1	The Temporal Pattern of Spiking Activity of a Thalamic Neuron are Related to the
2	Amplitude of the Cortical Local Field Potential
3	
4	Abbreviated title: Thalamic spikes and cortical local field potential
5	
6	Hiroshi Tamura ^{1,2}
7	¹ Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
8	² Center for Information and Neural Networks, Suita, Osaka 565-0871, Japan
9	
10	Author contributions: HT designed the research, conducted experiments, analyzed data, and
11	wrote the paper.
12	
13	Corresponding author: Dr. Hiroshi Tamura
14	Laboratory for Cognitive Neuroscience, Graduate School of Frontier Biosciences, Osaka
15	University, 1-4 Yamadaoka, Suita, Osaka 565-0871, Japan
16	Tel: +81-6-6879-7969; Fax: +81-6-6879-4439; E-mail: tamura@fbs.osaka-u.ac.jp
17	
18	Number of pages: 43
19	Number of figures: 7
20	Number of tables: 0
21	Word counts: Abstract, 218 (250); Introduction, 648 (650); Discussion, 1396 (1500)
22	

2021 0909

23 **Conflict of interest**: The authors declare no competing financial interests.

- 25 Acknowledgments: I thank Dr. Fumitaka Kimura for his encouragement and for critically
- reading the manuscript, and J. Ludovic Croxford, PhD, from Edanz (https://jp.edanz.com/ac) for
- 27 editing a draft of this manuscript. This work was supported by Grant-in-Aids for Scientific
- 28 Research on Innovative Areas—"Innovative SHITSUKAN Science and Technology"
- 29 (15H05921) and "Non-linear Neuro-Oscillology" (16H01612) from MEXT, Japan— and by a
- 30 Grant-in-Aid for Scientific Research (C) (17K07056).
- 31

2021_0909

32 Abstract

33	Neuron activity in the sensory cortices mainly depends on feedforward thalamic inputs. High-
34	frequency activity of a thalamic input can be temporally integrated by a neuron in the sensory
35	cortex and is likely to induce larger depolarization. However, feedforward inhibition (FFI) and
36	depression of excitatory synaptic transmission in thalamocortical pathways attenuate
37	depolarization induced by the latter part of high-frequency spiking activity and the temporal
38	summation may not be effective. The spiking activity of a thalamic neuron in a specific
39	temporal pattern may circumvent FFI and depression of excitatory synapses. The present study
40	determined the relationship between the temporal pattern of spiking activity of a single thalamic
41	neuron and the degree of cortical activation as well as that between the firing rate of spiking
42	activity of a single thalamic neuron and the degree of cortical activation. Spiking activity of a
43	thalamic neuron was recorded extracellularly from the lateral geniculate nucleus (LGN) in male
44	Long-Evans rats. Degree of cortical activation was assessed by simultaneous recording of local
45	field potential (LFP) from the visual cortex. A specific temporal pattern appearing in three
46	consecutive spikes of an LGN neuron induced larger cortical LFP modulation than high-
47	frequency spiking activity during a short period. These findings indicate that spiking activity of
48	thalamic inputs is integrated by a synaptic mechanism sensitive to an input temporal pattern.

2021_0909

50 Significance Statement

- 51 Sensory cortical activity depends on thalamic inputs. Despite the importance of thalamocortical
- 52 transmission, how spiking activity of thalamic inputs is integrated by cortical neurons remains
- 53 unclear. Feedforward inhibition and synaptic depression of excitatory transmission may not
- allow simple temporal summation of membrane potential induced by consecutive spiking
- activity of a thalamic neuron. A specific temporal pattern appearing in three consecutive spikes
- 56 of a thalamic neuron induced larger cortical local field potential modulation than high-
- 57 frequency spiking activity during a short period. The findings indicate the importance of the
- 58 temporal pattern of spiking activity of a single thalamic neuron on cortical activation.

2021_0909

60 Introduction

61	The activity of neurons in sensory cortices mainly depends on feedforward thalamic inputs
62	(Ferster et al., 1996; Chung and Ferster, 1998; Liu et al, 2007; Li et al., 2013; Lien and Scanziani,
63	2013). Because a single thalamic spike induces a small depolarization in the postsynaptic cortical
64	neuron (Gil et al., 1999; Stratford et al., 1996; Brecht and Sakmann, 2002; Bruno and Sakmann,
65	2006; Lien and Scanziani, 2018; Sedigh-Sarvestani et al., 2019; Ringach, 2021), synaptic inputs
66	should be summated to allow the membrane potential to reach the spiking threshold. Synaptic
67	inputs can be summated temporally (Magee, 2000; Feldmeyer et al., 2002). If this is the case in
68	thalamocortical synapses, high-frequency spiking activity during the short period of a thalamic
69	neuron is associated with larger cortical activation than that of a single spike (Usrey et al., 2000).
70	However, the presence of feedforward inhibition (FFI) at thalamocortical synapses
71	(Ferster and Lindström, 1983; Gil and Amitai, 1996; Swadlow, 2002; Beierlein et al., 2003;
72	Gabernet et al., 2005; Kimura et al., 2010; Ji et al., 2016; Bereshpolova et al., 2020) may not
73	allow effective temporal summation of thalamic inputs by a cortical neuron. Thalamocortical
74	relay neurons directly synapse onto inhibitory cortical neurons that inhibit cortical layer 4
75	neurons (Gil and Amitai, 1996; Beierlein et al., 2003; Gabernet et al., 2005; Kimura et al.,
76	2010). Thus, FFI creates a short temporal window for synaptic integration (Gabernet et al.,
77	2005; Kimura et al., 2010) and suppresses depolarization induced by the latter part of high-
78	frequency spiking activity from thalamocortical relay neurons. Furthermore, the efficacy of
79	thalamocortical excitatory synapses is depressed during repetitive activation of thalamic inputs,
80	with subsequent spikes of a thalamic neuron inducing much smaller depolarization than the first
81	spike (Gil et al., 1997; Feldmeyer et al., 2002; Beierlein et al., 2003). Therefore, the high-

2021_0909

82	frequency spiking activity of a thalamic neuron is not as effective as that expected from the
83	simple temporal summation of excitatory synaptic inputs.
84	The spiking activity of a thalamic neuron in a specific temporal pattern may circumvent
85	the FFI and depression of thalamocortical excitatory synapses. For example, during a long
86	period of silence of a thalamic neuron, the inhibitory current induced by FFI was decreased and
87	the depression of excitatory synapses was alleviated. Indeed, a single spike after a long period
88	of silence of a thalamic neuron was associated with large cortical activation (Swadlow and
89	Gusev, 2001; Swadlow, 2002; Swadlow et al., 2002; Stoelzel et al., 2008; Stoelzel et al., 2009),
90	suggesting specific temporal patterns of a single thalamic neuron can be used to ensure
91	thalamocortical transmission.
92	The present study examined whether the firing rate or temporal pattern of spiking activity
93	of a single thalamic neuron was related to the degree of cortical activation. The spiking activity
94	of a thalamic neuron was extracellularly recorded from the lateral geniculate nucleus (LGN)
95	with simultaneous recording of local field potential (LFP) from the visual cortex (VC) in male
96	Long-Evans rats. LFPs represent neural activity from a cortical region of a few millimeters
97	(Mitzdorf, 1987; Logothetis, 2003; Kreiman et al., 2006; Jin et al., 2008; Nauhaus et al., 2009;
98	Kajikawa and Schroeder, 2011; Buzsáki et al., 2012; Pesaran et al., 2018), and are linearly
99	related to the membrane potential and firing rate of cortical neurons (Deweese and Zador, 2004;
100	Poulet and Petersen, 2008; Okun et al., 2010; Lien and Scanziani, 2013). To examine the
101	relationship between the spiking activity of an LGN neuron and cortical LFP, the LGN spike-
102	triggered average (STA) of LFP was calculated. Although both firing rate and temporal pattern
103	of spiking activity of an LGN neuron were related to amplitude of STA-LFP recorded from VC,

7

104	a specific temporal pattern of spiking activity appearing in three consecutive spikes of an LGN
105	neuron induced larger LFP modulation recorded from VC than high-frequency spiking activity
106	during the short period. The importance of temporal pattern was confirmed with the analysis of
107	monosynaptically connected LGN-VC neuron pairs.
108	
109	Materials and Methods
110	The general experimental procedures were previously described (Kimura et al., 2010; Ikezoe et
111	al., 2012). Neuronal activity was recorded from 17 adult male Long-Evans rats (260-360 g
112	bodyweight). All experiments were performed in accordance with the guidelines of the National
113	Institute of Health (1996) and the Japan Neuroscience Society, and were approved by the Osaka
114	University Animal Experiment Committee (FBS-18-003).
115	
116	Neuronal activity recording
117	Rats were anesthetized using urethane (Sigma-Aldrich, Tokyo, Japan; 1.2-1.4 g/kg, intra-
118	peritoneal injection) with urethane supplementation if necessary. The head was restrained with
119	ear bars coated with local anesthetic (2% lidocaine; AstraZeneca, Osaka, Japan). Local
120	anesthetic (0.5% lidocaine; Maruishi, Osaka, Japan) was administered into the scalp before
121	incision. A small hole (approximately 4 mm in diameter) was drilled in an appropriate part of
122	the skull and a small slit (1–3 mm) was made in the dura to insert an electrode. Thalamic
123	spiking activity was recorded from neurons in the LGN using a single-shaft multiprobe
124	electrode (A1×32-Poly3-10mm-50-177; NeuroNexus, Ann Arbor, MI, USA). The electrode was
125	equipped with 32 recording probes arranged in three columns at the tip; the center column had

2021_0909

126	12 probes and the left and right columns had 10 probes each. The distance between the centers
127	of the adjacent recording probes was 50 μ m. The LGN electrode was inserted into the brain at
128	4.5 mm posterior to the bregma and 5.6 mm lateral from the midline (Fig. $1A$). The penetration
129	angle was 30° in the coronal plane. A reference electrode was positioned on the surface of the
130	scalp. LGN recordings were made at average intervals of 0.21 mm along a penetration and were
131	typically performed three times per penetration.
132	The spiking activity and LFP from the VC was recorded using an eight-shank electrode
133	(Buzsaki64; NeuroNexus). The distance between the centers of adjacent shanks was 200 μ m.
134	Each shank was equipped with eight recording probes arranged in a V-shape at the tip. The
135	distance between the centers of adjacent recording probes was 20–40 μ m. The center of the
136	electrode for recording from the VC was located at 6.5 mm posterior to the bregma and 3 mm
137	lateral from the midline (Fig. $1A$). The electrode plane was parallel to the coronal plane. The
138	penetration angle was adjusted so that the tips were parallel to the cortical surface as much as
139	possible. A reference electrode was positioned on the surface of the scalp. Once the spiking
140	activity was obtained from most of the shank, insertion of the cortical electrode was stopped and
141	the position was maintained during recording.
142	Recordings from the LGN and VC were performed in the right hemisphere. Signals were
143	amplified (10,000×), filtered (1.3-7,603.8 Hz), digitized (20,000 Hz; RHD 2000 amplifier
144	board; Intan Technologies, Los Angeles, CA, USA), and stored in a personal computer for
145	offline analysis.
146	Visual stimuli were presented to enhance spiking activity of LGN neurons and obtain a

147 reliable STA-LFP from a limited recording duration. Visual stimuli were presented to the left

2021 0909

148	eye (i.e., contralateral to the recording hemisphere) in a bright room on a liquid crystal display
149	(XL2546-B ZOWIE; BenQ, Taipei, Taiwan) placed 30 cm from the animal's left eye at 30°
150	from the anterior-posterior body axis. The receptive field (RF) positions of the LGN and VC
151	recording sites were qualitatively determined by monitoring the spiking activity of multiunits
152	while manually presenting grating stimuli. Visual stimuli were presented to include the
153	manually determined RFs. The stimulus set consisted of 200 one-dimensional noise square-
154	wave gratings (spatial frequency, 0.016–0.15 cycles/°). Note that LGN and V1 neurons prefer a
155	spatial frequency of 0.03–0.06 and 0.04–0.15 cycles/°, respectively (Girman et al., 1999; Sriram
156	et al., 2016). The stimulus size was $108^{\circ} \times 55^{\circ}$ (horizontal × vertical). The gratings had one of
157	four orientations (0°, 45°, 90°, or 135°) and were black and white. The luminance values of the
158	black and white pixels were 1.0 cd/m^2 and 319 cd/m^2 , respectively. Each stimulus was presented
159	20 times in a pseudo-random order for 0.5 s without an inter-stimulus interval. Thus, neural
160	activity was recorded for approximately 30 min. The stimulus timing was recorded via a
161	photodiode attached to the display. Saline was applied to the eyes before and after the recording
162	of neural activity.
163	In 3 of 17 rats, neural activity was also recorded without visual stimuli (gray background,
164	spontaneous activity) for approximately 30 min.
165	
166	Data analysis

Single unit activity was isolated offline using Kilosort (Pachitariu et al. 2016). Spike-sorting
results were verified by calculating the auto-correlogram and the cross-correlogram (see Tamura
et al., 2014 for details).

2021_0909

170	To perform STA-LFP, raw signals recorded from the VC were processed as follows. First,
171	signals associated with the spiking activity of cortical neurons were removed from the raw
172	signals. For this, the average spike waveform (3-ms duration) was calculated from the raw
173	signals for each single unit recorded from the VC and the average spike waveform was
174	subtracted from the raw signals. This process was repeated for all the isolated units recorded
175	from the VC. Next, the spike-removed signals were low-pass filtered (<100 Hz) and down-
176	sampled from 20,000 Hz to 1,000 Hz. Finally, the z-score standardized LFP was calculated by
177	subtracting the average and dividing with the standard deviation of the processed LFP.
178	To obtain the STA-LFP, the cross-correlation between the spike train of an LGN unit and
179	the z-score standardized LFP recorded from the VC was calculated at a temporal resolution of 1
180	ms with a temporal window of ± 250 ms (raw STA-LFP). Because visual stimulation can
181	modulate the spiking activity of an LGN unit and LFP recorded from the VC, the effect of
182	visual stimulation contaminates raw STA-LFP. The effect of visual stimulation was estimated by
183	calculating the cross-correlation between the peristimulus time histogram (PSTH) of spiking
184	activity of an LGN unit and the stimulus-triggered cortical LFP (PSTH-predictor). By
185	subtracting the PSTH-predictor from the raw STA-LFP, the subtracted STA-LFP was obtained
186	where the effect of visual stimulation was removed. This method was similar to that used for the
187	cross-correlation analysis of spike trains collected during visual stimulation (Perkel et al., 1967;
188	Toyama et al., 1981; Tamura et al., 2004). In the Results, the subtracted STA-LFP is presented
189	as the STA-LFP unless otherwise specified. STA-LFP was calculated for all 64 LFPs recorded
190	using 64 probes. The amplitude of STA-LFP was quantified by measuring its initial negative
191	deflection. Statistical significance of the amplitude of STA-LFP was evaluated by comparing it

2021 0909

192	with that of STA-LFP triggered by a randomized spike train. The rationale was that if a
193	relationship between LGN spike occurrence and LFP modulation was independent, the
194	amplitude of STA-LFP obtained with an original spike train would be similar to that obtained
195	with a randomized spike train. A randomized spike train was generated by randomizing the
196	timing of spike occurrence. This process was repeated 10 times. The amplitude of the STA-LFP
197	from the original spike train were statistically compared with the amplitude of STA-LFP from
198	10 randomized spike trains ($p < 0.05$, signed-rank test, one-tailed).
199	The cross-correlation between the spike train of an LGN unit and that of a VC unit was
200	calculated at a temporal resolution of 1 ms with a temporal window of ± 250 ms and obtained
201	raw cross-correlogram (raw CCG). Because visual stimulation can modulate the spiking activity
202	of an LGN unit and a VC unit, the effect of visual stimulation contaminates raw CCG. The
203	effect of visual stimulation was estimated by calculating the cross-correlation between the
204	PSTH of spiking activity of an LGN unit and that of a VC unit (PSTH-predicted CCG). By
205	subtracting the PSTH-predicted CCG from the raw CCG, the subtracted CCG was obtained
206	where the effect of visual stimulation was removed (Perkel et al., 1967; Toyama et al., 1981;
207	Tamura et al., 2004). In the Results, the subtracted CCG is presented. Statistical significance of
208	CCG peak was evaluated by comparing raw CCG with that of PSTH-predicted CCG ($P <$
209	0.0001, binomial test).
210	

211 Statistical analysis

212 All data were pooled for statistical analyses. The number of units used for each experiment is

213 described in the Results. All statistical analyses were performed using statistical software

2021_0909

214	(MATLAB; The MathWorks, Natick, MA, USA). The statistical threshold for <i>p</i> -values was set
215	at 0.01 unless otherwise specified. Statistical outcomes (e.g., the chi-square $[\chi^2]$ value) are
216	provided. The effect size for non-parametric tests between two groups was estimated using the
217	formula: $r = Z/\sqrt{N}$,
218	where Z and N represent the Z-statistic from the signed-rank test and the number of samples,
219	respectively.
220	
221	Results
222	The present study was based on 4173 LGN units obtained from 47 recordings with visual
223	stimulation and 713 LGN units obtained from 8 recordings without visual stimulation
224	(spontaneous activity).
225	Spiking activity of an LGN unit induced clear modulation in LFP recorded from the VC.
226	The spike train obtained from an LGN unit (Fig. 1B, top) was cross-correlated with the LFP
227	recorded from the VC (Fig. 1B, bottom) to obtain raw STA-LFP (Fig. 1C, top, green line). By
228	subtracting the PSTH-predictor (Fig. 1C, top, blue line) from the raw STA-LFP, the subtracted
229	STA-LFP (Fig. 1C, top, black line) was obtained. The subtracted STA-LFP is presented as the
230	STA-LFP unless otherwise specified. STA-LFP showed an initial negative deflection followed
231	by a positive deflection. Most of the power of STA-LFP was in the low-frequency range (Fig.
232	1 <i>C</i> , bottom).
233	The amplitude of STA-LFP was weakly related to the physiological properties of LGN
234	neurons. Here, LFPs with the largest amplitudes in the STA-LFP among the 64 LFPs recorded

235 from 64 probes were selected for each LGN unit and subjected to analysis. If the negative peak

13

236	was not detected in STA-LFP, the unit was not included in the analysis. The average firing rate
237	during the total recording period of an LGN unit was positively correlated with the amplitude of
238	STA-LFP (Spearman's correlation coefficient, $r = 0.15$, $p = 3.70 \times 10^{-19}$, number of units = 3335;
239	Fig. 1D, top). Because the negative deflection of STA-LFP was quantified, a positive correlation
240	indicated an LGN unit with a lower average firing rate tended to induce larger modulation in
241	STA-LFP. The spike width that is the duration measured from the timing of initial negative nadir
242	to that of the subsequent positive peak of an LGN unit was negatively correlated with the
243	amplitude of STA-LFP (Spearman's correlation coefficient, $r = -0.10$, $p = 4.58 \times 10^{-9}$, number of
244	units = 3335; Fig. 1D, bottom). These results suggest that LGN neurons with a lower average
245	firing rate and broader spike width tended to induce larger modulation in STA-LFP.
246	The statistical significance of the amplitude of STA-LFP was examined by comparing the
247	amplitude of STA-LFP triggered by the original spike train with that triggered by a random
248	spike train. The amplitude of the STA-LFP in Figure $1C$ (top, black line) is significantly larger
249	than that calculated with random spike trains (top, gray lines; $p < 0.05$, signed-rank test, one-
250	tailed). Among 4173 LGN units obtained with visual stimulation, 3152 LGN units (76%)
251	evoked significant negative modulation in STA-LFP. Among 713 LGN units obtained without
252	visual stimulation, 500 units (70%) evoked significant negative modulation in STA-LFP.
253	The amplitude of STA-LFP decreased only slightly with horizontal distance. The analysis
254	was performed using LGN units with significant STA-LFPs. The largest amplitudes among
255	eight STA-LFPs recorded from eight probes on a shank represented the shank. An example of
256	STA-LFPs recorded from eight shanks of the cortical electrode is shown in the top panel of
257	Figure 1E. Clear modulation in STA-LFP was not limited to signals recorded from a single

2021_0909

258	shank, but observed in those from all the eight shanks. The amplitude of STA-LFP recorded
259	from a probe on the second shank (Fig. $1E$, top, s2) was the largest, and that from the eighth
260	shank (Fig. 1E, top, s8) was the smallest and was 83% of the maximum. The amplitude of STA-
261	LFP decreased gradually from the peak with horizontal separation (Spearman's correlation
262	coefficient, $r = -0.73$, $p \simeq 0$; Fig. 1 <i>E</i> , middle), and the amplitude of STA-LFP recorded from the
263	shank that was most distant from the peak shank was 67% of the maximum. The power of each
264	frequency component (δ , 1–3 Hz; θ , 4–7 Hz; α , 8–11 Hz; β , 12–29 Hz; γ , 30–250 Hz) of STA-
265	LFP had a similar tendency (Fig. 1 <i>E</i> , bottom).
266	
267	**** Figure 1 near here *****
268	
269	The firing rate of LGN spikes is positively correlated with the amplitude of cortical LFP
269 270	The firing rate of LGN spikes is positively correlated with the amplitude of cortical LFP The relationship between the firing rate of spiking activity of LGN neurons during a short
269 270 271	The firing rate of LGN spikes is positively correlated with the amplitude of cortical LFP The relationship between the firing rate of spiking activity of LGN neurons during a short period and the amplitude of cortical LFP was examined. STA-LFP was calculated for each
269 270 271 272	The firing rate of LGN spikes is positively correlated with the amplitude of cortical LFP The relationship between the firing rate of spiking activity of LGN neurons during a short period and the amplitude of cortical LFP was examined. STA-LFP was calculated for each firing-rate group, which was defined according to the number of spikes of a single LGN unit
269 270 271 272 273	The firing rate of LGN spikes is positively correlated with the amplitude of cortical LFP The relationship between the firing rate of spiking activity of LGN neurons during a short period and the amplitude of cortical LFP was examined. STA-LFP was calculated for each firing-rate group, which was defined according to the number of spikes of a single LGN unit within a window of 20 ms (i.e., one-spike/20 ms, two-spikes/20 ms, three-spikes/20 ms, and
269 270 271 272 273 274	The firing rate of LGN spikes is positively correlated with the amplitude of cortical LFPThe relationship between the firing rate of spiking activity of LGN neurons during a shortperiod and the amplitude of cortical LFP was examined. STA-LFP was calculated for eachfiring-rate group, which was defined according to the number of spikes of a single LGN unitwithin a window of 20 ms (i.e., one-spike/20 ms, two-spikes/20 ms, three-spikes/20 ms, andfour-spikes/20 ms; Fig. 2A). A 20-ms window was selected because it is close to the half-width
269 270 271 272 273 274 275	The firing rate of LGN spikes is positively correlated with the amplitude of cortical LFP The relationship between the firing rate of spiking activity of LGN neurons during a short period and the amplitude of cortical LFP was examined. STA-LFP was calculated for each firing-rate group, which was defined according to the number of spikes of a single LGN unit within a window of 20 ms (i.e., one-spike/20 ms, two-spikes/20 ms, three-spikes/20 ms, and four-spikes/20 ms; Fig. 2.4). A 20-ms window was selected because it is close to the half-width of thalamocortical input-evoked excitatory postsynaptic potential (Gil and Amitai, 1996) and the
269 270 271 272 273 274 275 276	The firing rate of LGN spikes is positively correlated with the amplitude of cortical LFP The relationship between the firing rate of spiking activity of LGN neurons during a short period and the amplitude of cortical LFP was examined. STA-LFP was calculated for each firing-rate group, which was defined according to the number of spikes of a single LGN unit within a window of 20 ms (i.e., one-spike/20 ms, two-spikes/20 ms, three-spikes/20 ms, and four-spikes/20 ms; Fig. 2 <i>A</i>). A 20-ms window was selected because it is close to the half-width of thalamocortical input-evoked excitatory postsynaptic potential (Gil and Amitai, 1996) and the membrane time constant of layer 4 regular spiking neurons (Beirlein et al., 2003; Gabernet et
269 270 271 272 273 274 275 276 276 277	The firing rate of LGN spikes is positively correlated with the amplitude of cortical LFP The relationship between the firing rate of spiking activity of LGN neurons during a short period and the amplitude of cortical LFP was examined. STA-LFP was calculated for each firing-rate group, which was defined according to the number of spikes of a single LGN unit within a window of 20 ms (i.e., one-spike/20 ms, two-spikes/20 ms, three-spikes/20 ms, and four-spikes/20 ms; Fig. 2 <i>A</i>). A 20-ms window was selected because it is close to the half-width of thalamocortical input-evoked excitatory postsynaptic potential (Gil and Amitai, 1996) and the membrane time constant of layer 4 regular spiking neurons (Beirlein et al., 2003; Gabernet et al., 2005). The first spike during the 20-ms period was used as the trigger spike for LFP
269 270 271 272 273 274 275 276 277 278	The firing rate of LGN spikes is positively correlated with the amplitude of cortical LFP The relationship between the firing rate of spiking activity of LGN neurons during a short period and the amplitude of cortical LFP was examined. STA-LFP was calculated for each firing-rate group, which was defined according to the number of spikes of a single LGN unit within a window of 20 ms (i.e., one-spike/20 ms, two-spikes/20 ms, three-spikes/20 ms, and four-spikes/20 ms; Fig. 2 <i>A</i>). A 20-ms window was selected because it is close to the half-width of thalamocortical input-evoked excitatory postsynaptic potential (Gil and Amitai, 1996) and the membrane time constant of layer 4 regular spiking neurons (Beirlein et al., 2003; Gabernet et al., 2005). The first spike during the 20-ms period was used as the trigger spike for LFP averaging (Fig. 2 <i>A</i> , thick vertical lines). LGN units that evoked significant modulation in STA-

279 LFP were included in the analyses if at least 50 triggering spikes were recorded for each firing-

2021_0909

rate group.

281	The firing rate of spiking activity of an LGN unit within a 20-ms period was positively
282	related to the STA-LFP amplitude. A representative example is shown in Figure $2B$. When four
283	spikes were emitted by the LGN unit within a 20-ms period, the STA-LFP amplitude was -0.67
284	(a.u.) and was the largest (number of four-spikes/20 ms = 231; Fig. 2 <i>B</i> , magenta line), whereas
285	only one spike was emitted by the LGN unit within a 20-ms period, the amplitude of the STA-
286	LFP was -0.25 (a.u.) and was the smallest (number of one-spike/20 ms = 4978; Fig. 2 <i>B</i> , red
287	line). When two or three spikes were emitted by the LGN unit within a 20-ms period, the STA-
288	LFP had intermediate amplitudes (-0.37 (a.u.) for two-spikes/20 ms, number of two-spikes/20
289	ms = 1608, Fig. 2 <i>B</i> , green line; -0.51 (a.u.) for three-spikes/20 ms, number of three-spikes/20
290	ms = 666, Fig. 2 <i>B</i> , blue line). The STA-LFP calculated with all spikes (number of spikes =
291	11,430) of the LGN unit (all-spike STA-LFP) had an amplitude of -0.38 (a.u.; Fig. 2 <i>B</i> , black
292	line).
293	This pattern was confirmed with the LGN unit population. For population analysis, the
294	amplitude of the STA-LFP of an LGN unit was normalized to the amplitude of the STA-LFP
295	calculated with all spikes of the LGN unit (all-spike STA-LFP; Fig. 2B, black line, as an
296	example). Note that normalization of the negative amplitude of STA-LFP with the negative
297	amplitude of all-spike STA-LFP resulted in a positive value. The normalized STA-LFP
298	amplitude was the largest (median = 1.61 ; number of units = 615 ; Fig. 2C, top) when LGN units
299	emitted four spikes within a 20-ms period (four-spikes/20 ms). By contrast, the normalized
300	STA-LFP amplitude was the smallest (median = 0.86) when the LGN units emitted only one
301	spike within a 20-ms period (one-spike/20 ms). The normalized STA-LFP amplitude differed

16

2021 0909

302	across the four firing-rate groups ($p = 4.22 \times 10^{-65}$, $\chi^2 = 302$, number of units = 615, Friedman's
303	test) and increased with the number of spikes within a 20-ms period. The normalized STA-LFP
304	amplitude differed across the firing-rate groups for units that showed three spikes at most within
305	a 20-ms period ($p = 1.97 \times 10^{-76}$, $\chi^2 = 349$, number of units = 1467; Fig. 2 <i>C</i> , middle) and for units
306	that showed two spikes at most within a 20-ms period ($p = 2.96 \times 10^{-30}$, $\chi^2 = 131$, number of units
307	= 859; Fig. 2C, bottom). The normalized STA-LFP amplitude was the largest when the LGN
308	units emitted the maximum number of spikes within a 20-ms period. A similar tendency was
309	observed for spontaneous activity. These findings suggest that the firing rate of spiking activity
310	of a single thalamic neuron within a short period was positively related to the degree of cortical
311	activation.
312	
313	**** Figure 2 near here *****
314	
315	Relationship between the intervals of LGN spikes and the amplitude of cortical LFP
316	The relationship between the inter-spike interval (ISI) of a single LGN neuron and cortical LFP
317	amplitude was examined. On the one hand, because the instantaneous firing rate is negatively
318	related to ISI, a short interval between triggering and following spikes of an LGN neuron is

319 expected to be associated with large amplitude cortical LFP. On the other hand, because the

320 inhibitory current induced by FFI was decreased and the depression of excitatory synapses was

321 alleviated during a long silent period of spiking activity, a long interval between the preceding

322 and triggering spikes of an LGN neuron is expected to be associated with large amplitude STA-

323 LFP. Each LGN spike was classified into one of five groups according to the ISIs (i.e., <20 ms,

17

2021_0909

324	20–100 ms, 100–200 ms, 200–500 ms, and \geq 500 ms) between triggering and following spikes
325	(following ISI; Fig 3A, left) or ISIs between preceding and triggering spikes (preceding ISI; Fig
326	3B, left). Although the above analysis of firing rate was examined over a 20 ms-period, the
327	analyses with ISI were performed using a longer time scale, because inhibitory current and
328	synaptic depression have a relatively longer time scale. LGN units evoking significant
329	modulation in STA-LFP and emitting at least 50 triggering spikes for each of the five ISI groups
330	were used for the analysis (number of units = 2680). The STA-LFP amplitude was normalized
331	to the amplitude of the all-spike STA-LFP.
332	The largest STA-LFP amplitude (median = 1.28) was induced by spikes with a following
333	ISI of <20 ms (Fig. 3 <i>A</i> , right). This finding is consistent with that obtained with firing rate
334	during a 20-ms period (i.e., a higher firing rate during a 20-ms period of LGN spiking activity
335	was associated with larger STA-LFP amplitude). The smallest (median = 0.91) was induced by
336	spikes with a following ISI of 20–100 ms. The normalized STA-LFP amplitude differed across
337	the five groups of following ISIs ($p = 6.28 \times 10^{-204}$, $\chi^2 = 948$, number of units = 2680, Friedman's
338	test). Results obtained with spontaneous activity were different. Although large STA-LFP
339	amplitude (median = 1.69) was induced by spikes with a following ISI of <20 ms, the largest
340	(median = 1.72) was induced by a following ISI of \geq 500 ms. The smallest (median = 0.91) was
341	induced by a following ISI of 100-200 ms. Although, the interval between the triggering and
342	following spikes of an LGN unit affected the amplitudes of cortical LFP, the effect was small
343	and inconsistent.

344

345 ******* Figure 3 near here *******

2021_0909

18

346

347	Next, a similar analysis was performed but the relationship between preceding ISI
348	(interval between preceding and triggering spikes) and STA-LFP amplitude was assessed. The
349	normalized amplitude of the STA-LFP differed across the five preceding ISI groups ($p \simeq 0, \chi^2 =$
350	2865, number of units = 2680, Friedman's test; Fig. 3 <i>B</i> , right). Spikes with a long preceding ISI
351	(\geq 500 ms) were associated with the largest normalized STA-LFP amplitude (median = 1.47).
352	Spikes with a moderate preceding ISI (100-200 ms) were associated with the smallest
353	normalized STA-LFP amplitude (median = 0.55 ; Fig. 3B). Similar results were obtained with
354	spontaneous activity. These results suggest that the interval between the preceding and
355	triggering spikes of an LGN unit have an impact on the amplitudes of cortical LFP.
356	LFP amplitude was more susceptible to the preceding ISIs than to the following ISIs. The
357	range of normalized STA-LFP amplitudes across the ISI groups was quantified by calculating
358	the difference between the maximum and minimum amplitudes of STA-LFP among the ISI
359	groups. The range of the preceding ISI groups (1.69, median) was larger than that of the
360	following ISI groups (1.31, median; effect size = 0.31 , $p = 2.72 \times 10^{-115}$, number of units = 2680,
361	signed-rank test), suggesting that the interval between preceding and triggering spikes has a
362	larger effect on the degree of cortical activation than the interval between triggering and
363	following spikes.
364	
365	The temporal patterns of LGN spikes are related to the amplitude of cortical LFP
366	Because both preceding ISI and following ISI related to the STA-LFP amplitude, the

367 relationship between combinations of preceding and following ISIs and the STA-LFP amplitude

19

368	was investigated. Triggering spikes of an LGN neuron were classified into 16 groups based on
369	combinations of preceding ISI (<20, 20–100, 100–500, and \geq 500 ms) and following ISI (<20,
370	20–100, 100–500, and \geq 500 ms). Three examples of ISI combinations are shown in Fig. 4 <i>A</i> .
371	LGN units evoking a significant modulation in the STA-LFP and emitting at least 50 triggering
372	spikes for each of the 16 ISI combinations were analyzed (number of units = 1216).
373	The normalized STA-LFP amplitude differed among the 16 ISI combinations. A
374	representative example is shown in Figure $4B$. When a triggering LGN spike was preceded by
375	another spike with a long interval (≥500 ms, preceding ISI) and followed by yet another spike
376	with a short interval (<20 ms, following ISI), the amplitude of the STA-LFP was the largest
377	(-1.08 (a.u.); number of spikes = 442; Fig. 4B, magenta line). The combination of a short
378	preceding ISI (<20 ms) and short following ISI (<20 ms) induced STA-LFP with a moderate
379	amplitude of -0.58 (a.u.; number of spikes = 1667; Fig. 4 <i>B</i> , purple line). A combination of
380	moderate ISIs (preceding ISI, 100-500 ms; following ISI, 100-500 ms) was associated with the
381	smallest STA-LFP amplitude (-0.13 (a.u.); number of spikes = 916; Fig. 4 <i>B</i> , cyan line). The
382	STA-LFP calculated with all spikes (number of spikes = 11,430) of the LGN unit (all-spike
383	STA-LFP) had an amplitude of -0.38 (Fig. 4 <i>B</i> , black line).
384	Dependence of the STA-LFP amplitude on ISI combinations was confirmed with the
385	LGN unit population. When a triggering LGN spike was preceded by another spike with a long
386	interval (≥500 ms, preceding ISI) and followed by yet another spike with a short interval (<20
387	ms, following ISI), the largest normalized STA-LFP amplitude (STA-LFP amplitude normalized
388	to the amplitude of the all-spike STA-LFP) was observed (median = 2.46 ; Fig. 4 <i>C</i>). A
389	combination of moderate ISIs (preceding ISI, 100-500 ms; following ISI, 100-500 ms) resulted

2021_0909

390	in the smallest normalized STA-LFP amplitude (median = 0.71). The normalized STA-LFP
391	amplitude differed across the 16 ISI combinations ($p \simeq 0, \chi^2 = 4434$, number of units = 1216,
392	Friedman's test).
393	Although the effect of following ISI on the amplitude of STA-LFP was weak in the
394	previous analysis (see Relationship between the intervals of LGN spikes and the amplitude of
395	cortical LFP), the effect of following ISI becomes obvious if analyzed in combination with the
396	preceding ISI. For example, the largest normalized STA-LFP amplitude (median = 2.46) was
397	observed with the long preceding ISI (\geq 500 ms) and the short following ISI (<20 ms), while
398	much smaller normalized STA-LFP amplitude (median = 1.57) was observed with the same
399	long preceding ISI (\geq 500 ms) but with a moderate following ISI (100–500 ms). It suggests that
400	both preceding ISI and following ISI related to the degree of cortical activation.
401	If the firing rate during a short period of spiking activity of an LGN neuron is the only
402	determinant of cortical LFP amplitude, the combination of short preceding and following ISIs is
403	expected to result in the largest STA-LFP amplitude. Similarly, the combination of long
404	preceding and following ISIs is likely to result in the smallest STA-LFP amplitude. However,
405	the normalized STA-LFP amplitude induced by the combination of short preceding and
406	following ISIs (median = 1.57) was not the largest, and the normalized STA-LFP amplitude
407	induced by the combination of long preceding and following ISIs (median = 1.83) was not the
408	smallest. These results suggest that the firing rate during a short period of spiking activity of an
409	LGN neuron is not the only determinant of cortical LFP amplitude, but suggests the importance
410	of temporal patterns appearing in three consecutive spikes (i.e., a combination of preceding ISI
411	and following ISI) on the STA-LFP amplitude.

2021_0909

41	2
----	---

- 413 ******* Figure 4 near here *******
- 414

415	The above results were obtained from neural activity recorded during visual stimulation.
416	The same analyses were performed on neural data obtained without visual stimuli (i.e.,
417	spontaneous activity), with qualitatively similar results. The normalized STA-LFP amplitude
418	differed across the 16 ISI combinations ($p = 7.61 \times 10^{-259}$, $\chi^2 = 1257$, number of units = 166,
419	Friedman's test; Fig. 4D). The combination of a long preceding ISI (\geq 500 ms) and a short
420	following ISI (<20 ms) was associated with the largest normalized STA-LFP amplitude (median
421	= 5.98). The combination of moderate ISIs ($100-500$ ms, preceding ISI; $100-500$ ms, following
422	ISI) was associated with the smallest normalized STA-LFP amplitude (median = 0.17). Thus,
423	the relationship between temporal patterns of thalamic spiking activity and cortical LFP
424	amplitude was not limited to neural activity during sensory stimulation, but was also observed
425	during spontaneous neural activity.
426	To examine whether STA-LFP associated with a specific temporal pattern could be
427	explained by the linear summation of single-spike triggered STA-LFP, STA-LFP was
428	reconstructed by the summation of single spike triggered STA-LFP and compared with the
429	observed STA-LFP. This analysis focused on two ISI combinations: i) a long preceding ISI
430	(≥500 ms) and short following ISI (<20 ms); and ii) a short preceding ISI (<20 ms) and a short
431	following ISI (<20 ms). The former induced STA-LFP with the largest amplitude whereas the
432	latter induced STA-LFP with a moderate amplitude, although the latter was accompanied by the
433	highest firing rate. The analysis was performed with raw STA-LFP, because the same PSTH-

2021_0909

22

434 predictor was subtracted from the original and reconstructed STA-LFPs.

435	If the STA-LFP was triggered by spikes with a long preceding ISI (≥500 ms) and a short
436	following ISI (<20 ms), the amplitude of the observed STA-LFP was slightly larger than that of
437	the reconstructed STA-LFP. A representative example is shown in Figure 5A. The amplitude of
438	the observed STA-LFP was -1.06 (Fig. 5A, red line) and that of the reconstructed STA-LFP was
439	-0.73 (Fig. 5 <i>A</i> , blue line). This tendency was confirmed with the neuron population. The
440	median normalized amplitude of the observed STA-LFP of the neuron population was 2.92
441	(median), which was slightly larger than that of the reconstructed STA-LFP (2.29, median;
442	effect size = 0.16 , $p = 9.49 \times 10^{-16}$, number of units = 1216, signed-rank test; Fig. 5 <i>B</i>).
443	Contrary to the above results, the amplitude of the observed STA-LFP was smaller than
444	that of the reconstructed STA-LFP if the STA-LFP was triggered by spikes with a short
445	preceding ISI (<20 ms) and a short following ISI (<20 ms). A representative example is shown
446	in Figure 5C. The amplitude of the observed STA-LFP of the LGN unit was -0.50 (Fig. 5C, red
447	line) and that of the reconstructed STA-LFP was -1.01 (Fig. 5 <i>C</i> , blue line). The median
448	normalized amplitude of the observed STA-LFP of the neuron population was 1.85 (median)
449	and was smaller than that of the reconstructed STA-LFP (3.32, median; effect size = 0.40 , $p =$
450	1.70×10^{-86} , number of units = 1216, signed-rank test; Fig. 5D). These results suggested that the
451	amplitude of the STA-LFP associated with spikes with a long preceding ISI and a short
452	following ISI could be explained by the linear or supralinear summation of single-spike
453	triggered STA-LFP, whereas that associated with a short preceding ISI and a short following ISI
454	could be explained by the sublinear summation of single-spike triggered STA-LFP.

2021_0909

23

456 ***** Figure 5 near here *****

457

458	The amplitude of STA-LFP related to the firing rate during a 20-ms period and the largest
459	STA-LFP amplitude were observed when triggered by the first spike of four spikes within a 20-
460	ms period (Fig. 2). In addition, the amplitude of STA-LFP related to the temporal pattern of the
461	spiking activity of an LGN unit and the largest STA-LFP amplitude were observed when
462	triggered by spikes with a long preceding ISI (\geq 500 ms) and a short following ISI (<20 ms)
463	(Fig. 4). The normalized amplitude of STA-LFP triggered by two types of spikes (the first spike
464	of four spikes in a 20-ms window and the spike with a long preceding ISI (≥500 ms) and a short
465	following ISI (<20 ms)) was directly compared. When the unit in Figure 2B emitted four spikes
466	within a 20-ms period the STA-LFP amplitude was -0.67 (a.u.) and when the same unit emitted
467	spikes with a long preceding ISI (≥500 ms) and a short following ISI (<20 ms), the amplitude of
468	the STA-LFP was -1.08 (a.u.; Fig. 4B). This comparison suggested the temporal pattern of
469	spiking activity had a much larger effect on the amplitude of cortical LFP than the firing rate
470	within a short period. This pattern was confirmed with the neuron population. The normalized
471	amplitude of the STA-LFP of the latter (2.18, median; preceding ISI \geq 500 ms and following ISI
472	<20 ms) was larger than that of the former (1.61, median; four spikes/20 ms; effect size = 0.28,
473	$p = 1.20 \times 10^{-13}$, number of units = 361, signed-rank test; Fig. 6). A temporal pattern appearing in
474	three consecutive spikes had a much larger effect on the amplitude of the cortical LFP than the
475	firing rate within a short period.

476

477 ******* Figure 6 near here *******

2021_0909

24

479	Spiking activity of cortical neurons and the temporal patterns of LGN spikes			
480	To examine whether cortical spiking activity is also related to temporal pattern of spiking			
481	activity of LGN neurons, the relationship between the temporal patterns of LGN spiking activity			
482	and occurrence of cortical spiking activity was analyzed using monosynaptically connected			
483	LGN-VC unit pairs. Monosynaptically connected LGN-VC unit pairs were detected with cross-			
484	correlation analysis of their spike trains. Cross-correlation analysis was performed with LGN-			
485	VC unit pairs each having \geq 5000 spikes for reliable calculation of CCG (n = 86,292 pairs). The			
486	criteria for monosynaptic excitatory connection was short latency (1-4 ms; Tanaka, 1983; Hata			
487	et al., 1990; Usrey et al., 2000; Tamura et al., 2004) significant peak ($P < 0.0001$, binomial test)			
488	in CCGs (Fig. 7A). Among the 86,292 LGN-VC unit pairs, 174 pairs showed the sign of			
489	monosynaptic connections.			
490	Even for the monosynaptically connected LGN-VC unit pairs, not all the LGN spikes			
491	were followed by a VC spike with short latency. LGN spikes that were followed by a VC spike			
492	were designated as trigger spikes and other LGN spikes were designated as non-trigger spikes			
493	(Fig. 7B). To examine whether the trigger LGN spikes are associated with a specific			
494	combination of preceding and following ISIs, temporal patterns of three consecutive spikes			
495	around trigger spikes (preceding, triggering and following spikes) were compared with those			
496	around non-trigger spikes (preceding, non-triggering and following spikes). For this purpose,			
497	LGN spikes were further classified into 16 groups based on combinations of preceding ISI (<20,			
498	20–100, 100–500, and ≥500 ms) and following ISI (<20, 20–100, 100–500, and ≥500 ms) (Fig.			
499	7B). For each ISI combination, a spike index was calculated.			

500 Spike index =	$= (P_{trigger} - P_{nontri})$	$_{rigger})/(P_{trigger} + P_{nontrigger})$),
-------------------	--------------------------------	---	----

501	$P_{trigger}$ is the proportion of spikes of a combination of preceding and following ISIs for trigger
502	LGN spikes (spike count for the ISI combination divided by the number of trigger spikes), and
503	P _{nontrigger} is that for non-trigger LGN spikes (spike count for the ISI combination divided by the
504	number of non-trigger spikes). Positive spike index means that the ISI combination appeared
505	more frequently around trigger spikes than non-trigger spikes. Among the monosynaptically
506	connected LGN-VC unit pairs, LGN units emitting ≥300 trigger and non-trigger spikes were
507	analyzed (number of LGN-VC unit pairs, 38; the number of trigger LGN spikes, 300-752; the
508	number of non-trigger LGN spikes, 4503–25,101).
509	The combination of a long preceding ISI (\geq 500 ms) and a short following ISI (<20 ms)
510	had a positive spike index. For example, a combination of moderate ISIs (preceding ISI,
511	100-500 ms; following ISI, 100-500 ms) observed most frequently (16.6 percent and 18.2
512	percent of trigger and non-trigger LGN spikes, respectively) in an LGN-VC unit pair (the
513	number of trigger spikes, 386; the number of non-trigger spikes, 7837; Fig. 7C), and the spike
514	index was negative (-0.06). The combination of a long preceding ISI (\geq 500 ms) and a short
515	following ISI (<20 ms) was observed in 4.9 percent and 1.9 percent of trigger and non-trigger
516	spikes of the LGN unit, respectively, and results in the spike index of 0.43, meaning that the
517	combination appeared more frequently around trigger spikes than non-trigger spikes of the LGN
518	unit. The median of the spike index across LGN-VC unit pairs ($n = 38$) for the combination of a
519	long preceding ISI (\geq 500 ms) and a short following ISI (\leq 20 ms) was 0.054 (Fig. 7 <i>D</i>). The
520	spike index differed across the 16 ISI combinations ($p = 1.55 \times 10^{-7}$, $\chi^2 = 61.23$, number of LGN-
521	VC unit pairs = 38, Friedman's test). Furthermore, the median of spike index positively

26

522	correlated with the median of normalized amplitudes of STA-LFP calculated for combinations
523	of preceding and following ISIs ($r = 0.80$, $p = 0.00034$, number of ISI combinations = 16,
524	Spearman's correlation coefficient; Fig. 7 E ; see Fig. 4 C). The results suggest that cortical
525	spiking activity is also related to the temporal pattern of three consecutive LGN spikes in a
526	similar manner to cortical LFP.
527	
528	**** Figure 7 near here *****
529	
530	Discussion
531	The main finding of the present study is that a specific temporal pattern appearing in three
532	consecutive spikes of an LGN neuron induced larger LFP modulation in VC than high-
533	frequency spiking activity during a short period. The findings indicate the importance of the
534	temporal pattern of spiking activity of a single thalamic neuron on cortical activation.
535	
536	Technical considerations
537	In the present study, visual stimuli were presented to enhance spiking activity of LGN neurons
538	and obtain reliable STA-LFP from a limited recording duration. Because presentation of visual
539	stimuli modulates the firing rates of spiking activity of an LGN unit and cortical LFP almost
540	simultaneously, the raw STA-LFP reflects the correlation related to the stimulus-locked
541	modulation (stimulus coordination) and the correlation related to the interaction between the
542	LGN unit and cortical LFP (neural correlation). The effect of stimulus coordination was
543	estimated by calculating the PSTH-predicted STA-LFP and removed by subtracting the PSTH-

2021 0909

544	predicted STA-LFP from the raw STA-LFP. Spontaneous neural activity was also analyzed and
545	demonstrated similar results. Therefore, any effect of visual stimulation on the present findings
546	was small or negligible.
547	Animals were anesthetized with urethane and the head of the animal was fixed to achieve
548	stable recordings with silicon microelectrodes. These procedures may have affected the
549	interpretation of the present findings. However, no difference in thalamocortical transmission
550	under different states of alertness (Stoelzel et al., 2009) and the response properties of neurons
551	in the LGN and VC of anesthetized mice were previously reported to be qualitatively similar to
552	those of awake animals (Durand et al., 2016). Although similar conclusions are likely to be
553	obtained with awake and behaving animals, future studies in awake and behaving animals may
554	be required.
555	

556 STA-LFP and thalamocortical neuron

557In the present study, the LFP was recorded as a measure of cortical activity, and modulation in STA-LFP was observed in a wide cortical region (>1.4 mm). The results may not be consistent 558559with the lateral extent of a single thalamocortical axon terminal (<1.0mm, Raczkowski and 560Fitzpatrick, 1990). However, because LFP signals represent neural activity from a fewmillimeter region of the cortex (Mitzdorf, 1987; Logothetis, 2003; Kreiman et al., 2006; Jin et 561562al., 2008; Nauhaus et al., 2009; Kajikawa and Schroeder, 2011; Buzsáki et al., 2012; Pesaran et 563al., 2018), signals related to spiking activity of a single LGN neuron can be recorded from 564widespread cortical regions.

565 An LGN unit that induces modulation in cortical LFP is likely to be a thalamocortical

28

566	relay neuron (TC neuron). Neurons in the LGN are divided into TC neurons and local inhibitory
567	interneurons. TC neurons form 90% of the LGN neurons in rodents (Guido, 2018), and have a
568	slightly broader spike width and larger soma than interneurons (Williams et al., 1996). In the
569	present study, a large proportion of LGN units evoked significant modulation in the STA-LFP.
570	LGN units with a broader spike width and lower firing rate, which are signatures of a larger
571	neuron in general, induced the larger modulation of the STA-LFP. These results are consistent
572	with the notion that an LGN unit that induces a large modulation in the STA-LFP is a TC
573	neuron.
574	
575	Firing rate of thalamic spiking activity during a short period and cortical LFP
576	There was positive correlation between the firing rate of spiking activity of an LGN unit
577	during a short period and the LFP amplitude recorded from the VC. The temporal summation of
578	the depolarizations induced by consecutive spikes of a single LGN neuron underlies this
579	relationship. The result is consistent with a previous study reporting a potential temporal
580	summation at thalamocortical synapses (Usrey et al., 2000), but may not be consistent with the
581	presence of FFI and depression of excitatory thalamocortical synapses. FFI can be weakened by
582	the repetitive activation of the thalamocortical pathway (i.e., depression of FFI; Gabernet et al.,
583	2005), and the depression of FFI facilitates the temporal summation at the thalamocortical
584	synapses.
585	Although high-frequency spiking activity during a short period of an LGN unit induced
586	larger LFP modulation than single spiking activity, the increase in the LFP amplitude was
587	limited. For example, one may expect that the amplitude of LFP induced by four consecutive

29

2021 0909

spikes was about four times that induced by a single spike. However the amplitude of LFP 588induced by four consecutive spikes was less than two times that induced by a single spike, 589590suggesting that the temporal summation is not as effective as the expectation. Therefore, it is 591reasonable to conclude that FFI was not fully suppressed and depression of excitatory 592thalamocortical synapses was not fully recovered. High frequency spiking activity of a LGN neuron induced successive depolarization in cortical neurons under influence of FFI and 593depression of excitatory thalamocortical synapses, and results in a weak but larger 594depolarization than a single LGN spike. 595596 Temporal pattern of thalamic spiking activity and cortical LFP 597598Temporal pattern appearing in three consecutive spikes of an LGN unit was related to the STA-LFP amplitude as well as to spiking activity of cortical neurons. A large modulation of the STA-599600 LFP was observed, if a triggering LGN spike was preceded by another spike with a long interval (long preceding ISI) and was followed by yet another spike with a short interval (short 601 following ISI). Contrary, the combination of a moderate ISIs was associated with the smallest 602 603 normalized STA-LFP amplitude. Consistent results were obtained with the analysis of spiking 604 activity of a cortical unit receiving monosynaptic inputs from an LGN unit. Thus, it is 605 concluded that combination of preceding ISI and following ISI related to the degree of cortical 606 activation. Consistent with the present results, it has been show that the preceding ISI of a 607 thalamic neuron are related to the degree of cortical activation (Swadlow and Gusey, 2001; 608 Swadlow, 2002; Swadlow et al., 2002; Stoelzel et al., 2008; Stoelzel et al., 2009).

609 Importance of temporal pattern appearing in three consecutive spikes of an LGN neuron

2021_0909

610	on cortical activation is not simply reflecting the effect of firing rate of an LGN neuron on
611	cortical activation. If the combination of short preceding and following ISIs induced the largest
612	LFP modulation and the combination of long preceding and following ISIs induced the smallest
613	LFP modulation, one may conclude that the firing rate of a thalamic neuron during a short
614	period was the determinant of the degree of cortical activation. However, these were not the
615	case, suggesting that the firing rate during a short period is not the only determinant of the
616	degree of cortical activation. Furthermore, and more importantly, a temporal pattern appearing
617	in three consecutive spikes of an LGN unit (long preceding ISI and short following ISI) induced
618	larger cortical LFP modulation than high-frequency spiking activity during a short period,
619	suggesting the importance of temporal pattern that is unrelated to firing rate of an LGN neuron
620	on cortical activation.
621	The amplitude of the STA-LFP associated with spikes with a long preceding ISI and a
621 622	The amplitude of the STA-LFP associated with spikes with a long preceding ISI and a short following ISI was explained by the linear or supralinear summation of single-spike
621 622 623	The amplitude of the STA-LFP associated with spikes with a long preceding ISI and a short following ISI was explained by the linear or supralinear summation of single-spike triggered STA-LFP. During the long-preceding silent period of a LGN neuron, its
621622623624	The amplitude of the STA-LFP associated with spikes with a long preceding ISI and a short following ISI was explained by the linear or supralinear summation of single-spike triggered STA-LFP. During the long-preceding silent period of a LGN neuron, its thalamocortical excitatory synapses recovered from the depressed state and the inhibitory
 621 622 623 624 625 	The amplitude of the STA-LFP associated with spikes with a long preceding ISI and a short following ISI was explained by the linear or supralinear summation of single-spike triggered STA-LFP. During the long-preceding silent period of a LGN neuron, its thalamocortical excitatory synapses recovered from the depressed state and the inhibitory currents induced by FFI were decreased. Then, depolarization induced by triggering and
 621 622 623 624 625 626 	The amplitude of the STA-LFP associated with spikes with a long preceding ISI and a short following ISI was explained by the linear or supralinear summation of single-spike triggered STA-LFP. During the long-preceding silent period of a LGN neuron, its thalamocortical excitatory synapses recovered from the depressed state and the inhibitory currents induced by FFI were decreased. Then, depolarization induced by triggering and following LGN spikes are effectively and (supra)linearly summated in cortical neurons.
 621 622 623 624 625 626 627 	The amplitude of the STA-LFP associated with spikes with a long preceding ISI and a short following ISI was explained by the linear or supralinear summation of single-spike triggered STA-LFP. During the long-preceding silent period of a LGN neuron, its thalamocortical excitatory synapses recovered from the depressed state and the inhibitory currents induced by FFI were decreased. Then, depolarization induced by triggering and following LGN spikes are effectively and (supra)linearly summated in cortical neurons. Contrary, the amplitude of the STA-LFP associated with spikes with a short preceding ISI and a
 621 622 623 624 625 626 627 628 	The amplitude of the STA-LFP associated with spikes with a long preceding ISI and a short following ISI was explained by the linear or supralinear summation of single-spike triggered STA-LFP. During the long-preceding silent period of a LGN neuron, its thalamocortical excitatory synapses recovered from the depressed state and the inhibitory currents induced by FFI were decreased. Then, depolarization induced by triggering and following LGN spikes are effectively and (supra)linearly summated in cortical neurons. Contrary, the amplitude of the STA-LFP associated with spikes with a short preceding ISI and a short following ISI was explained by the sublinear summation of single-spike triggered STA-
 621 622 623 624 625 626 627 628 629 	The amplitude of the STA-LFP associated with spikes with a long preceding ISI and a short following ISI was explained by the linear or supralinear summation of single-spike triggered STA-LFP. During the long-preceding silent period of a LGN neuron, its thalamocortical excitatory synapses recovered from the depressed state and the inhibitory currents induced by FFI were decreased. Then, depolarization induced by triggering and following LGN spikes are effectively and (supra)linearly summated in cortical neurons. Contrary, the amplitude of the STA-LFP associated with spikes with a short preceding ISI and a short following ISI was explained by the sublinear summation of single-spike triggered STA- LFP. A spike induces excitatory currents as well as FFI currents in cortical neurons <i>and</i>
 621 622 623 624 625 626 627 628 629 630 	The amplitude of the STA-LFP associated with spikes with a long preceding ISI and a short following ISI was explained by the linear or supralinear summation of single-spike triggered STA-LFP. During the long-preceding silent period of a LGN neuron, its thalamocortical excitatory synapses recovered from the depressed state and the inhibitory currents induced by FFI were decreased. Then, depolarization induced by triggering and following LGN spikes are effectively and (supra)linearly summated in cortical neurons. Contrary, the amplitude of the STA-LFP associated with spikes with a short preceding ISI and a short following ISI was explained by the sublinear summation of single-spike triggered STA- LFP. A spike induces excitatory currents as well as FFI currents in cortical neurons <i>and</i> depresses its related synapses. Then, LGN spikes following with short interval induce much

2021 0909

31

results can be interpreted that preceding ISI controls the gain of depolarization induced byfollowing spikes.

- 634 Although the present results clarify the importance of temporal pattern appearing in
- 635 consecutive spikes of a single thalamic neuron on the thalamocortical transmission, the results
- 636 did not deny the contribution of spatial summation at the thalamocortical transmission.
- 637 Synchronous spiking activity between thalamic neurons has been reported and implicated in
- thalamocortical synaptic transmission (Alonso et al., 1996; Roy and Alloway 2001; Bruno and
- 639 Sakmann, 2006; Ito et al., 2010). Synchronous inputs from thalamic neurons are summated
- 640 spatially and induce large depolarization in cortical neurons. The present results are not
- 641 incompatible with the potential involvement of synchronous spikes but suggest that
- 642 synchronous spikes are more effective if they occur in a specific temporal pattern.
- 643

2021 0909

645 **References**

- 646 Alonso JM, Usrey WM, Reid RC (1996) Precisely correlated firing in cells of the lateral
- 647 geniculate nucleus. Nature 383:815-819.
- 648 Beierlein M, Gibson JR, Connors BW (2003) Two dynamically distinct inhibitory networks in
- 649 layer 4 of the neocortex. J Neurophysiol 90:2987-3000.
- 650 Bereshpolova Y, Hei X, Alonso JM, Swadlow HA (2020) Three rules govern thalamocortical
- 651 connectivity of fast-spike inhibitory interneurons in the visual cortex. Elife 9:e60102.
- Brecht M, Sakmann B. (2002) Dynamic representation of whisker deflection by synaptic
- 653 potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat
- 654 somatosensory cortex. J. Physiol. 543:49-70.
- Bruno RM, Sakmann B (2006) Cortex is driven by weak but synchronously active
- thalamocortical synapses. Science 312:1622-1627.
- 657 Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents--
- EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407-420.
- 659 Chung S, Ferster D (1998) Strength and orientation tuning of the thalamic input to simple cells
- revealed by electrically evoked cortical suppression. Neuron 20:1177-1189.
- 661 Deweese MR, Zador AM (2004) Shared and private variability in the auditory cortex. J
- 662 Neurophysiol 92:1840-1855.
- 663 Durand S, Iyer R, Mizuseki K, de Vries S, Mihalas S, Reid RC (2016) A comparison of visual
- response properties in the lateral geniculate nucleus and primary visual cortex of awake
- and anesthetized mice. J Neurosci 36:12144-12156.
- 666 Feldmeyer D, Lübke J, Silver RA, Sakmann B (2002) Synaptic connections between layer 4

2021 0909

667	spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and
668	anatomy of interlaminar signalling within a cortical column. J Physiol 538:803-822.
669	Ferster D, Chung S, Wheat H (1996) Orientation selectivity of thalamic input to simple cells of
670	cat visual cortex. Nature 380:249-252.
671	Ferster D, Lindström S (1983) An intracellular analysis of geniculo-cortical connectivity in area
672	17 of the cat. J Physiol 342:181-215.
673	Gabernet L, Jadhav SP, Feldman DE, Carandini M & Scanziani M (2005) Somatosensory
674	integration controlled by dynamic thalamocortical feed-forward inhibition. Neuron 48:315-
675	327.
676	Gil Z, Amitai Y (1996) Properties of convergent thalamocortical and intracortical synaptic
677	potentials in single neurons of neocortex. J Neurosci 16:6567-6578.
678	Gil Z, Connors BW, Amitai Y (1997) Differential regulation of neocortical synapses by
679	neuromodulators and activity. Neuron 19:679-686.
680	Gil Z, Connors BW, Amitai Y (1999) Efficacy of thalamocortical and intracortical synaptic
681	connections: quanta, innervation, and reliability. Neuron 23:385-397.

- 682 Girman SV, Sauve Y, Lund RD (1999) Receptive field properties of single neurons in rat
- 683 primary visual cortex J Neurophysiol 82:301-311.
- 684 Guido W (2018) Development, form, and function of the mouse visual thalamus. J
- 685 Neurophysiol 120:211-225.
- 686 Hata Y, Tsumoto T, Sato H, Hagihara K, Tamura H (1990) Horizontal interactions between
- 687 visual cortical neurons studied by cross-correlation analysis in the cat. J Physiol 441:593-
- 688 614.

689	Ikezoe K, Tamura H, Kimura F, Fujita	I (2012) Decorrelation	of sensory-evoked neuronal
-----	--------------------------------------	------------------------	----------------------------

- responses in rat barrel cortex during postnatal development. Neurosci Res 73:312-320.
- 691 Ito H, Maldonado PE, Gray CM (2010) Dynamics of stimulus-evoked spike timing correlations
- in the cat lateral geniculate nucleus. J Neurophysiol 104:3276-3292.
- 593 Ji XY, Zingg B, Mesik L, Xiao Z, Zhang LI, Tao HW (2016) Thalamocortical innervation
- 694 pattern in mouse auditory and visual cortex: laminar and cell-type specificity. Cereb Cortex695 26:2612-2625.
- 596 Jin JZ, Weng C, Yeh CI, Gordon JA, Ruthazer ES, Stryker MP, Swadlow HA, Alonso JM
- 697 (2008) On and off domains of geniculate afferents in cat primary visual cortex. Nat
 698 Neurosci 11:88-94.
- 699 Kajikawa Y, Schroeder CE (2011) How local is the local field potential? Neuron 72:847-858.
- Kimura F, Itami C, Ikezoe K, Tamura H, Fujita I, Yanagawa Y, Obata K, Ohshima M (2010)
- Fast activation of feedforward inhibitory neurons from thalamic input and its relevance to
- the regulation of spike sequences in the barrel cortex. J Physiol 588:2769-2787.
- 703 Kreiman G, Hung CP, Kraskov A, Quiroga RQ, Poggio T, DiCarlo JJ (2006) Object selectivity
- 704
 of local field potentials and spikes in the macaque inferior temporal cortex. Neuron

 705
 40.422.445
- 705
 49:433-445.
- 706 Li YT, Ibrahim LA, Liu BH, Zhang LI, Tao HW (2013) Linear transformation of
- thalamocortical input by intracortical excitation. Nat Neurosci 16:1324-1330.
- Lien AD, Scanziani M (2013) Tuned thalamic excitation is amplified by visual cortical circuits.
 Nat Neurosci 16:1315-1323.
- T10 Lien AD, Scanziani M (2018) Cortical direction selectivity emerges at convergence of thalamic

2021 0909

711 synapses. Nature 558:80-86.

- Liu BH, Wu GK, Arbuckle R, Tao HW, Zhang LI (2007) Defining cortical frequency tuning
- 713 with recurrent excitatory circuitry. Nat Neurosci 10:1594-1600.
- Logothetis NK (2003) The underpinnings of the BOLD functional magnetic resonance imaging
- 715 signal. J Neurosci 23:3963-3971.
- 716 Magee JC (2000) Dendritic integration of excitatory synaptic input. Nat Rev Neurosci 1:181-
- 717 190.
- 718 Mitzdorf U (1987) Properties of the evoked potential generators: current source-density analysis

of visually evoked potentials in the cat cortex, Int J Neurosci 33:33-59.

720 Nauhaus I, Busse L, Carandini M, Ringach DL (2009) Stimulus contrast modulates functional

connectivity in visual cortex. Nat Neurosci 12:70-76.

722 Okun M, Naim A, Lampl I (2010) The subthreshold relation between cortical local field

- potential and neuronal firing unveiled by intracellular recordings in awake rats. J Neurosci30:4440-4448.
- 725 Pachitariu M, Steinmetz N, Kadir S, Carandini M, Kenneth DH (2016) Kilosort: realtime spike-
- sorting for extracellular electrophysiology with hundreds of channels. bioRxiv, 061481.
- 727 Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point
- 728 processes. II. Simultaneous spike trains. Biophys J 7:419-440.
- 729 Pesaran B, Vinck M, Einevoll GT, Sirota A, Fries P, Siegel M, Truccolo W, Schroeder CE,
- 730 Srinivasan R (2018) Investigating large-scale brain dynamics using field potential
- recordings: analysis and interpretation. Nat Neurosci 21:903-919.
- 732 Poulet JF, Petersen CC (2008) Internal brain state regulates membrane potential synchrony in

2021 0909

- barrel cortex of behaving mice. Nature 454:881-885.
- 734 Raczkowski D, Fitzpatrick D (1990) Terminal arbors of individual, physiologically identified
- geniculocortical axons in the tree shrew's striate cortex. J Comp Neurol 302:500-514.
- Ringach DL (2021) Sparse thalamocortical convergence. Curr Biol 31:2199-2202.
- 737 Roy SA, Alloway KD (2001) Coincidence detection or temporal integration? What the neurons
- in somatosensory cortex are doing. J Neurosci 21:2462-2473.
- 739 Sedigh-Sarvestani M, Palmer LA, Contreras D (2019) Thalamocortical synapses in the cat
- visual system in vivo are weak and unreliable. Elife 8:e41925.
- 741 Sriram B, Meier PM, Reinagel P (2016) Temporal and spatial tuning of dorsal lateral geniculate

nucleus neurons in unanesthetized rats. J Neurophysiol 115:2658-2671.

- 543 Stoelzel CR, Bereshpolova Y, Gusev AG, Swadlow HA (2008) The impact of an LGNd impulse
- on the awake visual cortex: synaptic dynamics and the sustained/transient distinction. J
- 745 Neurosci 28:5018-5028.
- 546 Stoelzel CR, Bereshpolova Y, Swadlow HA (2009) Stability of thalamocortical synaptic
- transmission across awake brain states. J Neurosci 29:6851-6859.
- 748 Stratford KJ, Tarczy-Hornoch K, Martin KA, Bannister NJ, Jack JJ (1996) Excitatory synaptic
- inputs to spiny stellate cells in cat visual cortex. Nature 382258-261.
- 750 Swadlow HA (2002) Thalamocortical control of feed-forward inhibition in awake
- somatosensory 'barrel' cortex. Philos Trans R Soc Lond B Biol Sci 357:1717-1727.
- Swadlow HA, Gusev AG (2001) The impact of 'bursting' thalamic impulses at a neocortical
 synapse. Nat Neurosci 4:402-408.
- 54 Swadlow HA, Gusev AG, Bezdudnaya T (2002) Activation of a cortical column by a

2021 0909

- thalamocortical impulse. J Neurosci 22:7766-7773.
- 756 Tamura H, Kaneko H, Kawasaki K, Fujita I (2004) Presumed inhibitory neurons in the macaque
- 757 inferior temporal cortex: visual response properties and functional interactions with
- adjacent neurons. J Neurophysiol 91:2782-2796.
- 759 Tamura H, Mori Y, Kaneko H (2014) Organization of local horizontal functional interactions
- between neurons in the inferior temporal cortex of macaque monkeys. J Neurophysiol
- 761 111:2589-2602.
- 762 Tanaka K (1983) Cross-correlation analysis of geniculostriate neuronal relationships in cats. J
- 763 Neurophysiol 49:1303-1318.
- 764 Toyama K, Kimura M, Tanaka K (1981) Cross-correlation analysis of interneuronal
- connectivity in cat visual cortex. J Neurophysiol 46:191-201.
- 766 Usrey WM, Alonso JM, Reid RC (2000) Synaptic interactions between thalamic inputs to
- simple cells in cat visual cortex. J Neurosci 20:5461-5467.
- 768 Williams SR, Turner JP, Anderson CM, Crunelli V (1996) Electrophysiological and
- 769 morphological properties of interneurones in the rat dorsal lateral geniculate nucleus in
- vitro. J Physiol 490:129-147.

2021_0909

38

772 Figure Legends

774	Figure 1. The lateral geniculate nucleus (LGN) neuron spike-triggered average (STA) of the
775	cortical local field potential (LFP). A, Schematic representation of the recording configuration.
776	The electrodes for LGN and the visual cortex recordings are depicted on coronal sections of a
777	rat brain. Note that the brain sections and the two electrodes are not drawn to the exact scale for
778	illustrative purposes. B , An example of a spike train of an LGN unit (top) and simultaneously
779	recorded cortical LFP (bottom). The vertical lines in the top panel show the timing of the LGN
780	spikes. If a spike occurs $Y = 1$, otherwise $Y = 0$. The presented cortical LFP was spike-removed,
781	low-pass filtered, down-sampled, and z-score transformed. C, Top: an example of STA-LFP.
782	The green, blue, and black lines represent the raw STA-LFP, peristimulus time histogram-
783	predicted STA-LFP, and subtracted STA-LFP, respectively. The ten gray lines represent raw
784	STA-LFPs calculated with ten randomized spike trains. Average amplitudes from -250 to -200
785	ms were subtracted to align the signals. The vertical dashed line at 0 ms represents the timing of
786	the triggering-LGN spike. The horizontal dashed line indicates zero amplitude. Bottom: power
787	spectra of the subtracted STA-LFP in the top panel. D , Top: relationship between the average
788	firing rate during the total recording period of an LGN unit and the STA-LFP amplitude. Each
789	dot represents a single LGN unit. The red dashed line represents a linear regression. Bottom:
790	relationship between the spike width of an LGN unit and the STA-LFP amplitude. E , Top: an
791	example of STA-LFPs recorded from the eight shanks (s1-s8) of a cortical electrode. Middle:
792	relationships between the horizontal distance from the shank (peak shank) that recorded the
793	STA-LFP with the maximum amplitude and STA-LFP amplitude. In the box plot, the center of

794	each box (black horizontal lines) represents the median across LGN units, whereas the top and
795	bottom of the box represent the upper and lower quartiles, respectively. The attached whiskers
796	connect the most extreme values within 150% of the interquartile range from the end of each
797	box. Bottom: relationships between the horizontal distance and power of each frequency
798	component of STA-LFP (blue, δ (1–3 Hz); orange, θ (4–7 Hz); yellow, α (8–11 Hz); purple,
799	β (12–29 Hz); green, γ (30–250 Hz)). The median across LGN units was plotted.
800	
801	Figure 2. Relationship between the firing rates of a lateral geniculate nucleus (LGN) neuron
802	during a 20-ms period and the cortical local field potential (LFP) amplitude. A, Triggering
803	spikes of an LGN unit were classified into one of four firing-rate groups according to the
804	number of spikes within a 20-ms period (one spike, two spikes, three spikes, and four spikes).
805	The triggering spike was the first spike within a 20-ms period (indicated by thick vertical lines
806	at time zero). The black horizontal bar at the top represents the 20-ms period. B , An example of
807	spike-triggered average (STA)-LFPs calculated with an LGN unit for each firing-rate group
808	(red, one spike; green, two spikes; blue, three spikes; magenta, four spikes). The STA-LFP
809	calculated with all spikes of the LGN unit was also plotted (black line). C, Comparisons of the
810	normalized STA-LFP amplitude across the firing-rate groups. Top: comparison of the
811	normalized STA-LFP amplitude across the four firing-rate groups with LGN units that evoked
812	four spikes at most within the 20-ms period. Middle: comparison of the normalized STA-LFP
813	amplitude across the three firing-rate groups with LGN units that evoked three spikes at most
814	within the 20-ms period. Bottom: comparison of the normalized STA-LFP amplitude across the
815	two firing-rate groups with LGN units that evoked two spikes at most within the 20-ms period.

816	The horizontal dashed lines represent the normalized amplitudes equal to one (i.e., same as the
817	amplitude of the STA-LFP calculated with all spikes). Other conventions are as in Fig. 1.
818	
819	Figure 3. Relationship between the inter-spike interval (ISI) of spiking activity of a lateral
820	geniculate nucleus (LGN) neuron and the amplitude of cortical local field potential (LFP). A,
821	Left: schematic depiction of intervals between triggering and following LGN spikes (following
822	ISI, <20, 20–100, 100–200, 200–500, and \geq 500 ms). ISI time windows are represented by pale
823	cyan strips. The thick cyan vertical lines at time zero represent the timing of the triggering spike
824	and the thin cyan vertical lines represent an example of timing of a following spike. Right:
825	relationship between the following ISI and the normalized STA-LFP amplitude. B , Left:
826	schematic depiction of intervals between preceding and triggering LGN spikes (preceding ISI,
827	<20, 20–100, 100–200, 200–500, and \geq 500 ms). Right: relationship between preceding ISI and
828	the normalized STA-LFP amplitude. Other conventions are as in Figs. 1 and 2.
829	
830	Figure 4. Relationship between the temporal pattern appearing in three consecutive spikes of a
831	lateral geniculate nucleus (LGN) neuron and the amplitude of cortical local field potential
832	(LFP). A, Schematic depiction of three examples of a temporal pattern appearing in three
833	consecutive spikes. Top (magenta): a long preceding inter-spike interval (ISI) (≥500 ms) with a
834	short following ISI (<20 ms). Middle: (purple), a short preceding ISI (<20 ms) with a short
835	following ISI (<20 ms). Bottom (cyan): a modest preceding ISI (100-500 ms) with a modest
836	following ISI (100–500 ms). B , An example of spike-triggered average (STA)-LFPs calculated
837	for the three representative temporal patterns (magenta, a long preceding ISI (≥500 ms) and a

838	short following ISI (<20 ms); purple, a short preceding ISI (<20 ms) and a short following ISI
839	(<20 ms); cyan, a modest preceding ISI (100–500 ms) and a modest following ISI (100–500
840	ms)). The STA-LFP calculated with all spikes of the LGN unit (all-spike STA-LFP) was also
841	plotted (black). This LGN unit is the same as that in Fig. 2B. C, The median of the normalized
842	STA-LFP amplitude for the 16 ISI combinations calculated using neural activity recorded
843	during visual stimulation. The preceding ISI was plotted on the horizontal axis, the following
844	ISI was plotted on the vertical axis, and the median of the normalized LFP amplitude was color-
845	coded. D , The median of the normalized STA-LFP amplitude for the 16 ISI combinations
846	calculated using spontaneous activity. Other conventions are as in Figs. 1 and 3.
847	
848	Figure 5. Comparison of the observed spike-triggered average (STA) of cortical local field
849	potential (LFP) and reconstructed STA-LFP. A, An example of the observed STA-LFP (red line)
850	and reconstructed STA-LFP (blue line) for a temporal pattern with a long preceding ISI (\geq 500
851	ms) and a short following ISI (<20 ms). This LGN unit is the same as that in Fig. 4 <i>B</i> . B ,
852	Comparison between the normalized amplitude of the observed STA-LFP and that of the
853	reconstructed STA-LFP for a temporal pattern with a long preceding ISI (≥500 ms) and a short
854	following ISI (<20 ms). Each dot represents a single LGN unit. The horizontal and vertical
855	dashed lines represent the normalized amplitudes equal to one (i.e., same as the amplitude of the
856	STA-LFP calculated with all the spikes). The diagonal dashed line represents equality. The red
857	cross represents the medians. C, An example of the observed STA-LFP (red line) and
858	reconstructed STA-LFP (blue line) for a temporal pattern with a short preceding ISI (<20 ms)
859	and a short following ISI (<20 ms). This LGN unit is the same as that in A. D , Comparison

2021_0909

860	between the normalized amplitude of the observed STA-LFP and the reconstructed STA-LFP for
861	a temporal pattern with a short preceding ISI (<20 ms) and a short following ISI (<20 ms).
862	Other conventions are as in Fig. 1.
863	
864	Figure 6. Comparison between the normalized amplitude of the spike-triggered average of local
865	field potential induced by four spikes within a 20-ms period and that induced by a temporal
866	pattern of spikes with a long preceding inter-spike interval (≥500 ms) and a short following
867	inter-spike interval (<20 ms). Other conventions are as in Fig. 5.
868	
869	Figure 7. Relationship between spiking activity of a visual cortex (VC) unit and the temporal
870	pattern of spiking activity of a lateral geniculate nucleus (LGN) unit. A, Cross-correlograms
871	(CCGs) of 38 LGN-VC unit pairs with short latency delayed peak, which suggests the
872	monosynaptic excitatory connections from an LGN unit to a VC unit. Spike timing of a VC unit
873	were plotted relative to spike timing of an LGN unit. Spike counts were normalized with the
874	peak count. Top: color-coded CCGs for the 38 LGN-VC unit pairs. Each row corresponds to the
875	CCG of a single LGN-VC unit pair. CCGs were displayed in no particular order. The
876	normalized spike counts were color-coded. Bottom: the average of peak-normalized CCGs
877	across the 38 pairs. Shading represents standard deviation. The vertical dashed line at the 0 ms
878	represents the timing of LGN spikes. B , Schematic depiction of classification of spikes of an
879	LGN unit. A spike train of a VC unit (top) and an LGN unit (bottom). Each LGN spike was
880	classified into triggering spike (magenta; an LGN spike followed by a VC spike with short
881	latency of 1-4 ms) and non-triggering spike (cyan). The LGN spikes were further classified into

882	16 groups based on combination of preceding ISI (<20, 20–100, 100–500, and \geq 500 ms	s) and
004	To groups based on combination of preceding ISI ($<20, 20-100, 100-500, and \geq 500 ms$	s) an

- following ISI (<20, 20–100, 100–500, and \geq 500 ms). *C*, An example of spike count proportion
- calculated with trigger spike (left) and non-trigger spike (middle) and the spikes index (right)
- for the 16 ISI combinations. Proportions of spike count (left and middle) and the spike index
- 886 (right) were color-coded. **D**, The median of the spike index across 38 LGN-VC unit pairs for the
- 16 ISI combinations. The median of the spike index was color-coded. *E*, Relationship between
- the median of the spike index and the median of the normalized STA-LFP amplitude. Each dot
- represents a single ISI combination. Other conventions are as in Fig. 4.

Number of spikes during 20-ms period

