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The ability to automatically track non-human primates as they
move through the world is important for several subfields in bi-
ology and biomedicine. Inspired by the recent success of com-
puter vision models enabled by benchmark challenges (e.g., ob-
ject detection), we propose a new benchmark challenge called
OpenMonkeyChallenge that facilitates collective community ef-
forts through an annual competition to build generalizable non-
human primate pose tracking models. To host the benchmark
challenge, we provide a new public dataset consisting of 111,529
annotated (17 body landmarks) photographs of non-human pri-
mates in naturalistic contexts obtained from various sources in-
cluding the internet, three National Primate Research Centers,
and the Minnesota Zoo. Such annotated datasets will be used for
the training and testing datasets to develop generalizable mod-
els with standardized evaluation metrics. We demonstrate the
effectiveness of our dataset quantitatively by comparing it with
existing datasets based on seven state-of-the-art pose tracking
models.
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Introduction
Recent years have seen great advances in systems that can au-
tomatically track major landmarks in moving animals with-
out fiducial markers, that is, pose (1–5). Such tracking sys-
tems have greatly benefited research in fields that study the
tracked species (e.g., rodents, flies, and fishes). However, the
ability to track non-human primates has lagged, rendering the
primate order a major outstanding problem in the field (6). At
the same time, non-human primates remain of great interest
in biomedicine and related fields, including in neuroscience
and psychology, as well as in anthropology, epidemiology,
and ecology. Automated tracking can also benefit animal
welfare programs, veterinary medical practice and, indeed,
conservation projects.
Non-human primates (NHPs) are particularly challenging to
track due to their homogeneous body texture and exponen-
tially large pose configurations (6). Two major innovations

are needed to solve the pose tracking problem in NHPs.
(1) Algorithmic innovation: tracking models are expected to
learn a generalizable visual representation that encodes the
complex relationship between the visual appearance and spa-
tial landmarks, which allows detecting poses in images with
diverse primate identities, species, scenes, backgrounds, and
poses in the wild environment. Existing deep learning mod-
els including convolutional pose machine (7), stacked hour-
glass model (8), DeeperCut (9), and AlphaPose (10) incor-
porate a flexible representation with a large capacity, which
have shown strong generalization on human subjects. How-
ever, these models are not applicable to the image samples of
NHPs from the out-of-training-distribution due to their char-
acteristics (homogeneous appearance and complex pose). (2)
Data innovation: the tracking models learn the visual repre-
sentation from a large annotated dataset that specifies the lo-
cations of landmarks. Existing publicly available datasets in-
cluding OpenMonkeyPose (200K multiview macaque images
in a specialized laboratory environment) (6) and Macaque-
Pose (13K in-the-wild macaque images) (11) are important
resources for the development of tracking algorithms, and as
such, extend the boundary of pose tracking performance of
NHPs. However, due to limited data diversity (appearance,
pose, viewpoint, environment, and species), existing datasets
are currently insufficient for learning generalizable tracking
models.

Here we describe a novel dataset consisting of 111,529 im-
ages of NHPs in natural contexts with 17 landmark annota-
tions. These datasets are obtained from various sources in-
cluding the Internet, three National Primate Research Cen-
ters, and the Minnesota Zoo. Our motivation for developing
this dataset includes inspiration from the recent success of
computer vision models for human pose estimation (12), ob-
ject detection (13), and visual question answering (14), en-
abled by standard benchmark challenges. For instance, the
COCO benchmark challenges on object detection, segmen-
tation, and localization have facilitated collective community
effort through an annual competition, which in turn has been
a driving force to advance computer vision models (13). In
these domains, such datasets have served as a common com-
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Fig. 1. We present an OpenMonkeyChallenge using 111,529 annotated images of non-human primates (26 species), obtained from the internet, three National Primate
Research Centers, and the Minnesota Zoo. 17 landmarks are manually annotated for each image. OpenMonkeyChallnege aims to extend the boundary of pose tracking for
non-human primates across multiple species through an annual competition to build generalizable pose tracking models.

parison for friendly competitions, as a goal for experimen-
tation, and as a benchmark to evaluate innovations. At the
same time, such datasets tend to be difficult and expensive
to generate, so sharing them makes economic sense for the
field. Making them public greatly lowers the barriers to entry
for new teams with innovative ideas.
With our dataset, we present a new benchmark chal-
lenge called OpenMonkeyChallenge for NHP pose tracking
(http://openmonkeychallenge.com). It is an open
and ongoing competition where the performance of each
model is measured by the standard evaluation metrics. We
leverage our unprecedentedly large annotated dataset, which
includes diverse poses, species, appearances, and scenes as
shown in Fig. 1. We split the dataset into the training and test-
ing datasets where the testing dataset is used to evaluate the
performance of competing models. We demonstrate that our
dataset addresses the limitation on data diversity in the exist-
ing datasets. Specifically, we show the effectiveness of our
dataset quantitatively by comparing it with existing datasets
(e.g., OpenMonkeyPose and MacaquePose) based on state-
of-the-art pose tracking models.

Results
OpenMonkeyChallenge and Benchmark Dataset. We
collected 111,529 images of 26 species of primates (6 New
World monkeys, 14 Old World monkeys, and 6 apes), includ-
ing Japanese macaques, chimpanzees, and gorillas from (1)
the internet images and videos, such as Flickr and YouTube,
(2) photographs of multiple species of primates from three
National Primate Research Centers, and (3) multiview videos
of 27 Japanese macaques in the Minnesota Zoo (Fig. 2(b) and
(d)). For each photograph, for example, in Fig. 1, we cropped

the region of interest such that each cropped image contains
at least one primate. We ensured that all cropped images have
a higher resolution than 500×500 pixels.

We identify the region of interest (i.e., bounding box detec-
tion) by bootstrapping with a weak monkey detector (15) fol-
lowed up by manual refinement and use a commercial anno-
tation service (Hive AI) to manually annotate the 17 land-
marks (See Method section.). The 17 landmarks together
comprise a pose. Our landmarks include Nose, Left eye,
Right eye, Head, Neck, Left shoulder, Left elbow, Left wrist,
Right shoulder, Right elbow, Right wrist, Hip, Left knee, Left
ankle, Right knee, Right ankle, and Tail. Each data instance is
made of a triplet, image, species, pose as shown in Fig. 2(a).

We split the benchmark dataset into training (66,917 images,
60%), validation (22,306 images, 20%), and testing (22,306
images, 20%) datasets. We minimize visually similar image
instances across splits by categorizing them using the time of
capture, video and camera identification numbers, and pho-
tographers. Fig. 2(c) illustrates the data distribution across
species, and each species includes more than 100 annotated
images.

The annotations for the training and validation datasets
are publicly available while that for the testing dataset
is hidden. We have established the evaluation server to
automatically evaluate the performance of the competing
models on the testing dataset and maintain the leader.
Specifically, the species landmark detection result on train-
ing/validation/testing datasets is uploaded to the evaluation
server in a pre-defined file format, and the evaluation result
is generated by the server. Users are asked to post their re-
sults in the leaderboard that sorts the performance based on
three standard keypoint metrics: mean per joint position er-
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Landmark
0: Right eye
1: Left eye
2: Nose
3: Head
4: Neck
5: Right shoulder
6: Right elbow
7: Right wrist
8: Left shoulder
9: Left elbow
10: Left wrist
11: Hip
12: Right knee
13: Right ankle
14: Left knee
15: Left ankle
16: Tail

Primate families

New World monkey family

Old World monkey family

Ape family

(a) (b)

(c) (d)

(e)

New World monkey family

Old World monkey family

Ape family

Fig. 2. (a) We annotated the 17 landmarks that describe the pose of the primate in an image. (b) We collect image data from diverse sources: Internet image searches and
YouTube videos, professional photographs from three National Primate Research Centers, and multiview videos from the Minnesota Zoo. The original images are cropped
to include at least one primate and ensured to have higher than 500×500 resolution. (c) Our dataset is composed of 26 species of monkeys and apes, and more than 100
images are annotated for each species. We split the data into training, validation, and testing datasets, approximately 6:2:2 ratio, respectively. (d) Primate taxonomy. Our
dataset includes diverse species of monkeys and apes. (e) We visualize a distribution of poses of the OpenMonkeyChallenge dataset using UMAP for dimension reduction.
For each cluster, we show an average image overlaid with the median pose to illustrate its visual pattern.
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(a) (b)

Fig. 3. (a) Three detection models are trained on OpenMonkeyChallenge (OMC), MacaquePose (MP), and OpenMonkeyPose (OMP), respectively. In each box, we visualize
three violin plots corresponding to the detection models. Each violin plot shows the normalized error histogram of landmarks on training (blue) and testing (brown) data (first
row: OMC dataset; second row: MP dataset; third row: OMP dataset). The model trained on OMC (left violin plot in each box) is the most generalizable (inverted T shape
histogram). (b) We summarize cross-dataset evaluation to show the generalizability using the normalized error in a confusion matrix, e.g., the second row of the third column
shows the normalized error of the MP testing data for the model trained on OMC training dataset. The model trained on OMC dataset shows the smallest error or comparable
to the model that is testing on its own training data.

ror (MPJPE), probability of correct keypoint (PCK) metric at
error tolerance, and average precision (AP) based on object
keypoint similarity (OKS).
Mean per joint position error (MPJPE) (16) measures nor-
malized error between the detection and ground truth for each
landmark (the smaller, the better):

MPJPEi = 1
J

J∑
j=1

‖x̂ij−xij‖
W

where MPJPEi is the MPJPE for the ith landmark, J is the
number of image instances, x̂ij ∈ R2 is the ith predicted
landmark in the jth image, xij ∈ R2 is its ground truth lo-
cation, and W is the width of the bounding box. Note that
MPJPE measures the normalized error relative to the bound-
ing box size W , e.g., 0.1 MPJPE for 500×500 bounding box
corresponds to 50 pixel error.
Probability of correct keypoint (PCK) (17) is defined by the
detection accuracy given error tolerance (the bigger, the bet-
ter):

PCK@ε= 1
17J

J∑
j=1

17∑
i=1

δ

(
‖x̂ij−xij‖

W
< ε

)

where δ(·) is an indicator function that outputs 1 if the state-
ment is true and zero otherwise. ε is the spatial tolerance
for correct detection. Note that PCK measures the detection
accuracy given the normalized tolerance with respect to the
bounding box width, e.g., PCK@0.2 with 200 pixel bounding
box size refers to the detection accuracy where the detection
with the error smaller than 40 pixels is considered as a correct
detection.
Average precision (AP) measures detection precision (the
bigger, the better):

AP@ε= 1
17J

J∑
j=1

17∑
i=1

δ(OKSij ≥ ε)

where OKS measures keypoint similarity (13):

OKSij = exp
(
−
‖x̂ij−xij‖2

2W 2k2
i

)
where OKSij is the keypoint similarity of the jth image of
the ith landmark. ki is the ith landmark relative tolerance.
Unlike PCK, OKS measures per landmark accuracy by taking
into account per landmark variance ki (visual ambiguity of
landmarks), e.g., eye is visually less ambiguous than hip. We
define ki based on COCO keypoint challenge and augment
the tail landmark such that ktail = kwrist.

Data Analysis. The OpenMonkeyChallenge dataset con-
tains a diversity of species, poses, and appearances.
We use Uniform Manifold Approximation and Projection
(UMAP) (18) to reduce the high dimensional pose (R34 for
17 landmarks) into two dimensions as shown in Fig. 2(e). To
generate a spatially meaningful distribution, we normalize
the pose coordinates. Specifically, the coordinates of each
pose (17 landmarks) are normalized by centering the root
landmark (hip joint), i.e., the landmark coordinate is relative
with respect to the hip joint. These relative coordinates are
normalized by the size of the bounding box to account for
different sizes of images. Further, we align the orientation
such that all poses have the same facing directions. This re-
sults in coherent clusters with poses.
The primates are classified into three types based on their
families: New World monkeys, Old World monkeys, and
apes. Poses are distributed across species, which are highly
correlated with the semantically meaningful poses such as
sitting, standing, and climbing. For each cluster, we visualize
average images by aligning the poses. Overall, we find that
the majority of data consists of sitting poses from a variety of
views.
The clustering results also highlight the difference in loco-
motion patterns locomotion among primate families. For ex-
ample, Old World monkeys (orange) heavily outnumber the
other two families and dominate most of the clusters, and a
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(a) Comparison with human pose estimation (b) Comparison with baseline algorithms
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Fig. 4. (a) We use PCK to measure keypoint detection performance. The black solid line shows the performance of the human landmark detector (train and test on COCO)
that forms the upper bound of the primate landmark detector. The black dotted line shows the testing performance of the human landmark detector (trained on COCO) on
OMC data without retraining, which forms the lower bound. OMC dataset allows us to train a primate specific model that shows significant performance improvement from
the lower bound. Yet, there still exists a large gap between the human and primate landmark detectors. We also visualize the performance improvement as increasing the
number of OMC training data. (b) Six state-of-the art pose estimation models are trained with OMC datasets. These are PCK curves in the test set from these models. (c)
We show the average precision (AP) of state-of-the-art models as a function of the number of model parameters. If the data size is large enough, a larger model is likely to
learn complex visual patterns.

few clusters of which the average pose is vertical climbing
are by large composed of the apes (green). Other actions,
such as sitting, walking, and standing, are common in all the
primate families.

Cross-dataset Evaluation. To evaluate the generalizability
of our dataset, we conduct a cross-dataset evaluation with
OpenMonkeyPose (6) and MacaquePose (11). OpenMon-
keyPose (6) consists of 195,228 annotated images simulta-
neously captured by 62 precisely arranged high-resolution
video cameras. The dataset involves inanimate objects (bar-
rels, ropes, feeding stations), two background colors (beige
and chroma-key green), and four rhesus macaque subjects
varying in size and age (5.5–12 kg). MacaquePose (11),
a dataset with more than 13,083 images of macaque, is
collected by searching for images with a ‘macaque’ tag in
Google Open Images and captured in zoos and the Primate
Research Institute of Kyoto University.
We split each dataset into training (60%), validation (20%),
and testing (20%) sets. We train a convolutional pose ma-
chine (CPM) (7) using the training data from one of the
datasets with spatial data augmentation (translation and rota-
tion) until it starts to overfit based on the model performance
on the validation data, and test that model on the testing data
from each dataset. Fig. 3 summarizes the performance in
MPJPE. The CPM model trained by the OpenMonkeyChal-
lenge dataset achieves the lowest MPJPE on the OpenMon-
keyChallenge and MacaquePose (11) test datasets, which in-
dicates that the diversity and generalizability of our training
dataset (outperforming MacaquePose own testing data). For
the OpenMonkeyPose testing dataset, it achieves the second
best close to the OpenMonkeyPose. This is mainly caused
by the domain difference: the images of OpenMonkeyStudio
were captured by a controlled lab environment that has a ho-
mogeneous background and monkey texture. For the same
reason, this model has poor performance on the other two

datasets due to its low generalizability.

Comparison with Human Pose Estimation. The distal
goal of our benchmark challenge is to achieve a perfor-
mance comparable to human pose estimation. For instance,
a state-of-the-art human pose detector (CPM) trained on
the COCO-keypoint dataset (13) produces 0.061 MPJPE or
0.849 PCK@0.2 (upper bound performance). Without a non-
trivial modification, a CPM trained on our dataset achieves
0.074 MPJPE or 0.761 PCK@0.2 as reported in Fig. 4(a). In
other words, there exists a considerable performance gap be-
tween human and primate pose estimation. Further, we show
the human detection model on out dataset, which achieves
0.197 MPJPE or 0.265 PCK@0.2 for reference (lower bound
performance). We propose that the major benefits associated
with human pose estimation is the progress in developing,
efficient and generalizable models with self-supervised meth-
ods (19–24). We anticipate that a similar algorithmic innova-
tion will close the gap.
Further, we conduct an ablation study to evaluate the im-
pact of large data, i.e., how the amount of training data af-
fects the landmark detection accuracy on the testing dataset.
Given the training data, we incrementally reduce the amount
of the training images used for model training by 20% at each
time and measure the model performance using PCK met-
ric. Fig. 4(a) shows the impact of the data increments, i.e.,
the model trained on 100% training data achieves the highest
PCK result, outperforming the model with 20% of training
data by 15% at PCK@0.2.

State-of-the-art Detection Model Performance Evalua-
tion. We conduct a comparative study on the performance of
the state-of-the-art pose detection models using the Open-
MonkeyChallenge dataset. We train nine pose estima-
tion models until it starts to overfit based on the perfor-
mance on the validation data. These models can be catego-
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Method R.Eye L.Eye Nose Head Neck R.Shoulder R.Elbow R.Wrist L.Shoulder L.Elbow L.Wrist Hip R.Knee R.Ankle L.Knee L.Ankle Tail Mean
Top-down

DeepLabCut 0.042 0.041 0.044 0.056 0.066 0.079 0.090 0.114 0.078 0.089 0.115 0.107 0.096 0.116 0.096 0.117 0.158 0.089
CPM 0.021 0.022 0.024 0.048 0.060 0.077 0.100 0.114 0.076 0.086 0.109 0.081 0.079 0.080 0.071 0.094 0.118 0.074

Hourglass 0.016 0.019 0.019 0.040 0.064 0.078 0.092 0.091 0.089 0.093 0.086 0.082 0.073 0.074 0.067 0.088 0.108 0.069
HRNet-W48 0.015 0.018 0.019 0.042 0.055 0.074 0.080 0.084 0.079 0.085 0.079 0.076 0.068 0.068 0.061 0.085 0.096 0.064
HRNet-W32 0.016 0.018 0.020 0.042 0.059 0.075 0.086 0.090 0.081 0.085 0.088 0.082 0.068 0.072 0.063 0.087 0.102 0.067

SimpleBaseline
(ResNet152)

0.016 0.018 0.020 0.043 0.055 0.076 0.081 0.086 0.080 0.085 0.084 0.077 0.070 0.069 0.063 0.088 0.099 0.065

SimpleBaseline
(ResNet101)

0.020 0.021 0.025 0.031 0.094 0.090 0.113 0.122 0.098 0.109 0.112 0.102 0.080 0.089 0.078 0.099 0.136 0.083

Bottom-up
HigherHRNet-W32 0.042 0.027 0.040 0.022 0.119 0.102 0.131 0.103 0.154 0.193 0.112 0.151 0.063 0.122 0.074 0.097 0.183 0.102
HigherHRNet-W48 0.023 0.023 0.034 0.034 0.109 0.106 0.115 0.098 0.138 0.137 0.097 0.124 0.084 0.100 0.088 0.100 0.161 0.092

Table 1. Model comparison with MPJPE metric of each landmark with top-down and bottom-up methods on the OpenMonkeyChallenge test set.

Method R.Eye L.Eye Nose Head Neck R.Shoulder R.Elbow R.Wrist L.Shoulder L.Elbow L.Wrist Hip R.Knee R.Ankle L.Knee L.Ankle Tail Mean
Top-down

DeepLabCut 0.937 0.938 0.936 0.926 0.922 0.906 0.874 0.814 0.908 0.875 0.810 0.855 0.868 0.819 0.862 0.816 0.747 0.871
CPM 0.995 0.995 0.994 0.960 0.945 0.887 0.825 0.785 0.886 0.869 0.814 0.892 0.893 0.902 0.924 0.854 0.809 0.896

Hourglass 0.997 0.996 0.996 0.960 0.925 0.864 0.823 0.825 0.839 0.836 0.846 0.869 0.881 0.891 0.910 0.853 0.814 0.890
HRNet-W48 0.997 0.996 0.996 0.951 0.940 0.876 0.858 0.846 0.867 0.856 0.864 0.885 0.893 0.906 0.923 0.863 0.842 0.903
HRNet-W32 0.997 0.997 0.996 0.958 0.934 0.874 0.844 0.828 0.860 0.857 0.844 0.867 0.898 0.897 0.921 0.854 0.830 0.897

SimpleBaseline
(ResNet152)

0.997 0.996 0.996 0.954 0.942 0.868 0.855 0.842 0.864 0.858 0.855 0.883 0.892 0.907 0.921 0.855 0.838 0.901

SimpleBaseline
(ResNet101)

0.995 0.995 0.994 0.983 0.877 0.837 0.776 0.757 0.820 0.798 0.794 0.827 0.870 0.868 0.897 0.828 0.756 0.863

Bottom-up
HigherHRNet-W32 0.962 0.979 0.981 0.978 0.856 0.798 0.724 0.782 0.661 0.620 0.804 0.710 0.899 0.804 0.897 0.820 0.633 0.818
HigherHRNet-W48 0.986 0.986 0.985 0.965 0.860 0.796 0.777 0.820 0.721 0.730 0.831 0.779 0.863 0.834 0.874 0.827 0.715 0.844

Table 2. Model comparison with PCK@0.2 metric of each landmark with top-down and bottom-up methods on the OpenMonkeyChallenge test set.

Method # Params AP@0.5 AP@0.6 AP@0.7 AP@0.8 AP@0.9 AP
Top-down

DeepLabCut 24.4M 92.3 89.7 83.9 74.1 52.6 73.2
CPM 31.4M 91.8 86.1 78.9 69.6 54.2 72.9

Hourglass 21M 91.3 85.7 80.8 74.7 63.8 74.5
HRNet-W32 28.5M 89.4 80.6 71.0 64.6 65.7 70.7
HRNet-W48 63.6M 90.2 85.7 80.8 74.7 63.8 76.5

SimpleBaseline
(ResNet152)

68.0M 89.5 84.9 81.2 76.9 67.8 78.5

SimpleBaseline
(ResNet101)

53.0M 97.2 82.6 65.9 46.9 31.4 65.3

Bottom-up
HigherHRNet-W32 28.6M 88 79.5 57.3 32.0 20.0 59.1
HigherHRNet-W48 63.8M 91.5 82.6 65.9 46.9 31.4 65.3

Table 3. Model comparison with AP metric based on OKS of each landmark with
top-down and bottom-up methods on the OpenMonkeyChallenge test set.

rized into the top-down methods and the bottom-up meth-
ods. The top-down models (DeepLabCut with ResNet (25),
CPM (7), Hourglass (8), HRNet-W32 (26), HRNet-W48,
SimpleBaseline with ResNet101 (27), and SimpleBaseline
with ResNet152) detect the keypoints of a single primate
given the bounding box. In contrast, the bottom-up mod-
els (HigherHRNet-W32 (28) and HigherHRNet-W48) local-
ize the landmarks without a bounding box and group them
to form poses, specialized for multi-primate detection. For
all models, we use their own pretrained model and train-
ing procedural protocol, i.e., the DeepLabCut model is pre-
trained on ImageNet. The top-down models, in general, show
stronger performance because of resolution while it shows
weaker performance when multiple primates are present. Ta-
ble 1 summarizes the normalized MPJPE of each landmark
in the testing dataset predicted by six models across models.
Table 2 reports the PCK@0.2 of each landmark in the testing
dataset, and Fig. 4(b) shows the PCK curve of each model.
In short, there is no clear winner. All models use a variant

of high capacity convolutional neural networks that can ef-
fectively memorize and generalize the training data through
fully supervised learning. SimpleBaseline (27) slightly out-
performs other models (the lowest MPJPE and the highest
PCK@0.2). Fig. 4(c) shows AP comparison as a function of
the model parameters. In general, when the number of data
is sufficiently large, larger and deeper models outperforms
small and shallow models because more complex visual pat-
terns can be learned.

Discussion
Here we present a new resource, a very large (111,529 im-
ages of 26 species) and fully annotated database of pho-
tographs of non-human primates. The primates come in
a range of species and poses, and with a range of back-
grounds. The primary goal of this resource is to serve as
a training tool for scholars interested in developing com-
puter vision approaches to identifying pose in the primate
order. This resource can be found on our new website
(http://openmonkeychallenge.com). The website
also presents a new benchmark challenge for primate land-
mark detection. In parallel with our resource and the chal-
lenge, and as a baseline for modeling efforts, we provide
some analyses of existing models. These analyses reveal that
non-human primate detectors have substantially worse per-
formance than human ones. We propose that our large dataset
will be a critical tool in closing that performance gap.
We know of only two existing large datasets of annotated pri-
mate images, OpenMonkeyPose (6) and MacaquePose (11).
OpenMonkeyPose, which our group developed, consists of
nearly 200,000 annotated (13 landmarks) multiview (62 cam-
eras) images of rhesus macaques in a specific carefully con-
trolled laboratory environment. That dataset has a very dif-
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ferent purpose than the present one—its chief virtue is its ro-
bust characterization of a single environment and species, and
its multiview aspect for 3D motion capture. However, it is
highly limited for the general purpose of pose identification
because of its narrow number of backgrounds, species, indi-
viduals, and poses. The MacaquePose dataset, which consists
of 13,000 images, is likewise limited to a single species and
is also substantially smaller. Our analyses confirm that these
datasets cannot be used to train robust models that can iden-
tify pose in general contexts nearly as well as this one can.
These results, then, argue for the value of large variegated
datasets like the one we present here. More generally, they
demonstrate the critical importance of variety when training
robust detection networks.

A key finding from our comparative study is that the state-
of-the-art designs of convolutional neural networks (CNNs),
including DeepLabCut, perform, by large, on a par with each
other. These CNNs effectively learn a visual representation
of primates from sufficiently large and diverse image data in a
fully supervised manner where generalizable image features
can be learned. This closes the gap between models. On
the other hand, this finding implies that there is a fundamen-
tal limitation to the supervised learning paradigm. That is,
our results indicate that the CNN models overfit to the train-
ing data; the distribution of the training data differs consid-
erably from that of the testing data. As a consequence, the
generalization is strictly bounded, which leaves a large per-
formance gap between human and primate landmark detec-
tions. This requires employing the new semi- or unsuper-
vised learning paradigm, which allows utilizing a potentially
unlimited amount of unlabeled, or weakly labeled primate
images, which can close the domain difference.

Through the OpenMonkeyChallenge, we aim to derive two
major innovations to solve challenging computer vision prob-
lems. First, algorithmic innovation can lead to substantial
performance gain by learning an efficient representation from
a limited annotated data. Transfer learning, or domain adap-
tation, used in DeepLabCut is one of such kinds that leverage
a pre-trained generic model learned from a large dataset (e.g.,
ImageNet). Such approaches have shown a remarkable gen-
eralization over frames within a target video while showing
limited performance when applying to new videos with dif-
ferent viewpoints, poses, illumination, background, and iden-
tities. Second, data innovation can lead to great advances in
generalization by large agnostic to algorithms and represen-
tations. For example, the field has witnessed such gains from
the object detection community, e.g., from a few hundreds of
images in Caltech-101 and Pascal VOC datasets to millions
of images in ImageNet and COCO datasets (29). OpenMon-
keyChallenge facilitates these two indispensable innovations
for developing a generalizable primate detector through com-
munity effort.

This database and associated analyses are likely to be im-
portant for any fields in which behavioral tracking is impor-
tant. We are especially sanguine about their potential to have
positive benefits in neuroscience. Rhesus macaques are an
important animal model in neuroscience, and other primate

species are of growing importance as well. Their importance
is unlikely to diminish, because of the unique anatomical
homologies between members of the primate order, includ-
ing many homologies between monkey and humans which
rodents lack. While neuroscience does not, with a few no-
table exceptions, make use of primate tracking, the ability to
track primates is of great interest in the field for several rea-
sons. First, brains evolved hand in hand with our bodies and
with the world in which they are embodied; there is a gen-
eral sense that nothing in neuroscience makes sense except
in light of behavior (30–33). Second, behavior represents a
high-dimensional output that can give insight into inner cog-
nitive states that are typically only viewed through a narrow
aperture (such as reaction times or pupil size). As such, be-
havior promises to greatly expand the range of states that can
be detected and linked to neural activity. Moreover, behavior
can potentially reduce the need for neural measures, since it
can serve as an alternative window into internal states. Fi-
nally, there is evidence that behavior drives neural activity to
a major and heretofore unanticipated extent (34, 35). Mea-
suring it can both allow us to regress out its effects and ex-
plain unexplained variance in firing, but more importantly, it
can point us in new unanticipated directions. Indeed, it is
quite possible that behavior is one of the major driving forces
of neural activity, and so quantifying it can alter theories of
brain activity.
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Method
Image Data Collection. We collected images from three
sources: internet images and videos, photographs from Na-
tional Primate Research Centers, and multiview videos from
the Minnesota Zoo.

Internet images. Approximately 59% of our dataset were col-
lected from the Internet through Image and video search en-
gines. For instance, we used the Flickr API to scrape the
list of image URLs and YouTube search engine to find rele-
vant videos using species name keywords. We ensure visual
diversity (shapes, poses, viewpoints, sizes, colors, and envi-
ronments) and quality (image resolution, blurriness, lighting,
and occlusion) of the scraped data via manual inspection. For
the common species such as rhesus macaque, mandrill, and
gorilla, image searches were sufficient. For the rarer species
such as marmoset, we leveraged the video search features and
extracted image frames from the videos. Not only does this
approach allow us to obtain more images of the rarer species,
but we also collected images that are less iconic than those
from search engines. We hired two annotators for image and
video searches. After image collections, we annotated the
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3D reconstruction of  Minnesota Zoo macaque arena

Fig. 5. We design a graphic user interface to refine bounding boxes. Given an image and bounding box proposals (green boxes) from a weak detector, the annotators are
asked to remove false positives and redundant poses from previous frames (green bounding boxes with red cross) and to add false negatives (red bounding boxes).

bounding boxes that contain the primate instances. For a sub-
set of internet images, we do not own the copyright of the
images. We specify the terms and conditions of use in the
website.

Photographs from national primate centers. We made use of
high quality images of primates photographed by staff at two
National Primate Centers: Yerkes National Primate Research
Center and the Oregon National Primate Research Center.
The photographers were asked to capture primate images
from diverse viewpoints and poses at high resolution (>2K
pixel resolution) and often made use of a tele-zoom lens.
10,500 images are captured from the professional photogra-
phers across the primate centers. Further, we collected videos
from California National Primate Research Center. Still im-
ages were extracted from a video library developed at the
California National Primate Research Center (36, 37). Video
footage of monkeys behaving was recorded at the center’s
large 0.5 acre outdoor enclosures and from images of mon-
keys in the laboratory. Videos were edited to be 30 seconds in
duration and included a range of behaviors, including aggres-
sion, grooming, feeding, resting, and affective displays. Still
images were captured from the videos for use in this project.

Multiview videos from the Minnesota Zoo. We used video
cameras to capture video images of a large troop (n=27 indi-
viduals) of snow monkeys (Macaca fuscata) at the Minnesota
Zoo (Apple Valley, MN) for a long duration (1 week). Un-
like the images taken by photographers who precisely control
focal length and viewpoint to ensure high resolution images,
these video cameras passively observe the scene. The mon-
keys inhabit a large arena that facilitates natural social inter-
actions among them. It is a large open space (bigger than 600
m2), which leads to a new challenge as monkeys appear small
in images (10-50 pixel size) if a wide field of view lens is used
to cover the large area. We address this challenge by using
a multi-camera system made of 20-30 cameras where each
camera observes a small area (up to 5m×5m) using a narrow
field of view (long or tele-zoom focal length). We identi-
fied the regions of the enclosure that frequently involve di-
verse activities (e.g., trails, ponds, and playgrounds) to maxi-
mize the monkey appearance in images. Because videos were

multiview videos, we used a monkey bounding box detec-
tion algorithm to identify the monkeys and then refined these
boxes manually. We collected the image data from two sea-
sons (winter and spring) to maximize diversity of background
visual appearance .

Semi-automatic Annotation. Identifying images that con-
tain primate instances from videos and annotating their land-
marks are prohibitively labor intensive tasks. For instance,
fewer than 2% of the frames in the videos from narrow field
of view (FOV) cameras used in the zoo data contain primate
instances. Watching every frame in videos to annotate bound-
ing boxes for primate instances is time-consuming, e.g., one
day zoo videos is equivalent to approximately 5,000 hours
(∼6,000,000 images) of labor. Instead, we leverage an it-
erative bootstrapping approach to address the bounding box
annotation task.

Bounding box proposal. We trained a weak primate detec-
tor that can predict the bounding box of a primate instance
given an image. The bounding box (left-top corner coordi-
nate, width, and height) of 3,000 internet images are man-
ually annotated, and used to train a YOLOv3 model (15)
that can recognize primate bounding boxes. We use a lower
threshold for bounding box detection such that the false posi-
tives are slightly more common than the false negatives. This
bounding box prediction automates identifying image frames
that contain primate instances, so that a majority of image
frames without primates can be pruned, which significantly
reduces the required labor. Further, it provides bounding box
candidates for each image.

Bounding box refinement. Given the bounding box propos-
als, we designed a graphic user interface to visualize and re-
fine bounding boxes as shown in Fig. 6. The interface shows
an image with bounding box candidates. The annotators are
asked to find false positives and redundant poses from the
previous frames (green bounding box with red cross). Fur-
ther, they can add bounding boxes (red bounding boxes).
Human helpers can perform this task in 5∼15 seconds per
image. With this manual refinement, we ensure all cropped
images include at least one primate. Once we have refined
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Fig. 6. We design a graphic user interface to refine bounding boxes. Given an image and bounding box proposals (green boxes) from a weak detector, the annotators are
asked to remove false positives and redundant poses from previous frames (green bounding boxes with red cross) and to add false negatives (red bounding boxes).

bounding box refinement, we incrementally increase the size
of data to re-train the bounding box detection model to adapt
to the target environments.

Landmark annotation. Given the bounding box annotations,
we used a commercial annotation service (Hive AI) to anno-
tate 17 landmarks from cropped images. When the landmarks
are occluded, the annotators are instructed to specify the best
guess location and to indicate visibility.

Benchmark Evaluation Process. We created a website
http://openmonkeychallenge.com/ that shares
the dataset and benchmark challenges. The train-
ing/validation/testing datasets can be downloaded from the
website. The annotations are available for the training and
validation datasets. The testing results (landmark detection
on the testing data) from the developed models can be sub-
mitted to the evaluation server in JSON file format:

{“image_id” = int,
“file_name” = str,
“landmarks” = [x1,y1,...,x17,y17]}

where xi and yi are x, y coordinates of the ith landmark.
The evaluation server will return the performance on the test-
ing data using MPJPE, PCK, and AP metrics. The evaluation
results will be posted in the leaderboard that sorts the algo-
rithms based on the performance. Optionally, the users can
opt out. The website includes step-by-step description of the
evaluation process, file format, and visualization code.
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