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Abstract 
 
Annotation of single cells has become an important step in the single cell analysis framework. 
With advances in sequencing technology thousands to millions of cells can be processed to 
understand the intricacies of the biological system in question. Annotation through manual 
curation of markers based on a priori knowledge is cumbersome given this exponential growth. 
There are currently ~200 computational tools available to help researchers automatically annotate 
single cells using supervised/unsupervised machine learning, cell type markers, or tissue-based 
markers from bulk RNA-seq. But with the expansion of publicly available data there is also a need 
for a tool which can help integrate multiple references into a unified atlas and understand how 
annotations between datasets compare. Here we present ELeFHAnt: Ensemble learning for 
harmonization and annotation of single cells. ELeFHAnt is an easy-to-use R package that employs 
support vector machine and random forest algorithms together to perform three main functions: 1) 
CelltypeAnnotation 2) LabelHarmonization 3) DeduceRelationship. CelltypeAnnotation is a 
function to annotate cells in a query Seurat object using a reference Seurat object with annotated 
cell types. LabelHarmonization can be utilized to integrate multiple cell atlases (references) into a 
unified cellular atlas with harmonized cell types. Finally, DeduceRelationship is a function that 
compares cell types between two scRNA-seq datasets.  ELeFHAnt can be accessed from GitHub 
at https://github.com/praneet1988/ELeFHAnt. 
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1 Introduction 
 
Single cell sequencing has become an important method for understanding biological systems at 
an increasingly granular level1,2,3. For single cell RNA-seq (scRNA-seq) data specifically, one of 
the primary questions is how to determine cell identity from the transcriptome. It is common to 
visualize such data and find clusters of cells with similarity in gene expression, but assigning each 
cluster a cell type is a much more open-ended task. Taking advantage of publicly available, 
annotated datasets in combination with supervised learning is a powerful method for addressing 
this question. Ensemble Learning for Harmonization and Annotation of Single Cells (ELeFHAnt) 
is an R package that utilizes this approach, enabling users to annotate clusters of single cells, 
harmonize labels across datasets to generate a unified atlas, and infer relationships among cell 
types between two datasets. It provides users with the flexibility of choosing between random 
forest and SVM (Support Vector Machine) based classifiers or letting ELeFHAnt apply both in 
combination to make predictions. 
 
As an alternative to manual annotation, there are many automatic cell annotation tools currently 
available based on either gene marker, correlation, or machine learning-based methods, each with 
varying levels of performance4. The label transfer method from Seurat is among the most well-
known, quickly identifying labels by finding neighboring “anchor” cells1. There are also deep 
learning-based tools emerging such as scANVI, which utilizes generative models but requires 
greater computation time5. 
 
ELeFHAnt is a supervised machine learning-based tool that enables researchers to identify cell 
types in their scRNA-seq data while providing additional unique features. ELeFHAnt gives users 
the ability to use and compare not just one but multiple classification algorithms simultaneously 
through its ensemble method, weighting their predictions to produce the best consensus among 
them. SVM and random forest classifiers were selected for the ensemble based on their superior 
accuracy and computation time in a benchmarking study6. Additionally, selecting the optimal 
reference is a challenge addressed by harmonization, that allows users to integrate multiple 
datasets together into an atlas. A standardized set of labels is generated across all of them, which 
can subsequently be used to annotate new datasets. Relationships between datasets can also be 
deduced to better understand how each was annotated. This is provided in an easily interpretable 
heatmap format that compares all cell types between them. Finally, a subsampling procedure is 
used to enable faster predictions while being shown not to influence reproducibility.  
 
ELeFHAnt has been tested on multiple public datasets related to early fetal development and the 
human pancreas, where it was able to effectively predict and harmonize cell types. We then present 
a case study for when reference and query are not as directly related, specifically using a tissue 
atlas to annotate organoid data. We also perform benchmarking and find that our approach 
achieves comparable performance to other annotation tools. Taken together, we hope this 
demonstrates that ELeFHAnt lends itself to various problems in the single cell research space. 
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Figure 1: 
 

 

Figure 1: ELeFHAnt model: Workflow summary of different functions. 
 

2 Results 
 
2.1 Label harmonization creates a unified atlas from multiple datasets 
 
When integrating single cell RNA datasets with different sets of cell type assignments/labels, it can become 
very difficult to infer the cell type label that an integrated cluster should be associated with. Many cell 
labels can be found to overlap or disagree with one other. To solve this problem, we designed a function 
(LabelHarmonization) to harmonize cell labels from multiple datasets into a unified atlas with cell labels 
assigned to each cluster of cells in the integrated dataset. To demonstrate ELeFHAnt’s LabelHarmonization 
we used three datasets with intestinal cells profiled from fetal gut development: E-MTAB-8901, 
GSE158702, and E-MTAB-10187 (Table 1). Briefly, we integrate the three atlases (~120k cells) using 
Seurat’s canonical correlation analysis-based integration algorithm, resulting in 41 clusters. For label 
harmonization we kept 120 of the 141 total cell labels (~112k cells), removing cell labels that were not 
informative (Supplementary Table 2), and then created training and test sets using 60% and 40% of the data 
(please see Methods for details). Using its ensemble learning method ELeFHAnt predicted cell labels for 
each of the 41 integration clusters, harmonizing the 120 cell labels to a final set of 33 (Figure 2). In Figure 
2, the left panel shows integrated cells labeled with the 120 cell labels that all references contributed, 
whereas on the right panel, integrated cells labeled with the 33 harmonized cell labels generated by 
ELeFHAnt are shown. As an example, there are initially ten different neuronal cell labels as shown on the 
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left, while on the right ELeFHAnt harmonized these cell labels and found three that best annotate the given 
clusters. 
 
Whether these harmonized cell labels are appropriate for each cluster can be assessed by the 
validatePredictions function in ELeFHAnt, which uses gene set enrichment analysis (GSEA) as its 
foundation. The top 100 markers from each cell label in the integrated dataset are used as gene sets and 
their enrichment is tested in the top 100 markers for each integrated cluster (please see Methods for details). 
This GSEA pre-ranked based enrichment analysis shows that ELeFHAnt’s predictions are among the top 
choices based on adjusted p-value and/or size of the gene set enriched in leading edge analysis 
(Supplementary Table 1, (Harmonized_Labels_GSEA_Stats)). We also provide complete enrichment 
results from GSEA (Supplementary Table 1, (GSEA Analysis Validate Pred.) and have highlighted 
predicted label choices from ELeFHAnt. 
 
Figure 2: 

 
Figure 2: ELeFHAnt generates harmonized cell labels : ~112k cells are integrated from three fetal 
gut references. A) Atlas colored using 120 cell labels B) Atlas colored using 33 cell labels predicted 
by ELeFHAnt  
 
 
Table1: 

Dataset Organ Number of 
cells 

Number of 
features/genes 

Number of 
clusters 

Number of 
cell types 

Sequencing 
protocol  

E-MTAB-
89017 

Duodenum 21592 33694 31 26 10X 

GSE1587028 Intestine 20779 33538 29 94 10X 
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E-MTAB-
101879 

Intestine 77866 28691 38 24 10X 

E-MTAB-
101879 

Esophagus, 
Lung, Liver, 
Stomach and 
Intestine 

155232 28691 42 27 10X 

E-MTAB-
102689 

Transplanted 
HIO 

1868 22016 16 15 10X 

GSE8413310 Pancreas 8569 20125 18 14 inDrop 
E-MTAB-
506111 

Pancreas 3514 25525 16 15 Smart-Seq2 

GSE8313912 Pancreas 635 19950 9 8 SMARTer 
GSE8160813 Pancreas 1600 39851 11 8 SMARTer 

Table 1: Attributes of the public single cell RNA-seq datasets used in the analyses 
 
2.2 Deduce Relationship reveals similarity in cell types across datasets 
 
With the growing number of scRNA-seq datasets available, hypothesis generation can be piloted by 
utilizing multiple reference scRNA datasets. Comparing reference datasets, or in-house datasets to publicly 
available datasets, is important for facilitating experimental design and assessing differences in annotation, 
sequencing, or clustering The DeduceRelationship function in ELeFHAnt aids in this process by comparing 
the cell types or other metadata between two datasets and calculating their relative similarity. To 
demonstrate, we compared E-MTAB-8901 (reference1) vs E-MTAB-10187 (intestine) (reference2), where 
we down sample both the datasets to 300 cells per cell type and used ELeFHAnt’s ensemble learning 
method (Figure 3). We can clearly see that “Mesoderm2” cell type in reference1 corresponds to many of 
the mesenchyme subtypes in reference2, and similarly all immune sub-cell types in reference2 are similar 
to “Immune cells” cell type in reference1. 
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Figure3: 

 
Figure 3: ELeHAnt infers relative similarity among cell types from two references :The output of 
Deduce Relationship represents the confusion matrix as a heatmap, with each square signifying 
how many cells of a given cell type in one reference were classified as a cell type in the other. It is 
normalized such that each cell type in reference 2 has a red square that shows the most closely 
related cell type in reference 1 
 
2.3 Cell Type Annotation uses references to label unannotated cells 
 
Cell type annotation in ELeFHAnt is performed by two sub functions: 1) ClassifyCells 2) 
ClassifyCells_usingApproximation. The first is annotation performed on a per-cell basis, whereas the 
second assigns each cluster in the query the most frequently predicted cell type for that cluster (see Methods 
for details). This per-cluster approximation generally has more distinct cell populations and is 
recommended when the reference is not ideal in terms of size or level of annotation.   
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To showcase ELeFHAnt’s cell type annotation function, we used two different scenarios 1) reference and 
query are downsampled to a similar of number of cells 2) reference and query are unaltered. For testing in 
first scenario, we down sampled dataset E-MTAB-8901 to 300 cells per cell type (~6500 cells) and set it as 
the reference (Figure 4A). We then downsampled E-MTAB-10187 to 200 cells per cluster (~7600 cells) 
and set it as query (Figure 4B). For second scenario, all cells in E-MTAB-8901(~21k cells) (Figure 4A) 
were set as reference and all cells in E-MTAB-10187 (~77k cells) (Figure 4B) were set as query. For both 
scenarios, we used ELeFHAnt’s ensemble learning with the ClassifyCells function to predict cell types for 
each cell (Figure 4D and Figure 4E). Scenario 2 clearly exhibits some misclassification compared to 
scenario 1 (Figure 4D). Cluster 35 in the query was labelled as “Erythroblasts” and “Immune cells” by 
ELeFHAnt in scenario 1, matching the known cell types in E-MTAB-10187 (intestine). However, in 
scenario 2 “Erythroblasts” are also present in a distant cluster 10 that was labelled as “Mesoderm 1” in 
scenario 1.  
 
This prompted us to the ClassifyCells_usingApproximation function where ELeFHAnt finds the best 
prediction for each query cluster rather than each cell (Figure 4F). ELeFHAnt annotated the 38 query 
clusters with a total of 19 reference cell types. Comparing the annotations in 4D and 4F to the known cell 
types in 4C, we see a 1:1 correspondence across broad cell types including endothelial, epithelial, 
mesenchymal, and neuronal. Although total number of cell types is reduced, from a biological standpoint 
the annotation is correct. We show all the choices available to ELeFHAnt using the number of cells shared 
among clusters and predicted cell types (Supplementary Figure 1). Please refer to benchmarking section to 
compare the cell type predictions on the same data using ELeFHAnt, scPred, Seurat label transfer, and 
scANVI. 
 
To further demonstrate the cell type annotation functionality of ELeFHAnt we used the following human 
pancreatic datasets: GSE84133, E-MTAB-5061, GSE83139, and GSE81608 (Table 1). These datasets are 
regularly used for benchmarking integration, cell type annotation, and other techniques. GSE84133 was 
chosen as the reference to annotate cell types in the remaining datasets. We applied ELeFHAnt’s ensemble 
learning approach with ClassifyCells to train on the reference and predict cell types in each of the query 
datasets, and results are shown in Supplementary Figures 2 and 3. 
 
Finally, we present a case study to show an application of ELeFHAnt in a possible experimental setup. E-
MTAB-10187 (~155k cells) is used as the reference (Figure 5A), an atlas studying fetal development across 
5 organs (Esophagus, Lung, Liver, Stomach and Intestine). E-MTAB-10268 (1868 cells), a dataset of in-
vitro transplanted human intestinal organoids (tHIOs), is used as the query (Figure 5B). We first compare 
the two datasets using the DeduceRelationship function to infer relative similarity between the cell types 
among the two datasets (Figure 5C). We then learned the cell types from the reference and predicted the 
cell types for query, with ensemble learning and the ClassifyCells approach (Figure 5D). ELeFHAnt was 
able to annotate mesenchymal subtypes, epithelial, basal, ciliated, and endocrine cell types in the tHIO 
dataset (Figure 5). 
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Figure4: 

 
Figure 4: Cell type annotation using ELeFHAnt : ~21k cells in reference (4A) and ~77k cells in query 
(4B). 4D, 4E and 4F show the ELeFHAnt predictions for 1) down sampled reference and query 2) all 
cells in reference and query 3) approximation-based predictions for all cells in reference and query 
 
Figure5: 

Figure 5: Case Study :A) ~155k cells with 27 cell types in reference B) 1868 cells with 15 cell types 
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in query C) relative similarity based on number of cells shared among cell types in reference and 
query D) Cell type annotation based cell types learnt from reference 
 
 
2.4 Subsampling has reproducible predictions and enables scalability 
 
To assess reproducibility, each function was run 3 times with varying numbers of cells used during 
subsampling, at increments of 100, 300 and 500. This will also help determine what number of 
examples during training leads to the best performance for the SVM and random forest classifiers. 
E-MTAB-8901was used as the reference and E-MTAB-10187 (intestine) was used as the query 
(please see Table 1). Each pair of tests was compared to measure the percent of cells with same 
annotation, or in the case of DeduceRelationship the percent of cell types in one reference matched 
to the same cell type in the other reference. For annotation, we used 
ClassifyCells_usingApproximation approach and the predicted cell labels assigned to the clusters 
were >96% consistency (percent agreement) when subsampling 100, 300 and 500 cells 
(Supplementary Figure 4A). In the case of deduce relationship we also see little variability across 
tests, with similarity measurements remain approximately 95% consistent (Supplementary Figure 
4B). However, the annotations determined by label harmonization were only 55-70% consistent 
((Supplementary Figure 4C). Relative to the other two functions, the complexity from the number 
of datasets and cell types suggests that harmonization does benefit from a greater number of cells 
used (Supplementary Figure 2). This is seen in how agreement was highest when subsampling 300 
and 500.  

As an additional test, the functions were run three consecutive times with the same number of cells 
subsampled. As anticipated, there was 100% agreement, which is related to having constant 
random seeds that prevent variation during subsampling and training.  

Table2: 

A: Cell type Annotation 

Comparison based on numbers of cells 
subsampled  

Percent Agreement:  

100 vs 300 0.969 

100 vs 500 0.969 

300 vs 500 1.0 
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B: Label Harmonization 

Comparison based on numbers of cells 
subsampled 

Percent Agreement 

100 vs 300 0.662 

100 vs 500 0.554 

300 vs 500 0.698 

 

C: Deduce Relationship 

Comparison based on numbers of cells 
subsampled 

Percent Agreement 

100 vs 300 0.958 

100 vs 500 0.917 

300 vs 500 0.958 

 

Table 2: Comparing annotations between tests for (A) Annotation (B) Harmonization (C) 
Deduce Relationship 

 
2.5 ELeFHAnt’s performance in annotation is comparable to other tools 
 
To measure the performance of ELeFHAnt, three tools were selected based on their performance 
relative to other tools in a benchmarking6, as well as their usage of different algorithms. Only cell 
annotation was assessed because this is the only functionality all four have in common. scPred is 
a cell annotation tool that utilizes SVM as its classifier, but departs from ELeFHAnt by using a 
radial kernel14. Additionally, the features used in training are principal components generated by 
single value decomposition (SVD) of the gene expression matrix. scANVI meanwhile is an 
extension of a previous tool called scVI designed for scRNA-seq integration, both of which employ 
probabilistic models5. It uses a form of deep learning with generative models, and requires that the 
reference and query be harmonized together prior to annotation. Finally, Seurat’s label transfer is 
based on identifying “anchors” between the reference and query in a low-dimensional space, an 
idea closely related to mutual nearest neighbors1. From these descriptions, ELeFHAnt’s cell 
annotation differs in multiple respects. The query and reference are neither processed separately 
nor integrated together, but rather they are merged prior to normalization and scaling. Also, 
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ELeFHAnt does not use dimensionality reduction for its features, but uses the expression of genes 
identified as highly variable directly. Finally, ELeFHAnt can use up to two different classifiers 
when using its ensemble method. 
 
The benchmarking was designed to test the annotation within and between datasets, with a focus 
on cell types in early human development. The reference used is E-MTAB-8901 while the query 
used is E-MTAB-10187 (intestine). It is important to note that the query has nearly three times the 
number of cells as the reference (77,672 versus 21,592), but they maintain a comparable number 
of cell types (26 versus 24). For the inter-dataset benchmark, the reference was downsampled to 
300 cells per cell type and the query to 200 cells per cluster, and per-cell annotation with 
ClassifyCells was performed (Figure4A-4D). For the intra-dataset test, only the downsampled 
reference was used, but it was divided into training and test sets composed of 70 and 30 percent of 
the data (Supplementary Figure 5). scANVI results are provided in supplementary figures 
(Supplementary Figure 7). 
 
2.5.1 Intra-dataset 
 
The intra-dataset test is more straightforward given that there are no batch effects or differences in 
annotation between datasets. The benchmarking showed ELeFHAnt, scPred, and Seurat perform 
equally well, with approximately 90% correspondence to the known cell types. ELeFHAnt had the 
highest overall accuracy at 90.5% while scPred had the lowest at 87.5% but a higher precision. 
This is related to scPred’s rejection option that led to a small population being labeled as 
“unassigned”, where the other tools had multiple cell types seen to be close together 
(Supplementary Figure 8). The predictions of scANVI diverged from the other tools, as only 20 
out of the 26 known cell types were identified. In most cases these omissions were explained by 
labelling closely related cells together, such as labelling smooth muscle cells as myofibroblasts. 
Especially for the cluster of epithelial cells, scANVI struggled to distinguish between cell types 
and omitted many of interest, such as goblet cells.  
 
Table 3: 

Annotation Tool Accuracy Precision Recall 
ELeFHAnt 0.905 0.906 0.905 
scPred 0.875 0.941 0.875 
Seurat label transfer 0.899 0.903 0.899 

 Table 3: Intra-dataset accuracy, precision, and recall for three annotation tools. Precision 
and recall values are weighted macro-averages across cell types. 
 
2.5.2 Inter-dataset 
 
The inter-dataset test meanwhile shows overall similar results between ELeFHAnt, scPred, and 
Seurat. Performance was measured by comparing the individual cell annotations of each tool in a 
pairwise fashion. ELeFHAnt and Seurat are shown to compare favorably to one another with 
89.6% agreement. As with the intra-dataset test, scPred left some cells as “unassigned”, which 
may be beneficial if not all cell types in the query are represented in the reference (Supplementary 
Figure 6). At the same time, scPred was least consistent with the other tools, as seen with NTS+ 
epithelial cells and BEST4+ enterocytes, which may indicate misclassifications. scANVI cannot 
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be compared to the other three tools as directly due to differences in the UMAP, but it also captured 
many of the same cell types. The largest difference is that all endothelial cells were labeled as 
venous endothelial, whereas the other tools identified all three subtypes.  
 
Overall, the results of these benchmarking tests show that ELeFHAnt and Seurat’s label transfer 
are best in terms of accuracy and efficiency for identifying cell types. Additionally, despite 
downsampling the data ELeFHAnt can achieve comparable results to the other tools. 
 Table 4: 
Annotation Tool Comparison Fraction of annotations in common 
ELeFHAnt vs scPred 0.792 
ELeFHAnt vs Seurat label transfer 0.896 
scPred vs Seurat label transfer 0.801 

 
Table 4: Fraction of cells with same annotation between each pair of tools during inter-
dataset benchmarking. Reference and query were downsampled, and per-cell annotation 
was performed. 
 
 
3 Discussion 
 
We have introduced the R package ELeFHAnt, a supervised learning approach for finding cell 
types in single cell data. ELeFHAnt should be familiar to users of Seurat, and requires only single 
line commands to use, making it approachable for researchers. It implements an ensemble 
approach to cell annotation not found in other widely used tools, while also bringing additional 
functionalities to the single cell research space. For annotation, we recognize that as with any 
machine learning task the training data is as important as the algorithm itself, and recommend that 
users take the time to compare datasets and consider harmonizing them. To do so, 
DeduceRelationship can be used to compare cell types or other metadata between two datasets, 
while LabelHarmonization allows users to take advantage of the information in multiple reference 
datasets when there is no “best” choice. These methods could prove beneficial even when used in 
conjunction with other annotation tools. ELeFHAnt also has the flexibility of using two different 
classifiers with the ability to combine their results. Users will benefit from seeing how SVM, 
random forest, and ensemble predictions compare for their datasets as they can capture different 
aspects of the data. Despite this added complexity, we showed that when downsampling to 500 
cells or less per cell type we can achieve results on par with other tools that utilize entire datasets. 
Even in situations where there is a less than optimal reference, ELeFHAnt uses a unique 
approximation approach to label clusters in the query.  
 
One potential area of improvement would be the validation approach. In the label harmonization 
example, there were two instances where GSEA showed no enrichment for ELeFHAnt’s predicted 
cell types: cluster 1, labeled as fibroblast progenitor, and cluster 39, labeled as 
macrophage/monocyte 1 (Supplementary Table 1). By comparing the ensemble learning confusion 
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matrix produced by ELeFHAnt to the GSEA results, we noted that mesenchyme subtype 5 (15th 
choice in ELeFHAnt) was enriched for cluster 1 and none of the ELeFHAnt choices were enriched 
for cluster 39. This could potentially be addressed by using expression-based enrichment tests 
instead of the current pre-ranked gene-based enrichment. 
 
There are plans for a Shiny version of ELeFHAnt, providing a simple user interface for using these 
functions, as well as a Python version that works within a Scanpy-based framework. The approach 
used by ELeFHAnt could also be applied to other analyses of single cell data. For example, the 
same machine learning concepts can be used for pseudo time analysis, harnessing reference 
datasets to understand cell states and the transitions between them. Also, with Seurat’s ability to 
handle multi-modal data, these methods could be used with scATAC-seq and other epigenetic 
datasets. Finally, we anticipate that these methods could also be applied to the deconvolution of 
bulk RNA-seq, learning from scRNA-seq datasets to identify their cell type composition.  
 
 
4 Methods 
 
4.1 Data pre-processing 
 
All datasets must begin as or be converted to the SeuratObject format, and specifically for the 
reference datasets contain a column in the metadata named “Celltypes”. If downsample is set equal 
to “TRUE”, each dataset is subset to the value specified by downsample_to for every cell type or 
cluster. The commands NormalizeData, FindVariableFeatures, and ScaleData are then applied. 
NormalizeData applies a log-normalization that corrects for differences in read depth, 
FindVariableFeatures selects genes with high cell-to-cell variation that reflect more biologically 
meaningful genes (can be changed using selectvarfeatures), and ScaleData scales and centers the 
expression values. 
 
4.2 SVM 
 
The SVM algorithm was implemented using the R package e107115. The goal of SVM is to find 
within n-dimensional space hyper-planes that separate the data into two classes. The “support 
vectors” are the data points closest to hyper-planes, with the distance between them defining a 
margin, and the optimal hyper-planes are those which maximize this margin. For our 
implementation, it is assumed the data is linearly separable and therefore a linear kernel is used. 
By default, the regularization or “cost” is set to 10 that controls the degree of misclassification 
tolerated to prevent overfitting, and a 10-fold cross validation is performed to measure accuracy 
of the model. Cell type annotation typically involves multiple cell types, in which case the 
algorithm uses multiple binary classifiers in a “one-versus-one” approach for classification.  
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4.3 Random forest 
 
The random forest algorithm was implemented using the R package randomForest16. It consists 
of an ensemble of decision trees (by default 500), a decision tree being a model that classifies data 
by learning rules about its features. Each tree differs by randomly sampling from the training 
dataset with replacement, and similarly for every split in every tree only a random sample of the 
features is considered. During testing each tree will return its own prediction, and the final output 
is determined by majority vote among the trees.  
 
4.4 Weighted ensemble 
 
For LabelHarmonization, ClassifyCells_usingApproximation, and DeduceRelationship, the 
predictions generated by the SVM and random forest classifiers are represented as two confusion 
matrices, with reference cell types on one axis and query clusters on the other. Both classifiers also 
have an accuracy calculated, for SVM determined during cross-validation on the training data, and 
for random forest from the out of box error rate. When classification.method is set to “ensemble”, 
each confusion matrix is multiplied by its accuracy value as a “weight” on its predictions. The 
SVM and random forest matrices are then normalized by dividing each by their max value. Finally, 
the consensus confusion matrix is the sum of the two matrices. ClassifyCells differs in that it 
generates a table with each cell in the test set having a predicted cell type. In this scenario, the 
predictions of SVM and random forest are compared, and if they are not equal the cell type from 
the classifier with greater accuracy is kept. 
 
4.5 Label Harmonization 
 
Harmonization requires either an integrated SeuratObject, or a minimum of two datasets that are 
to be combined using Seurat’s canonical correlation analysis (CCA) based integration (Stuart et 
al., 2019). Briefly, CCA performs dimensionality reduction, L2 normalization is applied to the 
canonical correlation vectors, and mutual nearest neighbors (MNNs) are identified. These MNNs, 
or integration “anchors” between datasets, are used to correct for batch effects. The combined 
dataset then undergoes scaling, dimensionality reduction, and clustering. For the harmonization 
itself, stratified train and test sets are generated using 60 and 40 percent of the data, respectively. 
Finally, the specified classification.method is run.  
 
4.6 Cell type Annotation 
 
Cell annotation consists of two methods: ClassifyCells_usingApproximation and ClassifyCells.  
For both methods, the query and reference are merged and undergo pre-processing. For 
ClassifyCells_usingApproximation only, predictions are converted into a confusion matrix with 
cell types from the reference on one axis and clusters from the query on the other. The confusion 
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matrix is normalized by row such that the max value for each cluster determines the best 
corresponding cell type. A copy of the confusion matrix is saved to a separate text file. For 
ClassifyCells, the predictions for each cell are left unmodified. The final output is the query with 
predicted cell types added to the metadata. 
 
4.7 Deduce Relationship 
 
As the first step, DeduceRelationship takes two datasets referred to as reference1 and reference2 
and merges them into a single dataset. Following pre-processing, the training set is generated from 
reference1 and the test dataset from reference2, and the specified classification.method is run. The 
resulting confusion matrix is normalized per row such that each cell type in reference2 has a 
maximum value in reference1 that represents the best corresponding cell type. Finally, the 
confusion matrix is displayed as a heatmap and saved. 
 
 
4.8 Validation of Predictions 
 
The output of CelltypeAnnotation and LabelHarmonizationcan can be checked using 
ValidatePredictions, which is run automatically when validatePredictions is “TRUE”. For the 
reference or integrated atlas, it finds differential markers for each cell type with Seurat’s 
FindAllMarkers method, which uses a Wilcox rank sum test by default. The top 100 markers for 
each cell type are selected and split into individual gene sets. Next, for the query or integrated atlas 
it finds the top 100 markers for each Seurat cluster and ranks them based on average Log2 fold 
change. Gene set enrichment analysis (GSEA) with the PreRanked method is used to calculate 
statistical enrichment of gene sets in either end of the ranking in the query or integrated Seurat 
cluster ranked markers. The final GSEA results are saved to a text file.  
 
ELeFHAnt Reference Plugins 
 
We provide 10 pre-processed reference datasets for users to get started with utilizing ELeFHAnt 
functionalities. Reference plugins can be accessed using: 
https://www.dropbox.com/sh/6hd2skriqqlokwp/AAAVol-_qPlCdA4DpERWjkeJa?dl=0. We plan 
to add more processed datasets in the future. 
 
Code Availability 
 
All the source code, tutorials and version updates can be accessed through GitHub: 
https://github.com/praneet1988/ELeFHAnt 
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Supplementary Figures: 
 
Supplementary Figure1: 

 
Supplementary Figure1: ELeFHAnt choices for each of the scenarios i.e. 1) downsampling 
reference and query 2) using reference and query unaltered 3) using approximation based 
prediction 
 
Supplementary Figure2: 

 
Supplementary Figure2: Reference and query cell types in Pancreatic datasets 
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Supplementary Figure3: 

 
Supplementary Figure3: ELeFHAnt predictions for pancreatic datasets 
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Supplementary Figure4A: 

 
Supplementary Figure4A: reproducibility test of cell type annotation; subsampling 100, 300 and 
500 cells per cell type in the reference and query 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2021. ; https://doi.org/10.1101/2021.09.07.459342doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.459342
http://creativecommons.org/licenses/by/4.0/


Supplementary Figure4B: 

 
Supplementary Figure4B: reproducibility test of deduce relationship; subsampling 100, 300 and 
500 cells per cell type in the reference1 and reference2 
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SupplementaryFigure4C:

 
Supplementary Figure4C: reproducibility test of label harmonization; subsampling 100, 300 and 
500 cells per cell label 
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Supplementary Figure5: 

 
Supplementary Figure5: Benchmarking ELeFHAnt, scPred, and Label transfer using Intra dataset 
training and prediction 
 
Supplementary Figure6: 

 
Supplementary Figure6: Benchmarking ELeFHAnt, scPred, and Label transfer using Inter dataset 
training and prediction 
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Supplementary Figure7: 

 
Supplementary Figure7: scANVI cell type predictions. A) based on intra dataset training and 
prediction B) based on inter dataset training and prediction 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2021. ; https://doi.org/10.1101/2021.09.07.459342doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.459342
http://creativecommons.org/licenses/by/4.0/

