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Abstract 16 

A paradoxical finding from genome-wide association studies (GWAS) in plants is that variation 17 
in metabolite profiles typically maps to a small number of loci, despite the complexity of 18 
underlying biosynthetic pathways. This discrepancy may partially arise from limitations 19 
presented by geographically diverse mapping panels. Properties of metabolic pathways that 20 
impede GWAS by diluting the additive effect of a causal variant, such as allelic and genic 21 
heterogeneity and epistasis, would be expected to increase in severity with the geographic range 22 
of the mapping panel. We hypothesized that a population from a single locality would reveal an 23 
expanded set of associated loci. We tested this in a French Arabidopsis thaliana population (< 1 24 
km transect) by profiling and conducting GWAS for glucosinolates, a suite of defensive 25 
metabolites that have been studied in depth through functional and genetic mapping approaches. 26 
For two distinct classes of glucosinolates, we discovered more associations at biosynthetic loci 27 
than previous GWAS with continental-scale mapping panels. Candidate genes underlying novel 28 
associations were supported by concordance between their observed effects in the TOU-A 29 
population and previous functional genetic and biochemical characterization. Local populations 30 
complement geographically diverse mapping panels to reveal a more complete genetic 31 
architecture for metabolic traits. 32 

  33 
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1. Introduction 34 

Plants produce a vast array of structurally diverse secondary metabolites that collectively 35 
underpin a variety of functions -- from regulating growth and development, to tolerating abiotic 36 
stresses, attracting pollinators, and deterring pathogens and herbivores [1]. Illuminating the 37 
genetic architecture of secondary metabolism is not only integral to understanding plant 38 
physiology, adaptation, and diversity across environments [2]; it also provides precise routes to 39 
breed or engineer more durable and productive crops [3]. 40 

In recent years, genome-wide association studies (GWAS) have emerged as a tool of 41 
choice for elucidating the genotype-to-phenotype links that shape plant metabolic diversity [3–42 
5]. GWAS involve tests for statistical associations between genetic variants and organismal 43 
phenotypes. Because they require only genotypic and phenotypic information across a panel of 44 
natural plant genotypes (accessions), GWAS offer a straightforward and efficient method for 45 
inferring genotype-to-phenotype links from datasets of millions of SNPs across the genome and 46 
thousands of metabolites, enabled by the parallel advances in genome sequencing and 47 
metabolomic profiling. 48 

A paradoxical pattern emerging from the application of GWAS to plant metabolic 49 
features, however, is that only a few loci are associated with variation in the abundance of a 50 
given metabolite [5]. Indeed, an average of fewer than two significant loci per metabolite were 51 
discovered across four GWAS studies encompassing >6,500 metabolites in leaves and/or seeds 52 
of Arabidopsis, rice, and maize (N = 305-529 plant accessions per study) [6–9]. Such simple 53 
genetic architectures are surprising given that secondary metabolites are often the product of 54 
biosynthetic pathways that have many enzyme-catalyzed steps, as well as the capacity to interact 55 
with additional pathways [10]. On the other hand, some physical and topological properties 56 
inherent to biosynthetic pathways predict that mutations in certain genes will have outsized 57 
effects, and thus impose evolutionary constraints unevenly across genes in a pathway [11,12]. 58 
While this heterogeneity may help explain the simple genetic architectures revealed for 59 
metabolites by GWAS, it’s also clear that some true signals are lost.  In particular, GWAS fails 60 
to replicate many functionally-validated loci uncovered through other techniques for 61 
interrogating the genetic basis of metabolic variation, such as QTL mapping [13]. 62 

Much attention has been paid to forces that reduce the efficacy of GWAS, and to both 63 
experimental designs and statistical approaches to mitigate them [14,15]. One relatively 64 
understudied factor is the composition of the mapping panel, especially the geographic 65 
distribution over which accessions are drawn [14,15]. This is an important consideration because 66 
GWAS mapping panels in plants have conventionally been assembled over broad geographic 67 
scales, such as the Arabidopsis Regional Mapping Population (RegMap) and 1001 Genomes 68 
Project (1001G), which are composed predominantly of accessions collected across the European 69 
continent [16,17]. This design ensures that a broad swath of the species’ genetic diversity is 70 
included within the mapping panel, one of the main advantages of GWAS compared to QTL 71 
mapping. However, it also exposes analyses to a variety of geographically-driven confounding 72 
forces. 73 

The most popularized cause of confounding driven by geography concerns population 74 
structure [18,19]. False positive associations arise at non-causal variants whose genotypes are 75 
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correlated (i.e., in long-range linkage disequilibrium) with causal variants, and geographic 76 
population structure is a major source of these correlations [18]. Accounting for differences in 77 
relatedness among accessions (e.g., through the inclusion of a relatedness matrix in the GWAS 78 
model) controls these spurious associations [20,21], but at the cost of reducing power to detect 79 
causal variants whose geographic distribution tracks major axes of population structure [22,23]. 80 
This limitation is likely to be more prevalent for traits underlying local adaptation over broad 81 
geographic scales [15], which may make it particularly relevant for specialized metabolites. 82 

However, even with effective control for the effects of long-range linkage disequilibrium, 83 
additional confounding factors are strengthened in geographically structured populations. Three 84 
processes in particular can dilute the strength of association at a causal variant. First, many 85 
alleles have geographically restricted distributions, causing the genetic basis of a trait to vary 86 
across regions (genetic heterogeneity) [14,24,25]. A variant’s phenotypic effect is thus diluted by 87 
averaging across these regions. Because rare alleles tend to be more geographically restricted 88 
[26], mapping within local or regional panels would have the benefit of elevating the frequencies 89 
of some rare alleles relative to their species-wide frequency, while eliminating others that are 90 
absent from the region. This would enhance the ability to detect rare, informative SNPs, at least 91 
in some regions. Second, a locus can have more than two functionally-distinct haplotypes (allelic 92 
heterogeneity), especially in geographically broad mapping panels that have high genetic 93 
diversity [14,27]. Because GWAS typically interrogates biallelic SNPs, a variant’s effect is 94 
diluted by averaging across the haplotypes tagged by each allele. Third, population structure 95 
across multiple causal loci can produce different genotypic combinations in different geographic 96 
regions. GWAS is less powerful when a causal variant’s effect is markedly weakened in some 97 
genetic backgrounds due to epistasis, since standard GWAS models are formulated to detect 98 
average additive effects across genetic backgrounds [28,29]. All of these factors point to the 99 
benefit of mapping in local panels, provided that adequate phenotypic and genetic variation is 100 
present. 101 

Glucosinolates (GSLs), the primary class of secondary defensive metabolites in 102 
Arabidopsis and a model system for the genetics of plant secondary metabolism [30], offer a 103 
compelling opportunity to test the hypothesis that a local GWAS mapping population can better 104 
expose the genetic architecture of a complex trait than a geographically broad GWAS 105 
population. Glucosinolate biosynthesis has a polygenic basis, including a number of sequential 106 
enzyme-catalyzed reactions to produce a given aliphatic GSL (Methionine-derived, 12-15 107 
reactions) or indolic GSL (Tryptophan-derived, 7-9 reactions) from their precursor amino acid 108 
[31]. Each step of the pathway has been functionally characterized through forward and reverse 109 
genetics approaches, leading to the identification of at least 45 genes involved (which is greater 110 
than the number of reactions due to functional redundancy among paralogs) [31]. Yet three 111 
GWAS of aliphatic GSL variation with large mapping populations (N > 300) spanning across 112 
Europe have consistently described associations at only three biosynthetic loci [6,13,32], even 113 
though the causal polymorphisms underlying mapped QTL have been localized to additional 114 
biosynthetic genes [33]. 115 

Intriguingly, conditions for all the sources of confounding detailed above are met for 116 
GSLs across the European distribution of Arabidopsis [13]. Recurrent loss of function and gene 117 
conversion events have generated complex patterns of allelic heterogeneity, including rare 118 
variants, and the geographically restricted distributions of functionally-defined haplotypes at a 119 
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few major-effect loci implies strong genic heterogeneity [13,32,34]. Higher-order epistatic 120 
interactions among these loci determine which GSL molecules accumulate, resulting in GSL 121 
profiles that can be binned into qualitative “chemotypes,” defined by whether the gene(s) at each 122 
locus are functional [35]. Distributions of these epistatically-defined chemotypes are also 123 
geographically biased, displaying regional or continental clines shaped by a combination of 124 
demography and local adaptation [13,32]. If similar patterns have arisen at other loci with more 125 
modest phenotypic effects, geographic confounding might hinder their detection through GWAS; 126 
at the very least, large effect epistasis has been documented for other GSL biosynthetic enzymes 127 
[33,36]. Finally, even without geographic confounding, allelic heterogeneity, or epistasis, loss-128 
of-function variants at major biosynthetic enzymes that are not captured well by polygenic 129 
genomic background effects in GWAS might add phenotypic noise that overwhelms modest 130 
signals of association at other loci. 131 

Here, we quantified variation in GSL profiles in a single local population of Arabidopsis, 132 
compared the genetic architecture revealed through GWAS in this local population and in 133 
geographically broad mapping panels, and explored potential confounding factors underlying 134 
differences in the performance of the mapping populations. We focused on a population from 135 
Toulon-Sur-Arroux (TOU-A), France, which was collected along a fence line spanning only a 136 
few hundred meters [37]. Previous investigations found that the TOU-A population harbors less 137 
than 20% of the variants segregating at detectable frequencies in the 1001G, yet variants 138 
underlying heritable variation for a wide range of morphological, growth, defense, and fitness-139 
related traits in TOU-A can be successfully mapped using GWAS in this local population 140 
[37,38]. We restricted our focus to genes with validated functions in GSL biosynthesis, broadly 141 
defined to include core structure formation, side-chain elongation, and secondary modification 142 
[31]. Decades of research has compiled a near-exhaustive catalog of the genes participating in 143 
these processes and their substrate specificities, providing functional data supporting novel 144 
associations that we uncovered at these loci. Overall, the expanded catalog of natural 145 
polymorphisms shaping GSL variation in the TOU-A population suggests that GWAS in local 146 
mapping populations could complement and expand the genetic architecture for metabolic 147 
variation revealed from geographically broad mapping panels. 148 

2. Methods 149 

(a) Plant growth. 150 

To minimize maternal effects, seeds were harvested from 305 TOU-A accessions grown 151 
at 22°C with a 16:8h light:dark photoperiod, with 3wks vernalization at 4°C in 8h:16h light:dark 152 
to synchronize flowering, in fall 2017. For GSL profiling in mid-2019, seeds were sown on a 1:1 153 
blend of nutrient retention (BM1) and seed germination (BM2) soil mixes (Berger, CA) in a 154 
complete randomized block design with four replicates of 294 accessions. After 4d stratification 155 
at 4°C, growth trays were moved to a chamber with white LED light (180-200 μmol·s-1) at 20°C 156 
in 10h:14h light:dark. Seedlings were thinned to one per cell 1wk after germination. Trays were 157 
rotated and bottom-watered every second day with fertilizer (15N-16P-17K) solution at 100 ppm 158 
N until harvesting at 21d. 159 
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(b) GSL Extraction and Quantification. 160 

All liquid preparation and storage steps throughout the following protocol were 161 
conducted in polypropylene 96-well plates sealed with silicone cap mats. Entire rosettes were 162 
first clipped from the root, weighed, and directly submerged into 1.2 mL 80% methanol, which 163 
inhibits endogenous myrosinase activity [39]. After 2d dark incubation at ambient temperature, 164 
samples were centrifuged for 1m at 4000 × g, and the supernatant was transferred into a fresh 165 
plate and stored at -80°C. Immediately prior to GSL profiling, 240µL was evaporated with a 96-166 
pin air drier in a fresh plate and redissolved in 120µL 25% methanol. This approach was chosen 167 
after favorable comparisons to alternative extraction methods with freezing and/or 168 
homogenization steps  (see Supplemental Note). 169 

GSL content was quantified with an Agilent 1200 Series HPLC machine coupled to an 170 
Agilent 6410 triple quadrupole mass spectrometer with parameters described in [40]. Samples 171 
were eluted with 0.1% formic acid in water (A) and 100% Acetonitrile (B) using the following 172 
separation gradient: 3.5 min of 99% A followed by a gradient from 99% to 65% A (1 to 35% B) 173 
over 12.5 min, and a wash with 99% B for 4 min with 5 min post-run re-equilibration to 99% A. 174 
The mass spectrometer was run in precursor negative-ion electrospray mode, monitoring all 175 
parent ions from m/z 350–520 with daughter ions of m/z 97, which correspond to the sulfate 176 
moiety of the GSL analytes. External standards (sinigrin, every 12th sample; and a GSL extract 177 
from a mixture of TOU-A genotypes, every 24th sample) interspersed throughout each run were 178 
monitored to ensure consistency. Individual GSLs were identified based on their fragmentation 179 
pattern and retention time [32] (Table S1). Intensities for each molecule were integrated using 180 
MSnbase v2.8.3 [41] and xcms v3.4.4 [42], using a customized approach that did not require 181 
delineating discrete peak boundaries and thus enabled increased sensitivity for low abundance 182 
molecules (see Supplemental Note). 183 

(c) Genotypes. 184 

Genotypes for the TOU-A population were obtained from [37]. Genotype data for the 185 
RegMap [16] and 1001G [17] datasets were obtained from [43]. For the 1001G  dataset, this 186 
consisted of SNPs that were directly genotyped through whole-genome resequencing (WGS). 187 
For the RegMap panel, this consisted of SNPs that were directly genotyped with a 250K SNP 188 
chip and supported by WGS in resequenced accessions, and SNPs imputed by intersecting the 189 
RegMap chip genotypes and 1001G WGS genotypes. 2.8M SNPs with greater than 95% 190 
imputation accuracy were retained, which primarily excludes SNPs with low-frequency alleles. 191 

(d) Broad-Sense Heritability of GSLs. 192 

We fitted linear mixed models for log-transformed ion counts per milligram of leaf tissue 193 
using lme4 [44], including random intercept effects for the accession identity and for the plate 194 
containing the sample during extraction and HPLC-MS/MS quantification. Heritability was 195 
estimated as the proportion of variance explained by accession identity after excluding variance 196 
explained by sample plate identity. Significance of accession identity was assessed by a 197 
likelihood ratio test with one degree of freedom. For published measurements of Regmap [32] 198 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2021.09.13.460136doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.460136


 

and 1001G [13] accessions, an identical model was implemented using GSL abundances scaled 199 
by sample weights as reported by the authors. 200 

(e) GWA Mapping. 201 

To standardize comparisons across datasets, analyses were conducted identically for the 202 
TOU-A, 1001G, and RegMap datasets. First, best unbiased linear predictors (BLUPs) were 203 
extracted from the linear mixed models above; for one dataset [6] that pooled biological 204 
replicates, abundances from the single technical replicate per accession were used directly. 205 
Values were converted to z-scores so that GWAS would produce effect size estimates in units of 206 
phenotypic standard deviations. Second, GWAS were implemented as linear mixed models in 207 
GEMMA v0.98.1 [45], including a centered genetic relatedness matrix (-gk 1) to account for 208 
population structure. Significance per SNP was assessed by Wald Tests (-lmm 1). 209 

Traits that were modeled separately for GWAS included (1) abundances of each of the 210 
heritable GSL molecules, and (2) log2-transformed ratios of the abundances of pairs of molecules 211 
with precursor:product relationships (Fig. S1). For indolic GSLs in TOU-A, we also 212 
implemented a multi-trait GWAS approach (multivariate linear mixed model, mvLMM [46]), 213 
which jointly models the relationships between the abundances of all detected molecules. Severe 214 
genomic inflation and/or algorithmic termination errors prevented the implementation of these 215 
models for other molecules and mapping panels. Unless otherwise stated, all GWAS excluded  216 
SNPs with minor allele frequency (maf) < 5% or missing genotypes in > 5% of the accessions 217 
(relaxed to 10% for TOU-A, which had more uncalled sites). We excluded a small number of 218 
GWAS exhibiting systematic genomic inflation as determined from the median P-value (λ > 219 
1.04) or an excess of associated SNPs (98th percentile of genome-wide P-values < 0.01). 220 

To search for significant associations harboring GSL biosynthetic loci, we used a recently 221 
compiled catalogue of functionally validated genes in the aliphatic and indolic GSL biosynthetic 222 
pathways ([31]; categories: side chain elongation, core structure synthesis, side chain 223 
modification). Because peaks of association at known GSL biosynthetic loci in previous GWAS 224 
reside tens or even hundreds of kb from the causal genes [13,32,34]--which may arise from 225 
extended causal haplotypes [34], structural variants, or intergenic regulatory variants--we defined 226 
candidate SNPs as those within 30kb of known biosynthetic genes. For the three loci with 227 
significant SNPs in our re-analysis of the 1001G and RegMap datasets, for which the causal 228 
genes are well-established, we further extended these windows in 10kb increments until they 229 
captured 90% of the SNPs within 0.5Mb of the known causal loci (AOP2/3, GS-OH, MAM1/3) 230 
that harbored significant associations with single GSL molecules or precursor:product ratios in 231 
those datasets. 232 

(f) Population Genetic Comparisons. 233 

 Methods for all population genetic analyses are described in the Supplementary Methods. 234 

 235 
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3. Results 236 

(a) A deficit of rare alleles in the local TOU-A population. 237 

 A population genetic comparison between TOU-A and the European 1001G accessions 238 
revealed favorable conditions for GWAS relative to geographically broad mapping panels. First, 239 
for the particular example of glucosinolates, we found that epistatic variation increases rapidly 240 
with geographical distance (Fig. 1a). Second, despite reduced overall diversity (1.9M SNPs in 241 
TOU-A vs. 11.5M SNPs in 1001G), the TOU-A population (1.3M) and 1001G panel (2.2M) had 242 
a relatively comparable number of common variants (defined here as biallelic SNPs with maf > 243 
0.03). Indeed, a large fraction of common variants from the 1001G panel (2.2M) were also 244 
common in TOU-A (0.83M, 38%), indicating the reduced genetic diversity in TOU-A arises 245 
from a lessened contribution of rare variants. This was reflected in the allele frequency spectrum: 246 
after downsampling the 1001G to account for differences in sample size, the TOU-A population 247 
still displayed a less pronounced enrichment of rare relative to higher frequency variants (Figure 248 
1b), resulting in higher genome-wide values of Tajima’s D (Fig. 1c). This strong reduction in 249 
rare variants is expected to reduce confounding effects of allelic heterogeneity in TOU-A, while 250 
the presence of many common variants suggests this does not come at the expense of drastically 251 
culling the polymorphisms that can be interrogated through GWAS. 252 

(b) Heritable variation in glucosinolate profiles within the local TOU-A population. 253 

We quantified the relative concentrations of 13 major aliphatic and four indolic 254 
glucosinolates in 294 accessions from the TOU-A population under controlled growth chamber 255 
conditions. In contrast to broader geographic scales, where loss-of-function mutations within the 256 
glucosinolate biosynthetic pathway are pervasive, every TOU-A accession exhibited a fully 257 
functional GSL biosynthetic pathway. This was evidenced by abundant concentrations of the 258 
final products in the biosynthetic pathways for both short-chain aliphatic and indolic GSLs (Fig. 259 
S2). 260 

 Genetic differences among individuals explained significant portions of the between-261 
accession variation in abundance for every GSL molecule: broad-sense heritabilities ranged from 262 
0.19 < H2 < 0.92 (all PBonferroni < 0.05). In fact, analysis of GSL measurements from previous 263 
studies revealed systematically higher heritability estimates in TOU-A than the RegMap (Sign 264 
Test, median difference = 0.16 [95%CI:0.04,0.31], P = 0.02) and no significant difference 265 
between TOU-A and the 1001G (median difference = 0.04 [-0.20,0.20], P = 0.46) (Fig. 2). 266 
Although experimental design, tissue sampling, or data collection variables across studies could 267 
contribute to differences in heritability among the mapping populations, these data clearly 268 
indicate a high level of heritability for GSL traits within the local TOU-A population, even in the 269 
absence of the loss-of-function alleles at biosynthetic loci that have dramatic effects on GSL 270 
profiles across broader geographic scales. 271 
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(c) GWAS within the local TOU-A population reveals known and novel variants shaping 272 

aliphatic glucosinolate profiles. 273 

 For 192 phenotyped accessions with whole genome sequences, we conducted GWAS 274 
using mixed models that controlled for confounding due to population structure by including a 275 
matrix of kinship among accessions as a random effect. We first focused on the abundances and 276 
relationships between 13 aliphatic GSLs. 277 

Significant associations. The identity of associated loci in TOU-A depended on how GSL 278 
phenotypes were represented. Separate GWAS for the abundance of each molecule cumulatively 279 
uncovered significant associations at five biosynthetic loci (Fig. 3a). Given the strong positive 280 
and negative genetic correlations among GSL molecules in the TOU-A population (Fig. S3), we 281 
reasoned that mapping approaches utilizing these additional relationships may reveal additional 282 
associations. Indeed, using ratios of the abundances of individual precursor vs. product GSLs as 283 
the mapped traits cumulatively revealed significant associations at five biosynthetic loci, 284 
including two loci not recovered from GWAS using individual GSL abundances (Fig. 3b). 285 

The significant associations included the three loci (GS-OH, AOP, MAM) that we also 286 
recovered using the same approaches in a re-analysis of previous GWAS datasets, which 287 
consisted of mapping populations spanning the European continent (N > 300 accessions) (Fig. 3c 288 
& S4a). Many of these same associations were reported in the authors’ original analyses 289 
[6,13,32]. However, the GS-OX locus had not been mapped in the three GWAS with large 290 
mapping populations (although it was successfully mapped in biparental RILs) [33,47,48], and 291 
effects of natural polymorphisms in the BCAT3, CYP79F1, and CYP83A1 genes had not been 292 
described in any mapping study. 293 

Effects on GSL profiles. A model for how the putatively causal enzymes at the seven 294 
significant loci generate GSL profile variation in the TOU-A population emerges simply by 295 
overlaying the reaction catalyzed by each enzyme, from precursor to product molecules, onto a 296 
plot of the major aliphatic GSLs detected in TOU-A plants. This produces a visual map of the 297 
variable steps in the biosynthetic pathway (Fig. 3d). We sought to use these relationships, 298 
supplemented with GSL profiles from gene knock-out mutants in previous studies, to validate 299 
each locus by comparing them to the effects inferred in our GWAS. To do this, we identified the 300 
leading SNP (i.e., the SNP with the strongest experiment-wide P-value) at each locus, extracted 301 
its GWAS model-fitted effect on the abundance of each GSL molecule, and visualized the effects 302 
on the map of GSL molecular variation in TOU-A (Fig. 3e). In addition to offering further 303 
evidence supporting the hypothesized causal genes at each locus, this approach illuminates how 304 
these loci generate different aspects of GSL profile variation in the TOU-A population. 305 

The effects of the BCAT3 locus in TOU-A suggest that this gene underlies a dimension 306 
of variation in GSL side-chain length previously undescribed in natural populations of 307 
Arabidopsis, distinct from effects of the well-characterized variation at the MAM locus. The 308 
BCAT3 locus affected the abundances of GSLs with intermediate-length side chains, mirroring 309 
effects previously observed in a BCAT3 knockout mutant (Fig. 3e & S5). By contrast, functional 310 
genetic and biochemical assays have shown that the MAM1 and MAM2 enzymes primarily 311 
affect the abundance of GSLs with short side chains [49], similar to the inferred effect of the 312 
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MAM locus in TOU-A, and MAM3 primarily affects the abundance of GSLs with long side 313 
chains (Fig. 3e & S5). 314 

Of two previously unreported associations at cytochrome P450 monooxygenases 315 
functioning downstream of MAM and BCAT3 in the biosynthetic pathway (Fig. 3d), the novel 316 
association at the paralogous CYP79F1 and CYP79F2 genes [50] is especially noteworthy. The 317 
leading SNP at this locus was associated with a larger magnitude of effect on some short-chain 318 
molecules in TOU-A than MAM or BCAT3 (Fig. 3e), with especially large effects on molecules 319 
with the shortest observed side-chain length. This is consistent with the finding that among all 320 
biosynthetic enzymes, CYP79F2 exerts the strongest effect on pathway flux, with an outsized 321 
effect on propyl GSLs (i.e., GSLs with 3C side-chain lengths) [12]. Functional polymorphism at 322 
a CYP79F gene also underlies a QTL affecting the propyl fraction of GSLs in Brassica juncea 323 
[51], and separately underlies adaptive variation in the proportion of GSLs derived from 324 
branched-chain amino acids relative to methionine in Boechera stricta [52]. The association at 325 
CYP79F paralogs was recovered in our re-analysis of one European Arabidopsis dataset (Fig. 326 
S4), strengthening the evidence that CYP79F is a broadly important determinant of GSL profile 327 
variation across populations and species.  328 

Two distinct loci harbor paralogous GS-OX genes that catalyze the S-oxygenation of 329 
methylthioalkyl to methylsulfinylalkyl GSLs with broad substrate specificity. While natural 330 
variation in the locus containing GS-OX2, GS-OX3, and GS-OX4 had been detected through 331 
QTL mapping with biparental RILs [47,48], neither locus had been detected in the three large, 332 
European GWAS panels. In addition to harboring a significant association when considering 333 
common variants (minor allele frequency, maf > 0.05; Fig. 3a), GS-OX1 harbored the strongest 334 
genome-wide association for many molecules when slightly rarer variants were considered (maf 335 
> 0.03; Fig. S6). Although biases in our GWAS model can yield inflated or deflated signals of 336 
association for alleles below this threshold, the strength of the association for this variant is 337 
exceptional even among alleles of similar frequency (0.05 > maf > 0.03). Intriguingly, the 338 
strongest associations at GS-OX1 did not involve methylthioalkyl GSL abundances individually 339 
or as a ratio compared to their derived methylsulfinylalkyl GSLs (Fig. S6), suggesting that 340 
linkage disequilibrium with other loci (or an unexpected effect of GS-OX1) may contribute to 341 
this association. Nevertheless, the effect on its direct precursor and/or product molecules is 342 
sufficient to drive a significant association: we further performed GWAS for a principal 343 
component capturing opposing shifts in the abundance of long-chain methylthioalkyl vs. 344 
methylsulfinylalkyl GSLs, and GS-OX1 harbored the strongest, statistically significant genome-345 
wide association (Fig. S6). 346 

Finally, effects of the two remaining polymorphisms in TOU-A, at the AOP [53] and GS-347 
OH [54] loci, differed from the effects of loss-of-function variants at these loci that segregate 348 
over broad geographic scales, which eliminate the production of their GSL products and generate 349 
qualitative presence/absence variation in GSL profiles [13]. In TOU-A, by contrast, both loci 350 
affected their precursor GSL abundances, with only GS-OH also oppositely affecting (but not 351 
abolishing) its product GSL abundances (Fig. 3e). 352 

It is important to note that the predicted effects do not include epistatic interactions, and 353 
that more subtle effects may not be discovered through GWAS. Accordingly, the effects 354 
described above should be interpreted only as the strongest, additive effects of each locus. 355 
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(d) GWAS within the local TOU-A population reveals known and novel variants shaping 356 

indolic glucosinolate profiles. 357 

 Significant associations. We implemented the same association mapping approach for 358 
four indolic GSL molecules, and were most successful when mapping traits that captured the 359 
relationships among abundances of different molecules. Three biosynthetic loci were significant 360 
in a multi-trait GWAS jointly modeling the abundance of all four indolic GSLs detected in TOU-361 
A (Fig. 4a). 362 

Of these three loci, two (both CYP81F loci) have been previously identified in GWAS 363 
[6] and remained the only two significant associations in our re-analysis of other datasets (Fig. 364 
4b & S4). One of these loci was also discovered through QTL mapping, and CYP81F2 was 365 
functionally validated as the causal gene [55,56]. The IGMT locus had not been linked to natural 366 
variation in GSL profiles previously. 367 

 Effects on GSL profiles. Each putatively causal biosynthetic enzyme underlying the 368 
associations with indolic GSL variation in TOU-A has been functionally characterized through 369 
biochemical assays and in gene knockout mutants. CYP81F paralogs collectively catalyze the 370 
first elaboration step at different sites of indolic GSL ring structure [55,56], and IGMT paralogs 371 
collectively catalyze a subsequent elaboration step [57] (Fig. 4c). Using the effects of each locus 372 
extracted from our GWAS models, we looked for concordance between our GWAS (Fig. 4d) and 373 
previous QTL mapping, functional genetic, and knockout mutant studies to inform how these 374 
loci shape GSL variation in TOU-A. 375 

 The CYP81F subfamily of cytochrome P450 monooxygenases are responsible for 376 
hydroxylation of indolyl-3-ylmethyl (I3M) GSL [55,56], which can subsequently be 377 
methoxylated by other enzymes. The locus harboring CYP81F2 affected two GSL molecules in 378 
TOU-A (4-hydroxy-I3M-GSL and its derivative, 4-methoxy-I3M-GSL), which also differentially 379 
accumulate due to the CYP81F2 locus in a previous QTL mapping experiment [56]. The locus 380 
harboring CYP81F1, CYP81F3, and CYP81F4 paralogs affected the GSL that is methoxylated at 381 
a different site, 1-methoxy-I3M-GSL; the CYP81F-catalyzed product from which it derives, 1-382 
hydroxy-I3M-GSL, is unstable and was not observable through our GSL profiling approach. 383 
These results further support evidence from previous mapping studies that paralogs at the two 384 
CYP81F loci affect different GSL molecules in planta, despite overlap in substrate specificities 385 
in vitro [55,56]. 386 

 Four of the five indole glucosinolate O-methyltransferases (IGMT1-4) in Arabidopsis 387 
form a tandem array at the locus identified in our GWAS [57]. This locus had a strong effect on 388 
the abundance of its substrate, 4-hydroxy-I3M-GSL (Fig. 4d). Although IGMT1-4 enzymes 389 
cumulatively can methoxylate both 1- and 4-hydroxy-I3M-GSL in biochemical assays, our 390 
observation of effects restricted to 4-hydroxy-I3M-GSL methoxylation support a model 391 
previously inferred from the characterization of an IGMT5 knockout mutant, which retained 392 
functional copies of all four IGMT1-4 paralogs [57]. The mutant exhibited an absence of 1-393 
methoxy-I3M-GSL but no reduction in 4-methoxy-I3M-GSL, suggesting the IGMT1-4 locus is 394 
responsible only for 4-methoxy-I3M-GSL’s production in planta. 395 
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 Taken together, our results more fully link the functional variation characterized in 396 
enzyme biochemical and gene knockout studies with the variation for indolic GSLs observed in 397 
natural populations, identifying loci acting at three of the four secondary modification steps that 398 
give rise to the major I3M-derived GSLs in the TOU-A population. 399 

(e) Reduced population structure is unlikely to underlie improved performance of GWAS 400 

for glucosinolate profiles in the local TOU-A population. 401 

 GSL profiles, and some of the large effect loci that underlie them, show strong 402 
geographic clines within and across Europe [13,32]. This raises the possibility that methods to 403 
control for population structure in GWAS could weaken signals of association with GSLs at loci 404 
whose genotypes are strongly correlated with population structure. To investigate this, we used 405 
ADMIXTURE to infer subgroups (k = 5) contributing to population structure separately within 406 
the TOU-A and the 1001G accessions. Focusing on the ten glucosinolate biosynthetic loci 407 
recovered by GWAS in TOU-A, we found that among-group variation in allele frequency was 408 
not elevated in the 1001G relative to TOU-A (Fig. S7). This suggests that the efficacy of GWAS 409 
for GSLs in TOU-A is unlikely to be the product of weaker population structure at causal loci, 410 
and may instead arise from differences in other confounding factors that are exaggerated in 411 
geographically broad mapping panels. 412 

4. Discussion 413 

 As one of the best-studied secondary metabolite pathways in plants--with a wealth of  414 
functional genetic knowledge from GWAS and QTL mapping of natural variation, 415 
characterization of genetic mutant lines, and enzyme biochemical assays [30]--GSLs offered a 416 
compelling opportunity to investigate the performance of GWAS using a local mapping 417 
population. The expanded genetic architecture revealed for GSLs in the TOU-A population 418 
highlights the benefits of this approach. A modest mapping panel (N=192 accessions) led not 419 
only to the discovery of variants that were absent in geographically broad mapping panels with 420 
1.5-4x more accessions, but also to novel loci whose contribution to natural variation was 421 
unknown despite numerous QTL mapping studies previously conducted for GSLs. These 422 
associations spanned each major portion of the pathway (Fig. 5): the MAM-catalyzed reaction 423 
loop for side-chain elongation in GSL precursor molecules, sequential steps for synthesis of the 424 
GSL core structure, and every level of secondary modification subsequent to the formation of a 425 
functional GSL molecule [31]. Thus, GWAS within a single population can offer a deep catalog 426 
of functional polymorphism within a biosynthetic pathway. 427 

 The simplest explanation for the effectiveness of GWAS in TOU-A may be the observed 428 
reduction in genetic diversity relative to the broader European population. Theory predicts that 429 
allelic heterogeneity, which poses a major obstacle for GWAS, will be more pervasive in more 430 
genetically diverse populations. Further, the fact that diversity was reduced in TOU-A primarily 431 
through a relative deficit of rare variants, as expected if rare variants are geographically 432 
restricted and therefore locally more common [26], likely provides an additional benefit. Rare 433 
variants are not only poorly detected through GWAS, but their presence can obscure true 434 
associations at causal loci [58]. Consistent with this, GWAS has uncovered more associations 435 
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and a broader (albeit largely unvalidated) functional repertoire of underlying candidate genes--436 
including biosynthetic enzymes, transcription factors, and transporters--across cultivars of 437 
Brassica napus than in European panels of Arabidopsis [59–61]. B. napus cultivars are less 438 
genetically diverse and have an excess of common variants (reflected in elevated Tajima’s D) 439 
relative to Arabidopsis [17,61,62], which may have been further exaggerated at glucosinolate-440 
related genes by the diversity-reducing effects of directional selection during the breeding 441 
process [62]. 442 

While the general benefits of reduced geography-driven confounding in local populations 443 
should extend to GWAS for a variety of traits, our findings also illustrate properties of local 444 
populations likely to be especially beneficial when studying metabolite diversity specifically. In 445 
particular, the confounding effects of loss-of-function polymorphisms were absent from the 446 
major loci (MAM, AOP, GS-OH) that segregate such mutations over broad geographic scales. 447 
Loss-of-function mutations produce a particularly severe form of allelic heterogeneity. Many 448 
different mutations can produce analogous loss-of-function alleles at a gene, resulting in a high 449 
gene-wide mutation rate, such that many loss-of-function polymorphisms involve multiple 450 
haplotypes with parallel loss-of-function mutations [27]. Furthermore, loss-of-function mutations 451 
underlie dramatic epistatic effects, which may dilute additive effects modeled by GWAS. An 452 
extreme example involves the GS-OH locus that catalyzes the final secondary modification in 453 
the biosynthetic pathway (Fig. 5): loss of function alleles at upstream enzymes fully mask the 454 
effect of GS-OH on GSL variation in the majority of genetic backgrounds in Arabidopsis, and 455 
GS-OH itself segregates numerous loss-of-function alleles [13]. Of the three major large-effect 456 
loci mapped in other GWAS of aliphatic GSLs, only GS-OH has failed to consistently yield 457 
associations across previous analyses [6,13,32,34]. 458 

Although statistical approaches exist to mitigate geographically-driven confounding 459 
factors, they cannot entirely control for them. For example, GWAS models can be extended to 460 
include epistatic interactions alongside, or instead of, additive effects [63]. However, the 461 
immense number of possible pairwise interactions across the genome creates computational 462 
challenges and a severe multiple testing burden [64]. Other confounding factors can be lessened 463 
by altering genotype information rather than the GWAS models themselves. One simple yet 464 
powerful approach involves collapsing all predicted loss-of-function variants at a gene into a 465 
single allele, reducing their contribution to allelic heterogeneity [65]. Nevertheless, this approach 466 
requires genotyping to be conducted through whole-genome sequencing, and even then, many 467 
cases of abolished or altered gene function are difficult to annotate from DNA sequence data 468 
alone. Furthermore, while this approach can improve power to discover associations at loci with 469 
heterogeneous loss-of-function variants, it does not address their confounding epistatic effects on 470 
other loci. Even in cases where various genotyping and statistical approaches do largely succeed 471 
in mitigating specific confounding factors, integrating them to address many factors 472 
simultaneously is challenging. For many research questions, the use of local mapping 473 
populations in which these confounding factors are lessened offers an attractive alternative to 474 
these more tailored GWAS approaches. 475 

Despite their benefits, GWAS in local populations are certainly not ideal for every 476 
research question. GWAS of GSLs in different mapping populations illustrate this clearly: 477 
integrating population genomic analyses with GWAS using Arabidopsis accessions sampled 478 
throughout Europe revealed how GSL profiles have been shaped by adaptation and demography 479 
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across the species range [13,32,34], which would be impossible to infer from a single local 480 
population. Meanwhile, GWAS using the TOU-A population implicated more loci in natural 481 
phenotypic variation than could be detected in broader mapping panels. Complementary GWAS 482 
in local and geographically broad mapping panels thus provide an exciting avenue toward a 483 
fuller understanding of the genetic variation and evolutionary processes that shape phenotypic 484 
diversity in nature. 485 

5. Data Accessibility 486 

Raw data are accessible on the Dryad Digital Repository 487 
(https://doi.org/10.5061/dryad.4mw6m90b6). Scripts are available on GitHub 488 
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 506 

Figure 1. 507 

Reduced genetic complexity within local Arabidopsis populations. (a) The proportion of non-508 
matching GSL chemotypes, which reflect the joint genotype at three epistatically-interacting loci 509 
(MAM, AOP, GS-OH), increases sharply and then plateaus as a function of geographic distance 510 
in pairwise comparisons among accessions. Points represent comparisons among European 511 
1001G accessions in 4km bins. (b) The allele frequency spectrum is skewed toward common 512 
alleles in TOU-A relative to European accessions in the 1001G. The plotted lines were produced 513 
by connecting points indicating the proportion of SNPs falling into 1% bins of minor allele 514 
frequency. (c) Tajima’s D is also elevated in TOU-A, shown as a distribution of values across 515 
50kb genomic windows. The 1001G panel was downsampled to 192 individuals to match TOU-516 
A, and both populations were downsampled to 100 individuals per site, to avoid sample size and 517 
genotyping efficiency biases in panels b-c. 518 
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 520 

Figure 2.  521 

Glucosinolate variation is highly heritable within the TOU-A local population. (a) Estimates 522 
of broad-sense heritability (H2) for each GSL molecule in the TOU-A population are plotted 523 
against estimates in broader European mapping panels. Connected points indicate estimates of 524 
H2 for the same molecule in different European panels. Points above the diagonal line exhibit 525 
higher H2 in TOU-A. Histograms above and to the right of the plot indicate the distribution of H2 526 
values in each population.  527 
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 528 

Figure 3.  529 

Seven biosynthetic loci are associated with aliphatic glucosinolate variation in the TOU-A 530 
local population. (a,b) The best P-value per SNP across individual GWAS, mapping either the 531 
abundance of individual GSL molecules (panel a, 13 traits) or the ratio of individual precursor 532 
vs. product molecule abundances (panel b, 17 traits). SNPs assigned to known GSL biosynthetic 533 
loci (see Methods) are enlarged and colored blue. Dotted lines indicate the Bonferroni genome-534 
wide significance threshold for a single GWAS (red) or the full study (i.e., all individual GWAS 535 
across which P-values were merged; black). (c) For each locus associated with GSL variation in 536 
TOU-A, black circles indicate if the same locus was significant in GWAS in our re-analysis of 537 
GSL datasets from large (N > 300) European mapping populations [6,13,32] or was previously 538 
mapped as a QTL using biparental RILs [33]. (d) A model for how these loci interact to generate 539 
variation in GSL profiles for the major aliphatic GSLs present in TOU-A plants (shaded boxes). 540 
Enzyme-catalyzed reactions from precursor to product are shown as colored arrows. Dashed 541 
boxes indicate known intermediates that were not observed or quantifiable in TOU-A. (e) Effects 542 
on individual aliphatic GSLs for the minor allele of the leading SNP at each locus (identified as 543 
the SNP with the top association across any individual GWAS from panels a-b, named as 544 
“chromosome_position”). Boxes are oriented to represent the GSL molecules in panel d. Effect 545 
sizes are shown for each single molecule GWAS with P < 0.01 for the focal SNP.  546 
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 547 

 548 

Figure 4.  549 

Three biosynthetic loci are associated with indolic glucosinolate variation in the TOU-A 550 
local population. (a) P-values from a multi-trait GWAS (mvLMM) jointly modeling all indolic 551 
GSL abundances. The plot layout, colors, and significance thresholds are as described in Figure 552 
3a. (b) For each locus associated with GSL variation in TOU-A, black circles indicate if the 553 
same locus was significant in GWAS in our re-analysis of a GSL dataset from a large (N > 300) 554 
European mapping population [6] or was previously mapped as a QTL using biparental RILs 555 
[56]. “ * ” indicates a significant association in a published analysis that was not recovered in our 556 
standardized re-analysis. (c) The pathway for secondary modification of indole-3-ylmethyl GSL 557 
(top) through 1- or 4-hydroxylation (middle) and subsequent methoxylation (bottom). (d) Effects 558 
on individual indolic GSLs for the minor allele of the leading SNP at each locus, determined as 559 
in Fig. 3e. Boxes are oriented to represent the GSL molecules in panel c. 560 
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 562 

Figure 5. 563 

An overview of glucosinolate biosynthetic loci associated with GSL variation in the TOU-A 564 
population. The diagram shows each enzyme-catalyzed step, beginning with the amino acid 565 
precursor (Met or Trp). Genes harboring significant GWAS associations in TOU-A are listed at 566 
the biosynthetic step they catalyze. Bolded genes are novel associations, defined as those 567 
significantly associated in TOU-A but not in our re-analysis of three datasets with geographically 568 
broad European mapping panels. A “+” indicates that multiple paralogous genes at a locus could 569 
contribute to the association (e.g., CYP79F1 and CYP79F2 are represented as CYP79F+). The 570 
pathway and enzyme positions are based on [31]. Note that additional steps producing GSLs that 571 
accumulate only at very low levels in leaves are omitted. 572 
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