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Abstract

Recent development of cancer immunotherapy has opened unprecedented

avenues to eliminate tumor cells using the human immune system. Cancer vac-

cines composed of neoantigens, or peptides unique to tumor cells due to somatic

mutations, have emerged as a promising approach to activate or strengthen the

immune response against cancer. A key step to identifying neoantigens is com-

putationally predicting which somatically mutated peptides are presented on

the cell surface by a human leukocyte antigen (HLA). Computational prediction
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relies on large amounts of high-quality training data, such as mass spectrometry

data of peptides presented by one of several HLAs in living cells. We developed

a complete pipeline to prioritize neoantigens for cancer vaccines. A key step of

our pipeline is PEPPRMINT (PEPtide PResentation using a MIxture model

and Neural neTwork), a model designed to exploit mass spectrometry data to

predict peptide presentation by HLAs. We applied our pipeline to DNA se-

quencing data of 60 melanoma patients and identified a group of neoantigens

that were more immunogenic in tumor cells than in normal cells. Additionally,

the neoantigen burden estimated by PEPPRMINT was significantly associated

with activity of the immune system, suggesting these neoantigens could induce

an immune response.

Keywords: peptide-HLA association, Neural Network, mixture model, neoanti-

gens, melanoma, cancer vaccine
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1 Introduction

Cancer immunotherapy harnesses the power of the human immune system to elim-

inate tumor cells and has become a new pillar of cancer treatment, in addition to

chemotherapy, surgery, and radiation [1]. The successes of the existing immunother-

apy solutions have motivated investigators to find alternative approaches to activate

the immune system against cancer. One direction is developing cancer vaccines made

of neoantigens, i.e., peptides harboring tumor-specific somatic mutations [2–4]. A

cancer patient may have hundreds or thousands of somatic mutations and thus a cru-

cial step for cancer vaccine production is prioritizing neoantigens that can induce an

immune response. Once such neoantigens are identified, vaccines are manufactured

using the peptides around the corresponding somatic mutations [3, 4]. Each vaccine

may contain up to 20 such peptides and can be used alone or combined with other

treatments, such as the popular immunotherapy check-point inhibitor treatment [5].

In most living cells, proteins are processed to peptides of certain lengths and trans-

ported to the cell surface to be presented by the human leukocyte antigen (HLA)

proteins. Many computational methods have been developed to predict peptide pre-

sentation using the data generated by in vitro binding affinity assays [6–9]. These

assays are low-throughput and do not reflect the restrictions due to peptide pro-

cessing and transportation [9–14]. In contrast, the in vivo mass spectrometry (MS)

method is high-throughput and recovers eluted peptides that reflect the restrictions

of peptide processing and transportation [10]. Most of the MS data collected are from

living cells that express up to six HLA-I proteins from the maternal/paternal copies

of three highly polymorphic genes: HLA-A, HLA-B, and HLA-C [15]. Therefore, a

major challenge of using MS data is identifying which corresponding HLA allele is

associated to each eluted peptide. Although it is possible to produce single HLA
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allele MS data [12,16], which we refer to as SA data, multi-HLA-allele MS data (or

MA data) are much easier to generate and more abundant. Currently, methods that

directly model MA data are lacking, and as the MA data source grows larger, these

types of methods are critically needed.

Both SA and MA data share the challenge that training datasets may only cover

a limited number of HLA alleles out of the thousands of discovered HLA alleles in the

human population [17]. To address this challenge, information across HLA alleles are

borrowed using a pan-specific approach where each HLA allele is represented by its

sequence. Thus, the trained model can be applied for any HLA allele with sequence

information [16, 18, 19]. To address the challenge of the ambiguity of peptide-HLA

associations in MA data, some previous methods cluster the peptides un-supervisedly

and assign each cluster to an HLA allele based on prior information [20–22]. The

application of these methods are limited since prior information is only available for a

small number of HLA alleles. Alternatively, NNAlign MA [19] takes a semi-supervised

approach. NNAlign MA essentially uses a hard k-means clustering method, where

each peptide is assigned to one and only one cluster (or HLA) using a pan-specific

neural network with binding affinity and SA data. Then, it iteratively updates the

neural network and inferred pairings of the peptides and HLA alleles. NetMHCpan-

4.1 is created by training NNAlign MA [19] on a more recent MA training data set.

Motivated by NetMHCpan-4.1, we propose a pan-specific mixture model named

PEPPRMINT for multi-HLA-I allele mass spectrum data (i.e., MA data). Each mix-

ture component of our model corresponds to an HLA allele and the density function

of each mixture component is specified by a neural network. PEPPRMINT has sev-

eral practical advantages against NetMHCpan-4.1. First, it has an explicit objective

function, the likelihood of the mixture model, which helps monitor algorithm conver-

gence. Second, PEPPRMINT accounts for the uncertainty of associating each peptide
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with an HLA allele by assigning the peptide to different HLA alleles with appropriate

weights. In contrast, NetMHCpan-4.1 assigns each peptide to one and only one HLA

allele. Third, as a mixture model, PEPPRMINT estimates mixture proportions and

uses them to improve the accuracy of assigning a peptide to an HLA allele. This

is important to incorporate because different HLA alleles may present very different

numbers of peptides [20, 21], for example, due to the low expression of an HLA al-

lele [20] or somatic mutations of an HLA allele [23]. In contrast, NetMHCpan-4.1

assumes the mixture proportions are the same for all the HLA alleles.

We have developed a computational pipeline to prioritize neoantigens for cancer

vaccines using whole exome sequencing data. Starting with the raw data of fastq

files, our pipeline maps sequence reads, calls and annotates somatic mutations, im-

putes HLA alleles, extracts peptide sequences around somatic mutations, and predicts

their presentation by any HLA allele of a subject using PEPPRMINT or NetMHCpan-

4.1. In a case study, we applied our pipeline to analyze the exome-seq data of 60

melanoma patients [24]. We demonstrated that for many somatic mutations, the

mutated peptides and the corresponding wild-type peptides had similar chances to

be presented by HLA proteins. We prioritized those somatic mutations of which the

mutant copies were highly likely to be presented on cell surface while the wild type

copies were much less likely to be presented, since these peptides should induce a

strong and tumor-specific immune response. We also demonstrated that neoantigen

burden derived from PEPPRMINT had a significant association with immune cy-

tolytic activity, suggesting that the neoantigens prioritized by PEPPRMINT would

induce an immune response.
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2 Method

2.1 An overview of our pipeline and PEPPRMINT

We designed a pipeline to prioritize candidate peptides for cancer vaccines using whole

exome-seq data from tumor samples and paired normal samples (Figure 1 (A)). Start-

ing with fastq files, we mapped DNA sequences to the human reference genome (build

hg38) by BWA [25]. After applying a series of pre-processing steps, such as tagging

duplicated reads and calibrating quality scores [26], we called somatic mutations using

both Mutect [27] and Strelka [28]. The intersection of these somatic mutation calls

were annotated by ANNOVAR [29] to obtain the functional consequence of the muta-

tions and their associated genes and proteins. We selected non-silent mutations (i.e.,

those that alter the proteome) and extracted peptide sequences around those muta-

tions from both the tumor proteome and the normal proteome. Then, we applied our

method, PEPPRMINT, and NetMHCpan-4.1 to score the associations between these

peptides and any HLA of each subject, where each HLA was imputed by OptiType

using exome-seq data [30].

While most of the components in our pipeline are based on existing methods,

PEPPRMINT is new. PEPPRMINT estimates a neural network that predicts how

likely a peptide is presented by an HLA allele using the amino acid (AA) sequence

of the peptide and the pseudo-sequence of the HLA allele, which covers 34 AAs that

have close contact with the presented peptides [31] (Figure 1 (B)). In order to train

this model using MA data, we embedded this neural network within a mixture model

framework, where each mixture component corresponded to an HLA allele and the

neural network modeled the density function of each mixture component. Several

components of this framework required careful investigation. The lengths of peptides

vary from 8 to 15 AA, however a neural network requires the data input to have the
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same dimension. Therefore, peptides need to be transformed to a uniform length.

Additionally, the configurations of the neural networks, such as the number of layers,

the number of nodes, as well as the parameters for model training, need to be selected.

We elaborate on these issues in the following sections, after providing more details of

the input data and introducing our statistical framework.

One-hot Encoding (34 x 21)

Concatenation and flatten (1029 x 1)

A score that predict whether the peptide 
is presented by the HLA allele after 

aggregation across NN configurations

YFAMYQENMAHTDANTLYIIYRDYTWVARVYRGY

HLA pseudo sequence
On 34 positions where HLA alleles interact with 
the peptide, e.g., for HLA-A01*01: 

One-hot Encoding (15 x21)

Peptide sequence
e.g. FINKASLAM
15 AA Representation
FINKXXXAXXXSLAM

A dense layer w/ relu activation

A dropout layer

A dense layer w/ one output
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Other neural 
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configurations 

……

Fastq files

Map reads to hg38 
reference by BWA

Call somatic 
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somatic mutations from 
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(A) (B)

Figure 1: (A) An outline of our pipeline that prioritizes candidate peptides for cancer
vaccine. (B) The neural network estimated by our PEPPRMINT method. Several
versions of the neural networks (e.g., trained using different network configurations
or input data) are aggregated together by taking the average of the neural network
outputs.

When applying our method for cancer vaccine design, we prioritized personalized

neoantigens for each cancer patient based on her/his somatic mutations and HLA

alleles. We applied the trained neural networks to predict the associations between

each HLA allele and each mutated/wild-type peptide, and took the maximum across

the HLA alleles and the peptides covering the same somatic mutation. We used these
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predictions to rank neoantigens as candidates for a cancer vaccine.

2.2 Data

2.2.1 Training Data

We trained our model using the same training data as NetMHCpan-4.1 [32] compiled

from multiple sources and included both single-HLA-allele and multi-HLA-allele mass

spectrum data (SA and MA data, respectively). There were around 200,000 and

350,000 positive peptides (binders, 8 to 15 AA long) for SA and MA data, respectively

(Figure 2 (A)). Negative peptides (non-binders) were generated by randomly sampling

the human proteome [12,32]. An equal number of non-binders were generated for each

peptide length (5 times of the number of 9 AA binders). The number of peptides per

HLA in the SA data had a wide range from 6 to more than 200,000, with median being

around 4,000 (Figure 2 (B)), for 130 unique human HLAs. The MA data comprised

of 105 unique samples, with three to six HLA alleles for each sample (Figure 2 (D))

and around 1,000 to 400,000 peptides per sample (Figure 2 (E)). Additional details

of the training data are summarized in the Supplementary Materials.

In the SA data, some binders were shared across HLAs. As we showed in the

following analyses, such sharing reflected the biological reality that some HLA alleles

are very similar. We quantified whether two HLA alleles shared more peptides than

expected by chance through a hyper-geometric test, where a smaller p-value indicated

that the two HLAs shared more binders than expected by chance. After truncating

the p-value at a lower-end of 10−10, we further transformed the p-values to a distance

measurement d = 10 + log10(p̃), where p̃ was the truncated p-value. We clustered the

HLAs using this distance matrix and found those HLAs with smaller distances (i.e.

more overlapping peptides) were similar in their DNA sequences, as reflected by their
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names (Figure 2 (C)). Such sharing of binders across HLAs showed that it might not

be feasible to assign a peptide to one and only one HLA allele without ambiguity.
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of the neural networks, such as the number of layers, the number of nodes, as
well as the parameters for model training need to be selected. We elaborate on
these issues in the following sections, after providing more details of the input
data and introducing our statistical framework.

When applying our method for cancer vaccine design, we prioritize person-
alized neoantigens for each cancer patient based on her/his somatic mutations
and HLA alleles. We apply the trained neural networks to predict the associ-
ations between each HLA allele and each mutated/wild-type peptide, and take
maximum across the HLA alleles. Then we aggregate the results of these neural
networks to get a final prediction for mutated peptide and wild-type peptide
of each somatic mutation. We use these predictions to rank neoantigens as
candidates for cancer vaccine.

2.2 Data

2.2.1 Training Data

We trained our model using the training data for NetMHCpan-4.1 [26], which
were compiled from multiple sources by Reynisson et al. [26]. This dataset in-
cludes both single-HLA-allele (SA) and multi-HLA-allele (MA) data. The pos-
itive peptides (binders, 8 to 15 AA long) were extracted from MS, with around
200,000 and 350,000 binders for single-allele and multi-allele data, respectively
(Table 1). Negative peptides (non-binders) were generated by randomly sam-
pling protein sequences [12, 26]. An equal number of non-binders were selected
for each peptide length, and it was 10 times of the number of 9 AA binders.
The SA data comprised of 130 unique human HLAs and the MA data com-
prised of 105 unique samples, with two to six HLA alleles for each sample. The
distribution of binders and non-binders in the final training data is summa-
rized in Table 1. Additional details of the training data are summarized in the
Supplementary Materials.

# samples # Binders # Nonbinders
SA Data 130 197,547 3,481,858
MA Data 105 354,287 6,636,734

Table 1: Overall Training Data Descriptive Statistics

In the SA data, some peptides are shared across HLAs. These duplicated
data points make it harder to separate the peptides across HLA alleles, though
they may reflecting biological reality because some HLA alleles are indeed very
similar. We quantify whether two HLA alleles share more peptides than ex-
pected by chance by a hyper-geometric test. A smaller p-value indicates that
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Figure 2: (A) Summary of single-HLA-allele mass spectormetery (SA) and multi-
HLA-allele mass spectrometery (MA) training data. (B) The distribution of the
number of peptides (including binders and non-binders) per HLA (or equivalently,
per SA sample). (C) Hierarchical clustering of HLA alleles in SA data, where two
HLA alleles have smaller distance if they shared more peptides than expected by
chance. (D) The distribution of the number of HLAs per sample for MA data. (E)
The distribution of the number of peptides per sample for MA data.

Each record in the SA data included three entries: peptide sequence, the corre-

sponding HLA-I allele, and the binder status (i.e. binder = 1, non-binder = 0). Each

record in the MA data included peptide sequence, the corresponding sample, and the

binder status. Additionally, a separate file listed the specific HLAs for each sample.

Both the SA and MA data were partitioned into 5 splits. We trained our model using

each split separately and then aggregated the results by taking average.
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2.2.2 Testing Data

We evaluated PEPPRMINT and other methods using two testing datasets. The first

test set was the MULTIALLELIC-RECENT data used by MHCflurry-2.0 [16]. This

MA data was comprised of 20 experiments (i.e., 20 unique samples) from two studies.

Each sample had 6 HLAs and the peptide lengths varied from 8 to 11 AA. Synthetic

non-binders were randomly sampled peptides from the human proteome [16]. The

total number of non-binders generated was ten times the number of binders, generated

evenly across lengths 8-11. Peptides that were duplicated in the same sample were

removed, which resulted in a total of 2,678,188 peptides (25,309 binders).

Though the MA test set better reflected the multi-allelic nature of cancer vaccine

application than a SA test set, a second testing dataset comprised of SA peptides ob-

tained from Sarkisova et al [33] and provided by NetMHCpan-4.1 [32] was used. After

removing duplicated peptides associated with the same HLA, there were 946,008 pep-

tides (45,416 binders) for 36 HLAs, varying from 8 to 14 AAs in length. Non-binders

were added by extracting 8-14 AA peptides from source proteins of the binders.

2.3 Mixture model

Assume that binding peptides are collected for n samples. For the i-th sample with

Ki HLA alleles and Ji peptides, let xij and θik be the sequences for the j-th peptide

and the pseudo sequence of 34 amino acids [31] for the k-th HLA allele, respectively,

where j = 1, ..., Ji and k = 1, ..., Ki. The total number of binders per sample, Ji,

usually varies from hundreds to tens of thousands, and Ki, the number of unique

HLA-I alleles, varies from 1 to 6. Since it is unknown which HLA allele presents

the j-th peptide, we consider all possible Ki HLA alleles and model the likelihood of
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peptide presentation by a mixture model. The likelihood function for binders only is

L =
n∏

i=1

{
Ji∏
j=1

[
Ki∑
k=1

πikf(xij, θik)

]}
, (1)

where
∑

k πik = 1 and πik is the probability that a randomly selected peptide is

presented by the k-th HLA allele of sample i. Here, the function f(xij, θik) is the

probability that xij is presented by the k-th HLA allele (with pseudo sequence θik)

and is modeled by a neural network. The output layer of this neural network uses

a sigmoid activation function, φ(z) = 1/(1 + exp(−z)), which guarantees f(xij, θik)

falls between 0 and 1.

In order to train the neural network to distinguish not only the binders of different

HLA alleles, but also binders versus non-binders, we introduce Li non-binders into

the model. Let zil be the sequence of the l-th non-binder, which is randomly assigned

to an HLA allele kl of the set of all possible Ki HLAs for sample i. Then, the final

likelihood function becomes

L =
n∏

i=1

{
Ji∏
j=1

[
Ki∑
k=1

πikf(xij, θik)

]
Li∏
l=1

[1− f(zil, θikl)]

}
. (2)

We estimate the parameters of this likelihood function by a standard EM algo-

rithm. We first obtain an initial estimate of f(∗, θik) using the single-allele MS data

and assign the initial value of πik to be 1/Ki. Then, the EM algorithm proceeds as

follows. In the E-step, we evaluate the possibility that xij is presented by any one of

the possible HLA alleles. For sample i, the probability the j-th peptide is presented

by the k-th HLA allele is pijk = π̂ikf̂(xij, θik)/
∑

k′ [π̂ik′ f̂(xij, θik′)]. In the M-step,

we estimate two sets of parameters: πik and f(∗, θik) using the weighted input data

for the neural network optimization. When estimating πik, we can ignore the likeli-
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hood of non-binders and by standard EM algorithm results: π̂ik =
∑

j pijk/Ji. When

estimating f(∗, θik), the corresponding Q function is

Q =
n∑

i=1

{
Ji∑
j=1

Ki∑
k=1

pijk log [f(xij, θik)] +

Li∑
l=1

log [1− f(zil, θikl)]

}
, (3)

which is exactly a binary cross-entropy loss function, commonly used in deep learn-

ing, except with weight pijk for binders and weight 1 for non-binders. For the j-th

binder from sample i, we duplicate it Ki times and assign the weights pijk to them,

and f(∗, θik can then be estimated by training the neural network with weighted

observations.

2.4 Training the neural network

2.4.1 Data Encoding

The first step of the neural network training is to determine how the peptides are

encoded as input to the neural network. Most peptides presented by HLA-I proteins

are 8-11 AA long, with the majority being 9 AA and the longest ones being 15 AA

long. Some previous methods train one neural network for each peptide length [34].

However, it is desirable to borrow information across peptides of different lengths

since they share similar sequence patterns. This can be done by transforming the

peptides to the same length. There are two popular approaches. One is to introduce

insertions or deletions of contiguous positions to transform all peptides to 9 AA

long, as implemented by NetMHCpan4.1 and some earlier versions of the NetMHC

methods [11, 12]. The other is to transform all peptides to a 15 AA representation,

while preserving the four AAs at both ends and the AA(s) in the middle. Other

positions are filled with the wild card “X”. This approach is used in MHCflurry
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[9] and the conservation of AAs at both ends are supported by findings of earlier

works [34]. More details of the peptide length transformation are presented in the

Supplementary Materials Section B.1. We implemented both approaches of peptide

length transformation and concluded that 15 AA encoding lead to better performance.

We adopted a variation of one-hot encoding to encode amino acids. Specifically,

we encoded each amino acid by a vector of length 21. Each position of this vector

corresponded to one of the twenty amino acids and the wild card “X”. Following

earlier work of NetMHC [11], each element of this vector was encoded as 0.05 except

the position corresponding to the observed amino acid, which was set to be 0.9. A

peptide sequence of length m would be encoded to a numerical matrix of size m× 21

and further flattened to a vector of length 21m as part of the input to the neural

network. Using the 15-length representation for a peptide, the peptide input encoding

would be a vector of length 315 = 15 × 21. The HLA sequence was represented by

34 positions with close contact to peptides [12]. This 34 AA pseudo-sequence was

similarly encoded as a vector of length 34×21 = 714. Using the 15 AA representation

of peptide sequence and the 34 AA pseudo-sequence for HLA, the final size of the

input to the neural network was a vector of length 1029 =(34 + 15) × 21 (Figure 1

(B)).

2.4.2 Neural network design and training

The training data were separated into 5 splits [32]. We used one split as training and

another split as validation to explore different architectures of the neural network or

the parameters of model training. None of the testing datasets were used to select

the final version of the neural networks in PEPPRMINT.

We considered neural networks with one or two hidden dense layers with rectified

linear unit (relu) activation function. For the one layer neural network, we considered
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a dense layer with 100, 200, 400, or 800 nodes. If there was a second dense layer, the

number of nodes was half of the number of nodes in the first layer. Each dense layer

was followed by a drop out layer. Finally, the last hidden layer was connected to an

output layer with a single output and the sigmoid activation function (Figure 1(B)).

From the results in validation data, we chose three architectures: a single layer with

200, 400, and 800 nodes. We also considered alternative architectures, such as apply-

ing a convolutional neural network on the peptide encoding, or passing the encoded

peptide and HLA to separate dense layers before concatenating them. None of these

alternative architectures delivered better performance.

The neural network was trained with stochastic gradient descent (Adam optimizer,

batch size 32, learning rate 0.001) and with a drop-out rate of 0.5. It was first trained

using SA data. Then, using those results as initial values, we trained the mixture

model up to 10 EM iterations with the MA data. In each EM iteration, the neural

network was trained for 10 epochs. Each peptide was assigned a weight derived from

the previous EM iteration. Due to the stochastic property of the neural network,

it was possible that the log likelihood in one EM iteration may be lower than the

one in the previous EM iteration. Thus, model training was stopped earlier if the

log likelihood converged or decreased more than twice and the previous model was

saved as the final model. We explored other model training options, e.g., adding

l1/l2 regularization, adjusting the hyper-parameters (learning rate, batch size, drop

out rate, number of epochs and iterations, etc.), assigning class weight for binders

vs. non-binders, and the results of other options in the validation data were either

similar or worse to the current option.

Another consideration was that the initial neural network estimated by the SA

data might prefer to assign peptides to the HLAs included in the SA data, which might

lead to over-estimation of the mixture proportions of those HLAs and re-enforce such
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bias. To avoid this situation, we slowed down the estimate of mixture proportions

by replacing the MLE of the mixture proportions in the current iteration with the

average of the mixture proportions of the previous iteration and the current iteration.

2.5 Evaluation of PEPPRMINT and other methods

We evaluated the performance of PEPPRMINT as well as two existing methods,

NetMHCpan-4.1 [32] and MHCflurry-2.0 [16], using the aforementioned MA test set

and SA test set. When making prediction for a peptide in the MA test set by a

specific neural network, we took the maximum score across all possible HLAs as

the output of this neural network. Altogether 15 neural networks were included

in PEPPRMINT for three model configurations (single layer with 200, 400, and 800

nodes) and five splits of the training data. We aggregated the results of these 15 neural

networks by taking the average of the maximum scores. For both NetMHCpan-4.1 and

MHCflurry 2.0, we used the maximum score for each peptide across all possible HLAs

for evaluations. Method performance was evaluated using area under the receiver

operating characteristic curve (AUC), as well as positive predictive value (PPV). PPV

for a sample was calculated by ordering all peptides by their prediction and finding

the proportion of binders in the top N peptides, where N was the total number of

true binders for that sample.
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3 Method Evaluation using Testing Data

3.1 Aggregation of the Results of Multiple Neural Networks

Improves Performance

The performance across the 15 neural networks trained by PEPPRMINT were similar

in both the MA test set and the SA test set as shown in Table 1. Aggregated results

led to better performance compared to any of the individual neural networks in the

MA test set and better performance than most of the individual neural networks in

the SA test set, supporting the aggregation of the 15 neural networks.

Nodes, Train Data MA Test Set SA Test Set
200, split 0 0.905 0.912
200, split 1 0.907 0.914
200, split 2 0.903 0.901
200, split 3 0.905 0.906
200, split 4 0.902 0.903
400, split 0 0.905 0.913
400, split 1 0.903 0.912
400, split 2 0.905 0.899
400, split 3 0.901 0.900
400, split 4 0.901 0.896
800, split 0 0.904 0.915
800, split 1 0.902 0.906
800, split 2 0.908 0.897
800, split 3 0.904 0.904
800, split 4 0.905 0.907
Aggregated 0.909 0.913

Table 1: AUC performance across the 15 models and aggregated score. All hyperpa-

rameters of the models were the same, except for the number of hidden nodes in the

neural network (200, 400, or 800). The training data was divided into 5 splits and

each neural network is trained by one split of the data.
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Figure 3: AUC performance comparison. Each point is a sample (for the MA test set)
or an HLA (for the SA test set). Points above the diagonal indicate PEPPRMINT has
better prediction performance. (A) NetMHCpan-4.1 vs. PEPPRMINT in the MA
test set. (B) MHCflurry-2.0 vs. PEPPRMINT in the MA test set. (C) NetMHCpan-
4.1 vs. PEPPRMINT in the SA test set. (D) MHCflurry 2.0 vs. PEPPRMINT in
SA test set.
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3.2 Comparison to other methods

Other than PEPPRMINT, NetMHCpan-4.1 is the only other neural network method

that handles MA training data. In the MA test set, PEPPRMINT had a higher

overall AUC and PPV than NetMHCpan-4.1 (0.909 vs. 0.877 and 0.368 vs. 0.339,

respectively). When evaluating the performance for each sample, PEPPRMINT

out-performed NetMHCpan-4.1 in 13 of 20 samples (Figure 3(A)). Compared with

MHCflurry-2.0, which was trained using SA data, PEPPRMINT performed better or

equivalent in 19 of the 20 samples (Figure 3(B)). KESKIN 13240-005 was the only

sample where PEPPRMINT’s performance was worse than MHCflurry-2.0. This sam-

ple had 472 binders, which was relatively small compared to other samples, of which

the median number of binders was 1032. We also examined the sample-by-sample

PPVs; PEPPRMINT had similar performance to NetMHpan-4.1 and performed bet-

ter than or similar to MHCflurry-2.0 in 19 out of 20 samples. More details of the

results are summarized in the Supplementary Materials Section B.3.

The SA test set was used as a secondary benchmark to further evaluate our

method. PEPPRMINT performed similar to NetMHCpan-4.1 in most of the HLAs

and had a more apparent advantage than NetMHCpan-4.1 in 4 out of the 36 HLAs

(Figure 3(C)). PEPPRMINT out performed MHCflurry-2.0 in 34 out of the 36 HLAs

(Figure 3(D)).

4 Prioritizing Candidates for Cancer Vaccine for

Melanoma Patients

We analyzed the whole exome sequence data (around 150x coverage) from 90 tumor

samples with paired normal samples from 60 melanoma patients who were treated
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by Nivolumab, a check-point inhibitor that targets PD-1 [24]. Among the 90 tumor

samples, 59 were from pre-therapy biopsies and 31 were from on-therapy biopsies.

We first applied our pipeline to call and extract peptide sequences around the so-

matic mutations, either the mutated peptides or wild-type peptides. More details are

supplied in the Supplementary Materials Section E. The number of non-synonymous

single nucleotide variants (SNVs) varied from 1 to more than 6,000 (Supplementary

Figure 1), with a median number of somatic mutations being 179 and 149 for the

pre-therapy or the on-therapy samples, respectively.

Since our evaluations in the previous section showed that PEPPRMINT outper-

formed MHCflurry-2.0 in most cases, we only compared PEPPRMINT and NetMHCpan-

4.1 on this melanoma dataset. For each SNV in a tumor sample, we considered all

overlapping 9 AA mutated peptides and all possible HLAs to find the maximum asso-

ciation score of these peptide-HLA pairs, referred to as the neoantigen score for this

somatic mutation. Analogously, we calculated a neoantigen score using 9 AA wild

type peptides. See Supplementary Materials Section C for more details.

We found the neoantigen scores were strongly correlated between the mutated and

reference peptides using either the estimates by NetMHCpan-4.1 or PEPPRMINT as

shown in Figure 4 (A)-(B). However, the neoantigen scores calculated by NetMHCpan-

4.1 tended to be smaller and had larger divergence between the reference peptides

and mutated peptides (Figure 4(A)).
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Figure 4: (A-B) Neoantigen scores for 31,298 somatic SNVs calculated by

NetMHCpan-4.1 and PEPPRMINT. (C) Summary of -log10(p-value) of the associa-

tions between neoantigen burdens and cytolytic score. (D-F) Scatter plot of cytolytic

score vs mutation burden or neoantigen burden with score cutoff = 0.9 (NetMHCpan

4.1 or PEPPRMINT). Blue line is a linear fit line and the p-value on top of each

panel is the association p-value.

While it was difficult to assess whether each neoantigen could induce immune
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response without additional experiments, it can be indirectly measured by the collec-

tive effect of the somatic mutations with high neoantigen scores. More specifically,

we defined neoantigen burden as the log10-transformed total number of somatic mu-

tations with neoantigen scores larger than one of a few cutoffs: 0.75, 0.8, 0.85, 0.9,

and 0.95. Then, we checked whether neoantigen burden (pre-therapy) was associated

with cytolytic score, a measurement of immune system activity (pre-therapy) using

the gene expression of immune related genes [24, 35]. We conducted our analysis

for 41 pre-therapy samples samples with gene expression available. The neoantigen

burdens derived from PEPPRMINT consistently showed stronger associations than

the neoantigen burdens from NetMHCpan-4.1 (Figure 4 (C,E,F)). Mutation burden,

defined as the log10-transformed total number of non-synonymous SNVs per sam-

ple and commonly used as an predictor for immunotherapy response, also had an

insignificant association with cytolytic score (Figure 4 (D)).

Among the patients with both pre-therapy and on-therapy samples, patients who

responded to the anti-PD1 treatment (partial response or complete response, PRCR)

tended to have a larger reduction of neoantigen burdens than non-responding pa-

tients (progressive disease or stable disease, PDSD) (Supplementary Figure 3). This

suggested that immunotherapy could not invigorate immune system in those non-

responders, even though some of them had a larger number of neoantigens. Therefore,

if a cancer vaccine could help the immune system recognize some of these neoanti-

gens, then combining cancer vaccines and checkpoint inhibitors could improve the

treatment response in this patient population.

A wild-type peptide is unlikely to induce a strong immune response even if it is

presented at the cell surface; however, a strong similarity between the wild-type and

the mutated peptide might cause a reduction in the immune response to the mutated

peptide. Thus, we were interested in the neoantigens where the mutated peptides
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around the somatic mutations had high neoantigen scores and the wild-type peptides

had low neoantigen scores, so that the potential immune response could be more

specific to tumor cells. We defined a high neoantigen score for mutated peptides as

> 0.9 and the threshold for the wild type peptides with a low neoantigen score was

defined as the median across all somatic mutations: 0.5 for PEPPRMINT and 0.22

for NetMHCpan-4.1. Using this approach, we selected 141 and 148 neoantigens in 39

and 30 patients by NetMHCpan-4.1 and PEPPRMINT, respectively (Supplementary

Files 2 and 3). Interestingly, the patients who responded to anti-PD1 treatment were

more likely to have at least one such neoantigen. For NetMHCpan-4.1, 12 of 13

responders and 27 out of 47 non-responders had at least one such neoantigen. For

PEPPRMINT, 10 out of 13 responders and 20 out of 47 non-responders had at least

one neoantigen.

5 Discussion

Cancer immunotherapy, particularly immune checkpoint inhibitors, have achieved

impressive successes in cancer treatment. However, durable clinical benefits are only

observed in a subset of patients [36]. Cancer vaccine development is a promising ap-

proach to expand the patient population that could benefit from immunotherapy [37].

Since only a very small proportion of peptides are presented on the cell surface, com-

putational prioritization of peptides presented by HLA-I proteins on the cell surface

is a very important step for cancer vaccine design. To successfully prioritize peptides,

one promising way is to develop efficient models for MA data, since such data are

more accurate and expected to accumulate quickly in the near future.

Currently, the only other method that is able to model MA data by neural net-

works is NetMHCpan-4.1 [32]. In this paper, we proposed an alternative method
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called PEPPRMINT, which combines a rigorous statistical model (a mixture model)

and the power of a neural network to analyze MA data. PEPPRMINT performed

better or similarly to NetMHCpan-4.1. However, since the mixture mode framework

is more flexible to model MA data, we expect the performance of PEPPRMINT to

improve faster than NetMHCpan-4.1 as these models are updated using more train-

ing data. Furthermore, application of PEPPRMINT and NetMHCpan-4.1 in a case

study to prioritize neoantigens for melanoma patients demonstrated that the neoanti-

gen burden calculated by PEPPRMINT had a significant association with cytolytic

activity, while NetMHCpan-4.1 did not capture this association. Our method is com-

putationally efficient to make predictions. For example, in our melanoma application,

it took about 2 minutes to make prediction for around 280,000 peptides using one

neural network.

There are several directions for future studies to improve our pipeline. First,

we may include the 3-5 amino acids flanking a peptide into our model, since ear-

lier studies have shown that these locations can provide information regarding to

peptide processing [34, 38]. It is expected that information in flanking regions are

the same across HLAs since peptide processing is independent of HLAs. Therefore,

the flanking sequences could be modeled outside the mixture model to reduce model

complexity and improve computational efficiency. Another direction is to incorporate

gene expression information to prioritize neoantigens. The sequence-based predic-

tion and gene expression could be combined through a simple regression model or

another neural network [34, 38]. Additionally, in this study, we focused on SNVs. In

the future, expansion to other types of somatic mutations, such as indels or splicing

variants, would be desirable.

Finally, while our work focuses on HLA-I neoantigens, another important future

direction is to prioritize neoantigens for HLA-II proteins. HLA-I and HLA-II proteins
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present antigens to CD8+ and CD4+ T cells, respectively. Emerging evidence has

demonstrated the importance of HLA-II neoantigens and CD4+ T cells in eliciting

response to immune checkpoint inhibitors [39–41]. For example, Alspach et al. [40]

showed that neoantigen-specific CD8+ and CD4+ T cells are both required for im-

munotherapy induced anti-tumor response. Cancer vaccine studies have also shown

that HLA-II neoantigens elicit CD4+T cell response and confer strong anti-tumour

activity [2, 42, 43].

6 Code availability

PEPPRMINT source code, data, and trained models are available at https://github.com/Sun-

lab/PEPPRMINT. Pipelines for neoantigen prioritization and code for Riaz et al data

analysis are available at https://github.com/Sun-lab/IT-predictor.
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