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Abstract 

Predictive determinants of stochastic single-cell fates have been elusive, even for the 
well-studied mammalian cell cycle. What drives proliferation decisions of single cells at 
any given time? We monitored single-cell dynamics of the ERK and Akt pathways, 
critical cell cycle progression hubs and anti-cancer drug targets, and paired them to 
division events in the same single cells using the non-transformed MCF10A epithelial 
line. Following growth factor treatment, in cells that divide both ERK and Akt activities 
are significantly higher within the S-G2 time window (~8.5-40 hours). Such differences 
were much smaller in the pre-S-phase, restriction point window which is traditionally 
associated with ERK and Akt activity dependence, suggesting unappreciated roles for 
ERK and Akt in S through G2. Machine learning algorithms show that simple metrics of 
central tendency in this time window are most predictive for subsequent cell division; 
median ERK and Akt activities classify individual division events with an AUC=0.76. 
Surprisingly, ERK dynamics alone predict division in individual cells with an AUC=0.74, 
suggesting Akt activity dynamics contribute little to the decision driving cell division in 
this context. We also find that ERK and Akt activities are less correlated with each other 
in cells that divide. Network reconstruction experiments demonstrated that this 
correlation behavior was likely not due to crosstalk, as ERK and Akt do not interact in 
this context, in contrast to other transformed cell types. Overall, our findings support 
roles for ERK and Akt activity throughout the cell cycle as opposed to just before the 
restriction point, and suggest ERK activity dynamics are substantially more important 
than Akt activity dynamics for driving cell division in this non-transformed context. Single 
cell imaging along with machine learning algorithms provide a better basis to 
understand cell cycle progression on the single cell level.  
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Introduction 

The mammalian cell cycle is in large part driven by growth factor activation of the Ras-

ERK1–5 and the PI3K-Akt2,6–11 pathways. Growth factors cause auto-phosphorylation of 

receptor tyrosine kinases (RTKs). For the ERK pathway, RTK phosphorylation recruits 

the guanine exchange factor SOS to the membrane, catalyzing the exchange of GDP 

for GTP bound to Ras, initiating Raf activation 6,12–16. This in turn activates the MEK-

ERK phosphorylation cascade. When activated, the effector kinases ERK1/2 translocate 

from the cytoplasm to the nucleus and activate transcriptional regulators such as Elk-1 

and CREB17,18 19. These transcriptional regulators induce immediate early genes (IEGs) 

like c-fos17,18 that then contribute to the expression of cyclin D1 4,6,8,19–21 , a key step in 

S-phase entry22. 

 RTK activation can also initiate Akt pathway signaling. RTK autophosphorylation 

recruits adapter proteins like insulin receptor substrate (IRS-1) and GRB2-associated 

binder (GAB) 23–26. These proteins in turn recruit Phosphatidylinositol (PtdIns) 3-kinase 

(PI3K) to the membrane 21,26–28 where it phosphorylates the membrane phospholipid 

PtdIns (4,5) P2 (PIP2), generating PtdIns (3,4,5) P3 (PIP3). PIP3 recruits pleckstrin 

homology domain (PH)-containing proteins to the membrane such as 

phosphatidylinositol-dependent kinase-1 (PDK1)29 and the serine/threonine protein 

kinases Akt1/2 21,30. PDK1 phosphorylates Akt’s activation loop followed by mTORC2 

phosphorylation of a second site on Akt for full activation 6,7,21. This doubly 

phosphorylated, activated Akt promotes cell cycle progression by: (i) promoting protein 

translation via 4E-BP and p70S6K 6,21, (ii) promoting cyclin D1 20,31 CDK4/6, c-Myc, and 

E2F activity 32 and (iii) inhibiting p21 and p27 33 (cyclin-dependent kinase inhibitors). 
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 While ERK and Akt pathways have established roles prior to the restriction point 

marked by S-phase entry, the extent to which they are informative of cell cycle 

completion after S-phase is less clear. Beyond S-phase, studies suggest that Ras-ERK 

34–41 and PI3K-Akt 30,42,43 may contribute towards regulating G2 progression. ERK 

activity was shown to play a role in the duration of DNA damage-induced G2 arrest44. 

Transient ERK activity maintains G2 arrest, whereas sustained ERK activity promotes 

escape by reducing p53 levels, and inducing the expression of pro-mitotic factors such 

as Plk1 and cyclin B 41. Akt activity also contributes to G2-M progression as its inhibition 

is associated with reduced cyclin B levels, promoting Chk1 activity and G2 arrest 42. 

These observations motivate a closer look at determining how ERK and Akt dynamics 

are informative of cell cycle completion after the canonical restriction point. 

 On a single cell level, both ERK and Akt activity dynamics have substantial cell-

to-cell and dynamic variation, exhibiting complex pulses and more simple steady activity 

1,27,45–53. Such variation, when coupled with the observations that cell cycle progression 

is also heterogeneous 1,54,55, have prompted investigations into the correlation between 

dynamics and cell cycle fate in single cells. What determines proliferation on a single 

cell level? What relative contributions do ERK and Akt activity have to the decision of 

individual cells to divide? Much prior work has focused on activity dynamics. Both Ras-

ERK 56–58 and PI3K-Akt 59 exhibit biphasic growth factor-induced activation dynamics, 

with a transient peak followed by sustained activity hours later. The dynamics of each 

phase contributes differently towards driving progression to S-phase and is cell type 

dependent 59–61. Live-cell imaging and analysis of recently divided sister cells reveal that 

time-integrated ERK activity has some predictive power of the timing to S-phase entry1. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.14.460349doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.14.460349
http://creativecommons.org/licenses/by/4.0/


5 
 

Time-integrated ERK dynamics were found to influence proliferation decisions in 

daughter cells 50. Predicting PC12 cell differentiation/proliferation decisions required 

both ERK and Akt activity dynamics to best define the decision boundary between these 

two cell fate outcomes 62. Yet, the extent to which both ERK and Akt activities 

throughout the cell cycle are predictive of division in single cells remains unclear. 

 Here, we use live-cell imaging to pair measurements of growth factor-induced 

ERK and Akt activity to cell division outcomes in the same single cells. We aim to 

assess the extent to which these activities are associated with cell cycle progression 

beyond S-phase entry, and to evaluate their ability to predict single cell division 

responses jointly in the well-established non-transformed breast epithelial MCF10A cell 

line, a model system that is commonly used to study epithelial signaling biology and cell 

division control 26,63–68. We found that following treatment of synchronized cells with 

growth factors EGF and insulin, both ERK and Akt activity are significantly higher within 

the S-G2 interval in dividing cells. Such differences were much smaller in the pre-S-

phase window, which is traditionally associated with ERK and Akt activity 

dependence59–61, suggesting unappreciated roles for ERK and Akt in S through G2. 

These higher activities could classify division events with AUC=0.76. Surprisingly, ERK 

activity dynamics alone enable AUC=0.74, suggesting Akt activity dynamics contribute 

little to the decision governing cell division in this context. Interestingly, we found that 

ERK and Akt activities are less correlated in cells that divide. Network reconstruction 

experiments demonstrated that this correlation behavior was not due to crosstalk, as 

ERK and Akt do not interact in this context, in contrast to other cell types 69. Overall, our 

findings support roles for ERK and Akt activity throughout the cell cycle as opposed to 
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just before the restriction point, and suggest ERK activity dynamics are substantially 

more important than Akt activity dynamics for driving cell division in this non-

transformed context.  
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Results 

Predictability of Cell Division Events from Univariate ERK and Akt Dynamics. To 

evaluate if ERK or Akt signaling dynamics are predictive of cell division we first 

conducted a series of live cell imaging experiments in MCF10A cells that express either 

ERK46,70 or Akt48 kinase translocation reporters (KTRs), but not yet both at once, and 

paired those single cell dynamics to cell division events (Fig. 1A). We first verified that 

cell cycle progression and division are related to ERK and Akt activity dynamics in 

MCF10A cells using small molecule inhibitor experiments (Fig S1). KTR-expressing 

cells were G0-synchronized by serum and growth factor starvation for 24 hours. After 

acquiring 1 hour of baseline ERK or Akt activity, cells were treated with EGF and insulin, 

growth factors that promote cell division in MCF10A cells71. Images were acquired every 

15 minutes for 48 hours, and then single-cell data for kinase activity and division 

outcome were extracted using custom-built image processing pipelines (see Methods). 

Dynamic regimes of KTR specificity were determined using two independent (four total) 

MEK and Akt inhibitors (Fig. S2). ERK KTR was found to be specific in all regimes 

explored here, whereas the Akt KTR was found to be specific >~ 1 hour after EGF and 

insulin co-stimulation. 

 Single cell traces of ERK or Akt activity (thin lines) along with the population 

median (bold line) show rapid activation following growth factor treatment, which largely 

persists for the duration of the experiment, without recognizable pulsing (Fig. 1B,C). In 

(blue) dividing cells, population median ERK and Akt activity dynamics are higher 

throughout the cell cycle compared to non-dividing cells, with larger differences evident 

for ERK. In the pre-S-phase entry window (~< 8 hours after growth factor treatment), 
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there are slight differences between dividing and non-dividing cells in terms of 

population median ERK and Akt dynamics. These differences grow larger in the 

subsequent 8.5—40 hour interval post growth factor addition, which largely corresponds 

to S and G2 phases. These trends were also evident with 10-fold less concentration of 

growth factors (Fig. 1C). These results suggest that ERK and Akt activity may have 

importance after S through G2 phase. 

 To assess the statistical significance of this finding, we calculated the median 

ERK or Akt activity for individual single cells within the 8.5 – 40 hour window post-

growth factor treatment, and then compared median activity between dividing and non-

dividing cells with the rank-sum test (Fig. 1D-E). Individual dots in the boxplot represent 

the median ERK or Akt activity calculated within the 8.5 – 40 hour interval in a single 

cell. These median single cell activities were significantly different in dividing vs. non-

dividing populations (Fig. 1E). Yet, there is substantial overlap in the two populations. 

We evaluated whether single cell median ERK or Akt dynamics are predictive of cell 

division using a logistic regression classification model, and ROC analysis to quantify 

the outcome. Both ERK and Akt dynamics have some predictive power for cell division 

under high and low growth factor conditions, with high growth factor conditions having 

slightly elevated predictive power, as quantified by the area under the ROC curve 

(AUC). ERK dynamics have more predictive power than Akt dynamics. Yet, the best 

achieved AUC is 0.74, indicating there are other factors driving differences in cell 

division fate. 

Predictability of Cell Division Events Using Measurements of Both ERK and Akt 

Dynamics in the Same Single Cells. As shown above, ERK and Akt activity dynamics 
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alone contain information about subsequent cell division. Would simultaneous 

measurements of both ERK and Akt activity dynamics in the same single cell improve 

cell division predictions? To answer this question, we performed a similar experiment as 

described above using dual reporter expressing MCF10A cells (see Methods). For the 

duration of the time course, population median ERK and Akt dynamics are again 

elevated in dividing cells compared to non-dividing cells (Fig. 2A), with larger 

differences observed in the 8.5 – 40 hr interval. To evaluate median ERK and Akt 

dynamics as bivariate predictors of cell division, we trained a support vector machine 

(SVM) classifier (Fig. 2B). ROC evaluation of SVM performance shows some, albeit 

small improvements from the ERK-only classifier performance (AUC = 0.76 vs. 0.74 and 

0.72 vs. 0.68, Fig. 2D). These results were confirmed in an independent experiment 

(Fig. S3A-C). Thus, Akt dynamics add comparatively little new information to ERK 

dynamics for predicting single cell division events in this context. 

Measurements of Central Tendency Dominate Predictive Dynamic Features. The above 

analysis focused on simple median features of ERK and Akt dynamics as predictors of 

cell division. However, it was not clear a priori what dynamic features may be relevant to 

this prediction task. To determine if there are additional time series features that can 

improve cell division predictions, we utilized the machine learning-based highly 

comparative time-series analysis (hctsa) package 72,73. We calculated hctsa features on 

raw time series data for dividing and non-dividing cells in dual ERK and Akt KTR 

reporter expressing lines. Features that best discriminate dividing from non-dividing 

cells are all measures of central tendency (Table 1). Thus, we conclude that the above 
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analysis focused on median activity is likely to be sufficient for assessing how predictive 

ERK or Akt dynamics are for cell division events in the studied context. 

Inferring the Topology of the ERK-Akt Network. Information content is related to 

correlation, so we investigated the extent to which ERK and Akt dynamics in the same 

single cells were correlated, looking across every cell and every time point (Fig. 3A, 

replicate Fig. S3D). Interestingly, in dividing cells, single cell ERK and Akt dynamics 

within the 8.5-40 hour window are significantly less correlated than in non-dividing cells, 

at both high and low growth factor doses. Network topology can strongly influence 

correlated behaviors. In different studies, ERK and Akt have been reported to exhibit 

very different network behavior, such as cross-pathway activation, inhibition6,20,21,69,74–79 

and non-interaction23,69,80. Factors such as cell type and growth factor context can 

influence these discrepant network topologies3,69. Previous work conducted in panel of 

growth factors and cell lines show varying probabilities of forming an interaction network 

edge between ERK and Akt69. The differences in network edge formation can affect 

downstream signaling and cell fate decisions3. Could ERK and Akt network topology be 

dynamic, and give insight into the division-related correlated behaviors observed 

above? 

To reconstruct the ERK and Akt network in MCF10A cells, we implemented 

recent theory from our lab that specifies a sufficient experimental design for such tasks, 

based on perturbation time course data81. Specifically, for this 2-node network, three 

time course experiments should be done: response of ERK and Akt activity to EGF and 

Insulin co-treatment with (i) no inhibitor; (ii) an ERK pathway inhibitor; and (iii) an Akt 

pathway inhibitor. Additionally, we wanted to understand whether the network would be 
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different in the acute phase of growth factor treatment from a serum starved state vs. 

the “chronic” condition where ERK and Akt activities are steady over time, particularly 

because these time regimes seem to have different biological information encoded for 

cell division decisions. 

 In the acute regime (Fig. 3B), MCF10A cells expressing either ERK or Akt KTR 

were seeded, serum and growth factor starved for 24 hours, and then pretreated with 

either a MEK (PD0325901) or an Akt (MK2206) inhibitor for 30 minutes. The 

concentrations utilized were determined via titration experiments shown to ensure 

minimum possible doses were being used (Fig. S1, S2, S4). Following drug treatment, 

baseline KTR activity was acquired every 15 minutes for 1 hour. Then, we treated cells 

with EGF and insulin and imaged. Single cell traces (thin) and population median 

activity (bold) were calculated for each condition, showing robust ERK and Akt 

activation (Fig. 3C). MEK inhibition ablates ERK activation and has a negligible effect on 

Akt activation (Fig. 3C). Akt inhibition ablates Akt activation and has a negligible effect 

on ERK activation (Fig. 3C). Although the Akt KTR may reflect kinase activity other than 

Akt in this acute stimulus regime, the fact that complete inhibition of the ERK pathway 

has negligible impact on the Akt KTR readout means that ERK does not impact Akt or 

the others. These results show that in the acute stimulus regime, ERK and Akt exhibit 

negligible crosstalk after treatment with EGF and insulin. 

 In the chronic regime, cells were pretreated with either EGF and insulin for 30 

minutes followed by 30 minutes of baseline acquisition, leading to robust ERK and Akt 

activation (Fig. 3D-E, Replicates in S5). Akt inhibition reduces Akt activity, as expected, 

but negligibly affects ERK activity. MEK inhibition reduces ERK activity, as expected, 
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but does not appreciably affect Akt activity. These conclusions are also consistent when 

a second set of MEK and Akt inhibitors are used (Fig. S4). Therefore, in the chronic 

regime ERK and Akt also do not exhibit appreciable cross pathway interactions after 

EGF and insulin co-treatment. We conclude it is unlikely that crosstalk interactions 

account for correlations that change in dividing vs. non-dividing cells. 
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Discussion 

Binary single-cell responses, like division, to perturbations such as growth factor 

and drug treatments, are almost universally heterogeneous even in clonally derived 

populations. However, predictive biochemical features, present either before the 

perturbation, or from dynamics following the perturbation, are seldom known. The ability 

to predict such binary responses would not only reflect a deep and fundamental 

understanding of the systems governing important cellular responses, but also have 

significant translational applications such as antibiotic resistance, tissue engineering, 

and anticancer therapy, where the fates of single cells can be of great importance. 

Here, we investigated growth-factor induced cell division fates in the well-studied, non-

transformed mammalian epithelial cell line MCF10A, and how they may be predicted by 

the dynamics of two central signaling pathways, PI-3K/Akt and Ras/ERK. Answering 

such questions requires single-cell, non-destructive analysis of biochemical features, in 

this case ERK and Akt activities, that are paired to the eventual cell division outcome. 

They also must be carried out in a high-throughput manner to observe enough events to 

make statistically-supported conclusions. After setting up this experimental system and 

understanding its ranges of validity, we learned that (i) ERK and Akt activities are higher 

in the 8.5-40 hour window after growth factor treatment in cells that divide, suggesting 

underappreciated roles post-restriction point, into S and G2 phases; (ii) median 

activities in this time window predict single cell division outcome with AUC=0.76 with 

ERK dynamics alone giving AUC=0.74, suggesting Akt dynamics add little to the 

decision driving division in this context; (iii) metrics of central tendency are the most 

predictive features; (iv) ERK and Akt activities are less correlated in cells that divide; 
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and (v) ERK and Akt do not exhibit crosstalk in this system, so division-related 

correlation is unlikely related to crosstalk. 

We have performed these studies in the MCF10A cell line, a well-established 

model for non-transformed epithelial cells. An obvious next question is how the 

relationships between ERK, Akt and cell division found here translate to different cell 

lines, and transformation contexts. Many other cell lines are cancer-derived and 

genetically unstable, and/or contain multiple alterations to the systems that control cell 

cycle progression and division. A firm understanding of how ERK and Akt systems 

control the cell cycle in a system such as MCF10A is an important foundation for 

subsequently understanding how it may be altered in other cell lines, and also across 

different microenvironmental contexts, such as confluent settings. Indeed, there is a 

growing body of work that focuses on answering fundamental cell biological questions 

using studies on the MCF10A system alone (e.g. 82). It is appealing to consider 

MCF10A as an emerging model system for mammalian epithelial cells. 

 Nearly all the cells we observed had relatively simple dynamics for ERK and Akt 

activity, a rise then a somewhat constant higher than baseline steady-state. Other 

recent single cell studies have reported pulsatile ERK dynamics1,49,83,84. Some of this 

may be related to differences in growth factor concentration, the reporters used, being 

FRET-based 85 or translocation based 70. No live-cell imaging probe is perfect and of 

course has its drawbacks, some of which may be related to off-target responses, which 

may partly explain our Akt activity data in the “acute” phase first following growth factor 

treatment. For example, kinases other than Akt may recognize and phosphorylate the 

FOXO1-based Akt KTR docking site 86–90. EGF and insulin stimulation may also 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.14.460349doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.14.460349
http://creativecommons.org/licenses/by/4.0/


15 
 

promote activation of such kinases including PLK1 91, SGK and PKA92. Another aspect 

may have to do with cell-cell contact and density. In our study, cells were seeded at low 

density and serum/growth factor-starved prior to analysis, whereas pulsatile signaling 

was reported in high density environments in asynchronously cycling settings1,84. Yet 

others have found pulsatile dynamics can induce different sets of genes as compared to 

sustained dynamics46. However, phenotypic consequences, at least in terms of cell 

proliferation still seem to be related to simple time-integrated signaling dynamics1,50, 

similar to what we found here. 

 ERK and Akt activity dynamics are only a subset of the potentially important 

variations that drive phenotypic variability in cell division responses, as shown by the 

AUC=0.76 that was obtained. ERK dynamics account for nearly all this predictive 

power. This reinforces Akt activity as perhaps more relevant for cell maintenance and 

health, and more as a “checkpoint” for division but not a significant driver, at least in the 

studied system. As noted above, cell contacts and density are important. Such 

phenomena may potentially be controlled through micropatterning experiments, where 

cell shape and placement can be carefully controlled93,94. Cell “state”, corresponding to 

different epigenetic and/or metabolic states of cells prior to the experiment, has been 

reasonably well documented ubiquitously, and can contribute to variability, although is 

difficult to assess in the “track and follow” manner that can be done with live-cell kinase 

reporters. Metabolic or organelle abundance variability may also contribute95,96. Of 

course, there are other pathways and biochemical correlates that are likely important, 

such as a balance between p53 and p21 and/or CDK2 activity54,67,97. Given the 

multitude of fluorescent proteins, and improvements in cell tracking from non-labeled 
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bright field images98,99, one may be able to measure more important biochemical 

readouts simultaneously for such purposes. There are also multiple checkpoints 

between growth factor treatment and cell division, such as the restriction point, and 

DNA damage checkpoints, that may contribute. Monitoring division with probes like the 

Fucci system that gives readouts of each cell cycle phase may help explore such 

phenomena100. 

 An interesting aspect of our study was the surprising larger differences between 

dividing and non-dividing cells in the time period that corresponds to S/G2 phases of the 

cell cycle, as opposed to pre-S-phase. The roles of growth factor signaling through ERK 

and Akt pathways historically focused on passing the restriction point into S-phase101. 

Thus, our results suggest potential functional roles for ERK and Akt beyond this 

canonical understanding. Indeed, a recent study found time-integrated ERK activity in a 

mother cell’s G2 phase influenced the cell cycle progression in the subsequently 

daughter cells50. The mechanisms that may be driving such functional roles are a 

potentially interesting area of future study. 

 We also studied the ERK and Akt activity network, since we found that ERK and 

Akt activity are less correlated with each other in dividing cells compared to non-dividing 

cells. We found that the observed differences in correlation are likely not a result of 

network topology as ERK and Akt do not appreciably interact. This lack of interaction is 

surprising given that some prior studies describe these pathway as exhibiting cross 

pathway interactions 23,69,75, albeit in other cell lines and in response to other growth 

factors. However, other studies in MCF10A cells across a panel of different growth 

factors show that ERK and Akt are insular, and do not interact 69. Similar to MCF10A 
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cells, 32D-EpoR; BaF3-EpoR; CFU-E cell lines exhibit minimal ERK and Akt cross 

pathway interaction under erythropoietin stimulation, a growth factor that activates both 

ERK and Akt 80. These studies reveal that in non-interacting pathways, differences in 

protein expression influence the flow of erythropoietin signaling 80. Therefore, in our 

model system, it is possible that the observed differences in ERK and Akt correlation 

may arise from differences in protein expression across dividing and non-dividing cells. 

It may also be that differences in upstream signaling capacity to ERK and Akt may be 

related. Characterizing the differences in protein expression level in single cells, and 

following cell signaling and cell division can provide insight; but this becomes a quite 

challenging experiment given the number of probes to be measured simultaneously. 

 In conclusion, we have studied the relationship between ERK activity dynamics, 

Akt activity dynamics, and cell division, and found that simple measures of central 

tendency of these dynamics in a time coinciding with S/G2 phase are most predictive of 

cell division in single cells. This implies unappreciated roles for ERK and Akt beyond the 

canonical restriction point. ERK accounts for much of this predictive capacity, 

suggesting Akt contributes little to the decision to divide in this context. Yet, AUC=0.76 

is far from perfect so it is clear other biochemical pathways are important factors for 

predicting single cell division events. ERK and Akt do not interact with one another in 

the studied contexts, despite the fact that their activities are more correlated in cells that 

do not divide. These studies conducted in the non-transformed context provide a 

foundation to explore how cell transformation through oncogenic and/or loss-of-function 

mutations shape network topology, signaling dynamics, and cell division outcome in 

cancer, with the potential to identify and target pathway compensation behaviors that 
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promote cell proliferation and survival 102 in the diseased context. In addition, exploring 

the role of spatial temporal propagation of ERK and Akt signaling in a 3D tissue context, 

a model system that MCF10A cells are suited for, can provide insight into how these 

pathways regulate tissue homeostasis and how transformation disrupts this 

homeostasis. 
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Methods 

 

Cell Culture. MCF10A cells were gifted by Dr. Gordon Mills and cultured in complete 

sterile filtered (VWR 10040-436) media, consisting of DMEM F12 (Gibco #11330-032) 

supplemented with 2 mM L-Glutamine (Gibco # 25-005-CI), 20ng/mL EGF (Peprotech 

AF-100-15), 10ug/ml insulin (Sigma #I-1882), 0.5ug/ml hydrocortisone (Sigma #H-

0888), 100ng/ml cholera toxin (Sigma #C-8052) and 5% horse serum (Invitrogen 

#16050-122). Cells were passaged with 0.25% trypsin (Gibco #25200056) to maintain 

sub confluency. Cells were maintained at 37°C, 5% CO2. Starvation media and imaging 

media is phenol red free DMEM F12 (Fisher #11039-021) supplemented with 100ng/ml 

cholera toxin.  

HEK293T cells were gifted by the Dr. Dominguez and Dr. Pappapetrou labs and 

cultured in complete sterile filtered (VWR 10040-436) media, consisting of DMEM 

(Gibco #11965118) supplemented with 2 mM L-Glutamine (Gibco #25-005-CI) and 10% 

heat inactivated fetal bovine serum (Gibco #16140071). Cells were passaged with 

0.05% trypsin (Gibco #25300054) to maintain sub confluency. 

All inhibitors used for KTR validation were formulated as 10mM stock solutions in 

DMSO (Sigma Aldrich D2650-5X0ML) and sterile filtered with a 0.22-micron syringe 

filter. PD0325901 (MEK inhibitor 1) was purchased from Sigma Aldrich (PZ0162-5MG). 

Trametinib (S2673) (MEK inhibitor 2) and Ipatasertib (S2808) (Akt inhibitor 2) were 

purchased from Selleck Chemicals. MK2206 (#CT-MK2206) (Akt inhibitor 1) was 

purchased from Chemietek. 
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Imaging. All live cell imaging experiments were acquired using the InCell 2200 

microscope (GE Healthcare) under environmental control (37°C, 5% CO2.) with a Nikon 

20X/0.75, Plan Apo, CFI/60 objective. For KTR imaging the following filter sets were 

utilized: FITC (Excitation: 475/28nm Emission: 511/23nm) (ERK-mClover, Akt-mClover 

KTR); Cy3 (Excitation: 542/27nm Emission:597/45nm) (H2B-mRuby2, mCherry-NLS); 

Cy5 (Excitation: 632/22nm Emission: 679/34nm) (ERK-iRFP); Brightfield.  

KTR-expressing MCF10A cell lines (see below) were seeded in separate rows of 

a 96 well plate (Corning #3603) at 5000 cells / well and treated as described. After 

growth factor and serum starvation, starvation media was aspirated, cells were washed 

with PBS and 100 uL imaging media was then placed in the wells. Following baseline 

imaging, cells were treated as indicated by adding 100 uL of 2X solutions in imaging 

media. Acquired images were processed as described Computational Image Analysis. 

Flow Cytometry. EdU flow cytometry assays were performed using the Molecular 

Probes Click-iT Plus EdU flow cytometry assay kit (C10633 molecular probes). MCF10A 

cells were seeded in 6 well plates (Corning 353046) at a density of 127 cells/mm2 in 

complete DMEM F12 media. The following day, we serum and serum and growth factor 

starved cells in DMEM F12 media supplemented with 100ng/mL cholera toxin for 24 

hours. Following starvation, cells were pretreated with a final concentration of 100nM of 

MEK inhibitor 1 (PD0325901) or 10uM of Akt inhibitor 1 (MK2206) or DMSO control for 

30 minutes. Cells that did not receive inhibitor pretreatment were treated with either 

MEK inhibitor 1 or Akt inhibitor 1 2, 4, 8, or 12 hours post EGF and insulin addition 

(Final growth factor concentration: 20ng/mL EGF, 10ug/mL insulin). 22 hours post 

growth factor addition, a final concentration of 10 uM of EdU was added to each well 
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and incubated for two hours. Two hours post EdU addition, cells were washed with PBS 

and lifted with 0.25% Trypsin for 10 minutes. Trypsin was neutralized with complete 

DMEM F12 media. Cells were pelleted at 100xG for 5 minutes, resuspended in 100uL 

of PBS, and processed as recommended by the manufacturer’s protocol (Molecular 

Probes Click-iT Plus EdU flow cytometry assay kit). During the last 5 minutes of 

permeabilization, 100uL of diluted 1ug/mL Hoechst 33342 (Thermo Fisher H3570) stain 

was added. Cells were then washed with a 1 % (g/100mL) bovine serum albumin PBS 

solution and pelleted at 100g. Cells were resuspended in permeabilization buffer and 

stained with EdU Click-iT reaction cocktail for 30 minutes at room temperature protected 

from light. Following EdU Click-iT labeling, cells were washed and resuspended in 

permeabilization buffer and analyzed using the BD Canto II flow cytometer configured 

with the following laser lines: excitation 640nm, emission filter 660/20, excitation 405nm, 

and emission filter 450/50. Data were gated and processed using FCS Express 

(Denovo Software). 

Cloning. Akt KTR was modified from the transposase transfection system PSBbi-

FoxO1_1R_10A_3D vector (Addgene # 106278)48 for lentiviral production (Fig. S6A). 

The lentiviral expression vector was developed using overlap PCR from fragments 

generated from the source vector PSBbi-FoxO1_1R_10A_3D: SV40NLS-mCherry-P2A 

and Gly-FT2DDD-KTR-mClover. Primer sequences are shown in Table S1 and were 

designed in SnapGene and ordered from Sigma Aldrich. Fragments for lentiviral vector 

construction were generated via PCR using Q5 polymerase (NEB M0491S) and primers 

specific to SV40NLS-mCherry-P2A and Gly-FT2DDD-KTR-mClover (Table S1) regions 

of PSBbi-FoxO1_1R_10A_3D (Fig. S6, Fragment 1,2). Fragments were gel purified 
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using the NEB Monarch gel extraction kit (NEB T1020S). Following gel extraction, a 10 

cycle PCR reaction was performed using Q5 polymerase and equimolar SV40NLS-

mCherry-P2A and Gly-FT2DDD-KTR-mClover fragments using an annealing 

temperature of 72°C. 5 uL of the product was amplified using end primers (F: SV40NLS-

mCherry-P2A, R: Gly-FT2DDD-KTR-mClover, Ta=69°C, Table S1). Gateway ATTB sites 

were inserted at flanking ends using PCR and the ATTB primers (Table S1). The 

Gateway cloning compatible fragment was inserted into donor vector pDONR221 

(Invitrogen™ 12536017) using BP Clonase II (Thermo Fisher# 11789020). High 

Efficiency NEB-5-alpha Competent E. coli (NEB C2987I) were transformed with 

pDONR221 containing the Akt KTR. Transformants were miniprepped with the 

PureYield™ Plasmid Miniprep System (Promega A1223) and Sanger sequenced 

verified with GeneWiz. Akt KTR expression vector was generated by performing a LR 

reaction using pDONR 221-Akt, LR Clonase II (Thermofisher #11791020) and the 

lentiviral expression vector pLenti CMV Hygro DEST (Addgene #17454) generating the 

final product, a bi-cistronic hygromycin selectable lentiviral expression vector. The 

product was transformed into NEB® 5-alpha Competent E. coli. Transformations with 

the correct sequence were maxiprepped with PureYield™ Plasmid Maxiprep System 

(Promega # A2392) and utilized for lentiviral production. 

We exchanged the antibiotic selectable marker on the lentiviral expression vector H2B-

mRuby2 (Addgene #90236) from hygromycin to puromycin. Specifically, we transferred 

pLentiPGK Hygro DEST H2B-mRuby2 into pLentiCMV puromycin DEST (Addgene 

#17452) using BP Clonase II followed by LR Clonase II generating pLentiCMV 

puromycin DEST H2B-mRuby2 (H2B-mRuby2). 
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Lentiviral Production. The lentiviral constructs for each cell line are shown in Fig. S6B. 

Lentiviral particles were generated by transfecting 5 million HEK293T cells seeded in a 

T75 flask and allowed to attach overnight (Corning® T-75 flasks catalog #430641) using 

the TransIT-293 transfection reagent (Mirus Bio MIR2704) along with expression vector 

ERK KTR (mClover or iRFP), H2B-mRuby2, or Akt KTR along with packaging plasmid 

pPAX (Addgene #12260), and envelope protein pCMV-VSV-G (Addgene #8454) 

according to the manufacturer’s instructions. Two days post transfection, supernatant 

from was collected and concentrated using Amicon Ultra-15 100 kD centrifugation filters 

(Millipore #UFC910008). The concentrated lentiviral supernatant was aliquoted and 

stored at -80°C. 

Lentiviral Transduction. 100,000 MCF10A cells were transduced in suspension in a 6 

well plate (Corning 353046) containing complete DMEM F12 medium along with 100uL 

lentiviral supernatant. Two days later, expression was validated by fluorescence 

imaging. ERK KTR MCF10A cell lines (ERK KTR-mClover Hygro, H2B-mRuby2 Puro) 

were selected in complete DMEM F12 media supplemented with hygromycin (35ug/mL) 

and puromycin (2ug/ml). Akt KTR expressing MCF10A cell lines (SV40nls-mCherry-Akt 

KTR-mClover Hygro) were selected with DMEM F12 media containing hygromycin 

(35ug/ml). Cells were passaged every two to three days in selection media for about 

two weeks. Following selection, cells were expanded in complete DMEM F12 

maintenance media containing either both hygromycin (1.5ug/ml) and puromycin 

(0.1ug/ml) (ERK KTR-mClover expressing cells) or hygromycin (1.5ug/ml) (Akt-KTR-

mClover expressing cells). Live-cell imaging was conducted in the absence of selection 

antibiotics. Dual reporter expressing cells (ERK KTR-iRFP, Akt-KTR-mClover) lines 
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were not selected, as the ERK KTR iRFP (Addgene #59150) lentiviral expression vector 

does not confer antibiotic resistance. For these, ERK KTR iRFP virus was added to 

cells for 24 hours, and then subcultured as above prior to live-cell imaging analysis.  

Computational Image Analysis. While many image analysis tools exist 103–105, each 

application still requires much novel development tuned to the problem at hand. We 

developed an automated image analysis pipeline using both iLastik 106 and CellProfiler 

105 software packages, along with MATLAB scripts (Fig. S2C). It is available at the 

Birtwistle Lab github repository (github.com/birtwistlelab/Predicting-Individual-Cell-

Division-Events-from-Single-Cell-ERK-and-Akt-Dynamics), which includes some 

dockerized scripts. The analysis pipeline consists of (1) cell nuclei and cytoplasmic 

segmentation, (2) quantification of KTR fluorescence in both nuclei and cytoplasmic 

compartments, (3) tracking single cells across a time series, and (4) automatic detection 

of cell division.  

1. Prior to segmentation images were flatfield corrected and background subtracted 

using CellProfiler. Images of nuclear localized fluorescent protein H2B-mRuby2 (ERK 

KTR) and NLS-mCherry (Akt KTR) were input into iLastik. Nuclei were identified using a 

series of features- object intensity, edge detection and texture.  

2. The binary mask outputs from iLastik were input into CellProfiler to create a 

perinuclear ring known as the ‘Cytoring’107 which extends 10 pixels from the binary 

nuclei mask and into the cytoplasm (Fig S2C). Calculating the cytoplasmic to nuclear 

KTR fluorescence ratio provides the relative activity of the pathway of interest for that 

particular cell at that time point. 
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3. Segmented nuclei identified with iLastik were tracked using CellProfiler’s 

TrackObjects module 104,105,108 and Follow Neighbors108. Each identified nucleus was 

assigned a numerical ID, which corresponds to the same cell across each timepoint. We 

filter tracks that are shorter than the duration of the time course to prevent quantification 

of cells that were transiently tracked. 

4. Cell division was detected using a feature of cytoplasmic to nuclear KTR 

fluorescence (C/N ratio) that is unique to dividing cells. As cells divide, there is a change 

in morphology resulting in a rapid decrease in C/N ratio (Fig. S7). MATLAB’s findpeaks 

function was used to detect when this steep decrease occurs. We then truncated the 

time series 5 timepoints before the identified peak, which is attributed to actual kinase 

activity. 

The CellProfiler pipeline exports CSV files first preprocessed in Microsoft Excel then 

analyzed in MATLAB. First, the csv are input into batchreader.m, which generates a 

cell array of tables containing each cell’s measured parameters. The data is then input 

into the script ktrTablePlotter.m, which plots KTR dynamics. Cell division events are 

detected using the script Div_detection.m. Division events were confirmed by directly 

observing nuclear fission via H2B-mRuby2 or NLS-mCherry fluorescence. Cells were 

separated by division status, and KTR dynamics were plotted for each class. 

Statistics, Classification, and Visualization. Rank-sum tests were used to calculate p-

values for differences between dividing and non-dividing cells. For single reporter 

expressing lines the MATLAB function fitglm was used with median ERK or Akt activity 

within the 8.5-40 hour interval as the predictor class. ROC curves were generated using 
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the MATLAB function perfcurve. For dual ERK and Akt KTR expressing MCF10A cell 

lines, 150 randomly selected dividing and non-dividing cells were used to develop a 

linear SVM classifier using the MATLAB function fitcsvm. The MATLAB function 

resubPredict was used to calculate the SVM classification performance between the two 

classes. 

NotBoxPlot was retrieved from MATLAB Central File Exchange (Rob Campbell, 2021). 

Scatter plots of single cell ERK and Akt activity across all timepoints within the 8.5-40 

hour interval were generated using the MATLAB Central File Exchange script 

Scatplot.m - Alex Sanchez (2020). To assess statistical significance of the correlation 

coefficient, the mean (µ) and covariance (σ) between ERK and Akt were calculated 

across all biological replicates and used to sample matched numbers of data points 

from random multivariate normal distributions for dividing cells and non-dividing cells. 

This was repeated 1000 times to define the range of correlation coefficients between 

the 5th and 95th percentiles, which was reported and rounded up to the nearest 0.01. 

The hctsa package72,73 was installed according to the published documentation. We 

initialized our data set from data acquired under high concentrations of EGF and insulin 

stimulation using the custom MATLAB script hctsa_prep_dualrep.m. The number of 

cells that were input into hctsa were chosen based on the smallest population of either 

dividing /non-dividing cells. A random permutation was then used to choose an equal 

number of the largest population of cells to input into hctsa. The data set was initialized 

using the hctsa’s TS_init command, followed by TS_compute command. The processed 

datasets were labeled for hctsa format as 1-dividing or 0-non-dividing using 
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TS_LabelGroups. The top predictive features were identified using the raw computed 

hctsa values and the function TS_TopFeatures for both ERK and Akt time course data.  
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Figure Legends 

Figure 1. Evaluating the predictability of cell division from univariate single cell 

ERK or Akt dynamics. In these experiments, cells were either expressing the ERK or 

the Akt KTR. (A) Cell treatment workflow for pairing single cell KTR dynamics to cell 

division. ERK or Akt KTR expressing MCF10A cells were seeded, allowed to attach 

overnight, and then serum and growth factor starved. Following starvation, baseline 

images were acquired, cells were treated with EGF and insulin, and then imaged every 

15 minutes for 48 hours. Images were quantified using the analysis pipeline described 

in the methods. (B, C) Quantified ERK or Akt KTR dynamics paired to division events 

for EGF and Insulin doses that match those used in culture medium (B) or 10-fold less 

(C). Single cell traces of dividing (blue) and non-dividing (red) cells are shown with thin 

lines, and population median (per time point) is shown with thick lines. (D) Left, 

representative single cell trace of ERK KTR for a dividing (blue) or non-dividing (red) 

cell. Median ERK activity within the 8.5-40 hour interval for each cell becomes a single 

dot in the boxplots. (E) Left: notBoxplots for single cell median ERK or Akt activity within 

the 8.5-40 hour interval for EGF and Insulin doses that match those used in culture 

medium (top) or 10-fold less (bottom). p-values for right tailed rank-sum test were 

calculated at the 95% confidence interval. D: dividing; ND: Non-dividing. Right: ROC 

curve for classifying cell division events from single cell median ERK (red) or Akt (black) 

activity using a logistic regression model. 
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Figure 2. Evaluating the predictability of cell division from paired, bivariate single-

cell ERK and Akt dynamics. In these experiments, cells were expressing both the 

ERK and Akt KTR simultaneously. (A) Quantified ERK and Akt dynamics for EGF and 

Insulin doses that match those used in culture medium (top) or 10-fold less (bottom). 

Single cell traces of dividing (blue) and non-dividing (red) cells are shown with thin lines, 

and population median (per time point) is shown with thick lines. (B) Scatter plot of ERK 

vs. Akt KTR median activity in the 8.5-40 hour window from 150 randomly sampled 

cells. Each dot is a single cell. Dividing cells are blue and non-dividing cells are red. The 

dotted line is the SVM hyperplane for classifying dividing and non-dividing cells. Left 

and right are high and low growth factor concentrations, respectively. (C) ROC curve for 

SVM classification performance for EGF and Insulin doses that match those used in 

culture medium (left) or 10-fold less (right). 

Figure 3. Investigating properties of the ERK and Akt network. (A) Single cell ERK 

and Akt activity plotted across all time points within the 8.5-40 hour interval for dividing 

and non-dividing cells. These cells expressed both the ERK and Akt KTR. Pearson 

correlation coefficient, along with the number of cell-time datapoint combinations are 

indicated. Uncertainty in the correlation coefficients is calculated as described in 

Methods. (B) Cell treatment workflow for network reconstruction in the “acute” regime. 

Single ERK or Akt KTR expressing MCF10A cells were seeded, allowed to attach 

overnight, and then serum and growth factor starved. Following starvation, inhibitor was 

added (PD: PD0325091; MK: MK2206), baseline images were acquired, cells were 

treated with EGF and insulin, and then imaged every 15 minutes for 12 hours. Images 

were quantified using the analysis pipeline described in the methods. (C) Quantified 
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ERK and Akt activity dynamics in the acute regime. Solid lines are population median 

(per time point), and shaded areas denote the standard deviation. (D) Cell treatment 

workflow for network reconstruction in the “chronic” regime. Dual ERK and Akt KTR 

expressing MCF10A cells were seeded, allowed to attach overnight, and then serum 

and growth factor starved. Following starvation, EGF and insulin were added, baseline 

images were acquired, cells were treated inhibitor, and then imaged every 6.5 minutes 

for the remaining ~hour. Images were quantified using the analysis pipeline described in 

the methods. (E) Quantified ERK and Akt activity dynamics in the chronic regime. Solid 

lines are population median (per time point), and shaded areas denote the standard 

deviation. 
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Supplementary Figure Legends 

Figure S1. Roles of ERK and Akt activity in cell cycle progression in MCF10A 

cells. (A) Live cell imaging pipeline for quantifying cell division events in MCF10A cells 

under EGF, insulin, and EGF & insulin stimulation. MCF10A cells were seeded, serum 

and growth factor starved as described in the methods. Following starvation, cells were 

pre-incubated with or without MEK inhibitors 1,2 (PD0325901, Trametinib) or Akt 

inhibitors1,2 (MK2206, Ipatasertib) for 30 minutes. Following inhibitor preincubation, 

growth factors EGF (20ng/mL), insulin (10ug/mL), or EGF (20ng/mL) & insulin 

(10ug/mL) were added. Cells were imaged under brightfield every hour for 48 hours. (B) 

Top: Representative brightfield images of cells under EGF and insulin stimulation. 

Arrows point to representative cell division events. The number of cell division events at 

selected time points were counted in this manner. Bottom: The relative number of cell 

division events were calculated by summing the number of observed cell division events 

across each field of view per condition divided by the total number of observed division 

events under EGF and insulin stimulation. Error bars represent the standard deviation of 

normalized cell counts per field per condition. Insulin induces essentially no cell division, 

but when in combination with EGF, has a more than additive effect. Both ERK and Akt 

activities appear essential for cell division in this context. (C) Experimental outline for 

relating ERK and Akt dynamics in driving S-phase entry in MCF10A cells. MCF10A cells 

were seeded, serum and growth factor starved as described in the methods. Post 

starvation, cells were treated with MEK or Akt inhibitors 1 (PD-10nM and MK-10 uM, 

according to minimum effective concentrations above) at the times indicated relative to 

EGF and insulin addition. 22 hours post growth factor addition, EdU was spiked in for 2 
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hours. (D) The average percentage of the cell population in S-phase for each of the 

conditions shown. A single tailed Student’s t-Test was used to calculate the significance 

between the average percentage of cells entering S-phase between 4 & 12 hours and 8 

& 12 hours at the 95% confidence interval (p< 0.00045). Error bars are from biological 

triplicates. These results are consistent with the model that time integrated ERK and Akt 

activities for at least 8-12 hours are necessary for S-phase entry.  

Figure S2. Live cell imaging assays to establish regimes of validity for kinase 

translocation reporters. (A) Cartoon representation of kinase translocation reporter in 

the inactive (nuclear) and activated (cytoplasmic) state. (B) Acute stimulus kinase 

translocation reporter validation pipeline. (C) Steps in the computational image analysis 

pipeline for nuclei, cytoplasmic identification, cell tracking and quantification of reported 

KTR dynamics. (D) Single cell traces (gray thin lines) of quantified ERK KTR (C/N 

Ratio) under EGF (20 ng/mL) and insulin (10 ug/mL) stimulation. Population median 

(per time point) response is shown in thick black. Representative images of cells 

expressing ERK KTR are shown below each time point: 0, 30, and 60 minutes. Prior to 

EGF addition, ERK KTR is mainly nuclear localized (0-15 minutes). By 15 minutes post 

EGF and insulin addition, ERK KTR is cytoplasmic localized, which is reflected by the 

increase in the C/N ratio. The panel to the right shows the population median C/N traces 

for each inhibitor dose condition. KTR activity is ablated with ~10 nM of both MEK 

inhibitors. MEK inhibitors 1 and 2 are PD0325901 and Trametinib, respectively. (E) 

Single cell traces (gray thin lines) of Akt KTR (C/N Ratio) under EGF (20 ng/mL) and 

insulin (10 ug/mL) stimulation. Population median (per time point) response is shown in 

thick black. Prior to EGF and Insulin stimulation, Akt KTR exhibits slightly elevated C/N 
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Ratio, indicative of some basal activity. By 15 minutes post growth factor stimulation, 

Akt KTR is cytoplasmic localized as shown by C/N Ratio values. Shown to the right are 

the population median traces for each inhibitor dose condition. Even at 10 uM of each 

Akt inhibitor, there is significant Akt KTR activity, indicating that at least in the first ~1 

hour post-EGF and insulin treatment, the Akt KTR activity likely reports on other 

kinases. Akt inhibitors 1 and 2 are MK2206 and Ipatasertib, respectively. (F) Live cell 

imaging pipeline to investigate Akt KTR validity under chronic EGF and insulin 

stimulation. (G) Population median Akt KTR dynamics for each inhibitor dose condition. 

After 1 hour of EGF and insulin treatment, 10 uM of either Akt inhibitor completely 

ablates Akt KTR reporter activity.  

Figure S3. Biological replicates for data presented in Figures 2 and 3. Please see 

those legends for details.  

Figure S4. Biological replicates for KTR range of validity and network 

reconstruction in the chronic setting using single reporter cell lines. MCF10A cells 

expressing either ERK or Akt KTR were pre-incubated with EGF and insulin for 90 

minutes followed by baseline KTR acquisition. Following baseline, either a MEK or an 

Akt inhibitor was added. Population median KTR activity calculated across cells for each 

timepoint are shown for both inhibitor 1 and 2. MEK inhibitors 1,2 are PD0325901 and 

Trametinib and Akt inhibitors 1 and 2 are MK2206 and Ipatasertib.  

Figure S5. Biological replicates for chronic regime network reconstruction. Thick 

lines are population median (per time point), and shaded regions +/- standard deviations 

across single cell responses. Please see Figure 3 for more details.  
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Figure S6. KTR construction and cell lines. (A) Converting the Akt KTR from the 

transposon backbone to the lentiviral backbone. (B) Cartoon representation of 

constructs used to generate KTR expressing MCF10A cell lines. (C) PCR primers used 

for the different vector construction steps.  

Figure S7. Identification of cell division events. A representative time course and 

selected images from an Akt KTR expressing MCF10A cell that divides in response to 

EGF and insulin treatment is highlighted. The nuclear marker is mCherry-NLS. TD 

denotes the time of division which is determined by the rapid decrease in C/N ratio. 
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ERK KTR Features Akt KTR Features

Operation

(HCTSA)

-log10 p-value 

(Rank sum)

Operation

(HCTSA)

-log10 p-value 

(Rank sum)

[10] midhinge 3.39 [16] rms 6.79

[16] rms 3.32 [6] trimmed mean_5 6.74

[5] trimmed mean_1 3.31 [7] trimmed mean_10 6.72

[2] mean 3.30 [8] trimmed mean_25 6.72

[3] harmonic_mean 3.29 [5] trimmed mean_1 6.71

Stern et al., Table 1

The top 5 features of ERK and Akt signaling dynamics for 

prediction of cell division as determined by HCTSA analysis of 

dual ERK and Akt KTR expressing lines under 20ng/mL EGF, 

and 10ug/mL insulin. The top features shown are related to 

measurements of central tendency using different operation 

parameters corresponding to the values within the brackets []. 

These operations parameters and their corresponding functions 

can be found in hctsa documentation.
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