anterior-posterior

and lateral diameters of the cervical SC) based on 129 participants significantly reduced SC

CSA variability (Nico Papinutto et al., 2020). Brain WM volume, sex and spinal canal area

formed a relevant normalization strategie, total intracranial volume could also replace brain WM

volume for subjet with diseases that affect WM. The main limitation here was the relatively small

number of participants (N=61) (Kesenheimer et al., 2021). As we can observe, brain/skull

metrics and sex are important factors to consider in a possible normalization method. Also, the

mentioned normalization methods are only reported in the related papers; they are not easily

reusable to integrate directly within analysis pipelines.
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In addition to the biological-derived normalization strategy, previous studies have reported a

variability in CSA measures associated with the MRI acquisition parameters, and segmentation

method (Cohen-Adad et al., 2021; Kearney et al., 2014; Nico Papinutto & Henry, 2019).

The majority of the studies regarding SC CSA use vertebral levels as an anatomical reference.

However, the prediction of the spinal segments is imprecise since it is based on vertebral levels,

adding variability (Cadotte et al., 2015). Inferring neuroanatomic positions with vertebral bodies

doesn’t consider neck flexion and extension. Segmental nerve rootlets would provide a proper

identification of the spinal segments, it is however difficult to identify and requires high resolution

T2w scans and an expert rater to identify them. A few studies have attempted to bypass the

vertebral-based limitation using the distance from the pontomedullary junction (PMJ) (Cadotte et

al., 2015; Stroman et al., 2008).

While SC CSA variability across participants was shown to be associated with multiple

demographic, anatomical and biological factors (Kesenheimer et al., 2021; Nico Papinutto et al.,

2015, 2020; Solstrand Dahlberg et al., 2020), no previous studies have addressed the variability

associated with limitation of vertebral based SC CSA measurement in the search for a

normalization method.

In this study we quantify the contribution of various factors on the inter-subject variability in

cervical SC CSA measurements. We notably introduce a method to replace the traditional

vertebral-based referencial system by an anatomical reference from the central nervous system.

More precisely, we (1) establish an automatic MRI data processing pipeline to compute SC

CSA, (2) process MRI data from a subset (N=804) of the UK Biobank database, (3) introduce a

method to automatically detect the PMJ and use it as a referential system to measure SC CSA,

(4) develop a statistical model and normalization method for SC CSA measurements, (5) make

this model readily available to use via the open-source Spinal Cord Toolbox (SCT) software (De

Leener et al., 2017).
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 2.  Material and methods

 2.1.  Demography

1,000 participants (48 to 80 years old, 56.3% female) were selected from the UK Biobank

database. Not knowing the effect size we were after, we could not base this number on any

reliable power analysis. Hence, the number of participants was selected as a compromise

between the statistical power we wanted to achieve in comparison with the previously-published

studies addressing similar scientific questions (typically < 300 participants) and the time

required to manually validate each step of the processing pipeline (visual inspection, manual

correction of SC segmentation and/or PMJ labeling and/or vertebral labeling).

Participants with a history of neurological diseases were excluded from the study. Fields from

UK Biobank dataset included in the category Nervous system disorders1 were used to identify

these participants. This brought the number of participants from 1,000 to 972.

 2.2.  Image acquisition

Data used for this study were unprocessed NIfTI T1w structural scans from the UK Biobank

Brain Imaging dataset (Miller et al., 2016). Images were acquired in four different assessment

centers on a Siemens Skyra 3T running VD13A SP4 with a standard Siemens 32-channel RF

receive head coil. T1w structural scan has a field of view (FOV) of 208x256x256 with an

isometric resolution of 1 mm3. The superior-inferior field of view of 256 mm typically covers

down to C3 vertebral level, which is relevant for the present study as SC CSA was measured

around the C2-C3 vertebral level. The UK Biobank data includes preprocessed data (corrected

for gradient non-linearity and masked), however we could not use these data because the SC

was masked out. We therefore used the unprocessed T1w images as input of the processing

pipeline described in the next section.

1 https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=2406
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 2.3.  Data processing

Data processing pipeline is based on spine-generic v2.62 (Cohen-Adad et al., 2021) pipeline

and SCT v5.43 (De Leener et al., 2017). The processing pipeline is available on GitHub4,5 and is

fully documented6.

Figure 1 presents an overview of the processing pipeline. First, all images were reoriented to

right-inferior-posterior orientation. Since SC CSA is computed using T1w brain images and SC

is in the periphery of the images’ FOV, gradient non-linearity distortions have a considerable

effect on CSA measures, depending on participant positioning (N. Papinutto et al., 2018).

Therefore, correction for gradient non-linearities was applied using gradunwrap from the HCP

project (Glasser et al., 2013) and the coefficient file for the Siemens Skyra 3T gradient system.

Then, the SC was segmented automatically using deep learning models with SCT’s

sct_deepseg_sc (Gros et al., 2019). SC CSA was computed and averaged using SCT’s

sct_process_segmentation with two different methods further explained below.

6 https://github.com/sct-pipeline/ukbiobank-spinalcord-csa/blob/master/README.md
5 https://github.com/sct-pipeline/ukbiobank-spinalcord-csa/blob/master/process_data.sh
4 https://github.com/sct-pipeline/ukbiobank-spinalcord-csa/blob/master/preprocess_data.sh
3 https://github.com/neuropoly/spinalcordtoolbox/releases/tag/5.4
2 https://github.com/spine-generic/spine-generic/releases/tag/v2.6
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Figure 1. Overview of the processing pipeline. For each participant, correction for gradient

non-linearities was applied on the T1w image and SC was segmented automatically. Vertebral

levels were identified and SC CSA was computed at C2-C3 levels. PMJ was labeled followed by

extracting the centerline to compute SC CSA at 64 mm from PMJ averaged on a 20 mm extent.

 2.3.1.  CSA based on distance from neurological reference: pontomedullary

junction

To overcome the limitation of SC segment prediction with vertebral bodies, SC CSA was

measured from a distance of a neurological reference; we chose the PMJ (Cadotte et al., 2015;

Stroman et al., 2008).

First, the PMJ was identified using SCT’S sct_detect_pmj. Briefly, a 2D support vector

machine trained with histogram of oriented gradient features (HOG+SVM 2D classifier) was run

on the mid-sagittal slice to detect the PMJ (Gros et al., 2017). Since the mid-sagittal slice does

not necessarily correspond to the anatomical medial plane, with a sliding window centered on

the first estimated PMJ coordinate, cross-correlation was computed within the window and its

mirror image in the right-left orientation. We assumed that the maximum cross-correlation

corresponds to the right-left symmetry slice. The HOG+SVM 2D classifier was run again on the

updated medial plane.

Since the SC curvature associated with cervical lordosis varies across individuals, the distance

from the PMJ was computed along the SC centerline following the arc-length. SC segmentation

normally doesn’t go as high as the PMJ. The PMJ coordinate was then added to the SC
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segmentation prior to extracting the SC centerline. Linear interpolation and smoothing were

used to extract the SC centerline. SC CSA was computed at 64 mm from PMJ along the

centerline slice-wise, corrected for angulation and then averaged on a 20 mm extent as

presented in Figure 2. The 64 mm value corresponds to the mean distance between C2-C3

disc and PMJ.

Figure 2. a) SC centerline from PMJ. SC centerline was extracted from SC segmentation and

PMJ label using linear interpolation and smoothing. The distance from PMJ is measured along

the centerline following the arc-length. b) Extent mask to average SC CSA. At 64 mm from PMJ,

CSA was computed slice-wise, corrected for angulation and averaged within a 20 mm extent.

The extent mask is centered at 64 mm from PMJ.

 2.3.2.  CSA based on C2-C3 vertebral levels

The second and more popular method to compute the SC CSA was to use C2-C3 vertebral

levels as an anatomical reference for spinal segments. Vertebral levels were identified using

sct_label_vertebrae (Ullmann et al., 2014) and then averaged slice-wise, corrected for

angulation between the SC and the slice and then averaged at C2-C3 vertebral levels.

10

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2021. ; https://doi.org/10.1101/2021.09.30.462636doi: bioRxiv preprint 

https://paperpile.com/c/ctidYj/LTJI
https://doi.org/10.1101/2021.09.30.462636
http://creativecommons.org/licenses/by-nd/4.0/


 2.4.  Quality control

All SC segmentations, vertebral and PMJ labels were inspected and validated following a

procedure7 inspired by the spine-generic project8 (Cohen-Adad et al., 2021). According to the

quality of the segmentations and labels, manual corrections were applied. If data presented

poor quality (ghosting, excessive motion, bad field of view placement), it was excluded from the

statistical analysis. Examples of excluded images are listed in

https://github.com/sct-pipeline/ukbiobank-spinalcord-csa/issues/61. This brought the number of

participants from 972 to 826. After all manual corrections, we re-ran the analysis to obtain valid

SC CSA values.

Processing was distributed across 40 CPU cores (one participant per CPU core) using

sct_run_batch on  a 64-core CPU cluster.  Total processing time was 01h53m59s.

 2.5.  Statistical Analyses

 2.5.1.  Comparison of CSA measure with both methods

To study the relationship between the PMJ-based and vertebral-based CSA measures, we built

a scatterplot and derived a model. We also computed the distance between the C2-C3 disc and

PMJ. Mean, standard deviation, median and coefficient of variation (COV) for both CSA

measures were computed.

For the rest of the study, we used the PMJ-based CSA because it uses a coordinate system

intrinsic to the central nervous system and thus represents a more faithful assignment/labeling

of the spinal level under investigation.

 2.5.2.  Correlations with physical and brain measures

In this study, the effect of sex, age, physical measures and brain measures on SC CSA was

explored by calculating Pearson's correlation coefficients. Physical measures included height

and weight. Brain measures included brain WM volume, brain gray matter (GM) volume, brain

volume, brain volume normalized for head size, thalamus volume and ventricular cerebrospinal

fluid (CSF) volume. All data (images and demographic measures) were acquired at the same

time for each participant and were available in the UK Biobank database.

8 https://spine-generic.readthedocs.io/en/latest/analysis-pipeline.html#quality-control
7 https://github.com/sct-pipeline/ukbiobank-spinalcord-csa/blob/master/README.md#quality-control
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 2.5.3.  Effect of sex and age

To assess the effect of sex on SC CSA, a T-test was performed to establish if the mean CSA for

male and female has a significant difference. To assess the effect of age on SC CSA, we fitted a

linear and quadratic regression, R2 were reported.

 2.5.4.  Multilinear regression

The effect of all candidate predictors was evaluated using a multilinear analysis. Sex was

included as a dichotomous variable to the regression. Any participant missing a parameter was

excluded from this analysis. This brought the number of participants from 826 to 804. To select

the relevant predictors of the multilinear regression, a stepwise method was used. The

predictors are added to the model from the highest correlation with CSA to the lowest if they are

significant (p-value < 0.05). After each addition of predictors, the significance of the current

parameters was computed again, and parameters with a p-value > 0.05 were excluded from the

model (Toutenburg, 1969). The level of significance was the same for both entry and exit tests.

To validate the model, we proceeded to a residual analysis and computed R2.

Pearson’s correlation coefficients between candidate predictors was used to choose which

parameter to include in the stepwise model due to possible collinearity between parameters.

 2.5.5.  Normalization method

With the best multilinear regression fit, a regression-based residual method (Nico Papinutto et

al., 2020; Sanfilipo et al., 2004) was developed using the significant predictors, as described in

the following equation:

𝐶𝑆𝐴
𝑝𝑟𝑒𝑑
𝑖  = 𝐶𝑆𝐴

𝑚𝑒𝑎𝑠
𝑖  + 𝑐

1
(𝑋

1, 𝑚𝑒𝑎𝑛
− 𝑋

1, 𝑚𝑒𝑎𝑠
 𝑖 ) + 𝑐

2
(𝑋

2, 𝑚𝑒𝑎𝑛
− 𝑋

2, 𝑚𝑒𝑎𝑠
 𝑖 ) +... + 𝑐

𝑛
(𝑋

𝑛, 𝑚𝑒𝑎𝑛
− 𝑋

𝑛, 𝑚𝑒𝑎𝑠
 𝑖 )

Where is the computed SC CSA value from a given participant i, is the𝐶𝑆𝐴
𝑚𝑒𝑎𝑠
𝑖 𝐶𝑆𝐴

𝑝𝑟𝑒𝑑
𝑖

normalized CSA value, are the coefficients of the multilinear regression, are the𝑐
𝑗

𝑋
𝑗, 𝑚𝑒𝑎𝑛

mean values of all significant predictors, are values for the given participant’s𝑋
𝑗, 𝑚𝑒𝑎𝑠
𝑖

predictors, for j predictors (Nico Papinutto et al., 2020).

Since this method assumes that the regression line slopes are parallel for both groups for sex

(Sanfilipo et al., 2004), the interaction between signifcant predictors and sex was also explored
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afteward. If the interaction term was significant, it was added to the model. The interaction term

corresponds to the predictor multiplided by sex (0 or 1) as we can see in the following equation:

𝑦 =  𝑐
1

* 𝑋
1
 +  𝑐

2 
* 𝑠𝑒𝑥 +  𝑐

3 
* 𝑋

1
* 𝑠𝑒𝑥

The effect of normalization was then evaluated by comparing the COV of the normalized SC

CSA ( ) and the measured CSA ( ).𝐶𝑆𝐴
𝑝𝑟𝑒𝑑
𝑖 𝐶𝑆𝐴

𝑚𝑒𝑎𝑠
𝑖
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 3.  Results

 3.1.  SC CSA

In this study we compared SC CSA measured using the PMJ as a reference or the C2-C3 disc

as a reference (more popular). When using the PMJ as a reference (64 mm caudal to the PMJ),

the CSA ranged between 51.9 and 95.6 mm2 (mean ± SD: 66.2 mm2 ± 6.69 mm2). The COV was

10.09%. When using C2-C3 vertebral levels as a reference, the CSA ranged between 51.5 and

96.9 mm2 (mean ± SD: 66.4 mm2 ±6.61. mm2). The COV was 9.96 %.

Figure 3a) shows the relationship between CSA at 64 mm from the PMJ and CSA at C2-C3

vertebral levels. The linear regression led to a R2 of 0.97. Figure 3b) shows a scatterplot of the

distance from the PMJ and C2-C3 disc. Mean distance from the PMJ to the C2-C3 disc is 64.37

± 5.53 mm.

Figure 3 a) Scatterplot of PMJ-based CSA at 64 mm and vertebral-based CSA at C2-C3

vertebral levels. b) Scatterplot of the distance between the PMJ and the C2-C3 disc.

For the rest of the results, SC CSA will refer to PMJ-based CSA at 64 mm.
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 3.2.  Statistical Analyses

 3.2.1.  Correlations with physical and brain measures

We investigated the relationship of SC CSA with sex, age, physical and brain measures. Results

of the correlation analysis (Pearson’s) are reported in Table 1. Note that this correlation matrix is

not corrected for multiple comparisons because its purpose was only to explore existing

correlations. In subsequent analysis (see Multilinear regression), a multivariate analysis will

account for the number of regressors in the estimated p-values. Scatterplots of CSA and all

parameters are shown in supplementary material (S1-S8). Ventricular CSF volume was the only

parameter to present a non-significant correlation coefficient with SC CSA (p-value > 0.05).

Thalamus, brain, brain WM and brain GM volume present the highests correlations out of all

parameters (Pearson’s r > 0.4). Among parameters, we notice in particular a very strong

correlation between thalamus volume and brain, brain WM and brain GM volume.

Table 1. Pearson’s correlation among  SC CSA, physical and brain measures.

Sex Age Height Weight Vscale
Ventricular
CSF volume

Brain GM
volume

Brain WM
Volume

Brain
volume
norm

Brain
volume

Thalamus
volume

CSA(PMJ)

Sex 1.0 0.07* 0.71*** 0.48*** -0.59*** 0.33*** 0.39*** 0.53*** -0.2*** 0.49*** 0.36*** 0.19***

Age 1.0 -0.07* -0.05 -0.05 0.41*** -0.35*** -0.12*** -0.56*** -0.24*** -0.33*** -0.18***

Height 1.0 0.57*** -0.58*** 0.21*** 0.45*** 0.51*** -0.13*** 0.51*** 0.42*** 0.2***

Weight 1.0 -0.41*** 0.16*** 0.3*** 0.39*** -0.09** 0.36*** 0.25*** 0.13***

Vscale 1.0 -0.46*** -0.78*** -0.84*** 0.24*** -0.85*** -0.61*** -0.32***

Ventricular
CSF volume

1.0 0.08* 0.25*** -0.53*** 0.18*** -0.09** -0.02

Brain GM
volume

1.0 0.81*** 0.33*** 0.94*** 0.75*** 0.4***

Brain WM
volume

1.0 0.22*** 0.96*** 0.76*** 0.45***

Brain
volume norm

1.0 0.29*** 0.36*** 0.24***

Brain
volume

1.0 0.79*** 0.45***

Thalamus
volume

1.0 0.51***

CSA(PMJ) 1.0
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p-value: *0.01 < P < 0.05, **0.001 < P < 0.01, *** P < 0.001

 3.2.2.  Effect of sex and age

Participants in this study include 43.7 % of males and 56.3 % of females. Figure 4 presents SC

CSA violin plots for female and male with mean and standard deviation. We found a significant

difference for CSA between female and male (t = - 5.37, p-value < 10-7).

F = female; M = male

Figure 4. Violin plot of SC CSA for female and male with mean (µ) and standard deviation (σ)

for each sex.

To explore the relationship between age and SC CSA, we calculated a linear and quadratic fit.

The age of the participants ranged between 48 and 80 years old. The linear fit is presented at

Figure 5. The equation for the quadratic fit is:

𝑦 =  72. 93 − 0. 0469 · 𝑥 −  0. 000907· 𝑥2

The constant and the linear coefficient are the same for both fits, and the quadratic coefficient is

very small (9.07e-04): there is almost no quadratic trend.
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Figure 5. Linear fit for CSA as a function of age.

 3.2.3.  Multilinear regression

Based on the Pearson’s correlation analysis presented in Table 1, the following parameters

were input in the stepwise linear regression: sex, height, weight, age, brain volume, ventricular

CSF volume and thalamus volume. Since brain WM volume, GM volume and brain volume have

a very strong correlation (0.94 and 0.96), brain WM volume and GM volume were not included

in the model to avoid collinearity.

The stepwise method yielded a model including brain volume and thalamus volume. The

resulting model is shown in Table 2. Adjusted R2 is 0.265. The model is significant (p-value <

0.0001).
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Table 2. Multilinear Regression Analysis for SC CSA (N=804 participants).

R2 R2 adj F p-value AIC

0.267 0.265 145.7 1.077e-54 5093

coeff t p-value

const 27.18 11.634 5.154e-29

thalamus
Volume 1.99e-03 8.344 3.131e-16

brain
volume 7.56e-06 2.407 0.016

 3.3.  Normalization

The presented model’s coefficients led to the following normalization equation with thalamus

volume and brain volume and their respective means.

𝐶𝑆𝐴
𝑝𝑟𝑒𝑑
𝑖  = 𝐶𝑆𝐴

𝑚𝑒𝑎𝑠
𝑖  + 1. 986 · 10−3 · (15266 − 𝑋

𝑇𝑉
 𝑖 ) + 7. 56 · 10−6 · (1156171 − 𝑋

𝐵𝑉
 𝑖 )

𝑇𝑉:  𝑡ℎ𝑎𝑙𝑎𝑚𝑢𝑠 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚𝑚3) ;  𝐵𝑉:  𝑏𝑟𝑎𝑖𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚𝑚3)

With the CSA normalization, COV went from 10.09 % ( ) to 8.64 % , a𝐶𝑆𝐴
𝑚𝑒𝑎𝑠
𝑖 (𝐶𝑆𝐴

𝑝𝑟𝑒𝑑
𝑖 )

reduction of 14.37%.

18

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2021. ; https://doi.org/10.1101/2021.09.30.462636doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.30.462636
http://creativecommons.org/licenses/by-nd/4.0/


Figure 6. Scatterplots of CSA as a function of brain volume and thalamus volume separated for

sex with linear fit.

Figure 6 shows scatterplots of CSA with both predictors (brain volume and thalamus volume)

separated for sex. Qualitatively, we observe that the slopes for female and male are different

with the brain volume predictor, however the slopes are closer with the thalamus volume

predictor. To quantitatively validate if the interaction coefficient is significant in the model, we

computed the interaction of both predictors with sex. The interaction coefficient for brain volume

was significant (p-value = 0.006) and sex was also significant when adding the interaction

parameter (p-value = 0.005). For thalamus volume, the interaction coefficient was not significant

(p-value = 0.227) neither was sex (p-value = 0.227). The interaction of brain volume and sex

was therefore added to the previous model since it has a significant effect. The following

equation presents the corresponding normalization equation:

𝐶𝑆𝐴
𝑝𝑟𝑒𝑑
𝑖  = 𝐶𝑆𝐴

𝑚𝑒𝑎𝑠
𝑖  + 1. 98 · 10−3 · (15266 − 𝑋

𝑇𝑉
 𝑖 ) + 2. 45 · 10−6 · (1156171 − 𝑋

𝐵𝑉
 𝑖 ) 

− 15 · (0. 437 − 𝑋
𝑠𝑒𝑥
𝑖 ) + 1. 26 · 10−6(530335 −  𝑋

𝑠𝑒𝑥
𝑖 · 𝑋

𝐵𝑉
 𝑖 )

The model was significant (p-value < 0.0001). The COV of CSA went from 10.09% to 8.59%, a

reduction of 14.85 %, a (modest) further reduction of COV compared to the model without sex

interaction. Adjusted R2 was 0.271.

Since measuring thalamus volume is not always convenient, we also proposed a model without

the thalamus volume as a predictor and kept only brain volume, sex and the interaction. The

COV went from 10.09% to 8.96%, a reduction of 11.22%. Adjusted R2 was 0.209, the model was

also significant (p-value < 0.0001). Even if this model is less performant than the one including

the thalamus volume, we made it available for SCT users given that thalamus volume is not

often measured in neuroimaging analysis pipelines. The normalization model has the following

equation:

𝐶𝑆𝐴
𝑝𝑟𝑒𝑑
𝑖  = 𝐶𝑆𝐴

𝑚𝑒𝑎𝑠
𝑖  +  2. 37 · 10−5 · (1156171 − 𝑋

𝐵𝑉
 𝑖 ) − 15 ·  (0. 437 − 𝑋

𝑠𝑒𝑥
 𝑖  )

+ 1. 26 · 10−6 · (530335 − 𝑋
𝑠𝑒𝑥
𝑖 · 𝑋

𝐵𝑉
 𝑖 )
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 4.  Discussion

In this work, we quantified the contribution of various factors on the inter-subject variability in

cervical SC CSA measurements in 804 participants. We implemented a measurement method

for SC CSA that uses the PMJ as opposed to the vertebral reference. Finally, we developed a

normalization model which can reduce inter-subject variability by up to 14.85%. The method is

available to use in the open-source software SCT (De Leener et al., 2017).

 4.1.  CSA results

We obtained mean CSA values of 66.2 mm2 and 66.4 mm2 for PMJ-based and vertebral-based

CSA respectively, which is lower than what was reported in other studies (Kesenheimer et al.,

2021; Nico Papinutto et al., 2020; Solstrand Dahlberg et al., 2020). Lower values could be

explained by various factors. Firstly, the population studied here is relatively older than in other

published studies (range: 48 to 80, mean: 64). Secondly, the segmentation method has an

impact on defining the boundary between the SC and surrounding CSF. SCT’s

sct_deepseg_sc is more conservative than other software in defining this border, which

results in a smaller CSA (Lukas et al., 2021; Weeda et al., 2019). It is important to note that a

systematic bias across software is not an issue when it comes to using CSA values for clinical

studies: it only adds an offset and does not affect the precision of the measure. It is similar to a

calibration problem. Thirdly, acquisition parameters (which drive image contrast) also influence

CSA values (Cohen-Adad et al., 2021; Kearney et al., 2014; Nico Papinutto & Henry, 2019).

Furthermore, gradient echo T1w acquisitions are prone to motion artifacts, which hamper the

performance of SC segmentation. COV were 9.96% and 10.09% (C2-C3, PMJ), which is similar

to what was observed in previous studies (Kesenheimer et al., 2021; Nico Papinutto et al., 2020;

Solstrand Dahlberg et al., 2020).

 4.2.  PMJ-based CSA method

Regarding veterbral-based CSA and PMJ-based CSA, COVs are very similar (9.96% C2-C3,

10.09% PMJ) as for CSA values (see Figure 3). Therefore, there is no clear conclusion if the

PMJ-based method is best for measuring CSA across individuals. However, for longitudinal

studies (ie: intra-subject COV), given that head tilting might change across sessions, it is

possible that a PMJ-based method is preferred. Subsequent study is needed to validate the

relevance of a PMJ-based method for longitudinal studies.
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Some limitations are associated with the PMJ-based CSA method. The use of the PMJ label to

interpolate with the centerline is not the exact extrapolation of the centerline. SC curvature at

the PMJ varies across individuals, which adds variability to the computed distance. PMJ label

positioning across participants may also differ, also affecting the measured distance.

Moreover, the distance from PMJ doesn’t consider the fact that the SC length varies across

individuals. Results from this study do not show a difference between SC CSA variability using a

vertebral-based vs PMJ-based reference. A comparison with the nerve rootlets is necessary to

assess which method ensures proper prediction of the spinal segments; it will be the subject of

further investigations.

 4.3.  Correlation with SC CSA

Our analysis shows a strong correlation between brain volume, brain WM volume, brain GM

volume and thalamus volume with CSA, as previous studies have reported (Engl et al., 2013;

Nico Papinutto et al., 2015, 2020; Solstrand Dahlberg et al., 2020). The highest correlation was

found with thalamus volume (Pearson’s r = 0.51). No significant correlation was found with

ventricular CSF volume. Correlations with height and weight are low.

We found a statistical difference between SC CSA between male and female; females have a

significantly smaller CSA than males as previous studies have shown (Nico Papinutto et al.,

2015, 2020; Solstrand Dahlberg et al., 2020).

Regarding the effect of age on SC CSA, we found a decrease of CSA with age. Linear and

quadratic fit gave very similar results (R2 = 0.031 for both fits). Since the age range of the

participants goes from 48 to 80 years old, it is not surprising that a linear fit is also adequate, in

comparison with results reported by others (Kesenheimer et al., 2021; Nico Papinutto et al.,

2020). Since CSA peaks around 45 years old (Kesenheimer et al., 2021; Nico Papinutto et al.,

2020), CSA values for the age range of this study are decreasing with age as we observed (see

Figure 5).

 4.4.  Normalization methods

Stepwise linear regression led to thalamus volume and brain volume as predictors for SC CSA.

We show for the first time thalamus volume as a predictor for normalization of SC CSA. This

model significantly reduced inter-subject variability; COV went down from 10.09% to 8.64 %,

which represents a reduction of 14.37%. Other parameters were not significant since they were
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excluded during the stepwise model (p-value > 0.05). Sex alone was not a significant predictor

(p-value > 0.05) even if there is a significant difference between male and female CSA. Note the

strong correlation between sex and thalamus volume (Pearson’s r = 0.36) and between sex and

brain volume (Pearson’s r = 0.49). When adding the interaction bewteen sex and brain volume,

sex and the interaction became significant. The effect of brain volume on SC CSA varies

between male and female as we can observe in Figure 6. The interaction between thalamus

volume and sex wasn’t significant. The model including brain volume, thalamus volume, sex and

sex/brain volume interaction led to a COV of 8.59%, a reduction of 14.85 %. Including sex and

brain volume interaction led to the best COV reduction. To our best knowledge, interaction of

sex and brain volume was never considered in previous normalization models, only the fixed

effect of sex on CSA was included. These findings reveal the importance to consider that factors

can vary differently for males and females. We also proposed a model without the thalamus

volume, given the difficulty to measure it (it requires the proper anatomical sequence with

sufficient contrast and resolution). This model reduced CSA variability less than when including

thalamus volume (11.22% of reduction). The combination of thalamus volume, brain volume and

sex better explains CSA variability.

We obtained a lower reduction than other models presented in previous studies (Kesenheimer

et al., 2021; Nico Papinutto et al., 2020). Kesenheimer et al. (2021) obtained a reduction of COV

of 23.7% using sex, brain WM volume and SC canal area, Papinutto et al. (2020) obtained a

reduction of 17.74% using V-scale and axial-canal product. It is important to consider that the

predictors of the normalization methods were different, mainly regarding metrics related to the

SC canal which could explain the smaller reduction of COV obtained with our model (14.85%).

We did not include SC canal metrics in our analysis because of the lack of automated methods

for robust SC canal segmentation combined with the large number of participants in this study.

Also, the size of the cohort is larger than in the previously mentioned works, N=60 for

(Kesenheimer et al., 2021) and N=129 for ((Nico Papinutto et al., 2020), which impacts the

distribution and coverage of the data of the participants and affects the normalization method.

Age was not a significant predictor for SC CSA. Trends for CSA and brain volume for the age

range of our study are very similar. The effect may differ for younger people since brain volume

decreases linearly with age while CSA increases until about 45 years old and decreases

afterward (Nico Papinutto et al., 2020).
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We have to consider the fact that older people may be more subject to motion in the MRI than

younger people (discomfort, difficulty breathing) resulting in a bias in the measured CSA

(blurring, motion artifact ghosting). Further investigations are needed to validate if the model can

expand to ages not included in this study.

The normalization model was generated from T1w data with a specific protocol. Subsequent

studies should assess whether the model is adequate for other acquisition parameters and

contrasts. It is known that the output CSA varies for different acquisition protocols (Cohen-Adad

et al., 2021). However, since there is a direct relationship between CSA values from different

contrasts, there would be a systematic offset in the produced CSA. Since the model is linear, it

should hold for different contrasts.

The model was developed from healthy participants; the question remains if it would be

applicable to patients with neurodegenerative diseases such as MS. Brain volume changes

have been associated with atrophy for various neurodegenerative diseases. A normalization

model including brain volume may not be generalizable for those patients. As done in other

studies (Kesenheimer et al., 2021), intracranial volume could be a relevant substitute for brain

volume since it is not affected by neurodegenerative diseases. Including sex interaction here will

also be important and can improve the normalization model. Further studies could include

intracranial volume in the normalization model to make it available in the software SCT.

Furthermore, other confounding factors could possibly affect image acquisitions for pathological

patients. Severe motor disability could induce some breathing difficulties which induces

considerables motion artifacts, thus SC segmentation and CSA bias.

 4.5.  SCT normalization feature

We made available the obtained normalization model in the open-source software SCT within

sct_process_segmentation. Since thalamus volume may not be available in all SC MRI

studies, we made it possible for the user to normalize CSA values without thalamus volume.

Even if the best model was obtained with thalamus volume, brain volume, sex and sex

interaction between brain volume and sex, normalizing SC CSA without thalamus volume could

still reduce CSA variability (reduction of 11.22%). The normalization feature can be used by

adding the option -normalize followed by the predictors and their corresponding values. For

more information on usage, refer to :

https://spinalcordtoolbox.com/user_section/command-line.html#sct-process-segmentation.
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 5.  Conclusions

This study features an analysis of factors contributing to SC CSA variability at a larger scale

than what was done previously to our best knowledge. We introduced a new reference for CSA

measurements based on a neurological reference (PMJ) to overcome vertebral reference

limitations (neck flexion and extension). We computed over a large cohort of participants SC

CSA at 64 mm from the PMJ on T1w scans from the UK Biobank database. No significant age

trend was found while SC CSA was significantly different for males and females. We present an

effective normalization model including thalamus volume, brain volume, sex and sex/brain

volume interaction readily usable in SCT. The most relevant factors to explain SC CSA

variability are related to the brain; these findings show the importance of having a brain MRI

acquisition in SC studies/research. Reducing inter-subject variability could improve comparison

between CSA measures to increase its sensitivity and specificity to better assess

pathology-related changes.
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 8.  Supplementary material

Figure S1. Scatterplot of CSA as a function of age.
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Figure S2. Scatterplot of CSA as a function of brain GM volume.

Figure S3. Scatterplot of CSA as a function of brain volume WM volume.
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Figure S4. Scatterplot of CSA as a function of brain volume.

Figure S5. Scatterplot of CSA as a function of brain volume normalized for head size.
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Figure S6. Scatterplot of CSA as a function of height.

Figure S7. Scatterplot of CSA as a function of weight.
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Figure S8. Scatterplot of CSA as a function of thalamus volume.

Figure S9. Scatterplot of CSA as a function of ventricular CSF volume.

33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2021. ; https://doi.org/10.1101/2021.09.30.462636doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.30.462636
http://creativecommons.org/licenses/by-nd/4.0/


Figure S10. Scatterplot of CSA as a function of v-scale.
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