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ABSTRACT 

 

The determination of drug residence times, which define the time an inhibitor is in complex with its 

target, is a fundamental part of the drug discovery process. Synthesis and experimental 

pharmacokinetics measurements are, however, expensive, and time-consuming. In this work, we 

aimed to obtain drug residence times computationally. Furthermore, we propose a novel algorithm 

to identify molecular design objectives based on ligand unbinding kinetics. We designed an 

enhanced sampling technique to accurately predict the free energy profiles of the ligand unbinding 

process, focusing on the free energy barrier for unbinding. Our method first identifies unbinding 

paths determining a corresponding set of internal coordinates (IC) that form contacts between the 

protein and the ligand, then iteratively updates these interactions during a series of biased 

molecular-dynamics (MD) simulations to reveal the ICs important for the whole of the unbinding 

process. Subsequently, we performed finite temperature string simulations to obtain the free 

energy barrier for unbinding using the set of ICs as a complex reaction coordinate. Importantly, we 

also aimed to enable further design of drugs focusing on improved residence times. To this end, we 

developed a supervised machine learning (ML) approach that uses as input unbiased “downhill” 

trajectories from the transition state (TS) ensemble of the string unbinding path. We demonstrate 

that our ML method can identify key ligand-protein interactions driving the system through the TS. 

Some of the most important drugs for cancer treatment are kinase inhibitors. One of these kinase 

targets is Cyclin Dependent Kinase 2 (CDK2), an appealing target for anticancer drug development. 

Here, we tested our method using three different CDK2 inhibitors for potential further 

development of these compounds. We compared the free energy barriers obtained from our 

calculations with those observed in available experimental data. We highlighted important 
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interactions at the distal ends of the ligands that can be targeted for improved residence times. Our 

method provides a new tool to determine unbinding rates, and to identify key structural features of 

the inhibitors that can be used as starting points for novel design strategies in drug discovery. 
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I. INTRODUCTION 

 

Two essential factors describe the interaction 

between a drug and its target: binding affinity 

and residence time.1 While the binding 

affinity describes the intermolecular 

interaction between the ligand and the 

protein, the residence time defines the 

timescale of the interaction.2,3 Even if a drug 

interacts strongly with its target (high binding 

affinity), a short residence time can 

significantly reduce the efficacy of the drug.4  

The binding affinity arises from the 

thermodynamic relation between the stable 

bound and unbound states. The residence 

time, however, is determined by the path 

connecting those states, in particular, at the 

transition state of the unbinding pathway. 

Accordingly, promising hit candidates with 

high affinity have been discarded for the next 

step of the drug discovery process due to 

their low residence time.5 Traditionally, drug 

discovery focused on finding compounds that 

interact with high binding affinity to a specific 

target. Recently,  it is recognized that 

predicting pharmacokinetic properties is also 

a vital part of the drug design process.6,7  

 

A major challenge in drug discovery is finding 

a fast and reliable method to predict kinetics 

of ligand-protein interactions.8 Importantly, 

for experimental determination of ligand 

kinetics, ligands first need to be synthesized, 

which can be expensive and time-consuming 

even for a moderate number of compounds. 

Different experimental methods have been 

used to obtain kinetics of ligand-receptor 

unbinding, such as radioligand binding assays, 

fluorescence methods, chromatography, 

isothermal titration calorimetry (ITC), surface 

plasmon resonance (SPR) spectroscopy, and 

nuclear magnetic resonance (NMR) 

spectroscopy.6,9 

Radioligand binding assays and fluorescence 

binding assays require binding with 

radiolabelled ligands, where they exploit the 

physical-chemical characteristics of the ligand 

between their free and complexed forms with 

the target. Several successful assays have 

been used to predict ligand-protein 

unbinding, for example fluorescence 

resonance energy transfer (FRET)10 or 

fluorescence correlation spectroscopy (FCS).11 

These methods can suffer from interference 

(especially fluorescence), lack of accuracy for 

short residence times, and high cost/hazard in 

the case of radioligands.12 SPR is the most 

widely used assay to measure rate constants 

associated with (kon and koff) of ligand-

receptor unbinding. The receptors are 

immobilized to a sensor that can distinguish 
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the protein from its ligand-free form to its 

bound forms. This method is label-free; 

however, the attachment of the protein to 

the probe may influence the activity of the 

protein, due to conformational changes.12 To 

offer a screening approach that alleviates 

these difficulties, various computational 

techniques have been proposed as 

alternatives to estimating the kinetics of 

unbinding events.13,14 

 

Molecular dynamics (MD) is a powerful 

computational tool to understand at an 

atomistic level the behaviour of biological 

processes such as protein-ligand 

interactions.15 Unbiased MD simulations were 

successfully used in the initial stage of drug 

discovery process, using either multiple 

independent relatively short simulations,16 or 

using specialized computer architecture, such 

as ANTON, where microsecond long 

simulations are readily accessible.14 However, 

due to the limited timescales typically 

accessible via MD simulations, it is often 

challenging to obtain sufficient statistical 

sampling required to calculate kinetic and 

thermodynamic properties accurately. Drug-

protein unbinding processes occur on long 

timescales, typically ranging from millisecond 

to hours, depending on the nature and the 

strength of the interaction between the 

ligand and target. Some drugs, for example, 

Aclidinium, Deoxyconformycin, or Tiotropium, 

have a half-life of hours,17 requiring 

prohibitively long time scale simulations and 

highly demanding computer resources, 

therefore enhanced sampling methods are 

required.18 
  

To accelerate the simulations and sample rare 

events, different enhanced sampling 

techniques have been proposed to predict 

free energy barriers and uncover the kinetics 

of biological events.19,20 These methods 

include free-energy perturbation,21,22 

metadynamics (MetaD),23,24 temperature-

accelerated MD (TAMD),25 steered MD 

(SMD),26 milestoning,27 umbrella sampling 

(US),28 replica exchange,29 scaled MD,30 

smoothed potential MD,31 transition path 

sampling,32 τ-Random Acceleration Molecular 

Dynamics Simulations (τ-RAMD)33 and more 

recently a combination of enhanced MD with 

machine learning.34,35 For most of these 

methods, a key factor is the identification of a 

collective variable (CV), representing a 

physical pathway, that allows the calculation 

of the free energy profile.36 Hence, correct 

identification of appropriate CVs becomes a 

problem, with very few practical ways to build 

them properly.37,38,39 These methods have 

already been used for ligand unbinding: for 

example, MetaD was used to predict the 

ligand-protein unbinding of p38 MAP kinase 

bound to type II inhibitors,40 where 

depending on the set of CVs chosen, different 

values for koff were obtained, and the closest 

koff to the experimental data is still one order 

of magnitude lower. More recently, using the 

combination of MetaD with quantum 

mechanics/molecular mechanics (QM/MM) 

simulations, a more accurate prediction of the 

kinetics can be achieved.41 The residence 

times of Sunitinib and Sorafenib in complex 

with the human endothelial growth factor 

receptor 2 have been calculated using SMD.42 

SMD was also used to calculate the unbinding 

free energy profile for TAK-632 and PLX4720 

bound to B-RAF.43 In both works, the ligands 

could be distinguished qualitatively to assess 

shorter, or longer residence times, however, 

the predicted free energy barriers for the 
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unbinding were significantly lower than the 

experimental data.  

 

To produce accurate free-energy profiles 

using biased simulations with many important 

degrees of freedom, we need to define an 

ideal set of CVs that map the full path of the 

reaction coordinate.44,45 Usually, the vectors 

that describe this manifold are selected based 

on a priori chemical/physical intuition, 

typically based on the initial binding pose of 

the ligand. The same set of CVs are then kept 

constant and used for the full simulation. 

Considering only CVs from an initial structure 

implies possibly neglecting essential 

interactions that occur during the unbinding 

process, thus significantly affecting the free 

energy calculation. Additionally, structures 

resolved by X-ray crystallography or cryo-EM 

may capture the system in metastable states, 

which does not always reflect appropriate 

conformers for ligand binding.  

 

In this work, we introduce a novel enhanced 

sampling method to obtain accurate free 

energy barriers for ligand-protein unbinding. 

Unlike existing methods, we also propose a 

method that subsequently can identify key 

molecular features determining the unbinding 

kinetics. We suggest an iterative way of 

assigning our CVs during the unbinding 

trajectory and then using these CVs as the 

driving force to pull the ligand out from the 

pocket and to perform the sampling for 

accurate free energy calculations. Similarly to 

e.g., τ-RAMD (which, however does not 

provide a free energy profile), there is no 

need to a priori select CVs; these naturally 

arise from the unbinding trajectories that 

build a reliable path of unbinding taking the 

flexibility and dynamics of the system into 

consideration. 

The CVs extracted from our trajectories 

sufficiently describe a full pathway for the 

unbinding process. Subsequently, we 

optimize this path in the space of the 

identified CVs to obtained a minimum free 

energy profile using the finite temperature 

string method.46 While different unbinding 

trajectories might lead to slightly different 

variations due to multiple local minima along 

the paths, we typically expect that the main 

transition state ensembles would be captured 

by all of these paths similarly after the 

convergence to the minimum free energy 

pathway. This is the main underlying 

assumption behind the finite temperature 

string method, which was proven to work 

very well even for complex systems.47,48 Our 

results accordingly show little variations in 

the unbinding free energy barriers using 

different starting pathways for free energy 

calculations. 

 

In addition to determining unbinding rates, 

we also aim to identify key molecular 

descriptors that provide guidance for further 

design of drugs based on improved residence 

times. We propose a systematic approach to 

identify key low-dimensional sets of internal 

coordinates using machine learning (ML) 

approaches. Machine learning methods have 

been widely successful in multidimensional 

data driven problems, which are also applied 

to biomolecular simulations to determine key 

CVs.49–51 Here, we develop a novel approach 

making use of our obtained string unbinding 

pathway and, within that, the knowledge of 

the transition state (TS) ensemble. We 

explored two different ML methods in this 

study: Neural Networks (NN),52 which provide 
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efficient training on complex high-

dimensional data, and Gradient Boosting 

Decision Trees (GBDT),53 which allow 

straightforward evaluation of feature  

importances (FI).54 We generate unbiased 

“downhill” trajectories initiated at our TS, and 

use these to train a ML model which predicts 

the fate of binding or unbinding.  

 
FIG. 1. CDK2 bound to three different ligands: a thiazolyl-pyrimidine derivative (18K), b oxindole carboxylic 

acid derivative (60K), and c carboxylate oxindole derivative (62K), originated from PDB structures 3sw4, 4fku, 

4fkw, respectively. Structural details of the ATP pockets are shown for the three systems (bottom), with the 

ligands in the bound (green sticks), unbound (red sticks), and transition states (grey sticks). Dashed lines 

depict key interactions. 

To test this approach on a simple analytical 

model system, we generated trajectory data 

using a collection of 1D model potentials, 

including one selected double-well potential. 

Our results demonstrate that our novel ML 

analysis can identify the key features 

correlated to this selected double-well 

potential to define the end states and thus 

can be used for key feature selection 

successfully. To demonstrate the applicability 

and accuracy of this approach on challenging 

complex biomolecular systems, we obtained 

free energy barriers for three ligands bound 

to CDK2 with PDB IDs of 3sw4 (18K), 4fku 

(60K), and 4fkw (62K) (FIG. 1).55 Cyclin 

Dependent Kinase 2 (CDK2) is a crucial 

regulator in eukaryotic cell growth, 

deregulation of CDK2 has been associated 
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with unscheduled cell proliferation resulting 

in cancer progression and aggressiveness.56,57 

Selective inhibition of this protein makes it an 

appealing target in treating multiple tumours 

of specific genotypes.58 Several molecules are 

currently under clinical evaluation as CDK2 

inhibitors for cancer treatment, such as 

AT759,59 AG-024322,60 Dinaciclib,61 

Roniciclib,62 Milciclib.63 Furthermore, CDK2 is 

an ideal benchmark system with its relatively 

small size and well-documented kinetic data 

for the binding of a range of different 

molecules.55 

 

II. METHODS 

 

All MD simulations are carried out in NAMD 

2.12, 64 using AMBER ff14SB force field for the 

protein,65 and using the general Amber force 

field (GAFF) for the ligands.66 The MD 

simulation setup are detailed in 

Supplementary Note 1. 

 

UNBINDING SIMULATIONS 

Our unbinding method is illustrated 

algorithmically in FIG. 2. An explorational 

unbiased MD simulation of at least 20 ns was 

performed to identify the initial interactions 

between the protein and the ligand in the 

bound state. These initial simulations allow us 

to define the first set of CVs describing all 

distances between the heavy atoms of the 

ligand and the heavy atoms of the protein 

smaller than din = 3 Å, our interaction cut-off. 

The identified interactions will generate a 

single one-dimensional CV as the sum of 

these 𝑀 distances, 𝑑𝑖, and will be used for 

iteratively biasing the simulations to observe 

an unbinding trajectory.  

At every iteration, we will define our bias as a 

harmonic restraint: 𝑉 =
1

2
𝑘(𝐷 − ∑ 𝑑𝑖

𝑀
𝑖=1 )

2
, 

where 𝐷 = 𝐷0 + (𝑀𝑑𝑡𝑎𝑟). Here, we aim to 

reach the target value 𝐷 for our 1D CV 

starting from the initial value at the beginning 

of the nth iteration 𝐷0. 𝑑𝑡𝑎𝑟 is the incremental 

factor, set to 1 Å, representing the average 

increase we aim to achieve per distance for 

the next iteration. The targeted 𝐷 value will 

be reached progressively within the next 10 

ns long MD simulation for every iteration. The 

force constant, 𝑘, was set to 20 kcal/mol/Å2.  

At the end of each iteration, the biased 

trajectory is analyzed, and novel interactions 

are identified, within din of the ligand, that are 

present for more than half of the total 

simulation time (i.e., 5 ns). These novel 

interactions are then added to the list of 

interactions that define the main CV for the 

next iteration. Additionally, we also re-

evaluate existing interactions. If a distance 

during the last 5 ns of the trajectory exceeds 

dout = 6 Å or its variance exceeds dvar = 1 Å, 

then the distance is removed from the main 

CV in the next iteration. This exclusion factor 

will ensure that once a protein-ligand atom 

pair distance has exceeded dout, and therefore 

there is no significant interaction between 

these atoms, we no longer bias this 

interaction. Similarly, loosely interacting atom 

pairs have higher distance fluctuations, and 

thus the corresponding weak interaction does 

not need to be included in the bias. 

To reduce the number of interactions 

between the ligand and the protein and to 

remove redundancies, we combine atoms 

that are part of an equivalent group where a 

rotational degree of freedom can interconvert 

the atoms from one to the other (for 

example, benzene ring or carboxylic groups, 

see Fig. S1). Here, we consider the centre of 
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mass of that functional group and not the 

individual atoms.  

The iterative process will end when no more 

distances are present in the main CV from the 

last iteration n, thus there are no more stable 

 

 

 
FIG. 2. Flowchart illustrating the steps for the unbinding protocol. 

interactions between the ligand and the 

protein, suggesting that the ligand is outside 

the binding pocket. Fig. S2.1-S2.9 represent 

the distances included in the unbinding 

trajectories. 

 

B. FREE ENERGY CALCULATIONS 

 

Once the ligand is outside of the binding 

pocket, to determine the minimum free 

energy path for the unbinding trajectory, we 

use the finite-temperature string method.46 

The initial path and the full set of distances 

(CVs) are taken from the obtained unbinding 

trajectory.46,67,68 We extract the these CV 

values for each interatomic distance along the 

initial unbinding path to construct the 

minimum free energy unbinding pathway 

iteratively, building a string of 100 windows in 

the coordinate space. For each window and 

each CV, we apply a position restrain 

equidistantly along the initial fitted string, 

using a force constant of 20 kcal/mol/Å2. We 

perform biased simulations using these 

restraints for a total time of 5 ns per window. 

From the obtained set of trajectories, a high-

order (8) polynomial fitting is applied using 

the average values for each collective 

coordinate to build the subsequent set of 

refined CV positions. The procedure is carried 

out iteratively until the convergence of the 

free energy profiles and the pathway. This is 
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verified by ensuring that the maximal change 

of each CV between subsequent iterations is 

below 7% (or 0.3 Å) from the previous 

iteration. By adding multiple overlapping 

biasing potentials along the dissociation 

pathways which are parametrized via the 

identified CVs, the string simulations can 

sufficiently sample the high dimensional path 

describing the full unbinding trajectory in 

detail. Finally, to obtain the corresponding 

Potential of Mean Force (PMF), we unbias the 

simulations using the binless 

implementation46 of the weighted histogram 

analysis method (WHAM).62  

 

C. MACHINE LEARNING TRANSITION STATE 

ANALYSIS (MLTSA) 

 

We developed a Machine Learning Transition 

State Analysis (MLTSA) method to identify 

novel descriptors that determine the fate of a 

trajectory from the TS, which is applicable to 

unbinding simulations, but also suitable for 

other applications as a low-dimensional 

feature selection method for highly complex 

processes where a TS region is identified. In 

our case, the novel molecular interactions 

between the drug molecule and the protein 

for unbinding provide key signatures that 

determine the unbinding kinetics.  

 

To test the validity of the MLTSA, we created 

an analytical model and compared the ability 

of two ML approaches to detect correlated 

features: a Multi-Layer Perceptron (MLP) 

architecture NN model and Gradient Boosting 

Decision Trees (GBDT), a common ML 

approach in feature selection. 

 

The analytical model was based on using 

multidimensional trajectories generated via a 

set of one-dimensional (1D) free energy 

potentials (see details in SI Analytical Model 

System). Two types of potentials were used, 

both a set of single-well (SW) and double-well 

(DW) potentials. We used all but one of the 

DW potentials as “noise” and one of the DW 

potentials to define the outcome of the 

process, as the decisive coordinate to classify 

trajectories as “IN” or “OUT”. We generated 

trajectories using Langevin dynamics along 25 

1D potentials. We used these trajectories to 

define 180 input features analogously to our 

observable CV-s by computing linear 

combinations of the original coordinates (see 

details in SI Analytical Model System). In our 

example, 11 of these 180 contained the 

selected DW potential with some non-zero 

coefficient (see Table S1). We used these set 

of CVs to train the ML methods to predict the 

trajectory outcomes. Importantly, we aimed 

to identify the CVs that had the largest 

coefficients for our key selected DW 

potential. 

 

We trained the MLP to analyze the model 

datasets of the downhill trajectories and 

predict their possible outcome from early on 

data, i.e., at 30-60 steps of the downhill 

trajectory for the analytical model. The 

training was performed using the Scikit-learn 

library.70 We trained a simple model with an 

MLP Classifier architecture, using three main 

layers (input, hidden, and output) with as 

many input nodes as input features 

depending on the system of study (for the 

analytical model 180 were used, for CDK2 see 

Table S1.II), fully connected to a hidden layer 

with 100 hidden neurons and ending in an 

output layer with one output node each for IN 

or OUT classifications. The model was 

optimized using the Adam solver71 and using 
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the ReLu72 function as an activation function 

for the hidden layer. The training was done 

with a learning rate of 0.001, iterating over 

data until convergence or upon reaching the 

maximum number of iterations (500 epochs). 

Convergence is determined by the tolerance 

and the number of epochs with no change in 

loss. When there are 10 consecutive epochs 

with less than 0.0001 improvement on the 

given loss, the training stops, and 

convergence is reached. The same 

parameters were used for both the analytical 

model and CDK2 data.  

 

We also tested the GBDT model using the 

Scikit-learn library as a comparison to the 

MLP approach. This method provides FI that 

enable the ranking and identification of 

relevant features. We trained 500 decision 

stumps as weak learners for GBDT minimizing 

a logistic loss function, with a learning rate of 

0.1. The criterion for the quality of the splits 

was the Friedman Mean Squared Error (MSE), 

with a minimum of 2 samples to split an 

internal node, and a minimum of 1 sample to 

be at a leaf node. The maximum depth of the 

individual regression estimators was 3, 

without a limit on the maximum number of 

features to consider as the best split, without 

maximum on leaf nodes and using a 

validation fraction of 0.1. Same parameters 

were used for both the analytical model 

system and the CDK2 simulations. 

 

The flowchart of the MLTSA method is 

illustrated in Fig. S3. For the analytical model, 

we run 180 trajectories for the ML training 

and a separate validation set with 50 

additional unseen trajectories. Following the 

flowchart, after labelling them as “IN” or 

“OUT” using the decisive coordinate, we 

created a dataset for the ML algorithms 

containing 180 features per frame. We 

trained the ML models at different time 

frames (see Fig. S5) to observe the evolution 

of the accuracy throughout the simulations. 

This allows us to find a time range in the 

simulations where the classification problem 

is neither hard nor too trivial. Using this 

range, we trained the MLP model to analyze 

the importance of the features with our novel 

method. In a similar fashion to feature 

permutation73,74, or other model inspection 

techniques75–77, the MLTSA uses the Global 

Mean (GM) approach76, which swaps the 

value of each feature, one at a time with the 

mean value of the feature across all data used 

for training. This altered dataset is used for 

prediction again expecting to get the same 

accuracy as the training on non-correlated 

features and an accuracy drop on the 

correlated features, which depends on the 

level of correlation. For the comparison with 

GBDT and its FI, we trained the model on the 

same time and fetched the FI from the model 

to compare it with the accuracy drop analysis.  

 

For the application of the MLTSA on CDK2, 

first we identified the approximate TS 

location by selecting the last simulation 

frames from the highest energy five windows 

near the TS point of the obtained PMF. From 

each of these five starting coordinates, we 

then run 50 independent unbiased MD 

simulations 5 ns long each. We classify and 

label these short ‘downhill’ trajectories by 

considering a combination of two key 

distances (see Table S1.I), to identify which 

simulations finish either in a ligand bound 

position (IN) or in a ligand unbound position 

(OUT). We then select the starting structure 

(i.e., our TS) that provides the closest to a 1:1 
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ratio of IN and OUT events amongst these 

trajectories, and we run 200 additional 5 ns-

long unbiased MD simulations with this 

starting point. We consider all interatomic 

distances (heavy atoms only) between the 

ligand and the protein that are within 6 Å at 

the TS starting position and determine the 

values of these distances along downhill 

trajectories. These constitute a dataset of 

distances for each simulation trajectory, and 

we aim to select the most important features 

from these with our MLTSA method. 

 

The number of epochs and convergence of 

the loss function for each model can be found 

in the Tables S4.I – S4.III and Fig. S6. Thus, 

using the frames coming from the multiple 

short unbiased MD simulation trajectories 

starting from our TS, we provided a dataset of 

distances extracted along the trajectory, as 

well as the future outcome of the IN or OUT 

events as the desired answer/classification. 

We performed the training with trajectories 

of several different lengths as well as 

different time frames (Fig. S4), to observe the 

predicted accuracy at different time ranges 

along the simulations. From all the available 

trajectories for each system we reserve a part 

for further validation to avoid the overfitting 

of our model. The rest is used for training, 

with all frames from the trajectories 

concatenated and randomly mixed, then split 

in different fractions as training (0.7) and test 

(0.3) sets, which is used to assess if the model 

is learning appropriately. The trained model is 

additionally verified to have a similar 

prediction accuracy on the unseen 

trajectories. 

 

Using our trained model, we assess which 

features are the most important for the 

model to predict whether the simulation is 

classified as bound (IN) or unbound (OUT). To 

do so, we apply our own feature reduction 

approach (FR), in which every single distance 

(i.e., feature) is excluded one-by-one from the 

analysis, and we calculate the drop in 

accuracy compared to the full set of distances 

present. Differently from the standard 

approach,66 where the real value of each 

excluded feature is replaced with a zero, here 

we replace the value for each excluded 

feature with the global mean of that selected 

feature across the simulations, thus cancelling 

the variance of the aforementioned feature.  

 

III. RESULTS AND DISCUSSIONS 
 

MLTSA analytical test and validation 

 

ML training on the model potential-derived 

trajectories was performed with both MLP 

and GBDT ML methods. We performed the 

MLP training at different time frames and 

trajectory lengths, from the 0th time step to 

the 500th step in intervals ranging from 10 to 

150 frames at a time to assess the accuracy 

through time (Fig S5). Using a suitable time 

range consisting of the 30th-60th simulation 

steps from each trajectory, the trained ML 

methods found the classification problem 

accurately solvable, but not too trivial. We 

performed 100 replicas of the full process 

from generating 180 new independent 

simulations for each replica and performing 

the ML training. The MLP achieved an average 

test accuracy over 94% and an average 

validation accuracy over 93% whereas the 

GBDT achieved over 99% on the test set and 

91% on the validation set. One notable 

difference between the training on both 

models is the computational time consumed, 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 9, 2021. ; https://doi.org/10.1101/2021.09.08.459492doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.08.459492


   
 

on MLP the 100 replicas took 5.85h whereas 

the GBDT took 8.33h which is 1.4x times 

longer than the MLP.  

To identify the selected DW potential and its 

highest correlated features from the dataset, 

we calculated the accuracy drop (Fig. S3) 

using the trained MLP and compared this 

approach with the FI using GBDT. Results of 

both feature analysis are found in Fig. 3 for 

the 1DW dataset and in Fig. S10 for the 5DW 

potentials dataset. 

 

The highest correlated features (colored 

depending on the correlation level, color bar 

in Fig. 3 right panel) were correctly identified 

by both MLP and GBDT models. For GBDT, 

only the top three features show a high FI 

value (labels added to datapoints in Fig. 3), 

whereas the rest of the correlated features 

ranging from α~34% up to ~60% do not show 

a significant FI value. In addition, three 

features (#48, #89 and #136) despite having 

40.34%, 34.80% and 35.48% mixing 

coefficients, respectively, GBDT did not 

capture their correlation, showing values very 

FIG. 3. Comparison between GBDT (top) and MLTSA with NN (bottom) feature analysis methods for the 1DW 
dataset. Correlated features are marked from blue (0%) to red (100%) depending on the mixing coefficient, α 
(x symbols, color scale on the right, five highest mixing coefficients also displayed for the datapoints). 
Uncorrelated features (small black symbols) are at 0 FI for GBDT and show no loss of accuracy for MLTSA 
with MLPs. Correlated features all show a significant accuracy drop for the MLP, while only the top 
correlated features have high FI using GBDT.  
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close to 0. For the MLP, the top three 

distances are similarly captured as in the FI 

with the highest accuracy drops. Importantly, 

all correlated features have a non-zero 

accuracy drop, showing that they are 

correctly identified.  

 

 

 

 
FIG. 3. a Unbinding trajectory of ligand 60K represented as selected snapshots along the trajectory at 0, 60, 

90 and 160 ns from left to right. A representative set of distances used for the bias are shown as coloured 

dashed lines (for the full set of distances used, please refer to Fig. S2.1-S2.9), b Representative distance 

values during the trajectory. The lower dashed line is the cut-off below which an interaction is included in 

the main CV, the upper cut-off is the value above which the distance is excluded from the CV. c 

Representative distances included in the CV along the unbinding trajectory. 

 

Using the dataset with increased complexity 

consisting of 5 DW potentials and 15 

correlated features (Fig. S10), we observed a 

similar performance of the two ML methods. 

GBDT correctly captured and ranked the top 

three features (#8, #25 and #35). However, 

most other important features scored a FI 

value very close to 0. Out of 15 correlated 

features, GBDT hasn’t identified 12 of them 

with high FI, whereas the MLP captured all of 

them. However, the MLP accuracy drop did 

not rank the top four features in the correct 

order, scoring the 3rd most correlated feature 

with the biggest accuracy drop.  

Considering both analytical models, we found 

that which GBDT has a higher specificity to 

rank the top correlated features in the correct 

order, MLP has a higher sensitivity and 
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captures all correlated features but cannot 

necessarily identify the highest ranked ones 

quantitatively using the accuracy drop as the 

measure. Therefore, a combination of the two 

ML methods can further help identify the 

most important features. In more complex 

systems, this performance might not be 

directly generalizable, however, due to the 

simple linear correlation of the CVs of this 

model. 

 

CDK kinase unbinding free energy 

calculations 

 

For each system, we performed three 

independent simulation replicas starting from 

the respective equilibrated system. For each 

replica, we performed the initial unbiased MD 

simulation, followed by our unbinding 

trajectory determination procedure and 

subsequently calculating the minimum free 

energy path and the corresponding free 

energy profile using the finite temperature 

string method. 

Fig. 3 shows a representative result of the 

unbinding process for selected interactions. 

First distances (blue and orange) are 

identified from the initial unbinding 

trajectory. Later in the unbinding process at 

60 ns a new interaction is found (green line) 

and at 90, and 160 ns more distances are 

included in the main CV (red and purple, 

respectively). Additionally, interactions are 

progressively being removed as they are 

breaking. Details of the selected CVs during 

the unbinding iterations are in the panels of 

Fig. S2.1-2.9 for every replica. 

Overall, while the identified CVs in different 

replicas vary, a few common key CVs are 

present in all unbinding trajectories within 

different replicas. However, even if the actual 

unbinding pathways have differences for 

different replicas, as seen by looking at the 

different distances found along the path 

(Fig. S2), they are all expected to pass through 

the same TS ensemble. This can be confirmed 

from the free energy profiles as well, as there 

is only one key barrier corresponding to the 

breaking of the drugs with the His84 H-

bonding contact (FIG. 5)68, suggesting that the 

different replicas share this same TS 

ensemble indeed, despite the slightly varying 

pathways and identified CVs along the path. 

 

 

Table I. Ligand binding kinetic and thermodynamic values of the three systems from Dunbar et al.55 and 

calculated results obtained from our computational simulations. ΔG‡
calc was calculated using the Arrhenius 

equation: k=kBT/h exp(ΔG‡/kBT) at 298 K.79  

PDB Ligand 
K

D
 

(M) 
k

on
 

[M
-1

s
-1

] 
k

off
 

[s
-1

] 
ΔG‡

exp
 

(kcal/mol) 
ΔG‡

calc
 

(kcal/mol) 

3sw4 18K 9.61E-07 1.00E+05 0.0823 18.93(±0.17) 16.29(±0.21) 

4fku 60K 9.86E-08 1.32E+05 0.0133 20.01(±0.12) 9.96(±1.5) 

4fkw 62K 4.73E-08 6.49E+04 0.00261 20.97(±0.05) 20.27(±1.06) 
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The energy barrier extracted from the PMF of 

our simulations qualitatively agrees with the 

experimental results and are very well 

reproducible within the same system (Table I 

and FIG. 4). The shape of the free energy 

profile is also consistent amongst the replicas, 

however the exact shape of the free energy 

present for that replica (Fig. S8 and Table S5). 

 
FIG. 4. PMF of the unbinding path for 18K (a) 60K (b), and 62K (c). The free energy profile is obtained from a 

representative replica, the standard error, shown as shaded area are obtained by dividing the full dataset 

into 4 subgroups. 

Generally, higher number of CVs results in a 

broader TS peak (e.g., Fig. S8, ligand 62K).  

For ligands 18K and 62K, we obtained very 

similar kinetic data to the experimental one, 

while ligand 60K shows a larger deviation of 

~10 kcal/mol from the experimental value 

(FIG. 4). Importantly, comparing the same 

ligand within the three different replicas in all 

the three system provide very similar free 

energy barriers, expressed with a low 

standard error. Our energy barriers are able 

to reproduce the high energy barriers also 

seen experimentally thanks to the 

introduction of numerous key CVs that are 

not only taken from the initial ligand-bound 

conformation but instead introduced along 

the unbinding path (Fig. 3). 

 
FIG. 5. CVs obtained from the unbinding of 18K (a), 60K (b), and 62K (c); representative distances shown in 

dashed lines (yellow: interaction from the initial structure, cyan: interaction found during the unbinding 
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trajectory), red sticks represent the coordinate of the ligand when it is outside the pocket. These distances 

appear in each of the three replicas for each system. 

 
FIG. 6. Representation of the PMF of ligand 62K along the String coordinate and the path of multiple 

downhill trajectories started at the TS (in green) for further analysis. From the TS coordinate as a starting 

point, a set of simulations leading to both an IN position (blue) and an OUT position (red) are represented as 

lines. The green dots illustrate the free energy profile datapoints obtained from the WHAM calculation using 

the string window as string coordinate, and as a green line, the fitting obtained from the green dots. The 

yellow shade represents the simulation time portion used for analysis during our machine learning-based 

approach. 

 

This H-bond was reported as a key interaction 

in many ligands in complex with 

CDK2/CDK5.80,81 These distances were found 

and included from the initial unbiased 

simulation in each of the three systems 

before the unbinding procedure. However, 

during the unbinding trajectory, once this 

important H-bond between His84 and the 

ligand is broken, new interactions are formed, 

for varying time scales. For 18K, in all the 

three replicas, H-bonds are formed with the 

exocyclic amino group of the ligand (N5) and 

the backbone oxygen of Glu81 and 

subsequently with the backbone oxygen of 

His84. 60K and 62K molecules present a 

sulphonamide terminal group, which, during 

the trajectory, interacts with Val163 and 

His84 of CDK2. 

To analyze which distances are the most 

important at the TS region, we implemented 

our MLTSA method. Starting with three 

datasets of 172 (60K), 139 (62K) and 148 

(18K) independent downhill trajectories for 

each system, and initial set of CVs of over 170 

(Table S1.II), we obtained a shortlist of 

distances for each system that are major 

determinants for the prediction of whether a 

molecule ends up in the bound or unbound 

states (FIG. 6). By training with trajectory data 
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from up to 0.3 ns of each downhill simulation, 

the model can predict with high accuracy the 

IN or OUT outcome of the trajectories, more 

specifically: 80.11% for 18K, 90.44% for 60K 

and 93.83% for 62K. The effectiveness of the 

ML training is confirmed by comparing the  

 
FIG. 7. Identification of the essential distances (Feature Reduction) from the largest accuracy drop using the 

last 50% (yellow), 25% (red), and 10% (blue) of the frames up to the first 0.3 ns of the simulations for a: 18K, 

c: 60K, e: 62K. The different shades in the background group the different features according to the atom of 

the ligand involved. Features presenting significant decrease in accuracy are labelled (see Table S1.II) and 

portrayed as a 3D representation on the right side of each plot: b:18K, d:60K, and f:62K. 
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accuracy of predicting the trajectory 

outcomes using our original final free energy 

reaction coordinate that was used to classify 

the trajectories at 5 ns (see Fig. S6, S7 and 

Tables S4.I-S4.III for additional results with 

analysis performed at different simulation 

lengths). Importantly, the ML model is able to 

predict the outcome more accurately at early 

times (before ~0.3 ns), than using the best 

possible prediction via the string reaction 

coordinate: with above ~80% accuracy versus 

~60-70%, respectively for the ML and the 

standard reaction coordinate (Fig. S9.I-S9.III). 

Using the trained model, we then performed 

a feature reduction analysis to identify which 

CV features affect the overall prediction 

ability of the ML model the most. For all three 

molecules we were able to select the most 

important structural features (FIG. 7 a, c, e), 

that lead to the significant reduction of the 

prediction accuracy, when such feature is 

eliminated (kept as a constant value fed to 

the ML, see Fig. S3 for details), while other 

features do not affect the overall accuracy of 

the predictions. 

We also compared the validity of the feature 

reduction approach with GBDT to identify FIs. 

The results obtained show broad similarity 

with our main MLTSA approach (Fig. S11.I – 

S11.III) and outperform the baseline approach 

without ML. This suggests that alternative ML 

models may also be used successfully and 

further validate our results. 

 

 

IV. CONCLUSIONS 
 

Optimizing ligand unbinding kinetics is a very 

challenging problem for small molecule drug 

discovery and design, that can lead to the 

development of drugs with superior efficacy. 

To tackle this, we have developed a new 

method, which allows us to calculate the free 

energy barrier for the ligand unbinding 

process, therefore providing quantitative 

information about the residence time of a 

specific ligand. Our method involves an 

exploration step, where a ligand unbinding 

path is determined together with key 

collective variables that describe this path. 

Subsequently, we perform accurate free 

energy calculations using the complete set of 

identified interactions as CVs along the 

unbinding path via the finite temperature 

string method. This provides us with the free 

energy barriers and an ensemble of structures 

at the transition state of the ligand unbinding 

process. The novelty of the method lies in the 

combination of automated iterative addition 

and removal of the collective variables 

determining an unbinding trajectory, which 

allows us to discover novel interactions not 

available a priori, based on the interactions 

from the bound structure. We found that 

while the unbinding trajectories show 

different paths between different replicas for 

the same system, our method nevertheless 

identifies the key interactions important 

during the unbinding process and provides 

consistent free energy barriers. The 

combination of generating an initial path and 

identifying the important CVs for the 

unbinding process with the string method for 

accurate free energy calculations using high 

dimensional reaction coordinates provide an 

efficient way to obtain quantitative kinetics of 

ligand unbinding. 

 

We tested this method using a well-studied 

cancer drug target, CDK2, using three drug 

molecules with measured kinetic profiles. We 

obtained high energy barriers corresponding 
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to experiments using our method, which 

demonstrates the fundamental importance of 

determining a well-selected, high-dimensional 

set of CVs for the correct description of the 

process and kinetics results. 

 

We explored analytical 180-dimensional 

systems using one or multiple DW potentials. 

We performed the ML analysis both with 

GBDT and MLP methods. Our results 

demonstrate for simple linear mixing models 

that they both can capture correctly the most 

important correlated features. The MLP is a 

faster approach, it was more sensitive to 

correlated features, however, sometimes 

could not rank the top features 

correspondingly. On the contrary, the GBDT 

feature importances could skip lowly 

correlated features in a dataset but can more 

accurately rank the FIs of the top selected 

features sacrificing higher computational 

time. Thus, we suggest that a joint approach 

of both models might complement each other 

to identify relevant CVs. Nonetheless, future 

studies with non-linear correlated time series 

can further help to explore the performances 

of these and other ML methods. Importantly, 

analogous analysis can be performed for 

various complex processes, including ones 

with multiple states as possible outcomes.  

To aid the kinetics-based design of novel 

compounds, we also developed a novel 

method, MLTSA, that allows us to identify the 

most important features involved at the TS of 

the unbinding. We generated multiple 

trajectories initiated at the TS, which either 

terminated in the bound state or in the 

unbound state. We then trained a multilayer 

perceptron ML algorithm to predict the 

outcome of the trajectories by using a set of 

CVs and data drawn from the initial segment 

of the trajectories only. By doing so, we were 

able to demonstrate that the ML was able to 

predict the trajectory outcomes with much 

higher accuracy than using the original set of 

CVs used for the free energy calculations. A 

feature importance analysis was further 

employed to then identify the key CVs and 

the corresponding structural features that 

determined the fate of the trajectories, 

therefore are the most important descriptors 

of the TS.  

In addition to binding rates, we also aimed to 

identify specific molecular features and 

interactions with the target protein that 

allows us to design kinetic properties of the 

ligand. Using our ML methods, we identified 

multiple interactions between the protein 

and specific parts of the ligands that were of 

major importance for the trajectories to pass 

the TS. Important protein-ligand interactions 

at the TS-bound poses for CDK2 correspond 

to functional groups of the distal ends of the 

ligands. Besides His84, a known key residue 

for interaction with multiple CDK2/4 

inhibitors, here we also identified additional 

common interactions within CDK2 across the 

ligands, for example between Lys89 and the 

sulfonamide groups or between Asp145 and 

the carboxylic group and the ester group for 

60K and 62K, respectively. Importantly, to 

perform this analysis, we require the 

knowledge of the TS structures as well as the 

MLTSA analysis using a set of trajectories 

from these initial points. Our algorithms 

enable us to uncover novel design objectives 

for a kinetics-based lead optimization 

process. 

 

SUPPLEMENTARY MATERIALS 
See Supplemental Material at [URL will be 

inserted by publisher] for simulation set-up 
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for MD; atom clustering for the unbinding; 

unbinding distances; MLTSA flowchart and 

distances used; training results for MLTSA; all 

replica free energy profiles; validation for ML 

analysis and GBDT results. 
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