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 2 

ABSTRACT  21 

Pancreatic beta cell response to glucose is critical for the maintenance of normoglycemia. A strong 22 

transcriptional response was classically described in rodent models but, interestingly, not in human 23 

cells. In this study, we exposed human pancreatic beta cells to an increased concentration of glucose 24 

and analysed at a global level the mRNAs steady state levels and their translationalability. Polysome 25 

profiling analysis showed an early acute increase in protein synthesis and a specific translation 26 

regulation of more than 400 mRNAs, independently of their transcriptional regulation. We clustered 27 

the co-regulated mRNAs according to their behaviour in translation in response to glucose and 28 

discovered common structural and sequence mRNA features. Among them mTOR- and eIF2-29 

sensitive elements have a predominant role to increase mostly the translation of mRNAs encoding for 30 

proteins of the translational machinery. Furthermore, we show that mTOR and eIF2α pathways are 31 

independently regulated in response to glucose, participating to a translational reshaping to adapt 32 

beta cell metabolism. The early acute increase in the translation machinery components prepare the 33 

beta cell for further protein demand due to glucose-mediated metabolism changes. 34 

 35 

AUTHOR SUMMARY 36 

Adaptation and response to glucose of pancreatic beta cells is critical for the maintenance of 37 

normoglycemia. Its deregulation is associated to Diabetic Mellitus (DM), a significant public health 38 

concern worldwide with an increased incidence of morbidity and mortality. Despite extensive research 39 

in rodent models, gene expression regulation in response to glucose remains largely unexplored in 40 

human cells. In our work, we have tackled this question by exposing human EndoC-BH1 cells to high 41 

glucose concentration. Using polysome profiling, the gold standard technique to analyse cellular 42 

translation activity, we observed a global protein synthesis increase, independent from transcription 43 

activity. Among the specific differentially translated mRNAs, we found transcripts coding for ribosomal 44 

proteins, allowing the cell machinery to be engaged in a metabolic response to glucose. Therefore, 45 

the regulation in response to glucose occurs mainly at the translational level in human cells, and not 46 

at the transcriptional level as described in the classically used rodent models.  47 

Furthermore, by comparing the features of the differentially translated mRNAs, and classifying them 48 

according to their translational response, we show that the early response to glucose occurs through 49 
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the coupling of mRNA structure and sequence features impacting translation and regulation of 50 

specific signalling pathways. Collectively, our results support a new paradigm of gene expression 51 

regulation on the translation level in human beta cells. 52 

 53 

INTRODUCTION 54 

Pancreatic islet β-cells play a pivotal role in the maintenance of normoglycemia by synthesizing, 55 

storing and secreting insulin. Glucose uptake and metabolism are essential for regulation of glycemia 56 

by stimulating insulin secretion and triggering specific gene expression. These processes have been 57 

widely studied in rodent since 1970s (1). Due to the long-standing difficulties to generate a human 58 

cellular model (2), or to access to primary human islet preparations derived from deceased donors (3), 59 

there is a scarcity of results obtained from human cells. In addition, despite many similarities, there 60 

are major differences between human and rodent models such as the copy number of insulin genes, 61 

the expression of different transcription factors in glucose-stimulated insulin secretion, the architecture 62 

of the Islet of Langerhans with functional implication and, finally, the susceptibility to β-cell injury (2). 63 

Moreover, concerning glucose-dependent gene expression regulation, recent transcriptome studies 64 

have demonstrated important differences in expression levels between human and rodent cell lines. 65 

In the rat β-cell line INS-1, more than 3700 genes were significantly affected in response to glucose 66 

(4). In contrast, a recent transcriptome study of the first human β-cell line (EndoC-BH1), able to 67 

secrete insulin in response to glucose stimulation (5), showed that only a scarce number of genes 68 

were modified at the mRNA level for cells exposed for eight hours either to high or low glucose 69 

concentrations (6). Accordingly, a previous report on donor human islet treated similarly during 70 

twenty-four hours (7) reported that the expression of only 20 genes was affected. Taken together, 71 

these findings highlight a considerable difference in gene expression regulation at transcriptional level 72 

between human and mouse pancreatic β-cell.   73 

Glucose regulation has also been addressed at post-transcriptional level in rodent models since the 74 

70s. In particular, attention was focused on the regulation of glucose-induced pro-insulin synthesis (8–75 

10) reporting that the first cellular response to replenish insulin was entirely mediated at translational 76 

level without affecting mRNA abundance (8). Beside pro-insulin, synthesis of other proteins was also 77 

stimulated, but these proteins were not identified. A translatome study addressed this issue in mouse 78 
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insulinoma 6 (MIN6) cell line by polysome profiling (11) and identified 313 mRNAs, for which the 79 

association with polysomes was changed by at least 1.5 times. Interestingly, in low glucose the 80 

Integrated Stress Response (ISR) mediates eIF2 phosphorylation, promoting translation of a group of 81 

mRNAs including b-zip transcription factors such as ATF4, CHOP (DDIT3), and c-Jun. The translation 82 

of these mRNAs was reduced upon glucose increase and eIF2 dephosphorylation, linking regulatory 83 

pathway activity and protein expression regulation (11). 84 

To date, no translatome studies have been made on human β-cells to address glucose induced post-85 

transcriptional regulation. In this work, we exposed human pancreatic β-cells exhibiting glucose-86 

inducible insulin secretion (12) to high glucose concentrations for 30 min to observe the early cellular 87 

response. We observed a global protein synthesis increase, independent from transcription regulation. 88 

We identified 402 mRNAs that are differentially translated in response to glucose and identified 89 

different groups of co-regulated transcripts. We found mTOR and eIF2-sensitive elements in a 90 

majority of them and, accordingly, we found that both pathways activate translation of specific mRNAs 91 

in response to glucose. Upregulated genes are mainly coding for ribosomal proteins, increasing the 92 

translation machinery potential, allowing the cell machinery to be engaged in a metabolic response to 93 

glucose. 94 

 95 

RESULTS 96 

Glucose induces an acute increase in protein synthesis in human β-cells. 97 

To monitor and quantify the translation activity in response to glucose, we performed a polysome 98 

profiling analysis on a functional human β-cell line able to produce insulin in response to glucose 99 

(EndoC-βH2 cells, see Material and Methods). Polysome profiling is a gold standard technique to 100 

analyze cellular translation activity. Ribosome complexes of different densities are separated on a 101 

sucrose gradient consistent with the number of ribosomes. Briefly, EndoC-βH2 cells were cultured for 102 

24 hours in 0.5 mM glucose and then treated for 30 min with either 0.5 mM or 20 mM glucose. 103 

Polysome profiling showed that increasing glucose to 20 mM triggered an important increase in the 104 

content of polysomes in parallel to a decrease of the monosomes peak (80S) (Fig. 1A). 105 

Polysome/monosome ratio was raised 2 times, which is classically observed with a global increase in 106 
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protein translation. This translation upregulation was confirmed by 35S-Met incorporation (Supp. Fig 107 

1A). 108 

We next quantified whether the global increase in translation was associated to a modification in 109 

mRNA steady state levels by genome-wide transcriptome analysis. As illustrated by the MA plot in Fig. 110 

1B, global mRNA levels were not significantly affected by a 30 min glucose treatment. Only 16 111 

transcripts (Supp. Fig 1B) were found to be significantly affected, 7 of them coding for histone proteins. 112 

However, these variations are low, with a fold change of less than 2-fold. We validated this result by 113 

RT-qPCR showing that Histone1H3C and Histone1H3D mRNAs increased from 30 min after glucose 114 

shift (Supp. Fig.1C), in an extent similar to that observed by RNAseq (log FC = 0.7 at 30 min, Supp. 115 

Fig 1B, corresponding to FC = 1.6). Conversely, the abundance of mRNAs such as, PTPRN, CHGA 116 

or CCNG1 was not significantly affected even after 1h or 2h after the glucose shift. This finding is in 117 

agreement with the results described in Richards et al., showing that even 8 hours after glucose 118 

increase, only a scarce number of genes were modified at the mRNA level (6). Hence, the global 119 

increase in protein synthesis is virtually independent from transcription regulation.  120 

In conclusion, we show here for the first time that human beta cells respond to glucose by a rapid and 121 

important increase in mRNA translation, which is virtually independent of changes in the 122 

transcriptome. 123 

 124 

Glucose regulates translation rates of mRNAs involved in the insulin secretion pathway and in 125 

the translation machinery 126 

We next studied genes whose translation rates are regulated in response to glucose by sequencing 127 

the mRNAs associated with monosomes and polysomes (Fig. 1A, see Materials and Methods). The 128 

commonly adopted strategy to identify translated genes is usually to consider mRNAs associated with 129 

more than 3 ribosomes (13), but each fraction from monosomes to heavy polysomes could also be 130 

sequenced (14). To obtain a good compromise between resolution and sensitivity, we analyzed 131 

separately the monosomes (80S), light polysomes (2-4 ribosomes per mRNA), and heavy polysomes 132 

(> 4 ribosomes per mRNA). Accordingly, fractions were pooled (see Fig. 1A) to collect monosomes 133 
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(fractions 5-6), light polysomes (fractions 7-9) and heavy polysomes (fractions 10-13) before RNA 134 

sequencing. 135 

Differential analysis using the limma package (15) highlighted that the abundance of 235 mRNAs in 136 

heavy polysomes and 218 in light polysomes was significantly changed upon glucose shift (adjusted 137 

p-value < 0.05 and logFC > 0.5, Fig 1C and 1D), but not in monosomes (Fig. 1E). These changes do 138 

not correlate with a significant difference in mRNA total level (Fig. 1B). As expected from the global 139 

increase in translation we observed in high glucose (Fig. 1A), most of the identified transcripts were 140 

enriched in polysomes (Fig. 1F): 164 in the heavy polysomes, 131 in the light polysomes, 49 common 141 

to both. Thus, only a minority of transcripts, 58 in total, were downregulated. Interestingly, from the 16 142 

transcripts increased in RNA abundance (Fig 1B) only four have been found increased in polysomal 143 

fractions (Fig. 1F and Supp. Fig. 1A). Except for these four genes, the variation for each transcript 144 

observed in polysomal fractions corresponds to a specific translational regulation independently of 145 

any variation in mRNA abundance and, consequently, of any transcriptional regulation. 146 

Continuing the investigation of differentially translated genes, we proceed by assessing if glucose 147 

stimulation modified the biosynthesis of insulin and of known major factors involved in insulin 148 

maturation and secretion pathway. We focused on gene products whose biosynthesis was reported to 149 

be enhanced in response to glucose in rodent cells, such as Protein Tyrosine Phosphatase Receptor 150 

Type N (PTPRN) (16), chromogranin A (CHGA) (17), and pro-hormone convertases 1/3 (PC1/3) (18). 151 

In heavy polysomes, PTPRN mRNA was enriched while CHGA mRNA was reduced (Fig. 1G and 152 

Supp. Fig. 2C and 2D). Interestingly, the relatively short Insulin transcript associates mainly with light 153 

polysomes (Fig. 1G), as observed previously in a mouse cellular model (11).  154 

Our data show that the human EndoC-βH2 beta cell line incubated with high glucose for 30 min 155 

quickly modify the translation rates of at least two mRNAs that code for proteins involved in the insulin 156 

secretion pathway. In contrast, We did not find any particular expression difference in the dot plot for 157 

Insulin and PC1/3 mRNAs (Fig. 1G), and accordingly we did not find these genes as differentially 158 

translated in our conditions. 159 

Gene Ontology (GO), gene set and REACTOME pathway enrichment analyses were performed for all 160 

the Differentially Translated Genes (DTGs). Figure 2 illustrate the gene-concept plots (cnetplots) of 161 

each ontology term and all its associated genes of the top 10 enriched categories for molecular 162 
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functions (MF, Fig. 2A) and biological processes (BP, Fig. 2B). Cnetplots are an informative way to 163 

represent the relationships between different ontology terms in a graph of all the associated genes 164 

together with the logFC for each gene. It is evident that the majority of the translationally upregulated 165 

genes (red nodes) are enriched in GO terms related to the biosynthesis and metabolism of proteins, 166 

rRNAs and to the translation machinery (Fig. 2). Supp. Fig. 2E illustrates the top 20 REACTOME 167 

pathways that are enriched in DTGs which further corroborate the finding of the GO analysis (Fig. 2). 168 

In conclusion, our results show that glucose concentration changes modulate translation rate of 169 

specific mRNAs of the insulin secretion pathway and promotes the synthesis of the translation 170 

machinery components.  171 

 172 

Differentially translated mRNAs in response to glucose share unique structural and sequence 173 

features 174 

It might be tempting to explain the translation modulation of specific mRNAs in response to glucose 175 

by a simple global translation increase. To test this, we calculated the translation ratio, defined as the 176 

abundance ratio of the translating mRNA in mono/polysome fractions to total mRNA regarding a 177 

certain gene (see Material and Methods for detail), for the most translated transcripts for each gene 178 

(Supp. Table 1), and then asked if the 200 most translated mRNAs are the same in low and high 179 

glucose (Fig. 3A), by ranking them according to the translation ratio. We found that around 40% (76) 180 

of the best translated transcripts in high glucose (Fig. 3A, grey circle) were not among the best 181 

translated in low glucose (Fig. 3A, blue circle). Furthermore, 80% of the mRNAs that display the major 182 

differences in ranking (Fig. 3A, white circle) are not found in the 200 top translated mRNAs in high or 183 

low glucose. The cellular response to glucose is therefore not just a simple increase in overall 184 

translation.  185 

Translational adaptation to glucose seems therefore to be a complex process. Thus, we further 186 

investigated potential association between the differential translation regulation and specific sequence 187 

and structural features of the DTGs. To this end, we have classified differences in translation ratios 188 

between high and low glucose to 3 mRNA groups: 147 mRNAs with higher translation ratio in high 189 

glucose, 137 with a lower translation ratio in high glucose and a control category of 320 mRNAs with 190 
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no significant change between high and low glucose. The most translated transcript of each of these 191 

604 genes was analysed by our in-house developed software (detailed in Materials and Methods) to 192 

retrieve sequence information from ENSEMBL database and identify structural features. Several 193 

characteristics appear in the statistical analysis of the features (Fig. 3B-F and Supp. Fig. 3). Among 194 

them, the minimum folding energy normalized over the length of the sequence (MFE per BP) is an 195 

interesting measure to estimate the complexity of an mRNA untranslated region (UTR) structure. 196 

Transcripts with higher translation ratio difference between high and low glucose appear to have 197 

statistically significant shorter open reading frames (ORFs), and shorter and less complex UTRs. 198 

Conversely, transcripts that are down regulated have longer ORFs and more structured 3’UTR since 199 

their MFE per BP distribution slightly decreases (Fig. 3 B-F).  200 

These results indicate that the sequence and structural features we have used allow the classification 201 

and characterization of the highly translated mRNAs; so they provide a good tool to dissect the 202 

different classes of translational behaviour of transcripts in mono-, light- and heavy- polysomes. 203 

Motivated by that, we proceeded with the dissection of this behaviour and the sequence-structure 204 

characterization of the different transcript classes. 205 

 206 

Differentially translated mRNA clusters display specific mRNA features 207 

To group the translationally co-regulated transcripts, we clustered the 402 differentially translated 208 

mRNAs we identified previously (Fig. 1F) based on their behaviour between monosomes, light, and 209 

heavy polysomes. To this end, we calculated for each mRNA the log2 ratio of the average abundance 210 

in high over low glucose condition for each of the three ribosomal fractions. The log ratios matrix was 211 

then subjected to a modelling clustering method able to determine in an unsupervised way the best 212 

model that characterizes the data (19). The model generated six clusters, which highlighted six 213 

different types of behaviours (Fig. 4A, coloured bars with the cluster number). Genes of the top cluster 214 

(n°1, seagreen bar) showed a clear pattern for 73 mRNAs shifting from the monosomes to polysomes 215 

(both light and heavy), which is the expected behaviour for a mRNA with increased translation. 216 

Cluster n°6 (102 mRNAs) presented a behaviour similar to cluster 1 with an increase of mRNAs in 217 

heavy polysomes but without any rise in the light polysomes. These transcripts move from the 218 
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monosomes to the heavy polysomes fraction and correspond to transcripts whose translation is 219 

greatly increased. Instead, the mRNAs of clusters 2 and 3 (90 and 79 mRNAs, respectively) showed 220 

increased mRNA levels for light/heavy and monosome/light polysomes, respectively. We reasoned 221 

that at low glucose concentration these mRNAs are associated with small complexes that have a 222 

density smaller than one ribosome and correspond to mRNAs newly recruited to the translation 223 

machinery. Finally, clusters 4 and 5 (37 and 21 mRNAs, respectively) collected all the mRNAs whose 224 

levels in the polysome fractions decreased upon glucose stimulation, which might reflect a decrease 225 

in their translation. The difference between these two clusters comes from the fact that the decrease 226 

is observed in light polysomes for cluster 4 and in heavy polysomes for cluster 5.  227 

Based on the link between features and behaviours that we observed (Fig. 3), we hypothesized that 228 

the different patterns observed for the clusters could be a consequence of cis-regulatory elements 229 

present on the mRNAs which could serve as binding sites for trans-acting factors such as RNABPs 230 

and miRNAs. To investigate this possibility, we calculated a series of mRNA features for the most 231 

abundant transcript for each gene. We developed an RNA feature extraction tool (see Material and 232 

Methods) that is able to download, from the ENSEMBL database bioMart (20), the transcript 233 

sequences with additional annotations and calculate sequence and structural properties (see Supp. 234 

Table 2 for the full table of results). We proceeded by grouping these mRNA features between the 6 235 

clusters of different translation behaviour identified by the model clustering approach (Fig. 4 B-I, the 236 

full ensemble of the statistical analysis of differences between groups, including the results of all the 237 

Kruskal-Wallis H-test and its associated p values are available in supplementary Supp. Fig. 4). 238 

Strikingly, the length of the coding sequence (CDS) of cluster 1 mRNAs was significantly shorter, 239 

while in cluster 2 the CDS were longer (Fig. 4B). Next, we analysed the length of the UTRs (Fig. 4C-240 

D). Notably, there was a tendency for mRNAs of cluster 1 to have shorter 5’ and 3’ UTRs than the 241 

other clusters. Cluster 4 and 6 showed similar tendencies towards shorter 5’ UTRs (Fig. 4C). Cluster 4, 242 

that corresponds to mRNAs whose translation decreases in response to glucose, contained longer 3’ 243 

UTRs (Fig. 4D).  244 

We next analysed the GC-richness of the 5’ and 3’UTRs, as a proxy to determine the complexity of 245 

secondary structures formed by the mRNA UTRs. Cluster 2 and 3 contained mRNAs with higher GC 246 

content on both 5’ and 3’ UTRs than the others (Fig. 4E-F). In accordance, clusters 2 and 3 contained 247 
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mRNAs with more structured 5’ and 3’ UTRs than the other clusters (Fig 4G-H). In addition, cluster 5, 248 

the cluster with the underrepresented mRNAs in the heavy polysome fraction, also appears to have 249 

the next higher GC content and lowest MFE per BP on its 3’UTR (Fig. 4F,H), indicating that the 5’UTR 250 

structural and sequence complexity affects the translation regulation.  251 

In addition to the UTR structure, we found a tendency towards a lower Codon Adaptation Index (CAI) 252 

for cluster 4 and cluster 6 (Fig. 4I).  Since CAI is associated with slowest translation rates this finding 253 

could explain at least in part the accumulation of transcripts in monosomes (cluster 6) or light 254 

polysomes (cluster 4) rather than in heavy polysomes in low glucose (Fig. 4A).  255 

We then searched for functional motifs in the UTRs by interrogating the UTRdb 256 

(http://utrdb.ba.itb.cnr.it/,(21), and we found already characterized RNA binding motifs in the UTRs of 257 

the mRNAs which are differentially translated (Supp. Fig. 5). Interestingly, we found TOP motifs (5’-258 

terminal oligopyrimidine (TOP) (22)) mostly represented in cluster 1 and 6 (Fig. 5A), and also uORFs, 259 

and IRES features (Fig. 5B). It is interesting to note that uORF and TOP features are mutually 260 

exclusive (Fig.5B), meaning that these features are used independently to differentially regulate 261 

mRNA translation. This finding indicates two different potential modes of translation regulation from 262 

two independent mechanisms. 263 

Taken together, the results suggest that the translational regulation of differentially translated mRNAs 264 

upon glucose concentration shift is strongly associated with, and can be characterized by, specific 265 

sequences as well as structural features on the UTRs and coding regions of these mRNAs. 266 

 267 

Clustering reveals that specific pathway regulators are co-regulated in response to glucose, 268 

and that TOP motifs are preponderant to upregulate the translation machinery components. 269 

Next, we performed gene ontology enrichment analyses, using the R package ClusterProfiler (23), in 270 

order to assess if the mRNAs belonging to the different clusters were implicated in specific biological 271 

processes. Cluster 1 and 6 were enriched for categories related to translation but especially for ER-272 

related translation (Fig. 6A-B). Cluster 4 (Fig. 6C), which contained the translationally repressed 273 

mRNAs in high glucose, was enriched in mRNAs coding for proteins involved in regulation of 274 

metabolic processes and cell death. In particular, genes involved in tricarboxylic acid, acyl-CoA, and 275 
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thioester metabolisms were found to be enriched in cluster 4. Cluster 5 with also repressed transcripts 276 

in high glucose was enriched for categories related to response to starvation and growth factors (Fig. 277 

6D), including mRNAs coding for b-zip transcription factors such as ATF4, DDIT3(CHOP), and c-Jun 278 

(Supp. Table 2) that had a similar behaviour in mouse beta cell (see introduction,(11) ).  279 

We thus investigated if ribosomal proteins or translation factors were found in clusters 1 and 6. We 280 

found that cluster 1 contained 56 mRNAs coding for ribosomal proteins (Supp. Table 3, RPL and 281 

RPS), corresponding to 70% of the total number of RP transcripts, while cluster 6 contained 13 282 

mRNAs coding for eukaryotic translation factors of which 4 were elongation factors (eEF1A1, eEF1A2, 283 

eEF1B2, eEF2) and the remaining were initiation factors (eIF2A, eIF2S3, eIF3E, eIF3F, eIF3G, eIF3H, 284 

eIF3L, eIF4A2, eIF4B) (Supp. Table 3, eIFs and eEFs). These mRNAs are known to contain the TOP 285 

motif (TOP-RNAs, (22,24,25)), that we found enriched in the differentially regulated mRNAs (Fig. 5A), 286 

mostly in cluster 1 and at a lesser extent in cluster 6. Therefore, we compared the mRNAs found in 287 

cluster 1 and 6 with the list of mRNAs that were previously reported or proposed to be TOP-RNAs in 288 

three already published studies (22,24,25) (Supp. Table 4). Overlap between the three set of genes 289 

showed that cluster 1 contained 59 (58%) of the known TOP-RNAs while cluster 6 contained 20 (20%, 290 

Fig. 6D).  80% of the mRNAs of cluster 1 are known to be TOP-RNAs, one hypothesis is that the 291 

similar behaviour of the cluster1 mRNAs is due to their TOP motif. We calculated the TOP local score 292 

for the 14 remaining mRNAs and found a similar distribution to cluster 1. 293 

In conclusion, we found that translation increased for more than 70% of the mRNAs coding for 294 

ribosomal proteins, and also for genes involved in specific metabolic processes, response to growth 295 

factors or that regulate cell death.  296 

 297 

mTOR and eIF2alpha pathways are regulated upon glucose induction 298 

We next sought to identify the molecular pathways driving such translation regulation in response to 299 

glucose in human beta cells. Our data unraveled a group of uORF-containing mRNAs that are 300 

translationally regulated upon glucose induction. uORF-mediated translation mechanisms involve the 301 

phosphorylation of eIF2 complex alpha subunit (eIF2α) on Ser51, which inhibits the assembly and 302 

recycling of the translational ternary complex (eIF2-GTP·Met-tRNAi), and results in a reduction in 303 
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translation initiation. We therefore examined the phosphorylation status of eIF2α. Western blot 304 

analyses highlighted a dephosphorylation of eIF2α in response to glucose (Fig. 7A, P-eIF2α, and 305 

Supp. Fig. 6A for western blot quantification), indicating an increased availability of the ternary 306 

complex. Furthermore, adding the translation inhibitor cycloheximide does not prevent the activation 307 

of eIF2 through dephosphorylation, which is therefore independent of protein neosynthesis. Note that 308 

the amount of poly-A binding protein (PABP), a key post-transcriptional regulator, remains constant. 309 

It has been described that glucose deprivation is sensed by aldolases, which cause the formation of a 310 

membrane-associated lysosomal complex, which in turn activates AMP-activated protein kinase 311 

(AMPK) (26). AMPK induces inhibition of mammalian TOR complex 1 (mTORC1) activity by 312 

phosphorylation of the tuberous sclerosis protein 2 (TSC2) tumor suppressor and the mTOR binding 313 

partner Raptor (27,28). Since mTORC1 is a well-known regulator of protein synthesis, we postulated 314 

that upon glucose increase, mTORC1 activation participates in translation upregulation. It is well 315 

established that mTORC1 regulates translation through the modulation of the phosphorylation status 316 

of 4EBP1 (29). Thus, to further validate that mTORC1 signaling is a key player in glucose stimulation, 317 

we checked the phosphorylation status of 4EBP (Fig. 7B and C). At 0.5 mM glucose, 4E-BP displayed 318 

a single band (α, see Fig. 7C) in western blot that is also visible using an anti phospho-4EBP antibody 319 

showing that 4EBP is at least partly phosphorylated. The P-4EBP/4EBP ratio increased upon glucose 320 

shift, and new 4EBP isoforms are visible (bands β and γ, see profiles in Fig. 7C), corresponding to 321 

hyperphosphorylated 4EBP. We concluded that increase of glucose concentration induced strong 322 

phosphorylation of 4EBP that is known to decrease its affinity for eIF4E, and increases Cap-323 

dependent translation. We also observed during a proteomic study dedicated to the analysis of the 324 

late response to glucose (4h after glucose increase), that RPS6 was phosphorylated rapidly after 325 

glucose addition, confirming the activation of the mTOR pathway (30). Interestingly, TOP-containing 326 

mRNAs are known to be extremely sensitive to mTOR regulation, that provides an attractive 327 

regulation mechanism to understand the translation upregulation of mRNAs of cluster 1 and 6 (see 328 

Discussion). Furthermore, using rapamycin, a potent inhibitor of mTOR, we observed that eIF2 329 

dephosphorylation was independent of mTOR activation (Fig. 7D). Since we found the kinase eEF2K 330 

in cluster 4, we asked whether eEF2 phosphorylation was affected upon glucose shift. Indeed, we 331 

found a strong reduction of eEF2 phosphorylation (Fig. 7E, and quantification in Supp. Fig. 6D), that is 332 

known to promote its activity for translation elongation. In conclusion, from the structural features of 333 
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the clusters, we focused on mTOR and eIF2α pathways that are independently regulated to modulate 334 

translation after a short glucose stimulation, and found also an activation of the elongation factor 335 

eEF2. 336 

 337 

DISCUSSION 338 

We show here that a human pancreatic β-cell line responds to glucose by a specific regulation in 339 

protein synthesis, as revealed by polysome profiling. Interestingly, this increase in translation is 340 

unrelated to the abundance of mRNAs and consequently independent from a transcriptional 341 

regulation. Indeed, from our transcriptome analysis, a 30 min glucose shift had no effect on mRNA 342 

abundance, apart for 16 transcripts that are weakly affected. This result agrees with a microarray 343 

study performed in EndoC-βH1 in which only few genes had their mRNA levels affected after 8-hour 344 

of glucose stimulation (6). 345 

This context where translational regulation is the major determinant of gene expression prompted us 346 

to perform the first translatome study of a human pancreatic β-cell line in response to glucose. 347 

Following a 30 min incubation in high-glucose media, we found changes in distribution of 402 mRNAs 348 

in different ribosomal fractions. We report that two important genes involved in the regulation of 349 

secretory granules, CHGA and PTPRN are translationally co-regulated in human pancreatic β-cells. 350 

The PTPRN translation increase was also reported in mouse models (16). PTPRN belongs to the 351 

receptor protein tyrosine phosphatase (RPTP) family and regulate basal and glucose-induced insulin 352 

secretion in the mouse MIN6 cell line by increasing, presumably through stabilization, the number of 353 

insulin-containing dense core vesicles (31). Conversely, we found that the association of CHGA with 354 

heavy polysomes decreases and consequently its translation is reduced. CHGA is a member of the 355 

granin glycoprotein family, and its main intracellular function is to sort proteins into the secretory 356 

granules. CHGA is also secreted and generate several cleaved products among which pancreastatin 357 

that have been shown to act in an autocrine and paracrine fashion by inhibiting glucose stimulated 358 

insulin secretion (32).  359 

 360 

We observed, by clustering analysis, that the identified differentially translated mRNAs could be 361 

divided into six groups based on the different changes of their mRNA levels in the three ribosomal 362 
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sequenced fractions. We thus performed mRNA features analysis to identify possible mRNA features 363 

that could explain the observed different behaviours.  364 

 365 

It is interesting to note that transcripts from cluster 4, that are translationally repressed upon glucose 366 

shift, possess a longer 3’UTR that could contain more regulatory elements, such as miRNA binding 367 

sites. Upregulation of miRNAs have been described in the presence of high glucose (33), thus, it 368 

would be interesting to analyze the modifications in miRNA activity induced by glucose in our human 369 

cellular model. 370 

 371 

We found mRNAs from clusters 4 and 5 better translated in low glucose where eIF2 is 372 

hyperphosphorylated and, less translated in high glucose after dephosphorylation of this initiation 373 

factor. A similar situation has been observed in mice MIN6 beta cells (see introduction, (11)) : in  low 374 

glucose eIF2 phosphorylation is mediated by the Integrated Stress Response (ISR) that is 375 

suppressed upon glucose increase. Indeed, we found a similar translational behaviour for ATF4, 376 

DDIT3 and c-Jun transcripts encoding proteins associated with the ISR (34): they all belongs to 377 

cluster 5. Importantly, abundance of these mRNAs decreases upon glucose increase in mouse cells 378 

but their abundance does not vary in our human beta cells. 379 

As hyperphosphorylation of eIF2α is known to favour translation of mRNAs containing uORFs, we 380 

could expect to find uORF-containing mRNAs in cluster 4 and 5, and indeed we found mRNAs 381 

reported to contain uORFs that regulate their translation: the cyclic AMP-dependent transcription 382 

factor (ATF4), the activating transcription factor 5 (ATF5) (35), the transcriptional regulator CHOP (36) 383 

and eEF2K (37).  384 

ATF4 was the most translationally downregulated gene identified (log2 FC -1.5 in heavy polysomes). 385 

Importantly ATF4 is known to be the master regulator of cellular metabolism in response to energetic 386 

stresses and depending on the intensity and length of the stress can either favour cell survival 387 

through upregulation of autophagy related genes and amino acid transporters or enhance expression 388 

of genes involved in apoptotic processes (38). ATF5 has been recently shown to play an important 389 

role in regulating pancreatic β-cells survival (39,40). Despite this decrease in ATF4 and ATF5, a 390 

significant transcriptomic response was not observed for 30 min (this study), or for eight hours (6) of 391 

glucose stimulation. The ATF4 protein increase is classically described to activate transcription of 392 
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target genes, but this response decreases with time owing to different mechanisms that counteract 393 

ATF4 function (reviewed in (41)). The reduction in ATF4 translation would then allow the cells to 394 

return to basal levels of ATF4 without triggering a transcriptional response.  395 

It is interesting to note that after glucose shift, translation inhibition of eEF2K may participate in 396 

translation regulation. eEF2K phosphorylates eEF2, reducing its affinity for ribosomes, resulting in 397 

inhibition of protein synthesis (42). Indeed, we observed a strong dephosphorylation of eEF2, that 398 

would promote the elongation rate of translating ribosomes, participating to the global protein 399 

synthesis increase revealed by the measure of amino-acid incorporation.    400 

IRESs are also RNA structures conferring a translational advantage in condition where general 401 

translation is silenced. We searched in the literature if any of the translationally repressed mRNAs 402 

were reported to contain an IRES. We found that the RRBP1 (Ribosome-binding protein 1, cluster 5) 403 

mRNA has been shown to contain an IRES in its 5’ UTR (43). RRBP1 is a membrane-bound protein 404 

found in the endoplasmic reticulum where it enhances the association of certain mRNAs (44) and play 405 

a role in ER morphology (45). Consequently, RRBP1 may participate to the reshaping of the 406 

translatome upon glucose induction. 407 

eIF2α has been implicated in many physiological translation regulations, being a “funnel factor” where 408 

several signals converge to regulate its phosphorylation at serine 51, which results in cap-dependent 409 

protein translation repression (46), as observed for the ISR. The ISR aimed to protect cells against 410 

various cellular stresses, including viral infection, oxidative stress and ER stress. Interestingly, 411 

phosphorylated eIF2α is essential to preserve ER integrity in beta cells, and if this mechanism of 412 

protection is compromised, it would contribute to the onset of Diabetic Mellitus (47), a public health 413 

concern worldwide with an increased incidence of morbidity and mortality. 414 

 415 

The metabolism of the beta cell is also reshaped during this early response to glucose (30 mn after 416 

glucose shift) as we found in cluster 4 transcripts coding for proteins involved in regulation of 417 

metabolic processes, cell death and response to growth factors. This translational regulation is 418 

particularly important for genes implicated in tricarboxylic acid (TCA, Krebs Cycle), acyl-CoA, and 419 

thioester metabolisms. Activation of these metabolisms, that are linked by their role in glucose 420 

consumption for energy production, is expected upon translation increase, since protein synthesis is 421 

one of the most energy costly cellular processes (48). In another study done by mass spectrometry to 422 
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monitor the late response to glucose (4 hours after glucose shift), we have also observed a regulation 423 

in the amount of proteins involved in TCA metabolism and glycolysis (30). 424 

 425 

The mRNAs that showed the strongest increase in the light polysome fraction were grouped in 426 

clusters 2 and 3. Notably these clusters showed a high GC content for both the UTR regions. The GC 427 

content in the 5’ UTR could imply a strong dependency toward helicases, and a reduced initiation 428 

activity, which could explain why these mRNAs cannot load enough ribosomes to efficiently access to 429 

heavy polysomes. 430 

We have shown that transcripts of the two most highly translated clusters have shorter coding 431 

sequences and shorter and less complex 5’UTRs compared to the rest of the clusters. These features 432 

are characteristic of a special class of mRNAs, the TOP-mRNAs (24), which are all downstream 433 

targets of the mTOR pathway (see below). This class is defined by a 5′terminal oligopyrimidine 434 

(TOP) motif that is indeed enriched in these two highly translated clusters. Also most mRNAs from 435 

cluster 1 are known as TOP-mRNAs. The remaining 14 mRNAs of cluster 1 are most probably new 436 

TOP-RNAs, as suggested by their TOP-local score distribution. Most of the known TOP-RNAs encode 437 

proteins of the translation machinery. Accordingly, gene ontology analysis revealed that cluster 1 was 438 

enriched for categories related to structural components of the ribosomes involved in ER-related 439 

translation. Amongst the 14 new putative TOP-mRNAs that we found up-regulated in these pancreatic 440 

beta cells, we found transcripts coding for proteins acting in ubiquitin binding, cell signalling and 441 

mRNA translation. 20 mRNAs from cluster 6 were also previously reported to be TOP-RNAs (Fig. 6E). 442 

By comparing the mRNA features of the cluster 1 and 6, we noticed similar characteristics that 443 

promote translation activation, such as short and unstructured 5’UTR, but transcripts from cluster 6 444 

have longer CDS. This feature may explain why more ribosomes are loaded on cluster 6 mRNAs (at 445 

least 4 ribosomes) for a constant initiation rate, leading to their depletion from light polysomes and an 446 

enrichment in heavy polysomes. 447 

The TOP-RNAs have been described to be regulated by the mTOR pathway in various situations, 448 

such as changes in nutrients and other growth signals (49). Gomez and co-workers (50), studying 449 

glucose stimulation in murine MIN6 cells, concluded that translation regulation by glucose is largely 450 

independent of mTOR but mainly dependent on the availability of the ternary complex regulated by 451 

eIF2α phosphorylation status. 452 
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 453 

In our human cellular model of beta cells, both mTOR activation and eIF2 dephosphorylation 454 

participate to the increase of mRNA translational increase. It is interesting to note that the eIF2α 455 

activation is independent of the mTOR pathway since using rapamycin, a potent inhibitor of the 456 

mTOR pathway, we have still observed the dephosphorylation of eIF2. These pathways regulate 457 

mRNA translation in particular through uORF and TOP features, that are also mutually exclusive on 458 

mRNAs, meaning that these regulations occur independently. 459 

We concluded from our results that the glucose-dependent mTOR activation have a crucial 460 

importance for the nature of the transcripts that are regulated by glucose in human cells. As a quick 461 

response to glucose increase, TOP-RNAs allow accumulation of the translation machinery to prepare 462 

the beta cells for further protein demand due to the glucose-mediated metabolism changes.  463 

 464 

Adaptation and response to glucose of pancreatic beta cells is critical for the maintenance of 465 

normoglycemia. Its deregulation is associated with Diabetic Mellitus. Mice models, animal or cell 466 

derived models, have tremendously contributed to our understanding of human biology. All too often, 467 

however, gene expression differ markedly from human cellular models (51). Despite extensive 468 

research in rodent models of beta cells, gene expression regulation in response to glucose remained 469 

largely unexplored in human cells beta cells. Using the only human cell line available of pancreatic β-470 

cells exhibiting glucose-inducible insulin secretion (12), our results emphasize a remarkable 471 

difference in gene expression regulation in response to glucose that occurs mainly at the 472 

transcriptional level in mouse and at a translational level in human pancreatic β-cell. 473 

We have described the first genome-wide translatome study of a human pancreatic β-cell stimulated 474 

by glucose, highlighting that the response is translational and virtually independent from changes in 475 

mRNA abundance. Through the recognition of specific mRNA features, the swift translation activation 476 

is particularly efficient to increase translation machinery components. Finally, the combined mTOR 477 

and eIF2α activation that leads to the translatome reshaping governed by specific mRNA features 478 

allows a quick and direct cellular response targeting the translational regulation. These results 479 

constitute a call for a new paradigm of gene expression regulation to better understand β-cell glucose-480 

mediated metabolism, encouraging biologists and clinicians, whenever possible, to complement their 481 

transcriptomic studies with analysis at the translational or proteomic level. 482 
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 483 

MATERIALS AND METHODS 484 

Cell culture and treatment 485 

EndoC- βH2 cells (12) were cultured in low-glucose (5.6 mmol/L) DMEM (Sigma-Aldrich) with 2% 486 

BSA fraction V (Roche-Diagnostics), 50 mmol/L 2-mercaptoethanol,10 mmol/L nicotinamide 487 

(Calbiochem), 5.5 mg/mL transferrin (Sigma Aldrich), 6.7 ng/mL selenite (Sigma-Aldrich), 100 488 

units/mL penicillin, and 100 mg/mL streptomycin. Cells were seeded at a 40% confluence on plates 489 

coated with Matrigel (1%; Sigma-Aldrich), fibronectin (2 mg/mL; Sigma-Aldrich). Cells were cultured at 490 

37°C and 5% CO2 in an incubator and passaged once a week when they were 90–95% confluent. For 491 

the polysome profile experiments cells were plated 4 days before treatment to reach 80-90% 492 

confluence the day of experiment. Cells were cultivated for 24 h at 0.5 mM glucose and were then 493 

treated with different concentrations of glucose to obtain media at 5.6 mM, high-glucose media at 20 494 

mM or with low-glucose media at 0.5 mM  for 30 min. 495 

 496 

Western blot & antibodies 497 

Protein concentrations were quantified using a Pierce BCA Protein Assay Kit (Thermo Fisher 498 

Scientific). Proteins (20 μg) were resolved by SDS-PAGE and transferred to a membrane using an 499 

iBlot2 Gel Transfer Device (Thermo Fisher Scientific). Membranes were incubated with specific 500 

primary antibodies against: phospho-Ser52-eIF2α (SAB4300221 Sigma), eIF2α (SAB4500729 Sigma), 501 

tubulin (T9026 Sigma), phospho-4EBP1 (2855 CST), 4EBP1 (9644 CST), Phospho-eEF2 (2331 CST), 502 

eEF2 (2332, CST) and PABP1 (52). Membranes were incubated with species-specific horseradish 503 

peroxidase, or fluorescent–linked secondary antibodies (1:10,000) and visualized on a Odyssey Fc 504 

Dual-mode Imaging System Onstrument (LI-COR). Quantification was done (Supp. Fig. 6), and 505 

profiles of the Fig. 7C were obtained, using Image Studio Lite 5.2.5. These data were processed to 506 

generate graphical representation with statistics with Rstudio 1.2.1335.  507 

 508 

Polysome profiling 509 

Polysome profiling was performed on three independent cell cultures both in high (20 mM glucose) or 510 

low (0.5 mM glucose) and each replicate corresponded to approximately 30 million cells. After the 511 

glucose treatment, cells were washed once in ice cold PBS containing 100 µg/ml Cycloheximide. The 512 
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PBS was then removed, the lysis buffer (80 mM KCl, 10 mM Tris pH7.4, 5 mM MgCl2, 0.5% Triton X 513 

100, 0.5% Na-Deoxycholate, 40U/ µL RNAsin, 1 mM DTT) was added directly to the plate and cells 514 

were scraped and collected. After 10 minutes incubation on ice, the lysates were centrifuge at 10,000 515 

x g for 5 min at 4°C. 10 A254 units of lysates were layered onto a 11 ml 20–50% (wt/vol) sucrose 516 

gradient prepared in the lysis buffer without Triton X-100. The samples were ultra-centrifuged at 517 

39,000 × g for 2.5 h at 4 °C in a SW41 rotor. The gradients were fractionated in 14 fractions of 0.9 ml 518 

using an ISCO fractionation system with concomitant measurement of A254. Polysome/monosome 519 

ratios were obtained by dividing the area of the polysomal peaks by the area of the peak for the 80S 520 

monosomes. Total lysates and fractions were supplemented with 50 µl of 3 M NH4Ac, 10 ng of 521 

Luciferase RNA (Promega), 1 µl of Glycoblue (Ambion) and 1.2 ml of ethanol. Samples were vortexed 522 

and precipitated overnight at −20 °C. The pellets were collected by centrifugation at 10,000 × g for 523 

10 min at 4 °C, washed once in 75% ethanol and resuspended in 100 µl DEPC-treated H2O. Samples 524 

were then treated for 1 hour at 37°C with RQ1 DNase (Promega) to remove possible contamination 525 

by DNA. RNAs were isolated by acid phenol: chloroform and precipitated in 1 ml Ethanol 526 

supplemented with (supplemented with 50 µL 3M NaOAc pH 5.2, 1 µl of glycoblue). Pellets were 527 

resuspended in 20 ul DEPC-treated H2O. For sequencing equal volumes of fractions were pooled: 528 

fractions 5-6 (Monosomes), fractions 7-9 (Light polysomes) and fractions 10-13 (Heavy polysomes). 529 

Quality and quantity of pooled fraction was tested by the bioanalyzer RNA 6000 Pico kit (Agilent). 530 

Sequencing was performed by the Genom’ic platform (Institut Cochin, Paris). Libraries were prepared 531 

using TruSeq RNA Library Preparation Kit (Illumina) with rRNA depletion using Ribo-zero rRNA 532 

removal kit (Illumina) following manufacturer’s instruction. High-throughput sequencing was 533 

performed using Hiseq 2000 (Illumina) system for 75nt single-end reads.  534 

RNAs were extracted using RNeasy mini kit (Qiagen, ref : 74104), DNAse treatment was performed 535 

with RNAse-free DNAse Set (Qiagen, ref: 79254). Equal volumes of all samples were reverse 536 

transcribed with Superscript IV reverse transcriptase (Life Technologies) for polysomes samples 537 

(Suppl. Fig 2 C and D). Reverse transcripts were obtained using RNA at 1ug/50ul with the kit High 538 

Capacity CDNA RT ( Life Technologie ref: 4368814) for total RNA samples (Suppl. Fig. 1C). qPCR 539 

was done with GoTaq® qPCR Master Mix (Promega ref : A602) on ViiA 7 Real-Time PCR System 540 

(Thermo Fisher Scientific). DNA contamination was assessed omitting the RT, no significant signal 541 

was obtained. Custom primers were designed with the tool developed by Integrated DNA 542 
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technologies (IDT, https://eu.idtdna.com/scitools/Applications/RealTimePCR/), and their efficiency 543 

was determined following serial dilutions of cDNA samples. Primer sequences: PTPRN, Fw (5’-3’): 544 

GTCTCCGGCTGCTCCTCT, Rv (5’-3’): GCCTGCGGTCAAATAGACA; CHGA, Fw (5’-3’); 545 

CAAACCGCAGACCAGAGG, Rv (5’-3’); TCCAGCTCTGCTTCAATGG; Cyclophilin-A primer 546 

sequences used for normalization, Fw (5’-3’): ATGGCAAATGCTGGACCCAACA, Rv (5’-3’): 547 

ACATGCTTGCCATCCAACCACT; CCNG1, Fw (5’-3’):GATATCGTGGGGTGAGGTGA, Rv (5’-548 

3’):TCAGTTGTTGTCAGTACCTCTATCATC; Hist1H3C, Fw (5’-3’): GCTTGCTACTAAAGCAGCCC 549 

Rv (5’-3’): AGCGCACAGATTGGTGTCTTC; Hist1H3D, Fw (5’-3’): CCATTCCAGCGTCTAGTCCG, Rv 550 

(5’-3’): TCTGAAAACGCAGATCAGTCTTGPTPRN. 551 

 552 

Bioinformatic analysis of Transcriptome and Polysome sequencing 553 

Sequencing libraries were prepared from three biological replicates for both conditions (0.5 mM and 554 

20 mM glucose). We prepared triplicates for high and low glucose conditions to produce RNA-seq 555 

libraries containing between 16-18 million reads for transcriptome and 8-14 million reads for 556 

polysomes pools. Almost 60% of reads on average were uniquely mapped to the human genome 557 

(Supp. Fig. 1D and 2A). Reads mapped to genes annotated as “protein coding genes” were kept for 558 

further analysis. Lowly expressed genes, frequently associated with high variability between replicates, 559 

were discarded. Samples from different conditions were grouped together by hierarchical clustering 560 

and PCA (Supp. Fig. 1E and 2B), ensuring reproducibility of our replicates. As described below, we 561 

thereafter proceeded with differential gene expression analysis using the limma R package (15). 562 

Pre-processing 563 

Raw fastq file obtained from the sequencer were firstly checked for their quality using FastQC and 564 

reporting with MultiQC v1.6 (53). No reads were discarded nor trimmed.  565 

Mapping, read counts and TPM calculation 566 

Quality controlled reads were then mapped to the human genome (GRCh38 from Ensembl 92) using 567 

STAR 2.6 (54) by using the parameter --quantMode GeneCounts to generate gene counts tables. 568 

STAR aligner was further instructed to generate an output (--quantMode TranscriptomeSAM) suitable 569 

as an input for RSEM (55). RSEM reports tables with transcript per million (TPM) for genes and 570 

mRNA isoforms (56). For all the rest of downstream analyses, the tables were filtered to retain only 571 

the genes which are annotated as protein coding in the Ensembl 93 annotation tables. 572 
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Filtering of lowly expressed genes  573 

Gene counts table were transformed in log CPM (Counts per Million base). Genes whose CPM values 574 

were smaller than 1 at least in one sample were discarded. Then a customized R function further 575 

filtered genes whose coefficient of variation (defined as the ratio of the standard deviation over the 576 

mean) within replicates was lower than 0.75 and the mean CPM expression was higher than 4. As a 577 

first step for quality control of our datasets we performed a hierarchical clustering analysis by using 578 

the TPM tables for each sample. Clustering was performed on the Euclidean distance matrix and the 579 

Ward’s minimum variance method was used for forming clusters (option Ward.D2 in the hclust 580 

function of R). 581 

Differential expression analysis and clustering 582 

Analyses were performed using the limma (15) Bioconductor package. Differentially expressed genes 583 

(DEGs) or translated genes (DTGs) were identified by fitting linear models between all the pairs of the 584 

three polysome profile fractions applying the ebayes method to calculate p-values. Only genes with 585 

adjusted p-values for multiple testing ≤ 0.05 were selected. A separate list containing the TPM 586 

(transcripts per million reads) values was kept for downstream analysis. The average expression of 587 

each gene was calculated in each fraction (monosomes, light polysome and heavy polysomes) and 588 

condition (low or high glucose). Then for each fraction and gene the logarithmic ratio of means of high 589 

glucose over low glucose was calculated (log ratio of mean TPM expression). The generated log ratio 590 

matrix was then used in our integrative clustering approach which comprised the application of 3 591 

clustering algorithms. Hierarchical clustering (hclust), k-means clustering (kmeans) and a model 592 

based bayesian approach clustering (mclust) were applied to the log ratio matrix of translation. Based 593 

on the silhouette measure for each clustering we evaluated that the mclust method represents better 594 

the structure of the translation data set. 595 

mRNA features collection 596 

We developed an in-house software for the retrieval and calculation of an array of sequence features 597 

for a given set of genes, The RNA features extraction tool is freely accessible in the GitHub repository 598 

(https://github.com/parisepigenetics/rna_feat_ext). The tool searches for either the most well 599 

annotated transcript for each gene in the gene list or it can also choose the most expressed transcript 600 

if a transcript abundance file is provided (e.g. the output of tools like RSEM or StringTie). We used the 601 

latter possibility using the average of all the polysomal samples.  For each transcript, the tool extracts 602 
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different mRNA features using the bioMart API. The mRNA features that we extracted were: length of 603 

the 5’UTR, CDS and 3’UTR and the GC content of both 5’ and 3’ UTR. The software also calculates  604 

the folding free energy for the 5’ and 3’ UTR (by using the RNAfold algorithm of the Vienna package 605 

(57), normalized by the length (MFE per bp) that is a measure of the stability and the complexity of 606 

the RNA secondary structure, an “in-house” devised TOP-mRNA local score and the Codon 607 

Adaptation Index (CAI, (58)), based on the codon usage of human genes. All statistical analyses of 608 

the features distributions along different translation behaviours were conducted by the groups based 609 

statistics R package ggstatsplot (https://cran.r-project.org/web/packages/ggstatsplot/index.html) using 610 

the Kruskal-Wallis H-test for comparing independent samples. 611 

Enrichment analyses 612 

We perform an array of different enrichment analyses as they are included in the clusterProfiler and 613 

DOSE R packages (23,59) including Gene Ontology annotation analysis (for all “biological processes”, 614 

“molecular functions” and “cellular component” categories), gene set enrichment analysis GSEA, 615 

KEGG pathway analysis (60) and Reactome pathway analysis (61). We visualise the results of the 616 

most significant enrichment on categories, gene sets and pathways by using typical bar/dot-plots of 617 

enrichment and a powerful graphical output of the above R package, the Gene-concept network plot 618 

(cneplot from clusterProfiler). 619 

Translation ratio, translation efficiency 620 

We define and calculate for translation ratio by using the measure of stable state mRNA from RNA-621 

seq and a measure for mono/polysome fraction occupancy from polysome profile. We first computed 622 

the average of all the 6 polysome profile conditions (mono-, light- heavy- in high and low glucose) and 623 

the average of the two RNA-seq conditions (high and low glucose) and then we simply divide each 624 

polysome profile condition average with the respective RNA-seq average. This calculation resulted in 625 

6 measurements of translation ratio for all genes in the three polysome fractions (monosomes, light 626 

and heavy polysomes) and the two glucose treatments (high and low). Then we computed what we 627 

call the translation efficiency of each gene in both glucose treatments (high and low) by subtracting 628 

the average of translation ratio in light plus heavy polysomes in high glucose from the same average 629 

in low glucose. These calculations allowed us to distinguish the most translated genes and those 630 

ones with the biggest shift in translation between high and low glucose. We have classified 631 

differences in translation ratios between high and low glucose to 3 groups according to the log fold-632 
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change (FC). First at +0.5 LogFC as highly translated in glucose, second with -0.25 logFC as lowly 633 

translated and a control group with +/-0.01 LogFC as control. We choose these thresholds in such a 634 

way as to generate 3 groups almost equal (UP, DOWN and control) sizes so that the comparative 635 

statistics will be more robust. 636 
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 825 

TABLE AND FIGURES LEGENDS 826 
 827 
Figure 1. Glucose induces increase in protein synthesis without affecting mRNA abundance 828 
and regulates translation rates of a subset of mRNAs.  829 

A. Polysome profiles of EndoC-βH2 with Low glucose (blue) and High glucose (red). The absorbance 830 
at 254 nm (A254) recorded during the collection of the fractions of the gradient is displayed. The 831 
positions of 40S, 60S, 80S and polysomes are indicated. The tree-colored bars represent the 832 
fractions that were pooled for sequencing: monosomes (green), light polysomes (yellow), heavy 833 
polysomes (light orange). EndoC-βH2 cells in high glucose had a significantly higher 834 
polysome/monosome ratio than did EndoC-βH2 cells in low glucose. Cells were treated in parallel 835 
using paired culture plates, and centrifugated together in the same rotor. Figure shows a 836 
representative replicate. The statistical significance of the polysome/monosome ratio was assessed 837 
using a paired t-test from three independent experiments (*, p < 0.001, n = 3). B. MA-plot of total 838 
mRNA abundance, dots in green specify up-regulation. C-E. MA-plots for each pool of fractions: 839 
heavy polysomes (C), light polysomes (D) and monosomes (E); dots in green corresponds to 840 
transcripts that are upregulated upon glucose stimulation, dots in red to transcripts that are 841 
downregulated. F. Venn diagram showing the overlap between glucose UP- or DOWN- regulated 842 
transcripts in Light and Heavy polysomes. Total_UP are transcripts varying in abundance. G. TPM 843 
values for each condition and each replicate are plotted. In red High glucose replicates, while in cyan 844 
Low glucose replicates. Names of the plotted gene is indicated above.  845 

Figure 2. Gene Ontology enrichment analysis, gene-concept plots (cneplots).  846 
Each cneplot illustrates the most significantly enriched Molecular Functions (MF, A) and Biological 847 
Processes (BP, B) categories. Lines of the same colour connect genes of the same GO category and 848 
the colour gradient of each gene corresponds to its log-FC.  849 

Figure 3. mRNA feature analysis of the 3 groups of differentially translated mRNAs. A. Venn 850 
diagram showing the overlap between the 200 mostly translated genes: best translated in high 851 
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glucose (grey circle), best translated in low glucose (blue circle), mRNAs with the most difference 852 
ones in ranking between low and high glucose (white circle). B-F. mRNA features analyses of 3 853 
groups of mRNAs based on the difference in translation ratio between high and low glucose. Higher 854 
(UP) or the lower (DOWN) translation ratio in high glucose, and a control group with no significant 855 
changes between high and low glucose. MFE/Bp is the folding free energy normalized by the length 856 
(see Material and Methods). B, coding length; C, 5’UTR length, D, 5’UTR MFE/Bp, E, 3’UTR length, F, 857 
3’ UTR MFE/Bp.  858 

Figure 4. Clustering and mRNA features analysis. A. Heatmap of the log2 ratios between the 859 
average TPM of each differentially translated gene in high- over low- glucose. An unsupervised model 860 
clustering algorithm was used to cluster the differentially translated genes into six groups represented 861 
here with the coloured vertical bar at the left side of the figure. Colours range from dark red when 862 
genes are less represented in a polysome fraction to dark green when overrepresented in a polysome 863 
fraction in high glucose condition. The table summarizes the variations observed for the different 864 
features presented in B-I : Box plots of the different mRNA features of the six-identified cluster.  865 

Figure 5. Functional motifs analysis of the UTRs by interrogating the UTRdb for TOP motifs (A), 866 
and TOP, uORF and IRES in the 5’UTRs (B), common gene names of the encoding gene of each 867 
transcript are indicated on the right side. The darker the blue, the higher the number of features per 868 
RNA (from 1 to 3 per RNA). 869 

Figure 6. Cluster Gene Ontology enrichment. A-D. barplot of gene ontology terms enriched for 870 
biological processes for clusters 1, 4, 5 and 6 using the R package clusterProfiler. E.  Venn diagram 871 
of genes belong to cluster 1 (grey circle) and 6 (blue circle) with previously reported TOP-RNAs (white 872 
circle). 873 

Figure 7. Activation of mTOR and eIF2α upon glucose induction. Western blot analysis of cells 874 
incubated with 0.5- or 20-mM glucose for the indicated time. Where indicated, cells were pre-treated 875 
for one hour with cycloheximide (CHX) to block translation, or with rapamycin to inhibit mTOR 876 

activation (see text). For 4EBP1, upper bands (β and γ) correspond to hyperphosphorylated forms. 877 

The ratio phosphorylated/total proteins was reported from quantification presented in Supp. Fig .6. 878 
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RNA-seq (total) Raw Reads
Uniquely

mapped

L1 19250648 79.24%

L2 16040055 78.81%

L3 16714523 77.56%
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H2 17527843 79.24%
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TranscriptID GeneName logFC Adj.P.Value Average expression
ENSG00000278272 HIST1H3C 0.7 7.4E-12 61.6
ENSG00000183598 HIST2H3D 0.8 1.1E-05 35.5
ENSG00000124575 HIST1H1D 0.6 2.3E-04 9.1
ENSG00000278463 HIST1H2AB 0.6 4.7E-04 13.1
ENSG00000177191 B3GNT8 0.5 5.2E-03 3.2
ENSG00000198535 C2CD4A 0.5 1.0E-02 1.4
ENSG00000276903 HIST1H2AL 0.6 1.1E-02 8.7
ENSG00000273703 HIST1H2BM 0.6 1.1E-02 6.6
ENSG00000185101 ANO9 0.6 2.1E-02 1.1
ENSG00000183248 PRR36 0.7 1.9E-02 0.7
ENSG00000140044 JDP2 0.6 2.1E-02 1.5
ENSG00000103047 TANGO6 0.6 3.1E-02 1.2
ENSG00000275379 HIST1H3I 0.5 3.2E-02 6.2
ENSG00000084628 NKAIN1 0.6 3.8E-02 1.0
ENSG00000007545 CRAMP1 0.5 4.7E-02 1.0
ENSG00000121281 ADCY7 0.7 3.8E-02 0.5
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Supplementary Figure 1. A. Translation activity increase following glucose 
shift observed by [35S]-Methionine incorporation. Beta-cells grown in 0.5 mM 
glucose were shifted to 20 mM glucose during 30 min before adding [35S]-L-
methionine (ref NEG709A, Perkin Elmer, nal concentration 40 microCurie/
ml) during 10 min. For each sample, [35S]-L-methionine incorporation into 
proteins was measured on duplicate aliquots after 10% TCA precipitation on 
Whatman as described in Costache et al., 2012 (PMID: 22425618). When
indicated, cells pretreated with cycloheximide (Cyclohex.) that prevent 
protein synthesis were used as control. Numerical values of triplicates were 
represented as boxplots with pairwise comparison against condition 0.5mM 
without Cyclohex.( *, p < 0.05; Student's t test). B. Table presenting the
abundance of the 16 transcripts upregulated in high glucose condition. 
Transcripts also upregulated in the translatome are indicated in bold. C. RT-
qPCR analysis of total RNA extracts using cyclophilin as reference gene. 
Delta Ct values of triplicates are represented as boxplots with pairwise
comparison against condition 0.5mM glucose (Student's t test; ns, p>0.05; *, 
p<0.05; **, p<0.01, ***, p< 0.001; ****, p<0.0001).  D. Table summarizing 
the transcriptome data of total cellular extracts, after incubation of cells with 
low glucose (0.5 mM, L1 to L3) or high glucose (20 mM, H1 to H3). E.
Hierarchical clustering of the replicates shows clear separation between low 
and high glucose samples. 
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Supplementary Figure 2. A. Table summarizing the number of raw reads and the percentage of 
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Supplementary Figure 5. Functional motifs analysis of the 5’UTRs (A) and 3’UTRs 
(B) by interrogating the UTRdb. Ensembl IDs of transcripts are indicated on the
right side, ordering of the transcripts was done by clustering of features.
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Supplementary Fig. 6 : Quantification of the Western Blots of Fig. 7 : A (data from Fig. 7A), C 
(from Fig. 7D): Numerical values of triplicates are shown along with the mean (horizontal red 
dash) +/- SD (vertical red line) with pairwise comparison against condition 0.5 mM (Student's t 
test; *, p<0.05, **, p< 0.001, ***, p<0.0001). B (from Fig. 7B), D (from Fig. 7E) : 
Numerical values of duplicates are shown along with the mean (triangles).
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