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2 ABSTRACT 

2.1 BACKGROUND 

Genotyping-by-sequencing (GBS) has revolutionised molecular genetic analysis. It 

enables simultaneous genotyping of thousands of DNA markers in the genome of any species. 

In contrast to whole-genome shotgun sequencing, GBS exploits a restriction enzyme to reduce 

genome complexity and directs the sequencing to begin at fixed digestion sites. However, 

currently used tools for the analysis of GBS data, such as SAMtools, often neglect the 

fundamental technical differences between GBS and shotgun sequencing. 

2.2 RESULTS 

Here we present GBSmode, a dedicated pipeline to call DNA sequence variants using 

whole-read information from GBS data. It removes false positives by incorporating biological 

features such as the ploidy level and the number of possible alleles in the population under 

investigation. Comparison of GBSmode with SAMtools in an F2 population of rice (Oryza 

sativa L.) showed both identified a similar number of polymorphisms (13,449 and 14,445, 

respectively) with a high overlap (8,143). However, differences were found in the number of 

read misalignments (8.0% and 14.3% for GBSmode and SAMtools, respectively) and 

genotyping errors (5.0% and 8.3% for GBSmode and SAMtools, respectively). Further tests 

in a bi-parental F1 population of cassava (Manihot esculenta Crantz) showed GBSmode 

found 31,489 polymorphic loci, whereas the number was higher with SAMtools (43,860). 

However, this difference was mainly attributable to GBSmode rejecting 11,695 loci that were 

biologically not possible. 

2.3 CONCLUSIONS 

This study shows that GBSmode is a versatile tool for the analysis of GBS data. 

Moreover, GBSmode was able to reduce genotyping errors arising from read misalignments 

by combining haplotype data with biological information. Whilst other tools may find more 

markers, GBSmode is designed for accuracy. 

3 KEYWORDS 

Genotyping-by-sequencing (GBS), next generation sequencing (NGS), genotyping, 

single nucleotide polymorphism (SNP), phasing, haplotype, rice (Oryza sativa L), cassava 

(Manihot esculenta Crantz) 
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4 BACKGROUND 

Genotyping-by-sequencing (GBS) is a cost-effective method for genotyping thousands 

of markers simultaneously in large populations of human, plant and animal species. It 

combines restriction enzyme-based genome complexity reduction with modern sequencing 

technologies (Scheben et al., 2017). The GBS method reported by Elshire et al., (2011) is a 

four-step protocol (digestion, ligation, amplification and sequencing) that efficiently enables 

multiplexing of hundreds of samples. GBS is mainly used to identify single nucleotide 

polymorphisms (SNPs) for diversity analyses, linkage mapping and marker-trait association 

studies (Scheben et al., 2017). Compared with array-based genotyping methods, GBS is 

competitive in price and advantageous in orphan crop species (Rasheed et al., 2017). Despite 

high missing value rates and a higher computational demand required for data analysis, GBS 

has evolved as the tool of choice for many applications. 

The core principle of GBS is the use of a restriction enzyme to fragment the genome, 

followed by the enrichment of low molecular weight fragments of around 250 bp using PCR 

amplification (Elshire et al., 2011). GBS is often termed a ‘reduced representation/complexity 

library’ which is attributable to GBS’s repeated sampling of the same segments of the genome 

(Scheben et al., 2017) among individuals. From a technical perspective, GBS directs the 

sequencing to commence at specific sites, enabling site-directed sequencing. This is different 

to shotgun sequencing, used for whole genome sequencing (WGS, Ekblom & Wolf, 2014) 

and transcriptome sequencing (Mortazavi et al., 2008). As the name implies, shotgun 

sequencing uses randomly fragmented DNA as a starting point, meaning that the library 

preparation is fundamentally different compared to GBS. 

Aligning short DNA reads to a genome sequence is error prone, especially when the 

short read comes from a repetitive genome region. Shotgun sequencing can tackle the read 

alignment ambiguity by aligning reads across a region, to find enough differences to 

unambiguously place reads. This means many reads (coverage) are needed to build a coherent 

picture of any loci, from reads that surround the loci. From these assumptions, a majority rule 

applies and the most frequently occurring base is considered the correct one. Yet GBS data 

differs fundamentally in this regard because DNA is digested at specific recognition sites, 

meaning that reads are uniformly stacked on a locus.  

Another important but often neglected aspect is that GBS reads may contain multiple 

polymorphisms. Standard tools for the analysis of next generation sequencing (NGS) data 

identify variants independently from one base pair to another and omits neighbouring 

information. But if a read contains multiple polymorphisms, standard tools, that use ‘pileups’, 
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lose this information. However, making use of polymorphisms found together on the same 

NGS read can increase both the precision of variant calling and the number of alleles at a site. 

For the former, multiple polymorphisms can mitigate sequencing errors and increase the 

detection confidence of real polymorphisms. For the latter, multiple polymorphisms can be 

used to form haplotypes that better represent multi-allelic populations, better than bi-morphic 

polymorphisms. This is useful for outcrossing species, where a high frequency of 

polymorphisms is often found. For example, in cassava (Manihot esculenta Crantz), 26 

million SNPs were identified in 241 accessions by WGS (Ramu et al., 2017). 

Our aim was to develop a dedicated workflow to analyse GBS data which incorporates 

i) the information of the digestion site, ii) the information of polymorphisms found together in 

the same read to identify haplotypes and iii) the biological information of the population 

under investigation to filter putative haplotypes and increase accuracy. GBSmode, 

implementing these aims in an open source R-pipeline, was compared with SAMtools: on two 

publicly available datasets. 

5 IMPLEMENTATION 

5.1 DATASETS 

The first dataset used to compare the performance of GBSmode with SAMtools 

contained 244 individuals (DRX071278-DRX0771548) of an F2 population from an initial 

cross between Oryza sativa ssp. japonica cv. Nipponbare and the African wild rice species 

O. longistaminata, described by Furuta et al., (2017). For this dataset reads were trimmed to 

65 bp length.  

The second data set included 100 cassava genotypes (SRR1717936-SRR171973) from 

a bi-parental F1 population as described by the International Cassava Genetic Map 

Consortium (2015). All reads were trimmed to 85 bp after the cut-site.  

Both datasets were processed using GBSmode described below. For comparison with 

SAMtools the data was trimmed in the same way as GBSmode and aligned using Bowtie2 (V 

2.3.2, Langmead & Salzberg, 2012) with default settings. To make fair comparisons, the 

unfiltered output (the vcf files) were filtered using an R script that discarded loci with less 

than 50% of individuals genotyped and loci with less than five percent minor allele frequency.  

5.2 TAG FREQUENCY 

The GBSmode data analysis pipeline, shown in Fig. 1, takes as a starting point de-

multiplexed fastq files (rawData directory) from a population. As GBS barcode size varies, 
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GBSmode trims the reads to a uniform length and the frequency of each unique sequence is 

counted. This is done using the Bash command “grep –A1 ‘^@’ ¦ grep –v ‘-‘ ¦ grep –v  ‘@’ ¦ 

cut –c-85 ¦ sort ¦ uniq –c”, where the first ‘grep’ command is a pattern match, which 

recognises the fastq header lines and returns them with their sequence data. The remaining 

‘grep’ commands remove the headers and additional output. The ‘cut’ command selects the 

length of sequence to be extracted (85 bp in the example below). The sequences are then 

sorted alphabetically (using ‘sort’) before passing the output to the ‘uniq’ command, which 

counts (-c) the frequency of each unique sequence. Below is an example which will search a 

directory (rawData), containing the fastq data, and output the data to a new directory 

(inputDirectory). 

for x in $(ls rawData/); 

do grep –A1 ‘^@’ rawData/$x | grep –v ‘-‘ | grep –v  

‘@’ | cut –c-85 | sort | uniq –c > inputDirectory/$x 

done 

5.3 POPULATION COUNTS 

Next, the sample read counts are summarised per population, generating a matrix of 

unique sequences (rows) with genotype counts (columns) using the Perl script 

“getUniqueTags.pl”. This script exploits the hash data structure, in Perl, for speed and 

efficiency. A hash data structure contains unique keys with an associated value (like a 

dictionary). This Perl script uses a so-called ‘hash of hashes’ where the unique nucleotide 

sequences are the keys and within each key is another hash, with its key being the genotype 

identifier and its value the frequency of each count. In this form the data is stored and 

assigned easily before it is output, by iterating through the hash of hashes. When no 

information (counts) for a unique sequence is found for a genotype, it is reported as a zero.  

perl getUniqueTags.pl inputDirectory/ >  Count.data 

5.4 ALIGNMENT 

The data is back transformed into reads for aligning them to a reference. The Perl 

script “makeFastq.pl” converts the sequence data into fastq format, by assigning a unique 

name and gives a Phred quality score of 40 per base. The reads are then aligned to the genome 

using Bowtie2 (V 2.3.2, Langmead & Salzberg, 2012), producing a sequence alignment file 

(sam) with only the best alignment reported. The sam file is filtered for alignments to the 

genome (by selecting reads that map to chromosomes) and the sam file header is omitted, 

using ‘grep’ commands. This is to reduce computing time and memory requirements in the 
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following R steps. The Perl script “TrimCountsInput.pl”, selects only reads that are mapped 

on the genome. 

perl makeFastq.pl Count.data > sequences.fastq 

bowtie2-build genome.fasta genome.ref 

bowtie2 –x genome.ref –U sequences.fastq –S file.sam 

grep “Chr” file.sam | grep –v “^@” | cut –f 1-6 | grep 

‘Hap’ > filter.sam 

perl TrimCountsInput.pl filter.sam Count.data > 

filter.data 

5.5 BIOLOGICAL FACTORS 

Genotyping is made using the “GBSmode.R” program, which can be run interactively 

in R or via a terminal. For example:  

R –vanilla –slave “—args filter.data filter.sam fastq 

genotype.delimiter genome.fasta” < GBSmode.R 

with ‘fastq” being a common file identifier for the genotype names. Prior to genotype 

calling, in R, numerical factors are set to constrain the genotyping: the basal ploidy level of 

the genotypes (ploidy, 2), the maximum number of alleles allowed in the population (for 

example, two or four alleles in offspring of homozygous or heterozygous parents, 

respectively), minimum allele frequency (minAF, 100) and the minimum allele count 

(minAC, 8), which are described later.  

5.6 ORIENTATION 

For genotyping, the alignment data (sam), population read-counts and genome 

sequence are required. The genome sequence is imported using ‘read.fasta’ from the “seqinr” 

package of R (Charif & Lobry, 2007). By default, the starting position of reads are left-most 

based in sam format, meaning the reads mapped in reverse orientation must be corrected. 

Therefore, the right-most position of reads (reverse) aligned on the negative strand 

corresponds to their origin-site position (Pos). This position is determined using the 

‘extractAlignmentRangesOnReference’ function from the “GenomicAlignments” package 

(Lawrence et al., 2013), which uses the CIGAR (Concise Idiosyncratic Gapped Alignment 

Report) string to correct for insertions and deletions. To identify all unique positions, the 

direction (Flag), reference contig/chromosome (Ref), and origin-site position data are 

concatenated together to produce a unique position identifier (Upos). To eliminate low 

coverage sites only unique positions (Upos) with at least one tag greater than the minimum 

allele frequency (minAF, 100) are used.  
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5.7 FILTERING 

Each position (Upos) is validated based upon abundance of reads, maximum number 

alleles and prevalence among genotypes. Given that some reads may contain errors, only 

those which occur at a frequency greater than 5%, of all reads found at a Upos, are considered 

informative tags (Itags). A Upos is considered not polymorphic if the number of Itags is one. 

If a single genotype has more Itags than its ploidy (2 by default), or if the number of observed 

alleles (Itags) exceeds the maximum number of alleles possible (in the population), then the 

Upos is skipped. 

5.8 ALLELE ALIGNMENTS 

To identify polymorphisms, the Itags are aligned together using the CIGAR string 

from the sam file using the ‘sequenceLayer’ function in “GenomicAlignments”. Any pairwise 

mismatches are considered polymorphic loci and termed informative sites (Isite). In some 

cases, the alignment renders Isites or reads redundant. Thus, the Upos again is checked; to be 

polymorphic, does not exceed the ploidy for individuals and that enough individuals can be 

genotyped. 

5.9 GENOTYPING 

For error correction, of reads, each unique read is assigned to a corresponding Itag, if 

it matches perfectly all Isite(s) positions from an Itag: otherwise it is removed. For 

genotyping, if a diploid genotype has two different Itags, then it is considered heterozygous. 

Individuals are homozygous when they have a single Itag with a frequency greater than 8 

(minAC) (1-(1/2
(minAC-1)) > 99% confidence). 

The results are saved to two files, the genotyping and the count data (used for 

genotyping). To make the results comparable in this study and compatible with existing 

downstream analysis tools, we created the R script ‘ModeToVCF.R’ to convert the GBS 

mode output to variant call format (vcf). 

5.10 PHASING 

In the rice population, polymorphisms for individuals were phased by exploiting the 

population design. Where at any loci in the genome, of an individual, three possible states can 

exist; either it is heterozygous and contains both parental genomes, or homozygous for either 

the O.japonica or O.longstaminata parent: and should segregate in a 1:2:1 ratio. The phasing 

occurred in windows of 100 SNP loci, with an offset of 50 loci between consecutive windows. 

Within each window, a similarity matrix of the proportion of matches (ranging between 0-1) 

between genotypes was determined. The resulting similarity matrix was transformed into a 
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(Euclidean) distance matrix. This distance matrix was organised using hierarchical 

agglomerative clustering (‘Ward’ method), before splitting into three groups (‘cutree’). 

Afterwards, the results were edited so the same cluster was consistent throughout a 

chromosome. This was made by permuting all cluster names in a proceeding window and 

selecting the ones that best match the prior. For consistency we manually edited for 

chromosomes so the heterozygous (most abundant) group was named the same way.  

5.11 COMPARISON OF VARIANT CALLING 

To compare the output of GBSmode and SAMtools, vcfR (v.1.12.0, Knaus & 

Grunwald, 2016) was used to load the data into R. To find exact matches, the chromosome, 

position, reference allele, and alternative allele fields were concatenated into one string. After 

removing the duplicates, the strings between GBSmode and SAMtools were compared to find 

one-to-one matches. To identify differences between how polymorphisms are reported, just 

the chromosome and position fields were concatenated together and compared. Closer 

examination of these results showed they were attributable to differences in how insertions 

and deletions are reported. For instance, SAMtools concatenates adjacent deletions together 

(e.g. “AAA”). Whereas GBSmode, when converted to vcf format, breaks adjacent deletions 

into separate polymorphisms (e.g. “A”, “A”, “A”). In addition, overlapping insertion and 

deletions, between datasets, were cross checked using their start and end point to find 

differences between reporting. Another type of difference occurred when filtering the vcf files 

for 50% of individuals being genotyped and greater than 5% minor allele frequency. To 

identify these errors, we loaded the un-filtered vcf files and repeated the same analysis as 

before when comparing filtered vcf files.  

Finally, we re-ran GBSmode, but modified the script to output the reason for it 

rejecting loci. From these data we then looked for polymorphism found by SAMtools only 

and if they overlapped with a locus rejected by GBSmode (one hundred base pairs up- or 

downstream of the digestion site). From which we assigned them as being rejected for; ploidy 

reasons, because one or more sample contain three alleles: or it was found to be a singleton, 

meaning no variation was found (after filtering) by GBSmode. 

6 RESULTS 

Using GBS data from an F2 population of rice (Furuta et al., 2017), the performance 

of GBSmode was benchmarked against SAMtools and identified, unfiltered, 15,187 

polymorphic loci with a missing value rate of 51%. Of these loci, 8,554 contained a single 

SNP while 3,536, 1,603 and 705 contained two, three or four SNPs, respectively. For 
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comparison, the GBSmode output was converted into vcf format and filtered for loci with at 

least 50 % of the individuals genotyped, yielding 13,449 polymorphic loci (Fig. 2a). 

Likewise, the same data was analysed using SAMtools (Li et al., 2009) and filtered using the 

same criteria. This yielded 14,445 polymorphic loci (Fig. 2a). In the work described by Furuta 

et al., (2017), TASSEL-GBS (Glaubitz et al., 2014) was used and identified 5,812 

polymorphic loci with 50% missing value rate. 

To test the utility of the genotyping data, the overlapping genome segments were used 

to build phased haplotypes of the population, whereby each window, per genotype, was 

classified as heterozygous or homozygous for either the O. japonica or O. longstaminata 

parent. Using this approach, 264 and 274 haplotype windows were created by GBSmode and 

SAMtools, respectively (Fig. 3). The largest group of haplotypes (green) accounted for 29,862 

haplotype windows for GBSmode and 32,564 for SAMtools. This was similar to the amount 

of the second and third largest haplotype-windows combined, with 25,770 for GBSmode and 

28,436 for SAMtools. Thus, the data appear to fit the expected 1:2:1 segregation ratio. To 

verify the phasing, the frequency of consecutive blocks of three haplotype windows were 

counted. As expected, the consecutive haplotype blocks of three widows did not change 87% 

of the time. The haplotype windows switched between heterozygous and homozygous states 

in 8% of the cases. Likewise, in 4.5%, of the haplotype-windows the state switched from one 

homozygous state to the other, suggesting a double recombination in close proximity in both 

gametes or errors. The remaining 0.5% haplotype-window blocks switched between all three 

states or the middle haplotype window differed from the first and last. Whilst biologically 

possible it could be that these represent errors. Despite some discrepancies, it was evident the 

phasing had built a broad schematic of the genetic makeup of individuals.  

The above phased data allowed us to determine the error rates of GBSmode and 

SAMtools. By intersecting the loci calls with expected haplotype-window data (using only 

consecutively matched haplotype-window blocks of three) the number of matches between 

the two was measured. For some loci the segregation pattern did not match that expected from 

the phasing, indicating reads misalignments. Therefore, the overlap between the haplotype-

window and each locus was checked by Chi-squared test, using all individuals. In total 12,600 

loci were tested for GBSmode and 13,700 for SAMtools. This found that 1,012 (8.0%) and 

1,962 (14.3%) loci for GBSmode and SAMtools, respectively, did not show the same 

segregation pattern (FDR P < 0.05) as the phased haplotype-window. After removing these 

loci the mean number of correct calls was 95.0% and 91.7% for GBSmode and SAMtools, 

respectively. In another context, 2,642,778 genotyping calls were made for GBSmode, of 
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which 211,422 are in wrong place and 120,638 are incorrect. SAMtools made 2,823,021 

genotype calls, of which 404,290 were misplaced and 199,591 are incorrect. Thus, GBSmode 

does offer advantages for genotyping compared to SAMtools in terms of accuracy. 

To follow up on the differences between GBSmode and SAMtools, the overlap 

between the called variants was assessed. After removing duplicates, the majority (8,143) of 

loci overlapped between GBSmode (13,449 total loci) and SAMtools (14,445 total loci). A 

further 1,280 and 1,047 were found in common between the datasets but reported differently 

in their vcf files. The number of polymorphisms absent in the filtered SAMtools vcf file but 

found in the GBSmode vcf file, which were subsequently found in the un-filtered SAMtools 

vcf file, was 473. Likewise, 445 polymorphims were found in the filtered SAMtools vcf file 

that were absent in the filtered GBSmode vcf file, but were present in the un-filtered 

GBSmode vcf file. In addition, we re-ran GBSmode and saved the reason for the GBSmode 

genotyping script excluding potentially polymorphic sites. The intersection of these data with 

the SAMtools vcf file found 2,436 polymorphisms were discarded by GBSmode because one 

or more individuals had three alleles, which is not biologically possible in a diploid sample. 

Finally, 1,165 polymorphisms were discarded by GBSmode, but found by SAMtools, because 

they were not polymorphic. These data suggest a substantial part (2,436/14,445) of the 

SAMtools data may be based upon read misalignments, which is similar to the number of loci 

which segregated differently (1,962).  

To assess the utility of GBSmode in a more complicated biological system, a bi-

parental F1 population of cassava, derived from two heterozygous diploid parents, was used. 

In data from 100 offspring, GBSmode identified 22,277 polymorphic loci, from which 

2,706,052 genotype calls were made, with a 26.7 % missing-value-rate. When converted to 

vcf format (broken haplotypes) and filtering, 31,489 polymorphisms were reported, of which 

176 were trimorphic and one tetramorphic. In comparison, SAMtools identified, after 

filtering, 43,680 polymorphic loci, of which 598 trimorphic and 52 tetramorphic markers. 

Further analysis of trimorphic and tetramorphic markers revealed that 315 of these markers 

were a single base in length. The remaining 267 contained more than 5 bp. 

As with the rice dataset, the overlaps between the SAMtools and GBSmode results 

were compared (Fig. 3b). Many of polymorphisms (18,560) were exact one-to-one matches. 

Further investigation of common loci found 1,048 loci in the SAMtools dataset and 7,482 loci 

in the GBSmode dataset, that did overlap exactly but were reported differently. As described 

in the rice dataset, these are because of how insertions and deletions are reported. We then 

looked in the unfiltered vcf files to check for matches that had been excluded when filtering 
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for minor allele frequency and minimum number of genotypes. Here, 3,900 loci were reported 

after filtering in the SAMtools dataset and absent in the filtered GBSmode dataset, but then 

found in the unfiltered GBSmode dataset. Likewise, 1,492 were found in the GBSmode 

filtered dataset which were only found in the SAMtools unfiltered dataset. This still meant 

49% of polymorphisms (22,728/46,236) were unaccountable in the SAMtools dataset. To 

resolve this, we re-ran GBSmode and recorded the reason for the loci being excluded. The 

intersection of these data with the SAMtools dataset found most (51%, 11,695/22,728) had 

been discarded by GBSmode because individuals were found that contained three or more 

alleles (which is biologically impossible in a diploid individual). A further 4,412 alleles were 

discarded by GBSmode (but reported by SAMtools) because they were not polymorphic.   

7 DISCUSSION 

Here we report a new method for the analysis of GBS data, called GBSmode. Using 

phased data from an F2 population of rice, we show evidence that GBSmode improves the 

genotyping accuracy by 9.6%. Because of the number reads incorrectly placed and incorrectly 

genotyped being reduced from 22.6% by SAMtools to 13.0% by GBSmode. Moreover, using 

an F1 cross in cassava, SAMtools discovered 43.7 K polymorphic loci, whereas GBSmode 

found 31.5 K polymorphic loci. But, 12.0 K of the loci reported by SAMtools were rejected 

by GBSmode as some samples contained three alleles (or more). Thus, genotyping by 

GBSmode yields higher quality by both removing erroneous read alignments and errors in 

genotyping. 

One important finding of this work is the number of polymorphic loci where the 

segregation pattern of the SNP differed to that expected. In rice we found that 14% of loci 

were misplaced and in cassava up to 27%. This issue is attributable to both whole genome 

duplications and local duplications (Li et al., 2008). This must be kept in consideration when 

imputing SNPs, particularly by filling in missing data from those observed in the parents: 

which would propagate errors. Also, the number of miscalled genotypes was 5.0% and 8.3% 

for GBSmode and SAMtools respectively. In both cases, > 99% accuracy was set as a 

threshold. The difference between expected and observed error rates is attributable to low 

coverage sequencing (Scheben et al., 2017), whereby reads are only found from one parent in 

a heterozygous individual. For both cases (misplaced reads and genotyping errors) the best 

method to alleviate this is imputation and error correction. As shown here, imputation using 

blocks of reads is advantageous.  
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Throughout the development of this pipeline, a generally lower number of identified 

loci was observed compared to other genotyping software. As shown here, GBSmode is more 

stringent in calling genotypes, resulting in less polymorphic loci with less the errors. Whereas 

sometimes the trade-off between more errors outweighs the benefits more markers. For classic 

bi-parental populations or structured populations (such as a nested association mapping 

population), only a few thousand polymorphic loci are sufficient, especially when imputation 

is possible (Hyma et al., 2015; Furuta et al., 2017), so GBSmode would be more appropriate. 

In unstructured populations (namely genome-wide-association-studies) higher marker 

densities are needed to overcome linkage disequilibrium; thus, other tools might be preferable 

(Scheben et al., 2017). However, different genotyping tools are not exclusive and results from 

different genotyping pipelines can be combined. Whereby the vcf file generated by GBSmode 

can be integrated with other genotyping files produced by other pipelines.     

A number of tools already exist for GBS analysis, for example SAMtools which is an 

all-purpose high throughput sequence analysis tool. Otherwise, TASSEL is designed for speed 

and for screening large populations. GBSmode leverages on accuracy and ease of use yet we 

foresee there are still margins of improvements for both aspects. First, summarising the 

population data can require significant amounts of random access memory (RAM) when the 

population data is tabulated. The step does not require much time, but genome complexity and 

sequencing errors can rapidly inflate the amount of RAM needed. In the future, the RAM 

requirements could be reduced by use of a SQL database. The second area of optimisation is 

the genotype calling, which runs sequentially in R. For the cassava dataset, this step took 

approximately two days. Parallelisation (multithreading in R) of loci screening could be a way 

to speed this up. A further improvement would be to make use of paired-end read data, 

currently reads are broken and analysed separately. The combination of forward and reverse 

reads would allow increased accuracy in read mapping and afford further combining of 

polymorphisms into haplotypes. Despite some room for improvement, GBSmode offers many 

attractive features such as counting unique reads, which significantly reduces the read-

mapping step, as used in TASSEL. In addition, genotyping might be adapted for polyploid 

samples, tetraploids, or more complex combinations. 

Taken together the results show that using all data from reads can significantly reduce 

the error rate in genotyping. The genotype calling in R makes the GBSmode script more 

accessible to other researchers for modification. Thus, it can be developed and adapted more 

broadly, making GBSmode a versatile tool for researchers and plant breeders alike. 
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8 AVAILABILITY AND REQUIREMENTS 

Project name: GBSmode 

Project home page: https://github.com/stevenandrewyates/GBSmode 

(DOI:10.5281/zenodo.4041275) 

Operating system(s): Linux 

Programming language: Perl, R, Bash 

Other requirements: NA 

License: MIT License 

9 LIST OF ABBREVIATIONS 

CIGAR, Concise Idiosyncratic Gapped Alignment Report; GBS, genotyping-by-

sequencing; Isite, informative site; Itag, informative tag; MAF, minor allele frequency; 

minAC, minimum allele count; minAF, minimum allele frequency; Pos, origin-site position; 

RADseq, restriction site-associated DNA sequencing; RAM, random access memory; Ref, 

reference contig (chromosome); sam, sequence alignment (file) ; SNP , single nucleotide 

polymorphism; SQL, Structured Query Language; Upos, unique position; vcf, variant call 

format. 
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12 FIGURES AND TABLES 

Figure 1. Schematic of the GBSmode pipeline. The schematic begins with raw data 

that is then trimmed, sorted and counted to produce a table of abundance of each unique read, 

per sample (Trimming, sorting & counting). As a next step, the data for each sample is 

combined into a table for the whole population (Merging). The reads are then aligned to the 

genome, to give coordinates for each read. This data includes the chromosome (Chr), position 

(bp) and flag, describing the read orientation (0=forward, 16= reverse). 

Figure 2. Stacked bar plots showing the overlap and differences between the 

output of GBSmode and SAMtools. The stacked bar plots show the cumulative number of 

polymorphic loci on the x-axis and the genotyping method on the y-axis. The stacks can be 

divided into three subdivisions shown above the bar plots. These include common 

polymorphisms, either one-to-one matches (shown in yellow) or those differently reported 

(green); excluded polymorphisms, those excluded when filtering the data for minimum 

number of genotypes (teal) and those excluded by GBSMode because they were found to be 

trimorphic (turquoise) or not polymorphic (blue); the final division is the number of 

unexplained loci (purple). Figure 3a shows the results using the rice data set with 244 

individuals and figure 3b using 100 individuals using a cassava dataset. 

Figure 2. Results from phasing the rice population. The figure shows the results of 

phasing 244 individual rice genotypes (lines). Each block (column) represents the assignment 

of genotypes into three groups; heterozygous (green) or homozygous (white and blue). The 

phasing results from GBSmode is shown in panel a) and SAMtools in panel b).  
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