
 

1 

 

The influence of objecthood on the representation of natural images in 1 

the visual cortex 2 

 3 

Paolo Papale1,2,ǂ, Wietske Zuiderbaan3,ǂ, Rob. R.M. Teeuwen1, Amparo Gilhuis1, Matthew W. Self1,¶, 4 

Pieter R. Roelfsema1,4,5,¶,* and Serge O. Dumoulin1,3,6,7,¶ 5 

 6 

1. Department of Vision & Cognition, Netherlands Institute for Neuroscience (KNAW), 1105 BA 7 

Amsterdam, Netherlands  8 

2. Momilab Research Unit, IMT School for Advanced Studies Lucca, 55100 Lucca, Italy 9 

3. Spinoza Centre for Neuroimaging, 1105 BK Amsterdam, Netherlands 10 

4. Department of Integrative Neurophysiology, VU University, 1081 HV Amsterdam, Netherlands 11 

5. Department of Psychiatry, Academic Medical Centre, Postbus 22660, 1100 DD Amsterdam, 12 

Netherlands. 13 

6. Department of Experimental and Applied Psychology, VU University Amsterdam, Amsterdam 14 

1181 BT, Netherlands 15 

7. Department of Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS 16 

Utrecht, Netherlands 17 

 18 

ǂ shared first author contribution 19 

¶ shared senior author contribution 20 

* correspondence should be addressed to: p.roelfsema@nin.knaw.nl  21 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.21.461209doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.21.461209


 

2 

 

Abstract 22 

Neurons in early visual cortex are not only sensitive to the image elements in their receptive field 23 

but also to the context determining whether the elements are part of an object or background. We 24 

here assessed the effect of objecthood in natural images on neuronal activity in early visual cortex, 25 

with fMRI in humans and electrophysiology in monkeys. We report that boundaries and interiors of 26 

objects elicit more activity than the background. Boundary effects occur remarkably early, implying 27 

that visual cortical neurons are tuned to features characterizing object boundaries in natural images. 28 

When a new image is presented the influence of the object interiors on neuronal activity occurs 29 

during a late phase of neuronal response and earlier when eye movements shift the image 30 

representation, implying that object representations are remapped across eye-movements. Our 31 

results reveal how object perception shapes the representation of natural images in early visual 32 

cortex. 33 

 34 

Introduction 35 

The visual scenes that we perceive are filled with objects. We readily identify the extent of the 36 

objects and their boundaries, a perceptual organization process that is important for our 37 

understanding of an image’s meaning. Accordingly, the judgments of people who are asked to mark 38 

regions occupied by objects and their boundaries are highly consistent1. Object and boundary 39 

perception even influence low-level vision, because image elements at object boundaries are better 40 

perceived than image elements at less relevant image locations2,3. Furthermore, image elements of 41 

objects have a higher perceived contrast than those that are part of the background4. Despite these 42 

influences on low-level visual perception, it is not yet well understood how objecthood influences 43 

neuronal representations in early visual cortex5. 44 
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Classical descriptions of the activity of neurons at the early levels of the visual system focus on the 45 

features that drive neurons, such as the contrast and orientation in a neuron’s receptive field (RF). 46 

In addition, there are also non-classical, contextual influences on neuronal activity, which originate 47 

from outside the neurons’ RFs and play a role in the grouping of features into objects. Here we focus 48 

on two such effects: boundary modulation (BoM) related to the detection of object boundaries, and 49 

object-background modulation (OBM) related to the grouping of object features into objects and 50 

their segregation from the background.  51 

Neurons in the primary visual cortex (V1) and area V4 increase their firing rate when their RF is 52 

centered on an elongated contour that extends well beyond their RF (Fig. 1a)6,7. Elongated contours 53 

are relevant for perceptual organization because they usually signal the borders of objects in natural 54 

scenes, whereas shorter contours are more likely to be part of the background8,9. BoM is the extra 55 

activity elicited by contours that demarcate object boundaries (Fig. 1a,d). Similarly, V1 and V4 56 

neurons exhibit stronger responses when their RF falls on the interior of a perceptual object than 57 

when it falls on the background (Fig. 1b)10–12. This OBM occurs for all image regions that are part of 58 

an object, suggesting that the response enhancement could cause the binding of the distributed 59 

representation of features in early visual cortex into coherent perceptual objects13. This view is 60 

supported by the finding that objects relevant for behavior elicit stronger OBM than objects that 61 

are not, implying a relation between OBM and object-based attention that co-selects all features of 62 

a relevant object11. BoM and OBM are thought to reflect the recurrent interactions within and across 63 

visual areas14 that determine the spread of enhanced neuronal activity and thereby the perception 64 

of spatially extended objects in a scene13. 65 

So far, BoM and OBM have only been measured with artificial stimuli, such as textures and displays 66 

with many line elements (Fig. 1a-c). Establishing the relevance of these signals for natural vision is 67 
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challenging, yet important, because neuronal response properties that do not play a role in the 68 

perception of natural stimuli are likely to be of limited relevance15. A recent study explored 69 

contextual signals in V1 elicited by more complex shapes, such as the texture-defined ‘U’ of Figure 70 

1c16, but researchers have, to our knowledge, not yet examined BoM and OBM with natural visual 71 

stimuli. If BoM occurs in natural images, we predict that the more salient object boundaries elicit 72 

stronger neuronal activity than image elements of the background. Similarly, if OBM occurs for 73 

natural images, extra activity should be elicited by object interiors compared to the background. 74 

To investigate the influence of objecthood on neuronal activity in early visual cortex, we used the 75 

Berkeley Segmentation data set (BSD), a library of natural images in which human observers marked 76 

object boundaries1. We used functional MRI to examine neuronal responses across many regions of 77 

visual cortex in humans and we also recorded multi-unit activity in V1 and V4 of monkeys to gain 78 

insight into the temporal profile of spiking activity. We report that objecthood influences neuronal 79 

activity. Object boundaries increased the early neuronal responses and object interiors enhanced 80 

activity during a later phase of the response. When subjects made eye movements across the 81 

images, these contextual effects carried over from one fixation to the next, implying that objects 82 

are remapped across eye movements in early visual cortex17,18. 83 

 84 
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 85 

Figure 1. The influence of object perception on neuronal responses in early visual cortex. 86 
a, The response of V1 and V4 neurons is enhanced when their RF falls on an elongated contour that 87 
extends well beyond their RF6. b,c, V1 and V4 neurons exhibit stronger responses when their RF falls 88 
on the interior of a perceptual object (square with different orientation in b and ‘u’ shape in c) than 89 
when it falls on the background16. d,e, We ask whether differences between object borders (yellow 90 
in d) and other image regions (cyan in d) and between the interiors of objects (yellow in e) and the 91 
background (cyan in e) in natural images influence the response of visual cortical neurons. f, We 92 
compared the response amplitudes evoked by image elements of objects and the background, 93 
taking the local contrast in the (p)RF into account. 94 
 95 

Results 96 

Objecthood modulates responses in human early visual cortex 97 

In the first experiment, we used ultra-high field fMRI at 7 Tesla in four human participants to 98 

investigate OBM and BoM within natural images (Fig. 2). Our analysis separated BoM (Fig. 1d) and 99 

OBM (Fig. 1e) from the influence of the contrast of image elements by evaluating the influence of 100 

image properties in the population receptive field (pRF) on the neuronal responses at each cortical 101 
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location. We chose 45 images from the BSD (Fig. S1) for which the object boundaries had been 102 

annotated by an independent group of human observers1. 103 

To separate the influence of image contrast from object perception we computed the contrast 104 

response functions (CRFs; Fig. 1f) for six regions of interest: V1, V2, V3, human V4 (hV4), the lateral 105 

occipital visual field maps 1/2 (LO-1/2) and V3-a/b. First, in a separate experiment, we measured 106 

the population receptive field for each cortical location (pRF; Fig. S2) 19. Second, to compute the CRF, 107 

we estimated the response amplitude as function the root mean square (RMS) contrast in each 108 

pRF20 (10 contrast bins, Fig. 1f).  109 

Next, we computed the CRF separately when the pRF fell on an object border versus a non-border 110 

image region, and when it fell an object region versus on the background for every image (Fig. 111 

2b)1,21. We defined object borders in the BSD images as those that were frequently marked by the 112 

observers as object boundaries, and contrasted them to non-border image regions that were not 113 

marked (Fig S3). These non-border regions could be part of the object interior (as the example in 114 

Fig. 1d and Fig. S3) or background (see Methods). 115 

The computation of the CRF allowed us to separate BoM and OBM from the influence of contrast. 116 

Cortical responses elicited by object borders were significantly higher than those elicited by non- 117 

border image regions in areas V1, V2 and V3 (Fig. 2c; all ps < 0.001, bootstrap test, see Methods), 118 

but not in areas V3ab, hV4 and LO-1 and 2 (Fig. S2). Thus, we observed significant BoM in V1-V3. 119 

Object boundaries of a particular contrast elicit a larger response, on average, than image regions 120 

with the same contrast that do not coincide with object boundaries. 121 

To examine the influence of OBM, we compared CRFs of cortical locations with pRFs on object versus 122 

background regions (Fig S3). The response amplitude when a pRF was centered on an object was 123 
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significantly stronger than when it was centered on the background in V1 and V2 (Fig. 2d; all ps < 124 

0.001, bootstrap test) but not in V3, hV4, LO-1/2 and V3A/b. We observed the same pattern of 125 

results also at the level of individual participants, for both BoM and OBM (Figure S4). 126 

We conclude that object borders elicit larger response amplitudes in early visual cortex than non-127 

border image regions, and that object regions elicit more activity than background regions, even if 128 

image contrast is the same. 129 

 130 

 131 

Figure 2. Objecthood influences responses in human early visual cortex. 132 
Four participants viewed 45 natural images while their brain responses were recorded with fMRI. a, 133 
Response amplitudes elicited by object boundaries (red) and background contours (blue) as a 134 
function of contrast in the pRF (x axis). b, Response amplitudes elicited by object interiors (orange) 135 
and the background (green). fMRI responses were normalized to the response to a full-field, 100% 136 
contrast stimulus. Shaded regions denote 95% confidence intervals determined by bootstrapping. 137 
Bars represent SEM across images (*** indicates p < 0.001, bootstrap test; n.s. non-significant).  138 
 139 
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Objects and their boundaries enhance the spiking activity of V1 and V4 neurons but at different 140 

latencies 141 

A limitation of fMRI is its poor temporal resolution and its indirect relation to spiking activity22. 142 

Therefore, we recorded spiking activity with chronically implanted electrode arrays elicited by BSD 143 

stimuli in two macaque monkeys. We placed the arrays in areas V1 and V4 and recorded multi-unit 144 

spiking activity (MUA). Whereas the pRFs in the MRI experiment covered the entire images, the RFs 145 

of the V1 and V4 neurons in the electrophysiology experiment were confined to a limited region of 146 

the visual field. To increase the sample of image patches falling in the RFs, we trained the monkeys 147 

to fixate at multiple locations on a total of four images (Fig. 3a). 148 

At the start of the trial, the monkey directed gaze to a fixation point on a gray background. We 149 

presented the image once the monkey had maintained fixation for 300ms. After a delay of 400ms, 150 

we presented a new fixation point and the monkey made a saccade to it and maintained fixation for 151 

a further 400ms (Fig. 3a). The repositioning of gaze was repeated for a total of 6 positions (sampled 152 

from a uniformly spaced grid with ~500 points) per trial. The neuronal response elicited by the image 153 

appearing at the first gaze position differs from that for later fixations because the image suddenly 154 

appears in the RF. Later fixations are preceded by saccades causing a rapid movement of part of the 155 

image through the RF. Furthermore, the image is now familiar and the monkeys may have 156 

recognized and segmented the objects during previous fixations. We therefore separately analyzed 157 

the response elicited by stimulus onset (Fixation 1) and later fixations (Fixations 2-6). The results for 158 

fixations 2-6 were comparable and we therefore pooled the data across these fixations (Fig. S5). 159 

 160 
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 161 

Figure 3. Influence of objects on spiking activity in areas V1 and V4 evoked by natural scenes. 162 
a, The monkey performed a sequence of eye-movements across the natural images. We presented 163 
a natural image once the monkey had maintained gaze on a red fixation point for 300ms. After a 164 
delay of 400ms, a new fixation point appeared and the monkey made a saccade to it and maintained 165 
fixation for a further 400ms. Per trial, the monkey made a total of 5 eye movements to fixation 166 
points sampled from a uniformly spaced grid (~500 points). b, Overlay of V4 spiking activity over the 167 
natural images at different time points (average of fixations 2-6). V4 response is determined by 168 
contrast, local and global image structure and these factors were disentangled in subsequent 169 
analyses. Fig. S3b shows the same analysis for fixation 1 in V4 and fixation 1 and 2-6 in V1. 170 
 171 
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We first examined the overall level of activity in V1 and V4 elicited by the four natural images (Fig. 172 

3b and S3). The response profiles suggest that extra activity is focused on the objects, but the 173 

influences of objecthood and contrast were not yet separated in this analysis. To disentangle the 174 

influence of BoM and OBM from that of contrast, we determined CRFs by binning the contrast in 175 

the RF of neurons in area V1 (77 recording sites, 44 in monkey B and 33 in monkey M) and V4 (22 176 

sites in monkey B), separately for contours that demarcate object boundaries and those that do not. 177 

Object borders elicited stronger spiking activity (time-window 0-300ms) than non-object image 178 

regions with the same contrast in V1 and V4 (Fig. 4a). BoM occurred during the first fixation as well 179 

as during later fixations (all ps < 0.001, bootstrap test) and was present at many V1 recording sites 180 

in monkey B (fixation 1, 66% of the sites; fixation 2-6, 77%; Fig. S6) and monkey M (fixation 1, 45%; 181 

fixation 2-6, 51%) and at V4 recording sites as well (monkey B, fixation 1, 45%; fixation 2-6, 45%). 182 

We determined BoM latency by fitting a curve to the difference in activity elicited by the object 183 

borders and non-border image regions, averaged across contrast bins. We estimated latency as the 184 

time-point at which the fitted function reached the 33% of its maximum (see Methods)11,12,23. In V1, 185 

the BoM latency was 50ms in both fixation 1 and in later fixations. BoM latency was not significantly 186 

different from the latency of the visually driven response (49ms for fixation 1 and 29ms for later 187 

fixations), neither for fixation 1 nor for the later fixations (both ps > 0.05, bootstrap test). The same 188 

was true for V4 in both conditions (BoM: 59ms for fixation 1; 49ms for fixations 2-6; onset of 189 

response: 61ms for fixation 1; 54ms for fixations 2-6; both ps > 0.05, bootstrap test). We cannot 190 

directly compare latencies between fixation 1 and later fixations, because in fixation 1 the image 191 

replaced a grey background whereas the image moved through the receptive fields preceding the 192 

later fixations. We corrected for this difference by computing LatBoM-Vis, the difference between the 193 

BoM latency and the visual latency and compared it between fixation 1 and later fixations across 194 
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recording sites (Fig. S7). LatBoM-Vis did not differ between fixation 1 and fixations 2-6 (p > 0.05, 195 

Wilcoxon signed-rank test; Fig. S7). 196 

Next, we compared the response elicited by object interiors to that elicited by background regions 197 

(Fig. 4b). Regions that were part of objects elicited more activity in V1 and V4 than background 198 

regions, both during the first fixation and later fixations (all ps < 0.001, bootstrap test). Many V1 199 

recording sites exhibited OBM (monkey B, fixation 1, 41%, fixations 2-6, 52%; monkey M, fixation 1, 200 

67%, fixations 2-6, 36% of sites with p<0.05, bootstrap test) and OBM was also present in V4 201 

(monkey B, fixation 1, 41% of sites in V4, fixations 2-6, 45%). Hence, OBM also occurs for natural 202 

images: image elements of objects elicit a stronger activity than those that are part of the 203 

background. 204 

In V1, the latency of OBM during the first fixation was 78ms, which was later than the onset of the 205 

visually driven response (p < 0.05, bootstrap test). We next examined whether the OBM latency was 206 

shorter for later fixations, because the monkeys may have segmented the image in figure and 207 

background during the previous fixations. Interestingly, the median OBM latency across sites for 208 

fixations 2-6 was only 61ms, and not significantly different from the visually driven response and 209 

BoM (p > 0.05, bootstrap test). To correct for the difference in visual stimulation we computed 210 

LatOBM-Vis, the difference between the latency of OBM and the visual response across recording sites. 211 

In V1, LatOBM-Vis was 13ms shorter during fixations 2-6 than during fixation 1 (p < 0.05, Wilcoxon 212 

signed-rank test; Fig. S7). In V4, the latency of OBM was later than the onset of visually driven 213 

response both for fixation 1 and fixations 2-6 (both ps < 0.05, bootstrap test). The difference in 214 

LatOBM-Vis between the fixation periods was not significant, but we cannot exclude the possibility that 215 

this was caused by the smaller number of V4 recording sites. 216 
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The earlier OBM in V1 during fixations 2-6 suggests that it may have carried over from earlier 217 

fixations during which the monkeys had already recognized and segmented the objects, in 218 

accordance with previous studies demonstrating that image segmentation results can be remapped 219 

across saccades17,18.  220 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.21.461209doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.21.461209


 

13 

 

 221 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.21.461209doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.21.461209


 

14 

 

Figure 4. Object borders and their interiors enhance the spiking activity of V1 and V4 neurons 222 
relative to background regions. 223 
a, Average CRFs (left) and MUA time-courses (averaged across contrast bins; right) in V1 (top row) 224 
and V4 (bottom row) for object-borders (red) and non-border image regions (blue). BoM is 225 
significant in both areas. Shaded regions around the CRFs denote 95% confidence intervals 226 
(determined by bootstrapping). Error bars indicate SEM across recording sites (***, p < 0.001, 227 
bootstrap test). b, CRFs and MUA time-course elicited by the object-interior (orange) and 228 
background (green). Black arrows indicate the latency of either BoM/OBM and gray arrows the 229 
latency of the visually driven response. 230 
 231 

BoM entails a comparison of the response elicited by object borders and other image elements, 232 

which were inside the objects or in the background, whereas OBM entails a comparison of image 233 

elements inside objects to background elements (Fig S3). BoM and OBM are not independent 234 

because both measures compare neuronal activity evoked by some of the object elements and 235 

background elements. We therefore also investigated the amount of unique variance in the activity 236 

of V1 and V4 neurons (time window 0-300ms) explained by BoM, OBM and contrast (Fig. 5a; see 237 

Methods). Each predictor explained a significant amount of unique variance in both areas and both 238 

fixation conditions (all ps < 0.001, t-test). In V1, contrast explained 41.0% of the variance, BoM 8.3% 239 

and OBM 5.5% during the first fixation and the values increased slightly to 44.8%, 10.1% and 6.4% 240 

for fixations 2-6, respectively. In V4, contrast explained 19.0%, BoM 21.4% and OBM 16.0% of the 241 

variance during the first fixation and these values were 20.8%, 21.1% and 35.0% for the later 242 

fixations. Hence, BoM and OBM accounted for a significant fraction of the explainable variance. 243 

Contrast explained less variance in V4 than in V1 whereas the contributions of BoM and OBM were 244 

larger in V4. It is of interest that the fraction of variance explained by OBM in V4 increased from 245 

16% for the first fixation to 35% for the later fixations. This result suggests that the extra activity 246 

elicited by the interior of objects builds up across between the first presentation of the image and 247 

subsequent eye movements, possibly because the scene is already known. 248 

 249 
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The tuning of the early V1 response is selective for object borders 250 

We were surprised to find BoM in V1 at a latency of 50ms (Fig. 4a), because it is much earlier than 251 

the latency of ~95ms typically observed for elongated contours in synthetic images7. The longer 252 

BoM latency of previous studies is compatible with an effect of feedback from higher cortical areas 253 

to V1, but a latency of 50ms might be too short for such a feedback loop. An important difference 254 

between the present approach and previous studies with synthetic images is that we did not equate 255 

the features of contours that form the boundaries of objects and those that were in the background, 256 

even though contrasts were matched. We therefore hypothesized that object contours in natural 257 

images have other features, on average, than background contours9,24, which could explain the early 258 

BoM. In other words, some V1 neurons might be tuned to the features of object contours and 259 

extract them in their feedforward response, driven from within the RF. 260 

We exploited recent advances in artificial neural networks (ANNs) to study the tuning of V1 261 

recording sites and to examine if it can account for the extra activity elicited by object boundaries25–262 

27. As a model for V1 tuning we chose layer conv3_1 of VGG-19 (and several other models, Fig. S8), 263 

which is the state of the art in predicting V1 responses to natural images28,29, and used a two-stage 264 

convolutional mapping to take both the spatial and feature selectivity of neurons at individual 265 

recording sites into account (see Methods)26. We confirmed previous studies28,29 demonstrating 266 

that the ANN approach for the modeling of V1 tuning outperforms previous models (Fig. S8). To gain 267 

insight into the tuning of the V1 neurons and visualize their preferred features, according to the 268 

ANN model, we examined the synthetic images that maximized the model response. Figure 5c 269 

illustrates a few of these synthetic images (for illustration purposes; we did not present these 270 

images as stimuli). We then applied these RF models to an independent set of 100 natural images 271 

that had been annotated by human observers to examine if they indeed predicted extra activity for 272 
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object boundaries (Fig. 5b,c and S9). Specifically, we filtered the unseen images with the RF models 273 

(step 1 in Fig. 5b) and compared the filtered images to the human annotations (step 2 in Fig. 5b). 274 

For every recording site we determined their border detection performance (BoP), a measure that 275 

quantifies how well the V1 RF models predict the human-annotated borders (step 3 in Fig. 5b and 276 

Y-axis in Fig. 5c). BoP is an accuracy score that takes the uneven class distribution of salient and non-277 

salient borders into account (F-measure, see Methods). Interestingly, 93% of the VGG-19 models of 278 

V1 tuning detected objected contours above chance level (ps < 0.05, permutation test), which 279 

indicates that V1 tuning is indeed useful for boundary detection. 280 

What is the relation between BoM elicited in V1 by the four pictures of our electrophysiological 281 

experiments and the BoP of the same recording sites for a different set of images? We computed 282 

the correlation between BoM in the early time-window (25-75ms: x-axis in Fig. 5c) and BoP (y-axis 283 

in Fig. 5c), across recording sites. The correlation coefficient was 0.25 (p = 0.037, t-test), indicating 284 

that V1 neurons that express BoM at an early latency are tuned to low-level feature differences that 285 

discriminate between object and non-object contours (Fig. 5c). 286 

We next examined how much information about object contours is present across the recorded 287 

population of V1 neurons. We built a binary classifier based on the early (25-75ms) V1 activity in 288 

response to trials with object-contours or elements with the same contrast in the neurons’ RF. To 289 

ensure that complex patterns signaling the presence of an object (e.g., the entire head of an animal) 290 

could not be detected by the RFs, we only included the 19 recording sites with smallest RFs (<1.5°) 291 

in this analysis. Classification of object boundaries during single fixations had an accuracy of 73.5%, 292 

which is well above the chance level of 50% (Fig. 5d, top, red bar; p<0.001, bootstrap test). 293 

Interestingly, when we used the activity of the entire conv3_1 layer of the VVG-19 ANN to detect 294 

object-borders the accuracy was similar (Fig. 5d, bottom, red bar; 66.4%, p<0.001, bootstrap test). 295 
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Hence, object-contours can be detected with a reasonable accuracy based on local information in 296 

individual RFs. 297 

We carried out an extra experiment to confirm that the early BoM reflects V1 tuning rather than a 298 

contextual influence. We removed the context by copying circular image patches from the BSD that 299 

matched the V1 MUA RFs in size onto a grey background. We chose patches with a similar RMS 300 

contrast that did or did not contain an object border and centered them on the RFs of neurons at 301 

50 recording sites in monkey B (Fig. 5e). As predicted, patches with object borders elicited a slightly 302 

stronger V1 response than patches without object borders with the same contrast (p < 0.001, 303 

Wilcoxon signed rank test; Fig. 5f,g). Hence, the tuning of V1 neurons indeed explains a fraction of 304 

the extra activity elicited by object boundaries. 305 

Our finding that BoM is partially explained by V1 tuning begs the question of a possible contribution 306 

of V1 tuning to OBM, i.e. the extra activity by the object interior. We therefore also examined low-307 

level differences between image elements of objects and backgrounds and built a binary (linear) 308 

classifier to discriminate between object and background regions, based on the early (25-75ms) 309 

response of the same 19 V1 recording sites as above, using trials with the same contrast. The 310 

classification accuracy during single fixations was 69.9% (Fig. 5d, top, orange bar; p<0.001, bootstrap 311 

test) and it was in the same range for the conv3_1 layer of VVG-19 (Fig. 5d, bottom, orange bar; 312 

74.0%, p<0.001, bootstrap test). Thus, even though OBM emerges later than BoM, the activity of a 313 

small number of V1 neurons is enough to differentiate between features that characterize the 314 

interior of objects and the background. 315 

 316 
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 317 

Figure 5. Explained variance in V1 and V4 and V1 tuning during the onset response. 318 
a, Fraction of variance of V1 and V4 activity explained by contrast, BoM and OBM (0-300ms time 319 
window) for fixation 1 and fixations 2-6 (***: p < 0.001; *: p < 0.05, Wilcoxon signed rank). Error 320 
bars denote SEM. b, We derived RF models for each V1 recording site using ANNs, and applied them 321 
to a separate annotated set of natural images to examine how well they can detect object borders. 322 
We calculated a measure of border-detection performance (BoP) for every V1 recording site. Step 323 
1, applying the V1 tuning to the image. Step 2, thresholding of activity and correlation with human 324 
judgements. Step 3, measurement of BoP of the V1 recording site. c, Correlation between BoM (x-325 
axis) and BoP (y-axis) across V1 recording sites (p < 0.05, parametric test). Blue dashed line, 326 
significance threshold for border detection (p < 0.05, permutation test). d, Accuracy of binary 327 
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classifiers of object contours (red bar) and interiors (orange bar) based on the early response (25-328 
75 ms) of 19 V1 sites (upper panel) or the VGG-19 conv3_1 layer (lower panel). Classifiers detected 329 
object contours and interiors above chance level. Error bars denote 95% confidence intervals 330 
(determined by bootstrapping). e, Example isolated BSD image patches matching RFs of different 331 
V1 recording sites. f, Time-course of the V1 responses. Object borders elicited stronger early activity 332 
than non-border image patches. g, Distribution of early (25-75ms) BoM elicited by image patches 333 
across recording sites (white bar indicate the median BoM; ***, p < 0.001, Wilcoxon signed-rank 334 
test). 335 
 336 

Contextual BoM in natural images 337 

The early BoM in natural images is driven by the information in the RF. It differs from BoM in 338 

previous studies6,7, in which it was a contextual effect driven by information outside the neurons’ 339 

RF. Does BoM also occur for natural images if the image elements in the RFs are kept the same? In 340 

a further experiment, we placed the RF of 98 V1 recording sites (68 in monkey B and 30 in monkey 341 

M) on object borders and other locations in 12 natural images from the BSD, while keeping the 342 

image patch in the RF constant (Fig. 6a). Specifically, we copied an image patch with an object border 343 

and pasted it at a background location to create a condition in which the same image patch is not 344 

perceived as object border. An example image is shown in Fig. 6a (left panel) where we copied a 345 

part of the back of the elephant into the background. On average, the object contours elicited a 346 

stronger V1 response than the same image patches presented at background locations (p < 0.001, 347 

Wilcoxon signed-rank test across recording sites; Fig. 6b). The latency of BoM in this experiment was 348 

81ms, i.e. it now occurred during the delayed phase of the V1 response. 349 

As a control, we placed the image patch at identical locations of synthetic metamers of these 350 

images. The metamers had the same orientations, phases, spatial frequencies, auto- and cross-351 

correlations and marginal statistics, but the layout of objects was scrambled30. In the example 352 

metamer of Fig. 6a (middle and right panels), the transitions between water, trees and air were at 353 

the same locations but the elephant was removed (other example metamers are shown in Fig. S10). 354 
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BoM was absent for the metamers (p > 0.05, Wilcoxon signed-rank test). To investigate if the level 355 

of BoM differed between the metamers and the original images, we performed a repeated-356 

measures two-way ANOVA with object-border and scrambling (2 levels each) as factors. The main 357 

effects of object-borders and scrambling were both significant (salience, F1,97 = 28.6, p < 0.001; 358 

scrambling, F1,97 = 5.42, p = 0.022). Importantly, the interaction was also significant at the population 359 

level (F1,97 = 6.74, p = 0.011) and at many of the individual recording sites (at p < 0.05; 40% of the 360 

sites in monkey B and 73% in monkey M). Hence, if RF stimulus is kept constant, contextual 361 

information enhances the V1 activity elicited by object borders, at a latency of ~80ms. These results, 362 

taken together, indicate that there are two processes that jointly explain the enhanced activity 363 

elicited by object boundaries. The tuning of V1 neurons enhances their representation from an early 364 

time point onwards and the scene context causes an additional activity increase at a longer latency. 365 

 366 
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 367 

Figure 6. Contextual BoM in V1. 368 
a, To examine the role of contextual information around the V1 RF, we modified natural images 369 
ensuring that the same features were present the RFs. We either copied an image patch with an 370 
object border to a background location (left panel) or removed the object from the scene by creating 371 
metamers (middle and right panel). The RF stimulus was kept constant across all the conditions. b, 372 
Average V1 response elicited by image regions that demarcated object boundaries (red) or were 373 
part of the background (blue). Lower panel, response difference. BoM in this condition had a latency 374 
of 81ms. c, The responses elicited by the metamers revealed no significant differences. 375 
 376 

Discussion 377 

We investigated how objects in natural images influence neuronal activity in early visual cortex and 378 

observed widespread influences of objecthood on neuronal activity in the human early visual cortex. 379 

These results were mirrored by the early and late modulation of neuronal activity in areas V1 and 380 
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V4 of monkeys. Early influences were related to the tuning of the neurons, causing object 381 

boundaries to elicit more activity than background elements. However, if we held the image 382 

elements in the RF constant, image elements that were part of an object also elicited more activity 383 

than elements that were part of the background. This contextual influence manifested during a later 384 

phase of the neuronal response, which suggests the involvement of feedback from higher areas 385 

and/or horizontal interactions within visual areas. Whereas previous studies on figure-ground 386 

segregation and contour integration in early visual cortex used well-controlled, but artificial stimuli, 387 

the present results demonstrate that these findings generalize to natural vision. The results are in 388 

accordance with theories proposing that image elements of figures are labeled by enhanced 389 

neuronal activity in early visual cortex to segregate them from the background10,13,31.  390 

Despite the different tasks and recording modalities between humans and monkeys, the neuronal 391 

responses in V1 were strikingly similar between the two species (Fig. S2). Our fMRI experiment 392 

revealed that BoM for natural images is present in V1 and other areas of early visual cortex. Object 393 

regions evoked stronger response than backgrounds in areas V1 and V2 but OBM did not reach 394 

significance in a number of higher areas, including hV4. In contrast, in the electrophysiological 395 

experiments in monkeys, OBM was present in V1 but even stronger in V4. This discrepancy may be 396 

related to differences between species, experimental setups and differences in spiking versus fMRI 397 

measures of neural activity22,32. Another relevant difference is the larger size of fMRI pRFs in hV4 398 

compared to neurophysiologically determined V4 RFs. The larger pRF sizes in hV4 may include more 399 

neurons with RFs not on the boundary and thereby dilute the BoM signal. Human fMRI allowed us 400 

to link the neural responses to human perception, and the monkey neurophysiological experiments 401 

allowed us to measure the timing of BoM and OBM and relate it to previous neurophysiological 402 

work with synthetic stimuli. 403 
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 404 

Early and later object boundary signals 405 

Unexpectedly, natural images elicited BoM during the initial V1 response, at a latency of 50ms. This 406 

is much earlier than in previous studies that used well controlled, but artificial stimuli to keep the 407 

RF stimulus identical between salient and non-salient contour conditions6,7. In these previous 408 

studies, the contextual effects on neuronal firing rates were attributed to feedback from higher 409 

cortical areas and/or lateral connections within V1, which can inform neurons about information 410 

outside the RF. The synaptic and propagation delays associated with these recurrent routes explain 411 

why BoM occurs a few tens of ms after the initial V1 response13. Our results indicate that the early 412 

BoM signals evoked by natural images are not contextual but reflect the tuning of V1 neurons. 413 

Indeed, we found that features of object borders differ from those of non-border image regions (Fig. 414 

5c) and that V1 neurons are sensitive to these feature differences (Fig. 5d). On average, the object 415 

borders of a particular contrast elicit more activity than non-border image regions with the same 416 

contrast. The V1 tuning to object borders is more complex than can be described by Gabor 417 

filters25,28,33 and is presumably related to a sensitivity to higher-order image statistics34–36, which 418 

also explain the early detection of boundaries in studies using synthetic figure-ground displays11 419 

(Fig. 1b).  420 

In addition to their effect on the feedforward response, object boundaries also elicited a contextual 421 

influence on V1 activity. When we matched the image elements of object and non-object contours 422 

in the RF of V1 neurons, the activity elicited by the object contours was still stronger than that 423 

elicited by other, non-object contours (Fig. 6). BoM now occurred at a latency of 81ms, which is 424 

30ms later than the feedforward response and in line with previous studies that used synthetic 425 

stimuli to keep the RF content constant and controlled contour salience by the layout of image 426 
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elements in the RF surround6,7. This additional delay suggests that BoM now depended on feedback 427 

from higher areas and/or horizontal connections within V1. It is of interest that these putative 428 

feedback signals increased the activity elicited by contours that are predicted by an object’s overall 429 

shape. This result is not in accordance with popular “predictive coding” schemes37, which suggest 430 

that feedback connections should suppress the activity of contours that are predicted by the 431 

object’s shape. Instead, we found that object borders increase the neuronal activity in the visual 432 

cortex, both during the early and later phases of V1 response.  433 

BoM is presumably related to border-ownership coding, which is expressed by many neurons in V2, 434 

V3, V4 and also by some V1 neurons38–40. The activity of neurons with border-ownership signals 435 

depends on the side of the figural region relative to the border that falls in the RF. For example, if 436 

the border is vertical, some neurons prefer that the border is owned by a figure on the left of it, 437 

whereas other neurons have the opposite preference. Hence, border-ownership neurons can link 438 

the shape of the border to the surface properties of the object’s interior and may therefore play an 439 

important role in object recognition. In many situations, the local shape of a border falling in a RF 440 

can provide information about the side of the figure24. In these situations, neurons express border-441 

ownership early, during the feedforward response. However, if the RF-stimulus is held constant, 442 

border-ownership coding occurs after an additional delay40. Although BoM reflects extra activity 443 

elicited by the object boundaries compared to less-relevant image elements, and thereby differs 444 

from border-ownership coding, it seems likely that the two effects are intimately related. 445 

 446 

Neuronal activity elicited by object interiors  447 
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Image elements that were part of the interior of objects in the scene elicited more activity than 448 

background elements, both in human fMRI and monkey neurophysiology. This finding generalizes 449 

previous results on the neuronal mechanism of figure-ground perception to natural images (Fig. 450 

1b,c)10–12,16,41–46. Studies using synthetic stimuli revealed a number of successive processing phases 451 

for the processing of texture defined figure-ground stimuli (Fig. 1b, reviewed in ref.31). In V1, the 452 

first phase is the arrival of the input from the LGN at a latency of ~40ms. This is followed at a latency 453 

of ~60ms by boundary enhancement. Boundaries between figure and ground now elicit extra 454 

activity in V1, an effect that starts in the superficial layers of cortex41. The change in feature values 455 

at a boundary between figure and ground can be detected locally (e.g. there is an abrupt change in 456 

the texture as in Fig. 1b) and the mechanisms presumably overlap with early BoM (Fig. 7a). In a yet 457 

later phase, at a latency of ~90ms, V1 neurons that represent the figure’s interior enhance their 458 

activity. Enhancement in the figure’s interior is a genuine contextual effect, because the properties 459 

of the image elements that fall into the RF are often not informative about whether they belong to 460 

figure and ground (Fig. 1b,c). In these cases, the information that a RF falls on a figure comes from 461 

outside the RF. The relatively long latency of this figure-ground modulation is compatible with 462 

recurrent loops that may include horizontal connections within V1 and loops through the higher 463 

visual areas. Indeed, if activity in higher areas is blocked, figure-ground modulation in the center of 464 

the figure is diminished47,48, implying an import contribution of recurrent routes through higher 465 

visual cortical areas49. Interestingly, the optogenetic blockade of the late V1 activity phase with 466 

figure-ground modulation selectively impairs figure-ground perception, whereas contrast detection 467 

is unimpaired48. 468 

The activity of image elements that were part of the interior of objects of natural images was 469 

enhanced in V1 at a latency of 78ms, which is 28ms after the visually driven response during the 470 
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first fixation. In V4 this OBM signal occurred at a latency of 93ms. We also observed systematic 471 

differences between the features of object interiors and those in the background, indicating that 472 

the tuning of V1 neurons could, in principle, discriminate between features of figure and 473 

background, even though the early V1 population response did not exhibit OBM.  474 

 475 

Trans-saccadic integration 476 

Previous studies demonstrated that figure-ground signals for synthetic stimuli can persist across eye 477 

movements17,18. As a result, the figure-ground structure that is perceived during one fixation can be 478 

quickly reassigned to the appropriate neurons after all RFs shifted across the image due to the 479 

saccade. In the present study, OBM occurred sooner after the visually driven response for later 480 

fixations than for the first fixation. This result suggests that information about the location of object 481 

interiors is indeed carried over to the new fixation18, providing insight into the neuronal mechanisms 482 

for trans-saccadic integration in natural images17,50,51. One possible mechanism for the remapping 483 

of these response modulations in early visual cortex are neurons in parietal and frontal cortex that 484 

remap salient image elements and could provide feedback to lower areas after each saccade52–54. 485 

Another possible mechanism is provided by neurons that code the position of objects in non-486 

retinotopic, e.g. head-centered coordinates55,56. These cells do not need to update their activity 487 

after an eye movement because object position relative to the head is independent of eye position. 488 

These neurons could feed the location of objects back to early visual cortex after a coordinate 489 

transformation from head to eye centered coordinates, based on the new, post-saccadic eye 490 

position. A final source for the early post-saccade OBM are neurons in areas of the temporal stream 491 

that code for the overall shape of objects. Many of these neurons are translation invariant, i.e. their 492 

activity depends little on the precise location of an object on the retina57. These neurons represent 493 
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object shape58 and could provide feedback to boost the activity of neurons in lower areas that 494 

represent relevant shape features after a saccade. 495 

 496 

 497 

Figure 7. Bottom-up and top-down mechanisms for object detection in natural vision 498 
Summary of the results. The local features of contour a suggest that is an object boundary. It can be 499 
detected bottom-up by tuning of V1 neurons. Image patches b and c have similar features but the 500 
context indicates that c contains an object boundary and b does not. Image patches d and e have 501 
similar features, but only e is part of the interior of the animal. 502 
 503 

Conclusion 504 

We conclude that the object boundaries and object interiors of natural images increase neuronal 505 

activity in the visual cortex. The extra neuronal activity occurs early if the local image elements in 506 

the RF have a high degree of “objecthood” and at a later point in time if it depends on contextual 507 

information outside the RF. OBM and BoM play an important role in perceptual organization13, the 508 

process that groups image elements of the same object together and segregates them from other 509 
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objects and the background by labeling the object features with enhanced neuronal activity13,59–63. 510 

The presence of these cortical image parsing signals for natural images suggest that they play a role 511 

during each fixation of our everyday vision, opening many avenues for future research. 512 
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Methods 662 

fMRI experiment with human participants 663 

 664 

Subjects 665 

Four participants (all male; ages 29-41 years) participated in the fMRI experiment. All participants 666 

had normal or corrected-to-normal visual acuity. We obtained informed written consent of the 667 

participants and the protocol was approved by the Human Ethics Committee of University Medical 668 

Center Utrecht. 669 

 670 

Stimulus presentation 671 

The visual stimuli were generated in Matlab (Mathworks Inc.) using the PsychToolbox64,65 on a 672 

Macintosh MacBook Pro. The stimuli were back-projected on a display inside the MRI bore. The 673 

subject viewed the display through mirrors inside the scanner. The size of the display was 674 

15.0x7.9cm with a resolution of 1024x538 pixels. The total distance from the subject’s eyes to the 675 

display was 41cm. The stimuli were constrained to a circular area (radius, 5.5°) with the size of the 676 

vertical dimension of the screen. The area outside this circle was maintained at a constant mean 677 

luminance. 678 

 679 

Population receptive field (pRF) mapping stimulus 680 

We used bar apertures filled with natural images 19,20 (Fig. S2) to train the pRF-model. The width of 681 

the bar subtended 1/4th of the stimulus radius (1.375°). Four bar orientations (0°, 45°, 90° and 135°) 682 

and two different step directions for each bar were used, giving a total of 8 bar directions within a 683 

given scan. The bar stepped across the stimulus aperture in 20 steps (with a distance of 0.55° and a 684 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.21.461209doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.21.461209


 

36 

 

duration of 1.5 seconds per bar position) so that each pass took 30 seconds. A period of 30 seconds 685 

mean-luminance (0% contrast) was presented after every pass. In total there were 4 blocks of mean-686 

luminance during each scan, presented at evenly spaced intervals. The participants performed a 687 

fixation dot task to make sure they fixated at the center of the display. A small fixation dot (0.11° 688 

radius) was presented in the middle of the stimulus. The fixation dot changed its color from red to 689 

green at random time intervals and subjects were instructed to respond to color changes using a 690 

button press. 691 

 692 

Natural images 693 

The natural images came from the BSD 1,21. The original resolution of the images was 321x481 pixels 694 

(both landscape and portrait). In the fMRI experiments20, we selected a square region of 321x321 695 

pixels from the images and upsampled it to a resolution of 516x516 pixels, which corresponds to a 696 

stimulus of 11x11° diameter of visual angle. The images were masked by a circle with a raised cosine 697 

faded edge (width of 0.9°), and the areas outside this circle were set to the mean luminance. The 698 

images were gamma-linearized and the mean contrast was set to 50%. We used 3 image sets in 699 

different scanning runs, each containing 15 different natural images (45 in total) and one full-field 700 

binarized bandpass-filtered noise stimulus. Figure S1 shows the image set. A fixation dot was 701 

presented at the center of the stimulus. We used the same fixation dot task as for the pRF mapping 702 

runs. 703 

 704 

Functional imaging and processing 705 

The MRI data was acquired with a Philips 7T scanner using a 32-channel head-coil20. We scanned 706 

the participants with a 2d-echo-planar-imaging sequence with 25 slices oriented perpendicular to 707 
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the calcarine sulcus with no gap. The following parameters were used; repetition time (TR) = 708 

1500ms, echo time (TE) = 25ms and a flip angle of 80°. The functional resolution was 2x2x2mm and 709 

the field of view (FOV) was 190x190x50mm. We used foam padding to minimize head movement. 710 

The functional images were corrected for head movement between and within the scans66. For 711 

computation of the head movement between scans, the first functional volumes for each scan were 712 

aligned. Within scan motion correction was then computed by aligning the frames of a scan to the 713 

first frame. The duration of the pRF mapping scans was 372 seconds (248 time-frames), of which 714 

the first 12 seconds (8 time-frames) were discarded to eliminate start-up magnetization transients. 715 

During the three sessions we acquired 6-8 pRF mapping scans in total per subject. To obtain a high 716 

signal-to-noise ratio, we averaged across the repeated scans. During the three sessions in which we 717 

presented the natural images we acquired 6-7 scans for each of the three stimulus sets. The duration 718 

of the scans with the natural images was 432 seconds (288 time-frames). The first 12 seconds (8 719 

time-frames) were discarded to eliminate start-up magnetization transients. The images were 720 

presented in a block design. Each image was presented during a 9-second block. Within this block 721 

the same image was shown 18 times for a duration of 300ms followed by 200ms mean-luminance. 722 

The full-field stimuli were presented with 3 alternating different high-contrast patterns, to obtain a 723 

full high-contrast response that is not based upon one specific high-contrast pattern (Fig. S2b). 724 

Specifically, the phase of the full-field pattern was randomized on different presentations in order 725 

to obtain a response that is not influenced by one specific dartboard pattern. The block in which the 726 

stimulus was presented was followed by a 12 second mean-luminance presentation. Four longer 727 

blank periods of 33 seconds were also included during the scan. 728 

 729 

Anatomical imaging and processing 730 
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The T1-weighted MRI images were acquired in a separate session using an 8-channel SENSE head-731 

coil. The following parameters were used: TR/TE/flip angle = 9.88/4.59/8. The scans were acquired 732 

at a resolution of 0.79x0.80x0.80mm and were resampled to a resolution of 1mm3 isotropic. The 733 

functional MRI scans were aligned with the anatomical MRI using an automatic alignment 734 

technique66. From the anatomical MRI, white matter was automatically segmented using the 735 

FMRIB's Software Library (FSL)67. After the automatic segmentation it was hand-edited to minimize 736 

segmentation errors68. The gray matter was grown from the white matter to form a 4mm layer 737 

surrounding the white matter. A smoothed 3D cortical surface can be rendered by reconstruction 738 

of the cortical surface at the border of the white and gray matter69. 739 

 740 

pRF model-based analysis 741 

The pRF-model was estimated for every cortical location from the measured fMRI signal that was 742 

elicited by the pRF mapping bar stimuli (Fig. S2a)19,20. In short, the method estimates the pRF by 743 

combining the measured fMRI time-series with the position time course of the visual stimulus. A 744 

prediction of the time-series is made by calculating the overlap of the pRF and the stimulus energy 745 

(RMS contrast, see below) convolved with the hemodynamic response function (HRF). We 746 

estimated the parameters of the HRF that best describes the data of the whole acquired fMRI 747 

volume70. The optimal parameters of the pRF-model are chosen by minimizing the residual sum of 748 

squares between the predicted and the measured time-series. We used the conventional pRF-749 

model, which consists of a circular symmetric Gaussian. This model has four parameters: position 750 

(x, y), size (σ) and amplitude (β). For further technical and implementation details see19. 751 

 752 

Regions of interest 753 
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We used the pRF-method to estimate position parameters x, and y of the pRF of every voxel. From 754 

these values, we derived the polar angle (atan(y0/x0)) and eccentricity (√(x0
2 + y0

2)) values. We drew 755 

the borders between visual field maps on the basis71 polar angle and eccentricity maps on the 756 

inflated cortical surface69. We defined visual areas V1, V2, V3, hV4, LO-1/2 and V3-a/b as our regions 757 

of interest (ROIs)71–74. 758 

 759 

Analysis of fMRI responses to the natural images 760 

We measured fMRI responses to 45 natural images (Fig. S1) and 3 full-field high contrast stimuli 761 

(100% contrast; Figure S2)20. We first determined the voxel response amplitudes in %BOLD signal 762 

change elicited by each of these images. The voxel responses were calculated using a general linear 763 

model (GLM)75,76. To reduce the noise from the individual voxel differences in response amplitudes, 764 

we normalized the responses to the voxel’s response to the full-field (100% contrast) stimulus. 765 

To determine the contrast response function (CRF), we only used the voxels with an overall 766 

significant response (t-values > 4.0), a pRF eccentricity between 0.5 and 4° and for which the pRF 767 

model explained more than 40% of the variance. Based on previous work, for every area we used a 768 

threshold for the pRF sizes19,70,77,78. In V1 we included pRFs with a value of σ (which determines pRF 769 

size) between 0.25° and 0.8°, for V2 between 0.25° and 1.1°, for V3 between 0.25° and 1.75°, for 770 

hV4 between 0.45° and 3°, for V3ab between 0.45° and 3.75° and for and LO12 between 0.9° and 771 

5°. 772 

To derive the CRF, we computed the contrast of every natural image within each pRF. The pRF of 773 

voxels was modeled as a circular symmetric Gaussian function, described by parameters for position 774 

(xc, yc) and size (σ), giving rise to a Gaussian weighting function wi: 775 
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𝑤! = 	𝑒𝑥𝑝 '
(𝑥! − 𝑥")# + (𝑦! − 𝑦")#

2σ# /																																																																									(1) 776 

Where xc and yc define the location of the center of the pRF in the visual field, σ determines the size 777 

of the pRF and xi and yi define the location of the i-th pixel. We computed each voxel’s contrast 778 

value to each natural image by calculating the Root-Mean-Squared (RMS) contrast65,79 of the part 779 

of the image inside the voxel’s pRF. RMS contrast was defined as the standard deviation of the 780 

luminance of the pixels relative to the mean. The RMS-contrast was weighted by the pRF Gaussian 781 

function to obtain the local contrast-energy value per pRF: 782 

𝑙𝑜𝑐𝑎𝑙	𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡	𝑒𝑛𝑒𝑟𝑔𝑦 = :
1

∑ 𝑤!$
!%&

<𝑤!

$

!%&

(𝐿! − 𝐿)#

𝐿# 																																										(2) 783 

Where N is the number of pixels in the stimulus window. L is the mean luminance from the pixels 784 

inside the spatial window, and Li is the luminance of the i-th pixel2. 785 

We computed the CRF of voxels areas V1, V2, V3, hV4, LO-1/2 and V3-a/b by measuring the fMRI 786 

responses as a function of the contrast inside the pRF. We chose contrast bins such that every bin 787 

contained 10% of the voxels and fitted the following equation (modified from ref.80): 788 

𝑅(𝐶) = 𝑎
𝐶'

𝐶' + 𝑄' 																																																																																																									(3) 789 

where R is the fMRI response, C is the RMS-contrast inside the pRF, Q represents the contrast value 790 

where the CRF is at half of its maximum response, and q determines the slope (Q and q are free 791 

parameters). 792 

 793 

Quantification of BoM and OBM  794 

The BSD images are annotated by 5-9 human observers who drew lines to identify borders that are 795 

important for the scene’s representation1,21. We used these measurements to define the perceived 796 
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boundaries, which are salient boundaries of the scene. Every pixel i of the manually labeled images 797 

have values for the degree of agreement between observers, Si, between 0 (not labeled by any 798 

observer) and 1 (labeled by all observers). The border-salience in the pRF is calculated as a weighted 799 

sum across pixels: 800 

𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑	𝑏𝑜𝑟𝑑𝑒𝑟 = 		
∑ 𝑤! ∙ 𝑆!$
!%&

∑ 𝑤!$
!%&

																																																																															(4) 801 

Here wi are the weights of the RF estimate (equation 1) and N is the total number of pixels in the 802 

RF. We used the same method to quantify the degree to which a pixel was part of an object or the 803 

background (Fig. 1e). Pixels that were as part of an object, had a value of 1 and pixels that were part 804 

of the background had a value of 0. We selected a segmentation covering the objects of a scene 805 

from one of the BSD subjects, and then considered everything else as background5. We excluded 3 806 

of the 45 images in the OBM analysis because the object in the image almost filled the entire scene. 807 

We split the voxels based on objecthood values inside the pRFs. We included the lowest 25 percent 808 

responses as non-perceived borders/background and the highest 25 percent as perceived-809 

borders/object-interior and computed the CRFs within these voxel classes. 810 

 811 

Statistics 812 

We used a bootstrapping procedure to determine the significance of differences in CRFs between 813 

conditions. We sampled the images with replacement 1000 times, fit the CRF for the two simulated 814 

conditions and computed the mean difference. We derived the p-value from this null distribution. 815 

 816 

Electrophysiological experiments in monkeys 817 

Training of the monkeys 818 
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All procedures complied with the NIH Guide for Care and Use of Laboratory Animals and were 819 

approved by the institutional animal care and use committee of the Royal Netherlands Academy of 820 

Arts and Sciences. Two macaque monkeys (males, 7 and 13 years old) participated in the 821 

electrophysiological experiments. They were socially housed in stable pairs in a specialized primate 822 

facility with natural daylight, controlled humidity and temperature. The home-cage was a large 823 

floor-to-ceiling cage which allowed natural climbing and swinging behavior. The cage had a solid 824 

floor, covered with sawdust and was enriched with toys and foraging items. Their diet consisted of 825 

monkey chow supplemented with fresh fruit. Their access to fluid was controlled, according to a 826 

carefully designed regime for fluid uptake. During weekdays the animals received water or diluted 827 

fruit juice in the experimental set-up upon correctly performed trials. We ensured that the animals 828 

drank sufficient fluid in the set-up and supplemented extra fluid after the recording session if they 829 

did not drink enough. On days of the weekend, they received at least 700ml water in the home-cage 830 

in a drinking bottle. The animals were regularly checked by veterinary staff and animal caretakers 831 

and their weight and general appearance were recorded daily in an electronic logbook during fluid-832 

control periods. 833 

 834 

Surgical details 835 

We implanted both monkeys with a titanium head-post (Crist instruments) under aseptic conditions 836 

and general anesthesia as reported previously81. The monkeys were trained to direct their gaze to a 837 

0.5° diameter fixation dot and hold their eyes within a fixation window (1.1° diameter). They then 838 

underwent a second operation to implant 5x5 arrays of micro-electrodes (Utah-probes, Blackrock 839 

Microsystems) over opercular V1 and V4. The inter-electrode spacing of the arrays was 400μm. We 840 

obtained good signals from 4 V1 arrays in each monkey and from 2 V4 arrays in monkey B11. 841 
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 842 

Electrophysiology 843 

We recorded neuronal activity of 192 recording sites in V1 (96 in Monkey M and 96 in Monkey B) 844 

and 48 V4 recording sites in monkey B. We recorded the envelope of multi-unit activity by digitizing 845 

the signal referenced to a subdural electrode at 24.4kHz. The signal was band-pass filtered (2nd 846 

order Butterworth filter, 500Hz-5KHz) to isolate high-frequency (spiking) activity. This signal was 847 

rectified (negative becomes positive) and low-pass filtered (corner frequency = 200Hz) to produce 848 

the envelope of the high-frequency activity, which we refer to as MUA82. The MUA signal reflects 849 

the population spiking of neurons within 100-150μm of the electrode and the population responses 850 

are very similar to those obtained by pooling across single units82–85. 851 

 852 

Receptive Field Mapping 853 

We mapped the RF of each recording site in V1 using a drifting luminance-defined bar that moved 854 

in one of four directions. The response to each direction was fitted with a Gaussian function. The 855 

borders of the RF were then calculated as described previously82. The signal-to-noise ratio (SNRRF) 856 

of the response was taken as the peak of the Gaussian divided by the standard deviation of the pre-857 

trial baseline response. We only included recording sites in the analyses with a reliable visual 858 

response (i.e., the responses to all four bar directions had an SNRRF of at least 1). The median V1 RF 859 

size, taken as the square-root of the area, was 1.8° (range 0.4° to 8.2°) and the median eccentricity 860 

of the RFs was 2.4° (range 0.6° to 12.9°). We mapped V4 RFs by presenting white dots (0.5°, 861 

luminance 82 cd×m−2) on a gray background (luminance 14 cd×m−2) at different positions of a grid 862 

(0.5° spacing). The hotspot of the V4 RF was defined as the position with the maximum response 863 

(median eccentricity 4.04°, range 0.79°–7.43°) and the RF borders as the locations where activity 864 
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fell below 50% of the maximum86. Using this criterion, the median V4 RF size was 4.5° (range 2.6°–865 

6.0°). 866 

 867 

Stimulus presentation 868 

In the experiments with monkeys, stimuli were presented on a CRT monitor at a refresh rate of 60Hz 869 

and resolution of 1024x768 pixels viewed from a distance of 46cm. The monitor had a width of 870 

40cm, yielding a field-of-view of 41.6 x 31.2°. All stimuli were generated in Matlab using the COGENT 871 

graphics toolbox (developed by John Romaya at the LON at the Wellcome Department of Imaging 872 

Neuroscience). The eye position was recorded using a digital camera (Thomas recordings, 250Hz 873 

frame-rate). 874 

 875 

Selection of recording sites and inclusion of data 876 

To normalize MUA, we first subtracted the mean activity in the pre-trial period in which the animal 877 

was fixating (200 to 0ms relative to stimulus onset) and divided by the maximum smoothed (26ms 878 

Gaussian kernel) peak response (0-150ms after stimulus onset). In the experiment with multiple 879 

saccades, each trial contained multiple fixations and neuronal activity was normalized to the peak 880 

response elicited by stimulus onset during the first fixation. The data are therefore in normalized 881 

units, where e.g. a value of 0.1 indicates 10% of the maximal MUA onset response. We only included 882 

recording sites on days with a sufficient signal-to-noise ratio (SNRDAY). SNRDAY was estimated by 883 

dividing the maximum of the initial peak response by the standard deviation of the baseline activity 884 

across trials. When the SNRDAY of a recording site was smaller than 2 on particular day, we removed 885 

that session from the analysis of that recording site. To test for statistical differences between 886 
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conditions and to compute the CRFs, MUA activity was generally averaged in a 0-300ms time 887 

window. Analyses with different time-windows have been specified in the main text. 888 

 889 

Analyses of latency 890 

To compute the latency of neural responses a function was fitted to the time-course of interest (i.e. 891 

the difference between object borders and non-border image regions or the difference between 892 

the object interior and background)11,12,23. The function was derived from the assumptions that the 893 

onset of the response has a Gaussian distribution and that a fraction of the response dissipates 894 

exponentially which yields the following equation: 895 

𝑓(𝑡) = 	𝑑 ∙ exp	(𝜇𝛼 + 0.5𝜎#𝛼# − 𝛼𝑡) ∙ (𝐺(t, µ + σ#α, σ) + 𝑐 ∙ 𝐺(t, µ, σ)																										(5) 896 

Where 𝐺(t, µ, σ) is a cumulative Gaussian density with mean 𝜇 and standard deviation 𝜎, 𝛼(& is the 897 

time constant of the dissipation, and 𝑐 and 𝑑 represent the contribution the non-dissipating and 898 

dissipating components, respectively. The latency was defined as the point at which the fitted 899 

function reached 33% of its maximum. To compare the latency of the BoM and OBM between 900 

fixation 1 and fixations 2-6, we first subtracted from the OBM latency for each recording site from 901 

the latency of visually driven response and performed a Wilcoxon signed rank test (Fig. S7). The 902 

latency of visually driven response was computed as the difference between the response elicited 903 

by images with the highest and lowest contrast levels in the RF. 904 

 905 

Natural images presented in the electrophysiological experiments 906 

Four BSD images from the fMRI experiment were used in the electrophysiological experiments in 907 

which the monkeys made saccades (11.6° radius visual angle; Figure S1). At the start of the trial the 908 

screen was gray (26.8 cd×m−2) with a red fixation point with a position that was randomly selected 909 
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from uniformly spaced grid (with ~500 positions) covering the circular aperture of the image. The 910 

image appeared once the monkey had maintained fixation for 300ms (fixation 1). After an additional 911 

400ms, the first fixation point disappeared and another fixation point appeared, at a position 912 

sampled from the same grid. The monkey made a saccade to the new fixation point and maintained 913 

fixation for an additional 400ms. This fixation-saccade procedure was repeated five times (fixations 914 

2-6). Reward was delivered after every correct fixation, with an extra amount at the end of the trial, 915 

i.e. after the 6th correct fixation. Aborted trials (i.e., when the monkeys did not maintain fixation for 916 

400ms or did not perform a saccade within 700ms) were repeated at the end. The same image was 917 

presented in multiple recording days until data for five repetitions of each grid point for every 918 

fixation number was collected. We included data from all correct fixations (e.g., if the trial was 919 

interrupted after five fixations, we included the first four). Between the trials, the monkeys 920 

occasionally also fixated on parts of the image for longer than 300ms, and we also included these 921 

spontaneous fixations in the analysis. We collected a total of 11,783 correct trials for monkey M and 922 

13,373 for monkey B, for a total of 50,849 fixations analyzed for monkey M and 60,211 for monkey 923 

B. 924 

 925 

Data analysis 926 

We determined the coordinates of the RF on the image for every fixation and analyzed the data 927 

from the first fixation and later fixations separately. We computed contrast, BoM and OBM in the 928 

RF, as described above. To quantify the independent influence of object borders, object interiors 929 

and contrast, we carried out a variance partitioning analysis87. For each recording site, we 930 

determined how much variance (R2) was explained by RMS contrast, object borders and object 931 

interiors with independent linear regressions, and by combinations of the three predictors in 932 
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multiple linear regressions. For example, the independent fraction of explained variance (FEV) for 933 

the contrast predictor was computed for every recording site as follows:  934 

𝑅")*+,-.+# 	= 	
Y𝑅/011# − 𝑅2)3	5	623# Z

𝑅/011# 																																																																	(6) 935 

where 𝑅/011#  is the variance explained by the full model, including all the predictors, while 936 

𝑅2)3	5	623#  is the variance explained by the model including BoM and OBM as predictors while 937 

leaving contrast out. Similar equations were derived for the FEV accounted for by BoM and OBM. 938 

The explained variance estimates were then averaged across recording sites. The full model 939 

explained 6.4% of the variance in V1 for fixation 1 (mean across recording sites), 4.3% for fixations 940 

2-6, 3.2% in V4 during fixation 1 and 2.5% for fixations 2-6. The FEV values for each area and 941 

condition presented in the main text were normalized to these values (see equation 6). 942 

 943 

RF models and the prediction of perceived borders 944 

We determined the selectivity of the neurons at a recording site (time-window 25-75ms), according 945 

to previous studies25–28 which established a mapping between an artificial neural network (ANN) 946 

and neuronal tuning (Fig. S9). 947 

We extracted the activity of units of VGG-19’s layer conv3_1 (state of the art in predicting V1 948 

responses to natural images28,29) and followed the approach of ref.28 with two modifications. We 949 

used a two-step mapping26,27, described by following the equation: 950 

𝑟	 = 𝑓788(&9(𝑖𝑛𝑝𝑢𝑡) ∗ 𝑊. ∗ 𝑊: 																															(7) 951 

where 𝑟 is the predicted response of V1 recording site, 𝑓788(&9(𝑖𝑛𝑝𝑢𝑡) is the output of VGG-19’s 952 

conv3_1 to our stimulus set (i.e. 𝑖𝑛𝑝𝑢𝑡), and 𝑊. and 𝑊:  are two sets of weights defining spatial and 953 
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feature selectivity, respectively. The spatial mask (𝑊., initialized as the 2D Gaussian RF estimate) 954 

approximates the RF and a weighted sum of the nodes in the ANN (𝑊:) approximates the feature 955 

selectivity of the recorded neurons26. We trained the model to optimize 𝑊. and 𝑊:  to predict V1 956 

responses to the training set (i.e., 𝑖𝑛𝑝𝑢𝑡 in eq. 7). The activity of V1 recording sites depends on a 957 

small and localized portion of the 𝑖𝑛𝑝𝑢𝑡 and we therefore cropped the RF models around the most 958 

active pixels (3 SD or more away from the global mean) following the procedure in ref.25. To visualize 959 

tuning (Fig. 5b,c), we kept 𝑊. and 𝑊:  constant and varied 𝑖𝑛𝑝𝑢𝑡 to maximize the response of the 960 

model for a particular V1 recording site. We used cross-validation to assess the quality of the fit as 961 

in ref.25. Specifically, we used 5,000 trials for training and 100 trials for cross-validation. We trained 962 

the model for 300 epochs with a batch size of 256, using 10% of the training set for validation. 963 

To estimate how well the V1 RF models could detect perceived borders (F-stat metric; Fig. 5b), we 964 

first convolved the RF models with unseen images from the BSD test set (100 grayscale images), and 965 

matched them with the annotated versions21. For simplicity, we defined the border detection 966 

performance (BoP) as the F-measure, employed by the authors of the BSD for benchmark 967 

evaluation, which we computed using the MATLAB code associated with the dataset: 968 

(https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/code/)20. We estimated the 969 

chance-level performance in border-detection with a (null) permutation distribution (horizontal 970 

dashed line in Fig. 5c; 97.5% level the distribution), shuffling the class labels (after 72 iterations, one 971 

for each recording site included in this analysis. A generalized Pareto distribution was fit to the tail 972 

of the permutation distribution88. The models were implemented using custom Python code using 973 

NumPy89, SciPy (SciPy.org), Tensorflow 1.590 and with modules from 974 

https://github.com/dicarlolab/npc26 and https://github.com/sacadena/Cadena2019PlosCB28. 975 

 976 
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Perceived borders and object interior detection of a population of V1 neurons 977 

To examine the strength of BoM and OBM signals across a larger population of V1 recording sites 978 

(Fig. 5d), we trained SVMs to discriminate between object borders and non-border image regions 979 

based on the activity of 19 recording sites with RFs smaller than 1.5°. We also trained them to 980 

distinguish between object interiors and the background. We used 2 of the 4 images for training and 981 

the other two for cross-validation. 982 

 983 

Neuronal activity profiles across the images 984 

To examine the overall activity level elicited by the images (Fig. 3b), we multiplied the activity by 985 

2d-Gaussian approximation of the RFs, weighted by sampling of the visual space caused by the 986 

overall pattern of fixations5,20,91–95 at 7 time points (from 0 to 300ms in 50ms steps) and activity was 987 

averaged within a 25ms window centered on each time-point. 988 

 989 

Statistics 990 

We compared differences between the CRFs between object borders and non-border image regions 991 

and between object interiors and the background using a bootstrapping procedure (1,000 992 

iterations), as described for the fMRI data above. To test for differences in the median latencies of 993 

BoM and OBM between regions and conditions, we used a signed-rank Wilcoxon test across 994 

recording sites. The significance of the Pearson’s correlation between BoM at the peak of response 995 

and the segmentation performance across V1 recordings sites (Fig. 5b) was assessed with a t-test. 996 

 997 

Isolated patches experiment 998 
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To test whether isolated image patches from the BSD that were either centered on object borders 999 

or not elicited a different level of V1 activity, we carried out an additional experiment in monkey B 1000 

(50 recording sites, Fig. 5e-g). We chose three V1 recording arrays and centered 100 patches of the 1001 

image from the BSD that contained object contours and 100 patches that did not contain object 1002 

contours on the RFs. These patches were automatically selected so that the RMS contrast was the 1003 

same (70±1%) and the size matched to the median RF of the recording sites of the array (0.9° - 2.0°). 1004 

The patches were presented on a grey background (26.8 cd×m−2) while the monkey maintained gaze 1005 

on a red fixation point for 300ms. We repeated each stimulus five times and collected a total of 1006 

3,000 trials (1,000 trials per array). We tested the significance of the difference in the activity elicited 1007 

by isolated object and non-object contour patches at the peak of the response (25-75ms) with a 1008 

Wilcoxon signed rank test across recording sites. 1009 

 1010 

Contextual BoM experiment 1011 

To examine differences in activity elicited by object and non-object contours when the stimulus in 1012 

the RF was held constant (Figure 6) we selected twelve images from the BSD, which were cropped 1013 

and upsampled to 512 x 512 pixels (23.2° x 23.2°). We ensured that the portion of the image covered 1014 

by the RF of each recording site and its surround were exactly the same across conditions (same size 1015 

and content, Fig. 6), so that border salience only depended on information outside the neurons’ RF. 1016 

We used a 2x2 design. The first factor was whether the image element in the RF fell on an object 1017 

border (Fig. 6a). The second factor was whether we presented the original image or a scrambled 1018 

version (also known as metamer). To this aim, we created three further stimuli from each image. 1019 

First, we copied a circular patch (80 pixels in diameter, 3.7°) from an object contour location onto a 1020 

non-object contour location using Adobe Photoshop (blue circle in Fig. 6a, see Fig. S10 for other 1021 
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example images). The border of this circular patch was smoothed to blend it in at the new location. 1022 

We created two metamers using the algorithm of ref.96, with Matlab code provided by the authors 1023 

(https://github.com/freeman-lab/metamers). The two metamers were constructed so that either 1024 

the object- or non-object contour was kept intact, with a smooth transition to the surround. 1025 

Trials started with a red fixation point and the stimulus appeared after 300ms of fixation. The 1026 

monkeys maintained fixation for an additional 400ms after stimulus onset (Fig. 6b). We ensured 1027 

that the RFs of V1 recording sites were centered on the image patch, which was identical in the four 1028 

conditions. The order of the conditions was randomized across trials and aborted trials (when the 1029 

monkeys broke fixation) were repeated at the end. We collected a total of 8,094 trials in monkey M 1030 

and 9,111 in monkey B. 1031 

We tested the significance of the BoM in a window from 0-300ms after stimulus onset (subtracting 1032 

spontaneous activity, -100-0ms) with a Wilcoxon signed rank test across recording sites. We also 1033 

used a repeated-measures two-way ANOVA across recording sites, with object/non-object contour 1034 

and scrambled/not scrambled as factors. 1035 

 1036 

Data availability 1037 

Data will be available upon publication of the paper. 1038 

 1039 

Code availability 1040 

Custom code will be available upon publication of the paper. 1041 
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