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Abstract 
Motivation: Deep learning has revolutionized protein tertiary structure prediction recently. The cut-
ting-edge deep learning methods such as AlphaFold can predict high-accuracy tertiary structures for 
most individual protein chains. However, the accuracy of predicting quaternary structures of protein 
complexes consisting of multiple chains is still relatively low due to lack of advanced deep learning 
methods in the field. Because interchain residue-residue contacts can be used as distance restraints 
to guide quaternary structure modeling, here we develop a deep dilated convolutional residual net-
work method (DRCon) to predict interchain residue-residue contacts in homodimers from residue-
residue co-evolutionary signals derived from multiple sequence alignments of monomers, intrachain 
residue-residue contacts of monomers extracted from true/predicted tertiary structures or predicted 
by deep learning, and other sequence and structural features. 
Results: Tested on three homodimer test datasets (Homo_std dataset, DeepHomo dataset, and 
CASP14-CAPRI dataset), the precision of DRCon for top L/5 interchain contact predictions (L: length 
of monomer in a homodimer) is 43.46%, 47.15%, and 24.81% respectively, which is substantially 
better than two existing deep learning interchain contact prediction methods. Moreover, our experi-
ments demonstrate that using predicted tertiary structure or intrachain contacts of monomers in the 
unbound state as input, DRCon still performs reasonably well, even though its accuracy is lower than 
when true tertiary structures in the bound state are used as input. Finally, our case study shows that 
good interchain contact predictions can be used to build high-accuracy quaternary structure models 
of homodimers. 
Availability: The source code of DRCon is available at https://github.com/jianlin-cheng/DRCon. 
Contact: chengji@missouri.edu  
 

 
 

1 Introduction  
Proteins fold into three-dimensional (3D) structures to carry out biologi-

cal functions such as catalyzing chemical reactions and transporting 

nutrients. The 3D structure of a single protein chain is called tertiary 

structure. The tertiary structures of multiple protein chains usually inter-

act to form a complex structure (i.e., quaternary structure). Both tertiary 

structure and quaternary structure are important for protein function. 

Because the experimental determination of protein structure is low-

throughput and can be applied to only a small portion of proteins in the 

nature, the computational prediction of protein tertiary and quaternary 

structure is critical for obtaining structural information for most proteins 

to study their function.  

The computational methods for predicting protein tertiary structures 
and quaternary structures are periodically evaluated in the Critical As-
sessment of Protein Structure Prediction (CASP) (Kryshtafovych et al., 

2014; Moult et al., 2016; Kryshtafovych et al., 2019; Kwon et al., 2021) 
and the Critical Assessment of Protein Interaction (CAPRI) (Lensink et 
al., 2016, 2018, 2021), respectively, or the joint experiment of the two. 
Driven by the application of deep learning methods to predicting residue-
residue contacts and distances (Wang et al., 2017; Adhikari et al., 2018; 
Jones & Kandathil, 2018; Li et al., 2019; Hou et al., 2020; Senior et al., 

2020; Yang et al., 2020; Wu et al., 2021) in the last several years, tertiary 
structure prediction has reached unprecedented high accuracy. In the 
2020 CASP14 experiment, AlphaFold2 (Jumper et al., 2021) predicted 
high-quality structures for most CASP14 targets with the accuracy equal 
to or close to that of the experimental structure determination. Recently, 
AlphaFold2 was applied to predict the structures for all the proteins in 
several species including human (Tunyasuvunakool et al., 2021).  

Despite the drastic advance in protein tertiary structure prediction, the 
prediction of quaternary structure has progressed slowly and still cannot 

reach high accuracy for most protein complexes. One reason is more 
effort has been put into tertiary structure prediction than quaternary 
structure prediction because the former is needed as input for the latter. 
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Another reason is the application of deep learning methods to protein 
quaternary structure prediction is still in the early stage and much fewer 
deep learning methods for quaternary structure prediction than tertiary 
structure prediction have been developed.   

The most common approach to quaternary structure prediction is clas-

sic protein docking algorithms (Gray et al., 2003; Lyskov & Gray, 2008; 
Venkatraman et al., 2009; Li & Kihara, 2012; Pierce et al., 2014; Johans-
son-Åkhe et al., 2020), leveraging the geometric and electrostatic com-
plementarity between protein tertiary structures. The residue-residue co-
evolutionary methods such as the direct coupling analysis (DCA) (Hopf 
et al., 2015; Ovchinnikov et al., 2014) that were originally designed to 
predict intrachain residue-residue contacts in a protein chain were also 
used to predict interchain contacts from multiple sequence alignments 
(MSAs) of protein complex (e.g., protein heterodimers). The DCA based 

methods require a large number of sequences in MSAs to generate accu-
rate interchain contact predictions, which are not available for most 
protein complexes because there are not many known protein complexes 
available. The problem is alleviated for protein homodimers (a protein 
complex consisting of two identical chains) because the MSA of a mon-
omer (a single chain) in a homodimer contains both intrachain and 
interchain residue-residue co-evolutionary signals (Quadir et al., 2021). 
The advantage of using the MSA of a monomer is that it is generally 
much deeper than the MSA of a protein complex. Recently several deep 

learning methods such as  DNCON2_Inter (Quadir et al., 2021) and 
DeepHomo (Yan & Huang, 2021) use the MSA of a monomer in a 
homodimer to predict interchain contacts in homodimers.  

Another interesting recent development is the application of 

AlphaFold2 and RoseTTAFold (Baek et al., 2021) - the two cutting-edge 

deep learning methods designed for prediction of tertiary structure to the 

prediction of the quaternary structures of several protein complexes, 

demonstrating the great potentials of deep learning methods for predict-

ing protein quaternary structures. However, because the two methods are 

not specially designed for quaternary structure prediction and are not 

trained on the protein complex data, there is a significant need to develop 

more deep learning methods directly targeting quaternary structure pre-

diction. 

In this work, we develop a dilated convolutional residual neural net-
work called DRCon to directly predict interchain contacts in 
homodimers from the MSA, intrachain contacts, and other features of the 
monomers forming the homodimers. We test our method rigorously on 
the CASP14-CAPRI dataset, DeepHomo test dataset and also on Ho-
mo_std test dataset. It performs better than two other deep learning 
methods (DeepHomo and DNCON2_Inter) for interchain contact predic-
tion. The method works not only with true tertiary structures of mono-
mers in the bound state as input but also predicted tertiary structures of 

monomers in the unbound state (e.g., tertiary structure models predicted 
by AlphaFold2).  Moreover, we demonstrate that good interchain contact 
predictions can be used to build high-quality quaternary structures of 
homodimers. 

2 Materials and Methods 

2.1  Datasets 

Two residues from the two chains in a homodimer are considered an 

interchain contact if the Euclidean distance between any two heavy 

atoms of the two residues is less than or equal to 6Å (Ovchinnikov et al., 

2014; Quadir et al., 2021; Zhou et al., 2018). Multiple homodimer da-

tasets with known quaternary structures and interchain contacts are used 

to develop DRCon. The Homo_std dataset used in DNCON2_Inter is 

used to train, validate, and test DRCon. Homo_std was derived from the 

homodimers in the 3D Complex database (Levy et al., 2006). All the 

complexes of the 3D Complex were released before October of 2005. 

The dimers in the database whose two chains have >= 95% sequence 

identity are treated as homodimers to create Homo_std. Homo_std has 

8,530 homodimers in total that has <= 30% pairwise sequence identity. It 

is split into a training dataset (5,975 dimers), a validation dataset (853 

dimers), and a test dataset (1,702 dimers) according to the ratio of 7:1:2 

to train, validate, and test DRCon. 
In addition, two independent datasets (the CASP14-CAPRI dataset 

and DeepHomo dataset) are used to test DRCon. The CASP14-CAPRI 

dataset contains 7 homodimers collected from five homodimers (T1032, 

T1054, T1083, T1078, T1087) and two homotrimers (T1052 and T1070) 

that were used in the 2020 CASP14-CAPRI experiment and whose ex-

perimental structures are publicly available. From each homotrimer, we 

select only one homodimer with most interchain contacts.  
The DeepHomo dataset used here contains 218 homodimers out of the 

300 homodimers in its original version (Yan & Huang, 2021). 82 

homodimers in the original DeepHomo dataset that are present in the 

Homo_std training dataset are removed to avoid the evaluation bias. 
The statistics of the number of the dimers, the length of the dimers 

(i.e., the length of the monomer sequence in a homodimer), and the 

contact density of the dimers (i.e., the number of true interchain contacts 

divided by the length of the monomer in a homodimer) of the three test 

datasets above is reported in Table 1. 

Table 1. The statistics of the Homo_std test dataset, DeepHomo test 

dataset and CASP14-CAPRI test dataset 

Name Number 
of Di-
mers 

Range 
of 

Length 

Average 
Length 

Range 
of 

Contact 
Density 

Average 
Contact 
Density 

Homo_std 
test dataset 

1702 30 to 
600 

254.94 0.003 
to 4.54 

0.67 

DeepHomo 218 48 to 
498 

235.9 0.210 
to 4.5 

1.06 

CASP14-
CAPRI 

7 89 to 
832 

253.8 0.708 
to 2.05 

1.36 
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2.2  Input features  

The input features for DRCon are stored in L x L x d tensors (L: length 

of the sequence of the monomer in a homodimer; d is the number of 

features for each pair of interchain residues) that describe the features of 

all pairs of interchain residues. Since the two chains in a homodimer are 

identical and interchain residue-residue coevolution features are also 

preserved in the multiple sequence alignment (MSA) of one chain (mon-

omer), only the sequence of a monomer is used to generate the input 

features for interchain contact prediction in this work. 
The number of features (d) for each interchain residue pair is 592. 49 

features are the same kind of features used by DNCON2 (Adhikari et al., 

2018) for intrachain contact prediction, including solvent accessibility of 

residues as well as interchain residue-residue coevolution features calcu-

lated from MSAs of a monomer by CCMpred (Seemayer et al., 2014) 

and PSICOV(Jones et al., 2012). 526 features generated from MSAs by 

trRosetta (Yang et al., 2020) are also used. The 8-state secondary struc-

ture prediction for each residue (i.e., 16 features for a pair of residues) 

made by SCRATCH (Cheng et al., 2005) is also included.  Finally, a 

binary feature indicating if two residues form an intrachain contact (i.e., 

Cb-Cb atom distance is less than or equal to 8Å (Adhikari et al., 2015; 

Wu et al., 2021) is also used as input, which is useful for the neural 

network to distinguish interchain contacts from intrachain contacts. In 

the training phase, the intrachain contacts are derived from the true ter-

tiary structures of monomers in the dimers. In the test phase, the 

intrachain contacts may be either derived from true tertiary structures of 

monomers in the bound state or predicted from sequences/tertiary struc-

ture models of monomers in the unbound state, depending on the exper-

imental setting.  Specifically, for the training and validation datasets, the 

intrachain contacts are derived from the known tertiary structures of the 

monomers in the homodimers (the bound state). For the test datasets, 

either true intrachain contacts or predicted intrachain contacts made by 

trRosetta or extracted from AlphaFold2 tertiary structure models in the 

unbound state are used to generate intrachain contact features. 

Most of the 592 features above are generated from the MSAs of the 

monomers in the homodimers. The DNCON2’s MSA generation proce-

dure is used to generate the MSAs for all the datasets by using HHBlits 

(Remmert et al., 2012)  to search UniRef30_2020_02 database (Suzek et 

al., 2015) and Jackhmmer (Johnson et al., 2010) to search Uniref90. In 

addition, DeepMSA (Zhang et al., 2020) is used to generate MSAs for 

the CASP14-CAPRI dataset. The MSAs with more sequences generated 

by DNCON2 or DeepMSA are selected for the proteins in this dataset. 

2.3  Deep learning architecture for interchain contact 
prediction 

Figure 1 illustrates the deep learning architecture for interchain contact 

prediction. The input tensor (L x L x 592) is first transformed by a block 

consisting of a convolutional layer and instance normalization.  The 

instance normalization instead of the batch normalization is used because 

the former is better at dealing with a small batch size (Lian & Liu, 2019). 

The transformed tensor is then processed by 36 residual blocks contain-

ing regular convolutional layers, instance normalization, dilated convolu-

Figure 1.  The deep learning architecture of DRCon for interchain contact prediction in homodimers. For a homodimer in which the length of the 

monomer sequence is L, the input is a L x L x 592 tensor. The number of input features for each pair of residues is 592. For convenience, L is set to a 

fixed number - 600. 0 padding is applied if L is less than 600. It is worth noting that in the prediction phase, no zero padding is used in generating the 

input tensor if L is greater than 600. The input is transformed to a 600 x 600 x 48 tensor using a 2D-convolutional layer which has a kernel size of 1 

and uses Exponential Linear Unit (elu). The output of the convolution layer is passed through 36 residual blocks with kernel size of 3x3. Each resid-

ual block uses a 2D-convolution layer with a kernel size of 3, instance normalization and dropout of 15% probability of a neuron being ignored, 

followed by a dilated convolution layer without dropout. The step of the dilation in the dilated convolution layers in these blocks changes from 1, 2, 

4, 8, 16 periodically. The sigmoid activation function is applied to the output of the last residual block to calculate the contact probability of each 

interchain residue-residue pair. The probabilities for residue pair (i,j) and residue pair (j, i) are averaged to a symmetric final contact map. 
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tional layers, and residual connections. The residual connection makes 

the learning of deep networks more efficient and effective. The dilated 

convolution can capture a larger input area than the regular convolution 

with the same number of parameters, which has been shown to improve 

intrachain residue-residue distance prediction in AlphaFold1( Senior et 

al., 2019). 

The network is trained on the Homo_std training dataset with 0.0001 

learning rate and optimized with Adam (Kingma & Ba, 2017) optimizer 

using a batch size of 2 and the binary cross entropy as loss function. 

Each epoch of training the network on six 32GB NVIDIA V100 GPUs 

takes around 2 hours. The deep network is implemented on Pytorch and 

horovod (Sergeev & Del Balso, 2018) to leverage the distributed deep 

learning training. The deep learning model with the highest precision for 

top L/5 interchain contact predictions on the Homo_std validation da-

taset is selected as the final model for testing.  

3  Results and Discussions 

DRCon has been extensively benchmarked on three datasets: Homo_std 

test dataset, DeepHomo test dataset and CASP14-CAPRI dataset. The 

contact-level precision and the target-level accuracy rate at the various 

thresholds (i.e., Top 10, top L/10, top L/5, top L interchain contact pre-

dictions) are used to compare DRCon with existing methods, where L is 

the length of the monomer sequence in a homodimer. The contact-level 

precision is the number of correctly predicted contacts divided by the 

total number of contact predictions. And the target-level accuracy rate 

(Zhao & Gong, 2019) is defined as the percentage of dimers (targets) 

with nonzero correct interchain contact prediction when a certain number 

of predicted interchain contacts are evaluated. 

3.1  Evaluation on Homo_std test dataset 

We compare DRCon with DNCON2_Inter on the Homo_std test dataset. 

DRCon is run in the two settings. In one setting, the true intrachain con-

tacts extracted from known tertiary structures of a monomer in each 

homodimer are used as input. In another setting, the intrachain contacts 

predicted by trRosetta are used as input. Predicted intrachain contacts are 

converted from the distance probabilities predicted by trRosetta. A cutoff 

probability of 0.5 is applied to make the conversion. The precision of top 

L and top 2L intrachain contact predictions made by trRosetta is 86% 

and 78%, respectively, indicating the quality of the intrachain contact 

prediction is good. 

The precision of the interchain contact prediction on the Homo_std 
test dataset is reported in Table 2. The precision of DRCon in the two 
settings is more than twice that of DNCON2_Inter. For instance, the 
precision of DRCon with predicted intrachain contact prediction as input 

for top L/10 interchain contact prediction is 37.25%, higher than 17.32% 
of DNCON2_Inter. The difference is largely because DRCon is specially 
designed and trained to predict interchain contacts, but DNCON2_Inter 
is adapted from a deep learning method designed and trained to predict 
intrachain contacts. 

The precision of DRCon with predicted intrachain contacts 
(DRCon_pre) as input is worse than that of DRCon with true contacts by 
about 6 to 11 percentage points for Top 10, Top L/10,  Top L/5 and Top 
L interchain contact predictions, indicating that more precise intrachain 

contact prediction (or tertiary structure prediction) of monomer leads to 
the higher accuracy of the interchain contact prediction. Because the 

predicted intrachain contacts represent the tertiary structures of mono-
mers in the unbound state (i.e., in the free state without a binding part-
ner) while the true intrachain contacts represent the tertiary structures in 
the bound state (i.e., in the state of binding with a partner in complex), 
the reasonable performance of DRCon_pre shows that DRCon trained on 

the dimers and the true tertiary structures of monomers in the bound state 
can work well on the predicted input intrachain contacts (or predicted 
tertiary structures) in the unbound state. The similar trend is also ob-
served in the target-level prediction accuracy rate on the dataset (Table 
3). 

 
Table 2. The interchain contact prediction precision of DNCON2_Inter, 
the DRCon with true intrachain contacts as input (DRCon_true) and 
DRCon with predicted intrachain contacts as input (DRCon_pre) on 
Homo_std test set. The precision of DNCON2_Inter is reported with its 
best parameter setting (relax_removal=2). L: length of a monomer in a 
dimer. 

Predictor Top10 
(%) 

Top 
L/10 
(%) 

Top 
L/5 
(%) 

Top L 
(%) 

DNCON2_Inter  16.9 17.32 16.31 13.69 

DRCon_pre  40.20 37.25 33.75 18.92 

DRCon_true  50.61 47.21 43.46 25.05 

 
Table 3. Target-level accuracy rate of DNCON2_Inter and DRCon on 
the Homo_std test dataset.  

Predictor Top 10 
(%) 

Top 
L/10 
(%) 

Top 
L/5 
(%) 

Top L 
(%) 

DNCON2_Inter 23.52  30.19 37.50 43.36 

DRCon_pre 58.28 63.40 67.74 73.85 

DRCon_true 67.39 70.86 75.56 80.38 

3.2  Evaluation on DeepHomo test dataset 

We compare DRCon and DeepHomo on the DeepHomo test dataset (see 
the contact-level precision and target-level accuracy rate in Table 4 and 
Table 5 respectively). For a fair comparison, we use the same tertiary 

structures of monomers in the homodimers provided by the DeepHomo 
server to extract the intrachain contacts as input for DRCon and for the 
DeepHomo server itself to make interchain contact predictions. The 
interchain contacts predicted by DeepHomo consist of only the upper 
triangle of the interchain contact map. They are converted to a diagonally 
symmetric full contact map for evaluation as DeepHomo assumes the 
contact map is of C2-symmetry. DRCon performs better than DeepHomo 
in terms of contact-level precision and target-level accuracy rate at all 
the thresholds except for the target-level accuracy rate of top L contact 

predictions. For instance, the contact-level precision and target-level 
accuracy of DRCon for top L/10 interchain contact prediction is 50.17% 
and 76.15%, higher than 38.74% and 70.77% of DeepHomo. 

Table 4. The interchain contact prediction precision of DRCon and  
DeepHomo on the DeepHomo test dataset 
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Predictor Top 10 
(%) 

Top L/10 
(%) 

Top L/5 
(%) 

Top L 
(%) 

DRCon  53.66 50.17 47.10 27.81 

DeepHomo  43.80 38.74 34.10 21.35  

 
Table 5. The target-level accuracy rate of DRCon and DeepHomo on the 
DeepHomo test dataset  

Predictor Top 10 (%) Top L/10 (%) Top L/5 (%) Top L 
(%) 

DRCon  72.95 76.15 80.73 86.69 

DeepHomo  66.67 70.77 77.17 87.61 

3.3  Evaluation on CASP14-CAPRI dataset using true 
or predicted tertiary structures as input 

We compare DRCon and DeepHomo on the CASP14-CAPRI dataset. 

Only the contact-level precision is used to evaluate them because only 7 

targets are not sufficient to reliably estimate the target-level accuracy 

rate.  DRCon is run in the two settings (the ideal setting and the realistic 

setting). In the ideal setting (DRCon_true), the known tertiary structures 

of the monomers in the homodimers are used to generate the true 

intrachain contacts as input for DRCon. In the realistic setting 

(DRCon_alpha), the tertiary structures of the monomers predicted by 

AlphaFold2 (Jumper et al., 2021) are used to generate the interchain 

contacts for DRCon. The AlphaFold2 model with the highest confidence 

is used for each target. The TM-scores (Y. Zhang & Skolnick, 2004) of 

the tertiary structures for the 7 targets (T1032, T1052, T1054, T1070, 

T1078, T1083, T1087) predicted by AlphaFold2 is 0.708, 0.672, 0.924, 

0.491, 0.985, 0.870, and 0.977. The average TM-score is 0.840. 

Table 6. The precision of DRCon and DeepHomo on the CASP14-
CAPRI test dataset. DRCon_true and DeepHomo use the true tertiary 
structures of monomers in the bound state to extract intrachain contacts 

as input. DRCon_alpha uses the tertiary structures predicted by 
AlphaFold2 in the unbound state to extract intrachain contacts as input.  

Predictor Top 10 (%) Top L/10 (%) Top L/5 (%) 

DRCon_true 32.85 30.06 24.81 

DRCon_alpha 27.14 26.57 20.76 

DeepHomo 11.42 11.63 13.09 

 

The precision of interchain contact predictions of DRCon and 

DeepHomo are shown in Table 6. The precision of both DRCon_true 

and DRCon_alpha is substantially higher than that of DeepHomo at all 

the thresholds. For instance, for top L/10 interchain contact predictions, 

the precision of DRCon_true and DRCon_alpha is 30.6% and 26.57%, 

more than double 11.63% of DeepHomo. DRCon_true performs better 

than DRCon_alpha, indicating that more accurate intrachain contact 

input leads to better interchain contact prediction. 

The precision of top L/5 contact predictions for each target made by 

the methods is illustrated in Figure 2. T1032 and T1052 are classified by 

CAPRI as easy targets that have dimer structure templates in PDB, while 

T1054, T1070, T1078, T1083, and T1087 are classified as difficult tar-

gets that do not have good dimer structure templates. DRCon_true, 

DRCon_alpha and DeepHomo perform better on T1032, T1078, and 

T1087 than on the other four targets. Both DRCon_true and 

DRCon_alpha outperform DeepHomo on all but one target (T1078). 

However, all the methods perform poorly on two dimers T1052 and 

T1070 extracted from homotrimers, indicating it may be more challeng-

ing for the methods trained only on homodimers to predict dimerization 

interactions in homo multimers consisting of more than two protein 

chains. All the methods failed to predict any interchain contact for 

T1083.  DRCon_true performs better than or similarly to DRCon_alpha 

on all but one target (T1087), confirming better intrachain contact input 

(or tertiary structure input) generally leads to better interchain contact 

prediction. The tertiary structure predicted by AlphaFold for T1087 is 

very similar to the true structure (TM-score of the AlphaFold structure = 

0.977), suggesting that the difference in their performance on this target 

may be mostly due to the random variation in the input instead of the 

quality of intrachain contact input.     

3.4  Effect of contact density on interchain contact 
prediction 

We investigate the interchain contact density in a dimer with the preci-

sion of the interchain contact prediction on the Homo_std test dataset. 

The Pearson’s correlation coefficient between the precision of top L/5 

interchain contacts and contact density is 0.4211, indicating a moderate 

correlation between the two. The lowest average precision (a little over 

4%) is recorded for targets with the low contact density between 0 and 

0.25, indicating that when the interchain contact map is very sparse, the 

prediction is generally difficult.   

Figure 2. The precision of top L/5 interchain contact predictions for 
each of 7 targets. 
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3.5  A case study of applying interchain contact pre-
diction to build quaternary structure 

Figure 3 visualizes the top L/5 interchain contact predictions for a target 

(PDB code: 1DR0) from the Homo_std test dataset and the quaternary 

structure reconstructed from the interchain contacts predicted by DRcon 

and the known tertiary structure of a chain in the dimer. The quaternary 

structure is built by GD (Soltanikazemi et al., 2021), which applies the 

gradient descent optimization to build quaternary structures by using 

interchain contacts as distance restraints. 
It is shown in Figure 3A that most of the interchain contact predic-

tions overlap with the true interchain contacts, indicating a high predic-
tion precision. Indeed, the precision of top L/5 and top L contact predic-
tions is 100% and 75%, respectively. The quaternary structure recon-
structed from the predicted interchain contacts is also very similar to the 
native structure (Figure 3B). The TM-score of the predicted quaternary 

structure in comparison with the true quaternary structure is 0.99. 
TMalign (Y. Zhang & Skolnick, 2005) is used to calculate the TM-
score. The predicted quaternary structure has a fraction of the native 
contacts (Fnat) of 0.88, interface RMSD (iRMS: root mean square dis-
placement of inter-protein heavy atoms that are within 10 Å) of 0.3 Å, 
ligand RMS (LRMS) of 0.83 Å and a DockQ score of 0.95. Fnat , iRMS, 
LRMS, and DockQ score of the predicted quaternary structure are calcu-
lated against the true quaternary structure by DockQ (Basu & Wallner, 
2016). A DockQ score of 0.8 indicates a high-quality quaternary struc-

ture prediction.   

 
Figure 3. (A) The predicted and true contact maps of target 1DR0. The 
top L/5 predicted contacts (red dots) and true contacts (blue dots) are 
plotted. Most predicted contacts overlap with the true contacts, indicat-
ing a high contact prediction precision. (B) The superimposition of the 
true quaternary structure (chain A in red and chain B in green) and the 
predicted quaternary structure (chain A in blue and chain B in orange). 
The two quaternary structures are quite similar. 

Conclusion and Future Work 
In this work, we develop a deep network (DRCon) consisting of residual 
connections, regular and dilated convolutions and instance normaliza-
tions to predict interchain homodimers from sequence and structural 
features of monomers in homodimers. DRCon trained on known 
homodimer structures can predict interchain contacts well. Moreover, 
DRCon is robust against the errors in input tertiary structures or 
intrachain contacts of monomers. It maintains the reasonable prediction 
precision when predicted tertiary structures of monomers in the unbound 

state instead of true tertiary structures in the bound state are used as 
input. The work demonstrates that deep learning methods specially de-
signed for interchain contact prediction can be trained on known 

homodimer structures to substantially improve the prediction of 
interchain residue-residue contacts as what had happened in protein 
tertiary structure prediction. In the future, we plan to further improve the 
deep learning architecture, input features, and training strategies to im-
prove interchain contact prediction. We will generalize the method to 

predict interchain residue-residue distances. Moreover, we plan to devel-
op similar methods to predict interchain contacts and distances in hetero-
dimers and generalize them to multimers consisting of more than two 
chains.  
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