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ABSTRACT 24	

 25	

Reversible lysine acetylation regulates the activity of cardiac metabolic enzymes, 26	

including those controlling fuel substrate metabolism. Mitochondrial-targeted GCN5L1 27	

and SIRT3 have been shown to regulate the acetylation status of mitochondrial 28	

enzymes, which results in alterations to the relative oxidation rates of fatty acids, 29	

glucose, and other fuels for contractile activity. However, the role that lysine acetylation 30	

plays in driving metabolic differences between male and female hearts is not currently 31	

known. In this study, we report that estrogens induce the expression of GCN5L1 via 32	

GPER agonism in cardiac cells, which increases the enzymatic activity and acetylation 33	

status of the fatty acid oxidation enzyme medium chain acyl-CoA dehydrogenase 34	

(MCAD).  35	
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INTRODUCTION 36	

 37	

Improved understanding of the physiological and metabolic differences between men 38	

and women may allow us to develop new therapies that can address sex-based 39	

disparities in cardiac disease treatment outcomes. Sex hormones testosterone and 40	

estrogen, as well as chromosomal effects, may contribute to sex-based differences. 41	

Pre-menopausal women exhibit increased estrogen levels relative to men and post-42	

menopausal women, which results in greater activation of estrogen receptors in the 43	

myocardium. These are comprised of the canonical estrogen receptors alpha and beta 44	

(ERα and ERβ), and the G-protein coupled estrogen receptor (GPER, or GPR30).1 45	

Canonical ERs are targeted directly to the nucleus, and interact with ER responsive 46	

elements (EREs) within the genome to regulate transcription, while GPER activation 47	

results in a cascade of posttranslational modifications in the cell that may also ultimately 48	

drive genomic responses.2–4 49	

 50	

Estrogen receptor activation has been associated with changes in the abundance and 51	

activity of numerous enzymes involved in glucose and fatty acid energy metabolism, 52	

which result in significant sexual dimorphism in cardiac metabolic profiles. Of particular 53	

note, women exhibit greater cardiac fatty acid uptake and oxidation relative to men 54	

under both normal and pathophysiological conditions.5 Estrogen modulates the 55	

expression of cardiac metabolic proteins, and upregulates proteins that impact fatty acid 56	

metabolism, including PGC-1α and acyl-CoA dehydrogenases (ACADs).6–8 57	

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 21, 2021. ; https://doi.org/10.1101/2021.09.20.461099doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.461099


	 4	

Consequently, the presence of estrogen has a significant impact on fuel substrate 58	

utilization in the heart. 59	

 60	

The posttranslational acetylation of non-nuclear targets has emerged as a critical 61	

regulator of metabolic activity in the heart. In mitochondria, GCN5L1 and SIRT3 have 62	

been reported to increase and decrease, respectively, the acetylation status of enzymes 63	

that metabolize fatty acids and glucose.9–15 However, sex differences in the acetylation 64	

of metabolic proteins in cardiac mitochondria have not been investigated. We 65	

hypothesized that differences in the expression of GCN5L1 and SIRT3 between men 66	

and women may change the acetylation status and activity of enzymes involved in 67	

glucose and fatty acid metabolism, and that estrogen signaling may drive this process. 68	

 69	

The studies presented here demonstrate that mitochondrial protein acetylation is 70	

increased in female mice relative to males, which is associated with sex-dependent 71	

elevations in GCN5L1 abundance. In addition, we show that estrogen directly increases 72	

GCN5L1 expression in human-derived cardiac cells, and that GCN5L1 is decreased in 73	

the hearts of postmenopausal women relative to younger women. The primary 74	

mechanism for estrogen-mediated GCN5L1 upregulation is identified as GPER 75	

activation, through a transcription-independent pathway. Finally, we determine that 76	

estrogen-dependent acetylation of MCAD is dependent on GCN5L1, and that loss of 77	

GCN5L1 results in diminished MCAD activity.  78	
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METHODS 79	

 80	

Human tissues 81	

Fresh human cardiac tissue samples were collected from the left ventricles of organ 82	

donors deemed not suitable for transplant, under a protocol approved by the University 83	

of Pittsburgh Committee for Oversight of Research and Clinical Training (CORID). 84	

Tissues were flash-frozen and stored at -80 oC until processing. Post menopause: 85	

range = 65-86 years, median = 69 years, N = 7. Pre menopause: range = 22-39 years, 86	

median = 36 years, N = 5. 87	

 88	

Animal care and use 89	

All housing and experiments in mice were conducted in accordance with the guidelines 90	

established by the National Institutes of Health, and approved by the University of 91	

Pittsburgh Institutional Animal Care and Use Committee. Male and female C57BL/6J 92	

mice (aged 8-10 weeks) were purchased from The Jackson Laboratory, and maintained 93	

on a regular chow diet with a 12 h light/12 h dark light cycle.  94	

 95	

Cell culture and drug treatments 96	

AC16 cells (a proliferating cell line derived from human cardiomyoctyes16) were 97	

purchased from Millipore. Stable GCN5L1 knockdown was generated as previously 98	

described.17 Cells were treated with 10 nM 17β-estradiol (E2), ICI 182, 780 (Fulvestrant; 99	

an ERα and ERβ antagonist with GPER agonist activity18–20), G-1 (a selective GPER 100	
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agonist), G-36 (a selective GPER antagonist), MG-132 (a 26S protease inhibitor), 101	

and/or cycloheximide (CHX; a translation inhibitor). 102	

 103	

Mitochondrial Isolation 104	

Mitochondrial fractions were purified from tissue and cells using the Qproteome 105	

Mitochondrial Isolation Kit (Qiagen) according to the manufacturer’s instructions. Briefly, 106	

samples were homogenized in cold Lysis Buffer, and centrifuged at 1000 g. 107	

Supernatant containing the cytosolic fraction was discarded, and the pellet was re-108	

suspended and processed in cold Disruption Buffer by shearing through a 25 g needle 109	

and syringe. Samples were centrifuged at 1000 g, the supernatant was collected, and 110	

centrifuged again at 6000 g to pellet the mitochondrial fraction. The pellet was washed 111	

in Storage Buffer, and then used for subsequent immunoblot or MCAD activity studies 112	

as described below.  113	

 114	

Immunoblotting 115	

Tissue, cells, or purified mitochondria were lysed in 1% CHAPS buffer. Protein was 116	

quantitated using a BioDrop µLITE analyzer (BioDrop), and equal amounts were loaded 117	

on a 12% SDS-PAGE gel, before transfer to nitrocellulose membranes. Membranes 118	

were blocked using Odyssey blocking buffer and incubated in primary antibodies 119	

overnight (αTubulin, 1:1000, Cell Signaling; SIRT3, 1:1000, Cell Signaling; MCAD 120	

1:1000, Cell Signaling; GCN5L1 1:500, generated as previously described21), followed 121	

by incubation at room temperature with fluorescent secondary antibodies for 1 h (800 122	
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nm anti-rabbit, LiCor). Bands were visualized using an Odyssey Imager, and quantitated 123	

using Image Studio Lite v 5.2 (LiCor). 124	

 125	

Quantitative RT-PCR 126	

RNA was isolated from tissue or cells using RNEasy kit (Qiagen). RNA was quantified 127	

and 500 ng-1000 ng was used to generate cDNA using Maxima Reverse Transcriptase 128	

(Thermo Fisher). Quantitative PCR was performed using SYBR-Green (Thermofisher) 129	

and primers for GCN5L1 or SIRT3. GAPDH or PPIA were used for normalization. 130	

 131	

MCAD activity assays 132	

MCAD activity was assessed using a DCPIP/PES-based assay as previously described. 133	

Briefly, DCPIP (50 µM), PES (2 mM), NEM (0.2 mM), KCN (0.4 mM), Triton X-100 134	

(0.10%), and lysate were added to ice cold potassium phosphate buffer (0.1 M). MCAD 135	

substrate octanoyl-CoA was added to a final concentration of 40 µM, and then warmed 136	

to 37 oC for 5 min. Absorbance was read at 600 nm, and then normalized to protein 137	

concentration.  138	

 139	

Statistical Analysis 140	

Statistical analyses were performed using GraphPad Prism 8.3. Student’s t-tests were 141	

used for simple comparisons between groups. One-way Analyses of Variance (ANOVA) 142	

was used to compare more than two groups, followed by post-hoc Student’s t-tests. For 143	

studies examining multiple time-points a two-way ANOVA was used with post-hoc 144	
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Sidak’s multiple comparisons tests.  A P value <0.05 was regarded as significant. All 145	

data are represented as the mean ± SEM. 146	

 147	

RESULTS 148	

 149	

Mitochondrial acetylation and GCN5L1 expression is increased in the hearts of 150	

female mice compared to male mice 151	

 152	

To determine whether mitochondrial protein acetylation status is different between 153	

sexes, we isolated mitochondria from the hearts of male and female C57BL/6J mice, 154	

and immunoblotted for acetylated lysine residues. We observed a modest but significant 155	

increase in the intensity of bands in female mice compared to male mice (Figure 1A). 156	

We next examined whether the increase in mitochondrial acetylation is associated with 157	

changes in the expression of proteins that regulate mitochondrial protein acetylation. No 158	

changes were observed in the expression of the mitochondrial-targeted deacetylase 159	

SIRT3 (Figure 1B). However, a significant increase in both GCN5L1 mRNA and protein 160	

was observed (Figures 1C and 1D). Based on these data, we conclude that increased 161	

acetylation in female cardiac mitochondria is driven by increased GCN5L1 abundance. 162	

 163	

Estrogen increases GCN5L1 expression in human cardiomyocytes via GPER 164	

 165	

To determine if changes in GCN5L1 abundance are present in a clinically relevant 166	

setting, we analyzed heart tissue obtained from female patients of pre- and post-167	
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menopausal age. Immunoblotting revealed that cardiac tissues from women after 168	

menopause, when estrogen levels are lower, have a significantly lower GCN5L1 protein 169	

abundance (Figure 2A). As estrogen has been reported to mediate several of the sex 170	

differences observed in human myocardial tissue,4 we next determined whether 171	

estrogen induces GCN5L1 expression directly. Treatment of AC16 cells (derived from 172	

human ventricular cardiomyocytes)16 with 17-β estradiol (E2) resulted in significantly 173	

increased levels of GCN5L1 protein (Figure 2B). To determine whether signaling for 174	

increased GCN5L1 expression was through canonical estrogen receptors, we incubated 175	

AC16 cells with ICI 182,780 (Fulvestrant), a potent inhibitor of ERα and ERβ. 176	

Surprisingly, rather than blocking GCN5L1 induction, ICI 182,780 additively increased 177	

GCN5L1 levels, and produced a robust increase in GCN5L1 even in the absence of E2 178	

(Figure 2C). ICI 182,780, in addition to blocking ERα and ERβ, also has been reported 179	

to act as a partial agonist for the G-protein coupled estrogen receptor (GPER).19,22,23 180	

We therefore examined whether GPER played a role in estrogen-mediated GCN5L1 181	

induction using the GPER agonist G-1, and the GPER antagonist G-36. Incubation with 182	

G-1 significantly increased GCN5L1 protein abundance, while G-36 blocked E2-183	

mediated GCN5L1 expression (Figure 2D). From these data, we conclude that 184	

GCN5L1 abundance is increased by estrogen exposure via GPER-mediated signaling. 185	

 186	

Estrogen drives GCN5L1 translation 187	

 188	

To understand the mechanism of GPER-induced GCN5L1 elevations, we monitored 189	

mRNA levels in AC16 cells after exposure to E2 or G-1 using qPCR. Surprisingly, no 190	
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change in mRNA was observed at any of the time points measured, suggesting that E2 191	

control of GCN5L1 expression occurs downstream of transcription (Figure 3A). To 192	

determine whether GCN5L1 protein elevation was due to an estrogen-induced reduction 193	

in protein degradation, the effects of 26S proteasomal inhibitor MG132 on GCN5L1 194	

expression were evaluated. It was expected that if estrogen signaling elevates GCN5L1 195	

levels by reducing protease activity, a blockade of protease activity would normalize 196	

protein levels in vehicle-treated cells, and the difference observed in E2-treated cells 197	

would disappear. Data showed that this was not the case, and rather MG132 amplified 198	

the increase in protein observed in the presence of E2 or G-1 (Figure 3B).  We next 199	

examined whether estrogen alters GCN5L1 mRNA translation. To test this hypothesis, 200	

E2 and G-1 treated AC16 cells were incubated with the translational inhibitor 201	

cycloheximide (CHX). CHX treatment effectively normalized GCN5L1 levels, indicating 202	

that differences in protein expression may be attributed to GCN5L1 translational 203	

regulation (Figure 3C). 204	

 205	

Estrogen-induced acetylation and activation of MCAD is reduced when GCN5L1 206	

levels are depleted 207	

 208	

Cardiac GCN5L1 has been reported to mediate the acetylation and activation of acyl-209	

CoA dehydrogenases (ACADs), which mediate fatty acid breakdown.12,24 Among the 210	

ACADs, MCAD has been repeatedly identified as a target regulated by estrogens in the 211	

heart.6–8 We therefore tested whether GCN5L1 may link estrogen receptor agonism to 212	

increases in MCAD acetylation and activity. Estrogen treatment resulted in increased 213	
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MCAD activity in AC16 cells, which was blocked in GCN5L1-depleted cells (Figure 4A).  214	

When GCN5L1 was silenced, MCAD acetylation was significantly reduced in E2 and G-215	

1 treated cells, relative to control cells under the same conditions (Figure 4B). These 216	

data suggest that E2- and GPER agonist-induced MCAD activation occurs via GCN5L1. 217	

  218	
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DISCUSSION 219	

 220	

Here we determined that mitochondrial protein acetylation, and GCN5L1 expression, 221	

are elevated in female mouse hearts compared to male. We find that estrogen 222	

upregulates GCN5L1 via GPER, and pharmacological block of GPER ablates induction. 223	

GCN5L1 is also elevated in pre-menopausal women, where estrogen levels are higher, 224	

compared to post-menopausal women. E2 and G-1 do not alter GCN5L1 gene 225	

transcription or proteasomal degradation; instead translational blockade prevents 226	

GCN5L1 induction. Finally, we determine that the loss of GCN5L1 blocks estrogen-227	

mediated acetylation and activation of MCAD. These data point to a significant role for 228	

GCN5L1 in estrogen-mediated regulation of cardiac fuel metabolism (summarized in 229	

Figure 4C). 230	

 231	

Significant differences in cardiac physiology and pathology between men and women 232	

are well established. Pre-menopausal women are largely protected from cardiovascular 233	

disease (CVD) compared to men, but this advantage is reduced with age.25 Estrogen 234	

loss has been suggested to be a major mediator of this effect. Postmenopausal women 235	

become more susceptible to left ventricular diastolic dysfunction, and hormone 236	

replacement therapy mitigates this effect.26 Ovarectomized mice and rats are similarly 237	

more susceptible to insults to the heart, including pressure overload,27 AngII induced 238	

hypertrophy,28 and diabetes-associated myofilament sensitization to calcium. 29,30 239	

Ovariectomized mice exhibit a faster onset of obesity-driven heart failure, and show 240	

earlier signs of cardiac mitochondrial dysfunction, including elevated ROS production 241	
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and swelling.31 Mice lacking estrogen receptors are found to be more sensitive to IR 242	

injury and hypertensive cardiomyopathy.28,32 Although less well-studied, testosterone 243	

also plays a role in driving sexual dimorphism between male and female individuals. 244	

Since estrogen was sufficient to reproduce an increase in GCN5L1 production, we have 245	

not evaluated the effects of testosterone. However, we cannot discount the possibility of 246	

an effect, and further studies are required to make this determination. 247	

 248	

In recent years, GPER has taken a central role in our understanding of how estrogen 249	

impacts cardiac function and resiliency.33 GPER activation in cardiomyocytes lacking 250	

classical ERα and ERβ receptors was reported to alter intracellular calcium influx.34 In 251	

addition, GPER activation is associated with protection from ischemia-reperfusion injury, 252	

dependent on PI3K activation.35 Agonism of GPER with G-1 is reported to protect 253	

estrogen-deficient rats from LV remodeling.36 G-1 is also reported to inhibit the opening 254	

of the mitochondrial membrane permeability pore (mPTP),37 and reduces the 255	

upregulation of inflammatory cytokines TNF-alpha, IL-1beta, and IL-6.38 Our earlier 256	

observation that GCN5L1 protects the heart from I/R injury17 raises the possibility that 257	

GPER-mediated upregulation of GCN5L1 may be an additional mechanism by which 258	

estrogen protects the heart.   259	

 260	

The acetylation status of several mitochondria-localized proteins has been reported to 261	

impact their function and stability. A key driver of acetylation status in mitochondria is 262	

the deacetylase SIRT3, which is expressed in myocardial tissue, and has been shown 263	

to regulate the function of several mitochondrial proteins involved in oxidative 264	
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phosphorylation, membrane integrity, and redox homeostasis (See recent review by 265	

Chen et al.39). However, no difference in cardiac SIRT3 expression was identified 266	

between male and female mice, despite altered mitochondrial acetylation levels, 267	

suggesting that dimorphic effects in acetylation are due to GCN5L1 only.  268	

 269	

GPER agonism drives translation and production of GCN5L1 protein, but at no time 270	

point after GPER activation was GCN5L1 message elevated. A recent publication by Lv 271	

et al. suggests that GCN5L1 abundance is regulated post-transcriptionally in diabetic 272	

kidney cells.40 We did not observe evidence that G-1 blocks the degradation of GCN5L1 273	

by the 26S proteasome. Interestingly, there are reports of GCN5L1 acting as a 274	

translational coactivator to ERα in HeLa cells, binding directly to both the receptor and 275	

the corepressor element MTA1.41 That study did not evaluate a direct interaction 276	

between GCN5L1 and GPER, and although a mechanism by which GCN5L1 might 277	

interact directly with GPER was briefly considered, our immunoprecipitation studies did 278	

not support the direct binding of GPER to GCN5L1 (data not shown).  279	

 280	

We demonstrate here that GCN5L1 is required for estrogen and GPER agonism to 281	

upregulate the acetylation and activity of medium-chain acyl-CoA dehydrogenase 282	

(MCAD) in cardiac-derived cells. MCAD is a mitochondria-localized enzyme that 283	

catalyzes the rate-limiting step in the β-oxidation of medium chain fatty acids, the α,β-284	

dehydrogenation of fatty acyl-CoA. MCAD plays a key role in the progression of 285	

myocardial metabolic dysregulation induced by heart failure. TAC-mediated metabolic 286	

changes include the downregulation of MCAD,42 and gene delivery of MCAD to the 287	
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heart protects against pressure overload-induced pathological remodeling.43 Subjecting 288	

mice to a high-fat diet was reported to increase contractile recovery after MI, concurrent 289	

with an increase in MCAD activity.44 Our laboratory and others have shown that high-fat 290	

feeding increases the activity of multiple ACADs through increased acetylation in 291	

response to GCN5L1 expression.12 In addition, MCAD has been reported previously to 292	

be regulated estrogen; E2 has been reported to upregulate or preserve cardiac MCAD 293	

expression via PGC-1.6–8 Studies of skeletal muscle biopsies report that women 294	

express higher levels of MCAD,45 and MCAD expression was reported to increase in 295	

men after treatment with E2.46 The studies reported here show for the first time that 296	

estrogen may also impact through posttranslational acetylation mediated by GCN5L1 297	

expression. 298	

 299	

In summary, we demonstrate here for the first time that GCN5L1 is upregulated by 300	

estrogen signaling in both mouse and human myocardium, and in cultured 301	

cardiomyocytes. The mechanism of upregulation is identified as GPER-mediated 302	

signaling. MCAD is identified as a target of acetylation and activation in the presence of 303	

E2 or GPER agonists, which is dependent on GCN5L1 expression. These findings shed 304	

new light on the role that posttranslational acetylation, mediated by GCN5L1, may play 305	

in the differences observed between men and women in cardiac metabolism.  306	
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Figure Legends 311	

 312	

Figure 1: Mitochondrial protein acetylation and GCN5L1 are upregulated in female 313	

mice. A. Immunoblotting of mitochondrial lysate fractions from male and female mice 314	

demonstrate that females exhibit modestly but significantly higher levels of total protein 315	

acetylation. N = 10, B. GCN5L1, but not SIRT3, mRNA is significantly increased in 316	

female hearts relative to males. C. GCN5L1 protein levels are significantly increased in 317	

the myocardium of female mice compared to male mice. N = 10, * = p < 0.05, *** = p < 318	

0.001 vs. male. 319	

 320	

Figure 2:  Estrogen drives GCN5L1 expression via GPER A. Human tissues from 321	

female patients of pre-menopausal (PRE) or post-menopausal (POST) age. B. Human 322	

derived AC16 cells incubated with E2 show an increase in GCN5L1.  C. GCN5L1 323	

immunoblotting after incubation for 24 hours with E2 and or the ERa/ERb antagonist ICI 324	

182, 780. N = 4, * = p < 0.05, **** = p < 0.0001 vs. vehicle. D. GCN5L1 is elevated after 325	

incubation for 24 hours with E2 and the GPER agonist G-1, and is blocked in the 326	

presence of GPER antagonist G-36. N = 5-6, * = p < 0.05, ** = p < 0.01 vs. vehicle. 327	

 328	

Figure 3:  Estrogen promotes GCN5L1 translation. A. Expression of GCN5L1 mRNA 329	

levels determined by qPCR after treatment with E2 or G-1. N = 3,  ** = p < 0.01 vs. 330	

vehicle. B. GCN5L1 levels are significantly elevated by blocking 26S degradation, 331	

suggesting that GPER agonism does not increase GCN5L1 via impaired proteolysis. N 332	
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= 4, * = p < 0.05, *** = p < 0.001 vs. control. C.  GCN5L1 induction is blocked by CHX, a 333	

translation inhibitor. N = 4 * = p < 0.05, *** = p < 0.001 vs. control. 334	

 335	

Figure 4 : GCN5L1 is required for estrogen-mediated MCAD acetylation and 336	

activation. A. E2 and G-1 raise MCAD activity, while GCN5L1 shRNA knockdown 337	
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Figure 1: Mitochondrial protein acetylation and GCN5L1 are upregulated in 
female mice. A. Immunoblotting of mitochondrial lysate fractions from male 
and female mice demonstrate that females exhibit modestly but significantly 
higher levels of total protein acetylation. N=10, B. GCN5L1, but not SIRT3, 
mRNA is significantly increased in female hearts relative to males. C. GCN5L1 
protein levels are significantly increased in the myocardium of female mice 
compared to male mice. N=10, *p<0.05, ***p<0.001 vs. male
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Figure 2:  Estrogen drives GCN5L1 expression via GPER A. Human tissues from 
female patients of pre-menopausal (PRE) or post-menopausal (POST) age. B. 
Human derived AC16 cells incubated with E2 show an increase in GCN5L1.  
GCN5L1 is not upregulated through canonical ER agonism. GCN5L1 
immunoblotting after incubation for 24 hours with E2 and or the ERa/ERb
antagonist ICI 182, 780. N=4, *p<0.05, ****p<0.0001 vs. vehicle. D. GCN5L1 is 
elevated after incubation for 24 hours with E2 and the GPER agonist G-1, and is 
blocked in the presence of GPER antagonist G-36. N=5-6, *p<0.05, **p<0.01 vs. 
vehicle.
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Figure 3:  Estrogen promotes GCN5L1 translation. A. expression of 
GCN5L1 mRNA levels determined by qPCR after treatment with E2 or G-
1. N=3 **p<0.01 vs. vehicle. B. GCN5L1 levels are significantly elevated 
by blocking 26S degradation, suggesting that GPER agonism does not 
increase GCN5L1 via impaired proteolysis. N=4, *p<0.05, ***p<0.001 vs. 
control. C.  GCN5L1 induction is blocked by CHX, a translation inhibitor. 
N=4 *p<0.05, ***p<0.001 vs. control.
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Figure 4: GCN5L1 is required for estrogen-mediated MCAD 
acetylation and activation A. E2 and G-1 raise MCAD activity, 
while loss of GCN5L1 blocks this effect. N=8 B. Acetylation of 
MCAD is significantly reduced in the presence of E2 and G-1 
when GCN5L1 is absent. N=4 *p<0.05, **p<0.01 vs. control, 
†p<0.01 vs. vehicle. C. Schema c represen ng the hypothesized 
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