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Abstract 

With the development of sequencing technologies and computational analysis in 

metagenomics, the genetic diversity of non-conserved region has been receiving 

increasing attention to unravel complex microbial communities. However, it remains 

a challenge to obtain enough microbial genome drafts at a high resolution from a 

microbial community sample. In this work, we presented MetaTrass, a reference-

guided assembling pipeline, which exploited both the public microbe reference 

genomes and long-range co-barcoding information, to assemble high-quality draft 

genomes from metagenomic co-barcoding reads. By applying this approach to single 

tube long fragment reads (stLFR) datasets of four human faeces samples, MetaTrass 

could generate more high-quality genome drafts (>90% completeness, <5% 
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contamination) with longer contiguity and higher resolution in comparison with the 

common combination strategies of genome assembling and binning. Total of 178 

high-quality genomes were assembled by MetaTrass, comparing to 58 high-quality 

genomes assembled by the combination strategies. These high-quality genomes paved 

the way of the genetic diversity and evolution analysis among different samples. Thus, 

MetaTrass will facilitate the study of spatial and dynamics of complex microbial 

communities at high resolution. The open-source code of MetaTrass is available at 

https://github.com/BGI-Qingdao/MetaTrass.   

 

 

Introduction 

Through sequencing and analyzing the DNA of microbial communities directly from 

the environment, metagenomics has shown its important role in advancing the study 

of uncultured microbiomes [1, 2]. Comprehensive databases of metagenome-

assembled genomes are massively expanded to completely understand the genomic 

taxonomic structure of different microbiome communities according to genetic 

similarity [3, 4]. The progresses in metagenomics have shed new light on the study of 

spatial distribution and dynamics of complex microbial communities from human gut 

[5, 6]. 

Based on the function mining of  high-quality strain-resolved genomes, it is 

realized that genotypic difference among strains from the same species strongly 

correlated with their phenotype difference [7, 8]. The importance of genetic diversity 

within a species have been intensively studied in the field of pathogenicity, and many 

species with both pathogenic and commensal strains have been found [9, 10]. Indeed, 

the percentage of conserved genes shared between strains within a species is as low as 

40% [11], so the large part of non-conservation region is thought as the genetic origin 

of phenotypic diversity. Thus, complete genome drafts from a microbiome sample at 

species resolution will enable a more comprehensive studies of intra-species genome 

diversity, but it is still a challenge to generate high-quality genomes from 

metagenomic datasets.   
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Most of current approaches to analyze the microbiome communities are based on 

high-throughput and low-cost next-generation sequencing (NGS) reads. Many highly 

modularized computational tools have been developed such as genome assembler, 

genome binner, taxonomic binner and taxonomic profiler [12, 13]. The combination 

of genome assembler and binner has been commonly used to generate metagenome-

assembled genomes. A large number of short reads from a microbial community are 

firstly assembled to generate longer sequences by metagenomic assemblers with 

consideration of the uneven coverage depth of different microbial species [14-16]. 

Then the assembled sequences are grouped into more comprehensive genome drafts 

by genome binner based on similar K-mer composition and read coverage [17-19]. 

However, the limited NGS read length makes it impossible to address inherent 

complexity of microbial sample caused by long repeats and uneven abundance among 

different species.  

Many sequencing technologies with long-range information accompanied with 

specialized computational tools are promised to overcome the problem of long repeats 

and uneven abundance. Third-generation single-molecule real-time sequencing (TGS) 

technologies developed by Pacific Biosciences and Oxford Nanopore can produce 

contiguous reads with length up to 100 kb, and show great potential to generate 

complete genomes from both cultured and uncultured microbial communities [20-22]. 

Using the chromatin-level contact probability information generated by high-

throughput chromosome conformation capture (Hi-C) technology, more high-quality 

genome bins can be retrieved from short-read genome drafts and the contiguity can 

also be significantly improved [23]. The co-abundance of species in multiple samples 

with the common K-mer composition are also used to improve the capability to 

retrieve high-quality genome bins for NGS datasets [24]. However, there are 

limitations for these approaches. The high sequencing error rates in TGS long read 

hamper distinction between true variants and sequencing errors. An effective contact 

map with Hi-C library can only be established for a draft genome with preferable 

contiguity. Constructing co-abundance in multiple samples may ignore the genome 

characteristics of a single sample and also increase the sequencing cost. 
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The co-barcoding sequencing library [25-29], an improved short-read sequencing 

with long-range genomic information, can provide an alternative way to analyze 

metagenomes accurately and quantitatively. For different co-barcoding libraries such 

as BGI’s stLFR library[28], 10X Genomics’ linked-reads library[30] and Illumina’s 

contiguity preserving transposase sequencing library [26], the differences in the total 

barcode number and the short-read coverage of high weight DNA molecules (HWMs) 

have a great impact on their powers in the downstream analysis [31-34]. The co-

barcoding correlation between assembled draft sequences and barcode distribution on 

the assembled graph have been successfully applied to both single genome [35-37] 

and metagenome assembly [27, 38, 39]. However, the inherent complexity arising 

from long repeat sequences and uneven abundance among different species is still 

unsolved to construct draft sequences or assembly graphs in current strategies, making 

them unstable or difficult to generate enough high-quality genome drafts for complex 

microbial communities. 

In this work, we introduced a pipeline named MetaTrass to obtain high-quality 

genome drafts using references of microbiome from public databases and co-

barcoding information from stLFR read sets. In our strategy, the co-barcoding 

information is used not only to improve the assemblies by implementing co-barcoding 

assemblies, but also to simplify the dataset before assembling using references with 

the help of taxonomic binning. We apply MetaTrass to stLFR datasets of a mock 

metagenome community and four real gut microbiome communities to evaluated its 

capability of producing high-quality genome drafts with high contiguity and high 

taxonomic resolution, with comparing to the common combination strategies. In 

addition, the draft genomes with taxonomic information at species resolution obtained 

in taxonomic binning would be convenient to make further use of these assemblies.  

 

Datasets and methods 

 

Datasets 

A mock microbial and four gut microbial communities were analyzed to evaluate the 
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efficiency of MetaTrass. The mock microbial community (ZymoBIOMICSTM 

Microbial Community DNA Standard) consists of 8 isolated bacteria with the 

abundance of about 12% and 2 fungi with the abundance of about 2%. The four gut 

microbial DNA samples include three faeces from healthy volunteers and one faeces 

from a patient volunteer with inflammatory bowel disease. The stLFR libraries were 

constructed according to the standard protocol [28]. The DNA samples were firstly 

sheared into long fragments, and then the long fragments were captured into a 

magnetic microbead with a unique barcode sequence. Finally, each long fragment was 

broken and hybridized with the unique barcode by the Tn5 transposase on the surface 

of the microbead. The stLFR libraries of the mock and the patient sample were 

sequenced on BGISEQ500 platform, and those of healthy samples were sequenced on 

MGISEQ2000 platform. The read length in the read pair was 100 b for all datasets. 

The mock and the three healthy sample libraries were allocated to a half lane 

individually, and a total of about 50 Gb raw reads were generated. The faeces library 

of the patient was allocated to a full lane, and about 100 Gb raw reads were generated. 

The barcodes were extracted from the end of the second read in a read pair and then 

replaced by their numerical symbols in the read names in the fastq file with an in-

house script. SOAPfilter_v2.2 with parameters (-y -F 

CTGTCTCTTATACACATCTTAGGAAGACAAGCACTGACGACATGA -R 

TCTGCTGAGTCGAGAACGTCTCTGTGAGCCAAGGAGTTGCTCTGG -p -M 2 -f -1 

-Q 10) was used to clean the low-quality raw reads with adaptors, excessive confused 

bases, and high duplications. Finally, 55.65 Gb clean data were retained for the mock 

microbiome, 34.48 Gb for the first healthy sample (H_Gut_Meta01), 35.33 Gb for the 

second one (H_Gut_Meta02), 37.88 Gb for the third one (H_Gut_Meta03), and 97.20 

Gb for the patient sample (P_Gut_Meta01).   

 

Taxonomic binning   

We adopted Kraken2 (version 2.0.9-beta) [40] to classify stLFR reads into different 

species. Firstly, different customized databases were constructed to analyze the mock 

microbial community and gut microbial communities, respectively. Then the 
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corresponding stLFR reads were classified with default parameters. The references 

attached to the ZYMO product were used to construct the taxonomic database of the 

mock sample. The Kraken2 database of the Unified Human Gastrointestinal Genomes 

(UHGG) collection [3] was used to study the gut samples, and totally 4542 

representative genomes at the species level were included.   

 

Co-barcoding reads refining  

Since a taxonomic tree of references was constructed to reduce the number of 

multiple hits of a K-mer from repeat sequences of different species in Kraken2, many 

reads were classified into the lowest common ancient (LCA) rank higher than its 

responding species. Some works try to reallocated these reads to species by statistical 

inferences using the coverage depth of unique region of a species or co-barcoding 

information [41, 42]. In MetaTrass pipeline, the co-barcoding correlation between 

taxonomic reads of a species and reads classified into high LCA rank were used to 

retrieve datasets classified into high LCA rank to the species. Since sufficient read 

coverage is required for a complete genome assembling, only the read sets of one 

species with an abundance higher than 10× were refined by co-barcoding information. 

The abundance of each species was roughly calculated according to the taxonomic 

read coverage on the reference. Meanwhile, we set a data size threshold of the refined 

read set to reduce the computational consumption for species with an extreme high 

abundance (e.g. 300×).  In the co-barcoding reads refining, reads were collected 

according to the barcode properties including the number of reads in the taxonomic 

read set (Num_T) and the ratio of these reads to the total reads (Ratio_T). All 

barcodes were firstly extracted from the taxonomic read set as candidates. Then, the 

candidates ranked first by Num_T from largest to smallest and then by Ratio_T for 

those with the same Num_T. Finally, the reads with barcode of Ratio_T larger than 

0.1 were chose based on the barcode rank.  Paired-end reads were extracted by Seqtk 

(version 1.3-r114-dirty) according to the barcode-related read names from the fastq 

file of clean reads. Note that although Ratio_T was set to reduce obviously false 

positive reads caused by the collision of long fragments from different species in the 
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same microbead, there were still some false positive reads. Sequences assembled by 

these reads would be filtered as following description in section 2.5.  

 

Co-barcoding reads assembling 

In our pipeline, the read set of a single-species with abundance larger than 10× was 

assembled by Supernova (version 2.1.1), which is a co-barcoding de novo assembler 

for single large eukaryotic genomes with high performances. Supernova is designed 

for linked-reads of 10X Genomics, which have different barcode sequences and 

formats from stLFR reads. Thus, the stLFR reads were converted into linked-reads 

fastq files with an in-house script. Additionally, the parameter --accept-extreme-

coverage was set as yes to adapt to different coverage depths. 

 

Sequences purifying 

With the increasing number of microbial genomes, the similarity between whole 

genomes including alignment fraction (AF) and average nucleotide identity (ANI) 

have been adopted to circumscribe species [3, 4]. Similar parameters of AF and ANI 

between assembled contigs and the reference were used to purify the sequences 

assembled by the refined co-barcoding read sets. ANI was calculated independently 

for each alignment. AF was defined as the ratio of total length of alignments with ANI 

larger than a threshold to the total length of the contig. In our pipeline, we set ANI 

threshold as 90%, and AF threshold as 50%. The alignments between contigs and 

references were generated by QUAST (version 5.0.2) [43] with default parameters, 

except the identity threshold to obtain valid alignment was set as 90%.  

 

Combination strategies of genome assembling and binning  

In a standard analysis of NGS metagenomic dataset, the combination of de novo 

assembling with binning was adopted to get genomes for different species. This 

strategy can also be applied to the analysis of co-barcoding dataset. We compared 

different combination strategies to MetaTrass by analyzing the mock and four gut 

samples. In our test, the stLFR co-barcoding reads were assembled by NGS 
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assemblers including IDBA-UD (version 1.1.3), MEGAHIT (version 1.1.3), and 

MetaSPAdes (version 3.10.1) or co-barcoding assemblers including Supernova [35], 

Athena (version 1.3.0) [27], and CloudSPAdes (version 3.13.1) [38]. Then, all these 

draft assemblies were binned by two genome binners, MetaBAT2 (version 2.12.1)[19] 

and Maxbin2.0 (version 2.2.5) [18]. Since CloudSPAdes and Athena were also not 

designed for stLFR reads, we made an appropriate format conversion before 

assembling with an in-house script where Longranger (version 2.2.2) [44] was used. 

In genome assembling, Supernova was run with parameters as those have been 

adopted in MetaTrass, IDBA-UD, MEGAHIT, MetaSPAdes, Athena and 

CloudSPAdes were run with default parameters. All the assembling results were 

deposited into CNGB Sequence Archive (CNSA) [45] (https://db.cngb.org/cnsa/) of 

China National GeneBank DataBase (CNGBdb) [46] with accession number 

CNP0002163. In genome binning, MetaBAT2 and Maxbin2.0 were run with default 

parameters. 

 

Evaluations 

Both reference-based and reference-free assessments were used to evaluate the quality 

of assemblies obtained by different strategies. For the mock microbial community 

with definite references, the reference-based tool QUAST was used to evaluate 

contiguity and accuracy of metagenomic assemblies. In QUAST assessments, 

minimap2 was used to map assemblies to references and get valid alignments with the 

identity threshold of 95%. Then, the statistics such as genome fraction, NG50/NGA50, 

and number of misassemblies were assessed from the alignments with default 

parameters. For the real gut microbial communities, the reference-free tool CheckM 

(version 1.1.2) [47] were run with default parameters to evaluate completeness and 

contamination of each genome from metagenomic assemblies in addition to the 

QUAST. Following the guidance proposed in CheckM, we defined a high-quality 

assembly if it has >90% completeness and <5% contamination and a medium-quality 

assembly if it has >50% completeness and <10% contamination and not meets a high-

quality criterion. In addition, the statistics of each genome such as N50, genome size, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2021.09.13.459686doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.459686
http://creativecommons.org/licenses/by-nc-nd/4.0/


and taxonomic rank were also obtained by CheckM, where the taxonomic rank was 

used to demonstrate the resolution of a genome bin.  

 

Variant and phylogenetic analysis 

All the high-quality genomes assembled by MetaTrass were used to call variants for 

the four gut samples. We aligned each genome to the corresponding reference using 

minimap2 (2.17-r974-dirty) with parameters (-x asm5) to prevent an alignment 

extending to regions with diversity >5%. Samtools (version 1.9) [48] and Paftools 

were used to convert the bam file of initial unsorted alignments into a paf file of 

sorted alignments. We identified variants using the “call” module in Paftools with 

parameters (-L 10000) to filter the alignments shorter than 10,000 bp. SNVs only 

referred to substitutions, did not include single-base insertions or deletions. Insertions 

or deletions with length shorter than 50 bp were defined as small indels, and the 

others were large indels. The position and sequence information of a variant between 

different genomes were compared to determine whether a variant was shared by 

species in different samples.       

We used the “classify_wf” function of GTDB-tk (version 0.3.1)[49] to conduct 

taxonomic annotation of the genome bins obtained by the common strategies with 

default parameters. Considering the procedure of UHGG database construction[4], 

genome bins were assigned at the species level if the AF to the closed species 

representative genomes was higher than 30% and ANI was higher than 95%. We used 

FastTree (version 2.1.10) [50] to build maximum-likelihood phylogenetic trees of the 

high-quality genomes assembled by MetaTrass. The input of protein sequence 

alignments was produced by GTDB-Tk using marker gene set of 120 bacterial and 

122 archaeal. Interactive Tree of Life (iTOL version 4.4.2) [51] was used to visualize 

and annotate trees.     

 

Results and discussions 

 

MetaTrass pipeline 
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In this work, we developed an assembling pipeline named MetaTrass to combine the 

references and long-range co-barcoding information of stLFR library (Figure 1). In a 

co-barcoding library construction, the HWMs sheared from DNA samples are firstly 

distributed into different isolated partitions, and then short-read fragments from the 

HWM in the same partition are labeled with a unique barcode sequence, finally the 

co-barcoded fragments are sequenced by standard short-read sequencing platforms 

(Figure 1a-d). In stLFR libraries, the large number of barcodes and the low collision 

rate of HWMs in one microbead was distinguishing character of stLFR from other co-

barcoding libraries [28]. In our pipeline, the references corresponding to a sample 

were firstly used to build a taxonomic database by Kraken2 [40]. Using the taxonomic 

database, the metagenomic reads were classified into different taxonomic read sets for 

each species. Since the phylogenetic relations among references were used in Kraken2, 

reads from repeat regions would be classified into a higher rank as false negative 

(Figure 1a). About 10% reads were classified into ranks higher than the species for 

the four human gut datasets (Table S1). The co-barcoding correlation between the 

taxonomic read set and the false negative read set were used to refine the final set for 

a target species. Reads with the barcodes appeared in the taxonomic reads were 

extracted according to barcode properties for each species. The barcodes containing 

more reads classified into the species are more likely to retain the long-range genomic 

information, so a paired-end read with a barcode with more reads and a higher ratio of 

taxonomic reads were prior to be chose. The refined read sets of each species were 

independently assembled by Supernova. Several long fragments from different 

species genomes shared the same barcode in real stLFR libraries (Figure S1), thus 

involving some false positive reads from non-target species in the assembly process. 

Finally, the initial assembly was purified according to the AF and ANI values of 

alignments between the assembly and references. The comprehensive use of co-

barcoding information and references in our approach could reduce the false negative 

effects of taxonomic binning and the false positive effects of co-barcoding read 

refining.   
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Figure 1. Scheme of co-barcoding library and MetaTrass pipeline. a-d) The co-

barcoding correlation between unique region of a species and repeats (marked as red 

color) or differences (marked as dash line) in co-barcoding libraries. e-h) The 

subprocesses in MetaTrass include taxonomic binning, co-barcoding reads refining, 

co-barcoding reads assembling and sequences purifying.  

 

Assembly of the mock microbiome 

The strategy, where the reads with long range information were firstly binned and 

then assembled, have been widely adopted to assemble haplotype genomes for 

eukaryotes with large sizes [32, 52]. But it has been rarely used to assemble 

metagenomes. We firstly applied MetaTrass to assemble stLFR read sets of the mock 

microbial community.  Totally, up to 99.4% percent of reads the data were assigned 

into different datasets of species (Table S2).  For testing the efficiency of our strategy, 

we compared it with the common mixed assembling strategies (Figure 2a). Besides 

the MetaTrass, the stLFR reads were also mixed assembled by the NGS and co-

barcoding assemblers including IDBA-UD, MegaHit, Supernova, CloudSPAdes, and 

Athena. Additionally, the optimal mixed assemblies of ONT reads and Illumina NGS 

reads in Nicholls’s work [53] were also used to make a comparison, where the ONT 

result was assembled by WTDBG and the NGS result was assembled by SPAdes. All 

the assembling results for each species were evaluated by QUAST to assess genome 
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fraction, contiguity and accuracy. The draft genome of each species in a mixed 

assembly was extracted with our purifying method.  

Overall, our pipeline was superior in the production of accurate genomes with 

high genome fractions and long contiguity (Figure 2). As a co-barcoding assembler 

designed for a single genome, Supernova incompletely assembled two species 

Enterococcus faecalis and Lactobacillus fermentum with low genome fractions 17.7% 

and 8.9% in the mixed assembly. However, both species were properly recovered in 

MetaTrass, indicating that the assembling complexity caused by uneven abundances 

was reduced by taxonomic binning. All the assemblies by MetaTrass showed high 

genome integrity as those by NGS and co-barcoding assemblers designed for 

metagenome, which were higher than those of ONT assemblies. Compared to NGS 

assemblers, the assembler using long range information from co-barcoding datasets 

obtained draft assemblies with significantly better contiguity. As a result, there were 

no genomes with NG50 larger than 1 Mb in the assemblies by NGS assemblers, while 

many long-contiguity assemblies were built by co-barcoding and TGS long reads 

assemblers. MetaTrass generated seven draft genomes with NG50 around 2 Mb, 

which was the maximum for all. Furthermore, the accuracy was also guaranteed by 

MetaTrass, which obtained the most assemblies with NGA50 around 2 Mb. 

Compared to ONT assemblies, assemblies by MetaTrass had less errors, close to those 

of NGS assemblies (Figure S2). The average mismatch number and indel number per 

100 kb in assemblies with NGS reads were about 60 and 10. Both of them were much 

lower than 171 and 267 in the ONT assemblies.  
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Figure 2. a) All assemblies with different sequencing and assembling strategies. b) 

Genome fraction, NG50 and NGA50 evaluated by QUAST for assemblies of different 

reads assembled by different assemblers.  

 

Assembly of four human gut microbiome 

To evaluate the robustness of our approach to samples from natural microbial 

community, we applied MetaTrass to stLFR reads of four human faeces samples. The 

comprehensive genome references of UHGG were used to classify NGS reads by 

Kraken2, and the community compositions were estimated by the taxonomic reads at 

different taxonomy ranks (Figure S3-S6). Based on the taxonomic reads at phylum 

assigned by Kraken (Figure S3), the three healthy samples had a similar microbial 

community, where the major microbiomes were from Firmicutes A phylum.  This was 

different from the patient sample where Proteobacteria dominated. It was consistent 

with the previous observation that a bloom of Proteobacteria is strongly correlated 
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with the enteric diseases caused by dysbiosis in gut microbiota [54]. The abundance at 

species level was assessed with a simple coverage-approximation method to identify 

the species assembled in following steps. The total numbers of species with an 

abundance higher than 10× were 113, 108, 93, and 158 in H_Gut_Meta01, 

H_Gut_Meta02, H_Gut_Meta03, and P_Gut_Meta01 samples, respectively.  

 

Figure 3. The QUAST and CheckM evaluations of all assemblies by MetaTrass for 

the four human gut samples. a) Genome fraction. b) Scaffold N50. c) Box plot of 

completeness and contamination. d) Number of high- and medium-quality genomes.  

 

The genome fraction of an assembly to the reference was usually used to 

evaluate the completeness in single genome assembly. The genome fraction evaluated 

by QUAST for all samples widely range from 0% to 90%, and the distributions of 

H_Gut_Meta01 and H_Gut_Meta02 were more concentrated than those of 

H_Gut_Meta03 and P_Gut_Meta01 (Figure 3a). However, more than half of the 

assembled genomes were with a genome fraction higher than 50 for all the samples. 

Considering the large genetic diversity between sample genomes and the references 
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[7], these results indicated that our pipeline was able to assemble complete genomes 

for a large proportion of species with an abundance larger than 10×. The genetic 

diversity was also proved by the significant differences in genome fraction and the 

ratio of assembled length to the reference length among all the four samples (Figure 

S7). The distributions of genomes N50 were generally dispersed, and the medians of 

H_Gut_Meta02 and H_Gut_Meta03 were obviously higher than those of 

H_Gut_Meta01 and P_Gut_Meta01 (Figure 3b). Nevertheless, the third quartiles in 

the box plots for all the samples were larger than 100 kb, demonstrating that our 

pipeline had a strong capability to generate draft genome with high contiguity. Note 

that for these three healthy samples a plenty of ultra-long genome drafts (N50>1 Mb) 

were obtained, which may provide possibilities to study the large genome difference 

in the microbiome. 

 

Considering the intra-species genetic diversity, we also evaluated the quality of 

metagenomic assemblies based on the conserved marker genes by CheckM. The 

completeness medians of three healthy samples were larger than 92, and the 

contamination medians were smaller than 2 (Figure 3c). However, the completeness 

of the patient sample was about 83, and the contamination median was about 7 

(Figure S8).  Meanwhile, a great number of the high- and medium-quality genomes 

were assembled by MetaTrass for all the four samples (Figure 3d). 52 high-quality 

and 37 medium-quality genomes were produced for H_Gut_Meta01, and 55 and 24 

for H_Gut_Meta02, and 47 and 16 for H_Gut_Meta03, respectively. These numbers 

of high-quality genomes were obviously larger than that of the patient sample, where 

24 high- and 28 medium-quality genomes was assembled.  

 

Comparison to common combination strategies  

To further evaluate our approach’s efficiency, we compared it with common 

combination strategies of assembling tools and genome binning tools as listed in the 

section 2.6 by analyzing the four gut datasets. It should be noted that currently there 

are still no genome binning tools to directly exploit the co-barcoding information. By 
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counting the number of bins with completeness larger than 50 in the bin with at least 

one conserved marker genes (Table S3), we observed that MetaBAT2 clustered 

different draft assemblies into more bins than Maxbin2.0 for all the samples. 

Maxbin2.0 preferred to produce more bins with completeness higher than 50% than 

MetaBAT2, while MetaTrass outperform both. Especially for P_Gut_Meta01, the 

optimal combination between Supernova and Maxbin2.0 obtained 66 bins with 

completeness higher than 50 which was significantly less than 117 obtained by 

MetaTrass.  

By comprehensively analyzing the completeness, contamination and taxonomy 

rank of each bin, we assessed MetaTrass and common strategies in the ability to get 

high- and medium-quality genomes and resolution of taxonomy rank (Figure 4). For 

different samples, the best combination to produce the optimal results was different. 

The optimal combinations were MetaSPAdes and Maxbin2.0, Supernova and 

MetaBAT2, MetaSPAdes and MetaBAT2, and Athena and MetaBAT2 for 

H_Gut_Meta01, H_Gut_Meta02, H_Gut_Meta03, and P_Gut_Meta01, respectively. 

For all the four samples, the optimal results of the common strategies were still 

inferior those of MetaTrass. For the example of H_Gut_meta01, the combination of 

MetaSPAdes and Maxbin2.0 produced a total of 41 high- and medium-quality 

genomes which was significantly less than 90 obtained by MetaTrass. There were 

only 3 genomes out of total 18 high-quality genome with a taxonomic rank lower than 

order rank, but 15 out of 52 for MetaTrass. Comparing the strategies only using NGS 

read information, the combination strategies of co-barcoding assembler and binner 

showed no obvious advantages in generating genomes with high quality and 

resolution, but MetaTrass was significantly superior to them. These results 

demonstrated that the usage of co-barcoding information in MetaTrass was more 

efficient and accurate than those in a mixed assembling.  
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Figure4. a) Number of high- and medium-quality genomes assembled in different 

methods. b) Number of high-quality genomes with high- and low-rank in different 

methods.   

 

The human gut microbiome composition attracts much attention due to its strong 

correlation with personality traits [55]. To compare the microbiome composition 

structures of the high-quality genomes with different methods, we uniformly 

classified the high-quality genome bins into species using GTDB-tk. Using the large 

number of high-quality genomes obtained by MetaTrass, the phylogenetic trees of 

these genomes were constructed with corresponding N50 information for all the 

samples. Meanwhile, the high-quality genome bins by common strategies appeared in 

MetaTrass results were marked in red color in the middle heat map. The structure of 

the phylogenetic tree of genomes assembled by MetaTrass could give a more 

comprehensive insight of the composition structure than those of the common 
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strategies. From the different trees in Figure 5 and Figure S9-S11, the numbers of 

orders with high-quality genomes assembled by MetaTrass were 9, 11, 7, and 7 for 

H_Gut_Meta01, H_Gut_Meta02, H_Gut_Meta03, and P_Gut_Meta01, respectively. 

Notably, we did obtain some orders with more than 5 high-quality genomes, which 

might provide convenience to study the microbiome structure at the genome-wide 

scale. For the sample of H_Gut_Meta01 (Figure 5), there were 27 high-quality 

genomes classified into Lachnospirales order and 14 genomes into Oscillospirales 

order. These two orders were exactly the dominating orders according to the 

taxonomic abundance distribution. Similar results were obtained for the other two 

healthy samples (Figure S9 and S10), indicating that the microbiome with higher 

sequencing coverage could be better assembled in MetaTrass. For P_Gut_Meta01, the 

orders with more than 5 high-quality genomes were Enterobacterales and 

Actinomycetales (Figure S11). The obvious difference between the healthy and patient 

samples was consistent with the different microbiome compositions observed in the 

taxonomic binning. For all the common strategies, most of their high-quality genomes 

were also successfully assembled by MetaTrass. For H_Gut_Meta01 (Figure 5), a 

total of 137 genome bins were assembled by different combination strategies, while 

only 25 of them were not included in the results of MetaTrass. From the heat maps, 

most of the common strategies assembled draft genomes for each order, but the total 

numbers in each order were small. The maximal number of genomes in one order was 

6 and obtained by the combination of Supernova and MetaBAT2 for Lachnospirales. 

The species in the same order obtained by different common strategies were different 

and randomly distributed in the phylogenetic tree. Moreover, 146 of 179 high-quality 

genomes were with N50 larger than 100 kb, demonstrating that MetaTrass had a 

strong ability to produce assemblies with long contiguity using co-barcoding 

information. 
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Figure 5. Phylogenetic tree of the high-quality genomes assembled by MetaTrass for 

H_Gut_Meta01. Distribution of the high-quality genomes assembled by other 

methods were colored as red in the middle heat map. N50 of each high-quality 

genome was shown in the left part. 

 

Genetic diversity in different samples 

Different types of variants in gut microbiomes are strongly associated with host health, 

and related researches focused on the genetic origin of phenotypic difference among 

people of different regions or health status [56, 57]. By aligning draft genomes to the 

references, we called variants for high-quality genomes for each species in different 

samples, including single nucleotide variants (SNV), small indels, and large indels. 

For different types of variants, the numbers of SNV were significantly larger than 

those of the small and large indels for all the four samples (Figure S12). The numbers 

of different variants were close for the three healthy samples, but obviously larger 

than those of the patient sample. This might come from fewer alignments for the 

patient sample. To remove the effects of the total aligned length in comparisons, the 

SNV density was also calculated. The SNV density of the patient sample was 

obviously higher than those of healthy samples (Figure S12d). The SNV density 

median was about 21, but those was about 9 for the healthy samples. The difference of 

SNV density could exist in samples from different continents reported in UHGG 

database [4], or from different physiological status. Meanwhile, the distribution of 
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SNV densities was diffuse for all the samples, indicating that the contribution to the 

genomic diversity were different for different species in a microbial community. 

 

For the taxonomic information of high-quality genomes from different samples, 

we found 15 species shared by three samples, where14 species appeared in the three 

healthy sample but only one species of Escherichia appeared in the patient sample 

and two healthy samples. This facilitated our investigation of the genetic diversity 

between species from different samples. The SNV density in different samples and 

intersection of variants between different samples for each species in three healthy 

sample were analyzed. Different species showed different SNV densities, but the SNV 

density of the share species demonstrated few differences for almost all cases (Figure 

6a). From Figure 6b to 6d, the number of unique and shared variants in different types 

significantly fluctuated for different species, but their difference among samples 

showed great consistency. The number of unique variants of H_Gut_Meta03 was 

obviously larger than that of H_Gut_Meta01 or H_Gut_Meta02. The numbers of 

shared variants between H_Gut_Meta03 and other two samples were smaller than 

those between H_Gut_Meta01 and H_Gut_Meta02 for all the species. H_Gut_Meta03 

shared close number of variants with H_Gut_Meta01 and H_Gut_Meta02. 

H_Gut_Meta01 and H_Gut_meta02 shared 94498 same SNVs, which was about 10 

times of shared SNVs between H_Gut_Meta01 and H_Gut_Meta03. The huge genetic 

diversity between H_Gut_Meta03 and other samples might come from the difference 

in host metabolic state. Notably, the ratio of large indels shared by all three samples to 

the total number was much smaller than those of SNVs and small indels. This result 

indicated that large variants are more specific than small variants, which could be 

potentially used in the study of their correlations with host health [56]. 
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Figure 6. SNV density and number of unique and shared variants for each species 

appearing in all three healthy samples. a is the SNV density. b, c and d were the 

number of SNVs, small and large indels, respectively.  

 

Conclusions  

Co-barcoding sequencing reads have shown its great potential in de novo genome 

assembly, but the complexity caused by uneven abundance and inter-species repeats 

in metagenomic assembling makes it unstable and inefficient. In this work, we 

developed a tool to get high-quality genomes with high taxonomic resolutions by 

combining the co-barcoding information with public references. Compared with the 

common combination strategies, our pipeline generated more high-quality genomes 

for microbiome datasets with different complexities. Meanwhile, plenty of draft 

genomes were also assembled with NG50 larger than 1 Mb, and some of which were 

even longer than that of the references for both mock and human gut datasets. For all 

the four real gut datasets, 178 draft genomes with high completeness and low 

contamination were generated according to the evaluation by CheckM, but their 

genome fractions relative to the references were low. This indicated that there existed 

significant differences between the sample genomes and the reference genomes.  
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In MetaTrass, the co-barcoding information was also used to reduce the false 

negative reads in taxonomic binning by refining, not only for assembling. Using the 

co-barcoding correlation between classified reads at the species level and others, we 

could retrieve the datasets in repetitive regions. For the patient sample, the number of 

high-quality genomes with long contiguity assembled by MetaTrass was significantly 

larger than that without co-barcoding reads refining (Figure S13). Thus, the co-

barcoding information should have the potential to extract reads from regions other 

than the references.  

The efficiency of our pipeline was dependent on the co-barcoding information 

quality of the stLFR dataset including the read coverage and length of an HWM. The 

read coverage of refined read set was higher than that of taxonomic read set, but still 

lower than that of all aligned reads (Table S4). This result indicated that there were 

still some false negative reads without correlations due to the low coverage or short 

length. On the other hand, when we used co-barcoding information to reduce false 

negative, some false positive reads were introduced at the same time. The results of 

the purifying module demonstrated that these sequences could be filtered effectively, 

but would increase the computational consumption in the co-barcoding genome 

assembly. Thus, improvements on co-barcoding library and more deliciated positive 

reducing algorithm would enhance the performance of MetaTrass. 

With an increasing number of studies on the correlation between dramatic 

phenotype and variants in the non-conserved genome region of species, the high-

quality genomes from metagenomic sequencing were strongly required to completely 

understand the genetic diversity of microbial community at high resolutions. The 

application of MetaTrass in human gut samples showed promise of generating high-

quality genomes for real complex microbial community at a high resolution. With the 

increasing number of microbial reference genomes and the development of co-

barcoding sequencing library, the assembling strategy in MetaTrass based on the 

combination of co-barcoding sequencing library and references will be extended to 

more metagenomic studies of different microbial communities.  
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