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Abstract 
Psychiatric disorders exact immense human and economic tolls in societies globally. Underlying 
many of these disorders is a complex repertoire of genomic variants that influence the 
expression of genes involved in pathways and processes in the brain. Identifying such variants 
and their associated brain functions is thus essential for understanding the molecular 
underpinnings of psychiatric disorders. Genome-wide association studies (GWASes) have 
provided many variants associated with these disorders; however, our knowledge of the precise 
biological mechanisms by which these contribute to disease remains limited. In connection with 
this, expression quantitative trait loci (eQTLs) have provided useful information linking variants 
to genes and functions. However, most eQTL studies on human brain have focused exclusively 
on cis-eQTLs. A complete understanding of disease etiology should also include trans-
regulatory mechanisms. Thus, we conduct one of the first genome-wide surveys of trans-eQTLs 
in the dorsolateral prefrontal cortex (DLPFC) by leveraging the large datasets from the 
PsychENCODE consortium. We identified ~80,000 trans-eQTLs. We found that a significant 
number of these overlap with cis-eQTLs, thereby implicating cis-mediators as key players in 
trans-acting regulation. We show, furthermore, that trans-regulatory mechanisms provide novel 
insights into psychiatric disease. Particularly, colocalization analysis between trans-eQTLs and 
schizophrenia (SCZ) GWAS loci identified 90 novel SCZ risk genes and 23 GWAS loci 
previously uncharacterized by cis-eQTLs. Moreover, these 90 genes tend to be more central in 
transcriptome-wide co-expression networks and more susceptible to rare variants than SCZ-risk 
genes associated by cis-variation. 
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Introduction 
Psychiatric diseases and neurological disorders afflict large portions of the global population 
and constitute a significant source of disability worldwide (1). Although genome-wide 
association studies (GWAS) have identified many genomic variants that are significantly 
associated with psychiatric and neurological disease risk, decades of research have led to only 
limited progress in our understanding of the precise mechanistic linkages between these 
variants and disorders of the brain. 
 
Expression quantitative trait loci (eQTLs) are widely used to analyze the effects of variants on 
gene expression, i.e., an eQTL consist of an eSNP and an eGene where the eSNP affects the 
expression of the eGene. Previous studies have demonstrated that variants associated with 
human phenotypes frequently function as eQTLs [1], suggesting that eGene expression may 
play the role of so-called intermediary phenotypes. By definition, however, eQTLs are identified 
by statistical associations (i.e., correlation), whereas a fuller understanding of disease 
susceptibility and etiology entails better characterization of causal relationships. By investigating 
mediation effects in the context of eQTLs, we can more confidently establish these causal 
relationships. 
 
It is now well established that cis-eSNPs may simultaneously be associated with distant genes 
[2,3]. A natural model for such phenomena may be one in which the expression of a trans-
eGene (eGene affected by distant eSNPs) is mediated by cis-eGenes [2,4]. Trans-eQTLs that 
are mediated by cis-eGene expression provides more direct causal relationships between 
variants and trans-eGene expression. A simple but illustrative example of this phenomenon may 
involve an eSNP that lies within the promoter of a cis-eGene, wherein the cis-eGene is a 
transcription factor (TF). The distal target of this TF may then appear as a trans-eGene, the 
expression of which is strongly influenced by the variant affecting the expression of the regulator 
TF. Thus, the regulatory linkage of this example would be from the eSNP to the TF cis-eGene 
(mediator) to the trans-eGene. Elucidating the roles of mediators such as TFs, microRNAs, 
chromosomal remodeling proteins, and other regulatory factors provides immense value for 
understanding disease etiology in light of genomic variants. This immense value stems from the 
fact that a better characterization of mediators goes beyond statistical associations by providing 
a fuller picture of disease mechanisms via intermediary phenotypes, especially as they relate to 
trans-eGene expression [5,6]. Furthermore, uncovering instances of cis-mediation also enables 
investigators to elucidate and describe regulatory networks with greater confidence and thereby 
gain a more systems-level understanding of psychiatric diseases. Within this framework, for 
instance, cis-eGenes that regulate the expression of many trans-eGenes would function as so-
called "cis-hub" genes [7,8], and these may form the basis of trans-eQTL hotspots within 
regulatory networks. 
 
The Genotype-Tissue-Expression (GTEx) project has identified both cis- and trans-eQTLs in 
multiple human tissues [9]. Nonetheless, the sample sizes available for brain subregions were 
fairly limited in GTEx, thereby providing only a limited number of identified trans-eQTLs in brain 
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tissues. In our previously published work on PsychENCODE data, we only calculated and 
reported cis-eQTLs. 
 
In this paper, we combined the large-scale data resource generated by the PsychENCODE 
Consortium, CommonMind (CMC), and GTEx to identify trans-eQTLs with high confidence. We 
then carried out a careful set of analyses on the features of these trans-eQTLs and compared 
them with those of cis-eQTLs. Furthermore, our analyses enabled us to identify trans-eQTLs 
hotspots. By conducting both statistical mediation analysis as well as integrating data on inter-
chromosomal contacts, we evaluated two potential mechanisms by which variants may 
influence trans-eGene expression. Upon integrating our results with schizophrenia (SCZ) 
GWAS, we demonstrated that trans-eQTLs might be pivotal for providing novel insights into 
disease mechanisms. 

Results 

Identification of trans-eQTLs in the human brain 
Trans-eQTLs are especially difficult to identify in cohorts of limited sample sizes. To overcome 
this challenge, we worked with a large number of samples (N=1,387, which includes the 
PsychENCODE brain resource, CMC, and GTEx brain samples), thereby more readily enabling 
us to identify significant trans-eQTLs in a genome-wide fashion. We predicted that the resulting 
trans-eQTLs might reveal potential mechanisms of distal regulatory linkages across 
chromosomes. By adopting a standard approach for trans-eQTL identification that is similar to 
that of GTEx V8 [9], we tested associations between 12,245 highly-expressed genes and 
autosomal variants on a genome-wide scale (see Methods for processing and filtering criteria). 
We used the same covariates as those used for identifying cis-eQTLs in our previously 
published work [10]. Genes with poor mappability and variants located in repetitive regions were 
removed. Furthermore, trans-eQTLs between pairs of genomic loci with evidence of RNA-seq 
read cross-mapping were filtered out to minimize false positives [11]. We calculated FDR values 
from the LD-pruned list of trans-eQTLs to detect those that are significant. At an FDR threshold 
of 0.25, we detected 77,156 trans-eSNPs from ~5.3M total SNPs tested in locations ! 5 Mb 
from the gene Transcription Start Site (TSS), comprising 17,899 independent SNPs after 
linkage-disequilibrium (LD) pruning. We identified 7,656 trans-eQTLs involving 582 eGenes at 
an FDR threshold of 0.05 (Fig. 1A-B). In summary, relative to previously published studies, we 
identified substantially more trans-eQTLs and trans-eGenes in the human brain by leveraging 
integrated data resources. We used the trans-eQTL list with FDR<0.25 for the analyses 
discussed in this study (Supplemental File 1). In addition to this primary list of trans-eQTLs, we 
also make available several lists of trans-eQTLs at varying FDR thresholds (Fig. 1B). 
 
We next characterized genomic features of trans-eQTLs and compared them with other types of 
QTLs in order to investigate associations between genomic elements and QTLs (Fig. 1C-E). In 
agreement with previous findings [12], we found that the magnitude of effect size for cis-eQTLs 
is larger than that of trans-eQTLs (Fig. 1C). Trans-eQTLs overlapped more frequently with cis-
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eQTLs than with cQTLs, which is also largely expected. We found 20,175 eSNPs shared 
between cis- and trans-eQTLs, whereas 61 SNPs were shared between trans-eQTLs and 
cQTLs. As shown in Fig. 1D, 25 SNPs were found to be shared among all 3 QTL types (i.e., cis-
eQTLs, trans-eQTLs, and cQTLs). With respect to genomic elements, we found that trans-
eQTLs tend to exhibit lower enrichment in most elements relative to cis-eQTLs and cQTLs. 
Trans-eQTLs were found to be most enriched within exons (Fig. 1E). The pattern of variant 
proportion on different genomic regions for trans-eQTLs is similar to that for cis-eQTLs but 
distinct from that of cQTLs. 
 

 
 
Figure 1: Characterization of trans-eQTLs. A. Genetic map for trans-eQTLs. B. Frequencies 
of trans-eGenes and trans-eSNPs at varying FDR thresholds. C. Comparisons of effect sizes 
between cis-eQTLs and trans-eQTLs. D. Frequencies of SNPs that are shared among various 
combinations of the 3 QTL types (cis-eQTLs, trans-eQTLs, cQTLs). E. Enrichment statistics and 
variant proportions are associated with the frequencies with which cis-eQTLs, trans-eQTLs, and 
cQTLs lie within various types of genomic elements. 
 

Potential mechanisms of trans-eQTLs  
One potential mechanism by which specific variants exert trans-regulatory effects is one 
wherein the variant influences a nearby trans-regulator, which in turn regulates distal genes [2]. 
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In this scenario, trans-eQTLs may also act as cis-eQTLs for nearby genes that have regulatory 
impacts on trans-eGenes (Fig. 2A). Indeed, we found that 19.33% of LD-pruned trans-eQTLs 
display cis-eQTL signals (Fig. 2B). Because simple genomic coordinate-level overlaps between 
cis- and trans-eQTLs may detect spurious associations due to LD, we performed a 
colocalization assay to identify cis- and trans-eQTL pairs that harbor shared causal variants. In 
total, we detected 1,688 trans-eQTLs (48.79% of trans-eQTLs that overlap with cis-eQTLs) that 
have shared causal variants with cis-eQTLs. We further interrogated the potential causal effects 
of cis-eQTLs on trans-eQTL associations via mediation analysis (Fig. 2C, Supplemental File 2). 
As part of this analysis, we found that 64.75% of trans-eQTLs that colocalize with cis-eQTLs 
can be explained by cis-mediators (p<0.05). Among these trans-eQTLs that can be explained 
by cis-mediators, there is roughly an even split of cis-mediators with positive and negative 
mediation effects, suggesting that trans-regulators can be either activators or repressors with 
roughly equal probability. As generally expected, we also observed that larger mediation 
coefficients tend to have greater statistical significance. 

We found that 77% of trans-eGenes are also cis-eGenes, indicating that gene expression is 
regulated by both cis- and trans-acting variants. Roughly 20% of trans-eGenes had cis-
mediators by cis-eGenes (Fig. 2D). Interestingly, the effect size of trans-eGenes with cis-
mediators was larger than those without cis-mediators (p<2.2e-16, Fig. 2D). 

By definition, because cis-mediation implies that variants influence trans-eGene expression via 
cis-eGenes, we hypothesize that cis- and trans-eGene pairs with evidence of cis-mediation are 
co-regulated. We evaluated this hypothesis by first grouping cis- and trans-eGene pairs into 
those that exhibit evidence of cis-mediation (which we term mediation pairs) and those with 
evidence of colocalization but mediation (which we term colocalization pairs). When comparing 
these groups, we found that mediation pairs showed greater expression correlation than 
colocalization pairs or expression-level matched random pairs (Fig. 2E; see Methods), thereby 
providing additional evidence for cis-mediation. 

We next investigated the properties of cis-eGenes that were found to mediate trans-regulatory 
effects. In addition to being enriched for transcriptional regulators (e.g., members of TF 
complexes), cis-eGenes were also enriched for other biological processes (e.g., metabolic 
processes, Fig. 2F). These results indicate that variant effects on distal gene regulation are not 
solely dependent on TF activity. Instead, variants that are associated with metabolism may exert 
broad system-level effects on cellular function, which can then lead to changes in distal gene 
expression. 

Another potential explanation for trans-eQTLs may lie in inter-chromosomal interactions. 
Previous studies have shown that inter-chromosomal interactions can bring multiple genes from 
different chromosomes into close physical proximity, thereby more easily enabling these genes 
to be co-regulated [13]. We, therefore, hypothesize that trans-eSNPs may regulate trans-
eGenes located in different chromosomes via inter-chromosomal interactions. Indeed, we 
observed that trans-eSNP and eGene pairs display increased chromatin contact frequency 
compared with random inter-chromosomal contacts (Fig. 2G). Hence, in addition to cis-
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mediation, trans-eQTL associations can partly be driven by features of chromosomal 
conformation. 

 
Figure 2. Cis-mediation and inter-chromosomal interactions explain trans-eQTL 
associations. A. A trans-eQTL may overlap with a cis-eQTL that regulates a proximal gene 
(cis-eGene), which may, in turn, regulate a distal gene (trans-eGene). B. Relative abundances 
of trans-eQTLs that overlap with cis-eQTLs (left), colocalize with cis-eQTLs (middle), and exhibit 
mediation effects (right). C. Roughly 65% of trans-eQTLs colocalized with cis-eQTLs exhibit 
mediation effects. The number of trans-eQTLs with positive mediation effects is almost the 
same as those that are negative. D. Roughly 77% of trans-eGenes are also cis-eGenes, and 
~20% of these have cis-mediators. Trans-eGenes with cis-mediators have larger absolute effect 
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sizes. E. cis- and trans-eGene pairs with evidence of cis-mediation display significant co-
expression compared to both random pairs and those pairs that exhibit colocalization but not 
mediation. F. Biological pathways associated with cis-eGenes that mediate trans-eQTL 
associations are enriched for metabolic processes and transcriptional regulation. G. trans-eQTL 
and eGene pairs tend to have higher inter-chromosomal interaction frequencies than do random 
pairs. ACME: for Average Causal Mediation Effects. 

Trans-eQTLs hotspots 
Trans regulators exert broad impacts on the gene regulatory landscapes by affecting many 
downstream targets. Given the trans-regulatory properties of trans-eQTLs, some trans-eSNPs 
may affect multiple genes, thereby forming “trans-eQTL hotspots.” We defined such trans-eQTL 
hotspots as trans-eSNPs that affect three or more genes (Fig. 3A). In total, 382 trans-eQTL 
hotspots were detected. Because trans-eGenes for a given trans-eQTL hotspot are regulated by 
the same SNP, we expected that they might generally be co-regulated. Indeed, we found that 
trans-eGenes grouped by hotspots are significantly more co-regulated compared to expression-
level matched random controls (Fig. 3B). 

One of the trans-eQTL hotspots consisted of three trans-eGenes (MAGEE2, CYBRD1, 
ZNF252), which are distributed across the genome and are regulated by a trans-eSNP 
(chr16:11394372; Fig. 3C). Notably, this trans-eSNP was a cis-eQTL for RMI2, a gene 
associated with genome instability and Bloom syndrome [14]. In another example, the cis-eSNP 
for RBM6 (chr3:50257020), an RNA binding protein, was associated with three trans-eGenes 
(MAGEE2, MDH1B, AMACR, Fig. 3C). Collectively, these results suggest that multiple 
biological processes (such as genome instability and RNA processing) may exert broad impacts 
on gene regulation via trans-regulatory mechanisms. 

Cell-type gene regulatory effects of trans-eQTLs and mediators 
Because trans-eQTLs were defined from the brain homogenate and lack cell-type specificity, we 
evaluated cell-type-specific trans-regulatory effects from our mediators to trans-genes. For 
instance, our mediation analysis indicated that RORA (a nuclear receptor TF) is a mediator for 
the trans-eGene RNASEL, which encodes mammalian endoribonuclease. Based on single-cell 
multi-omics data [15], we found that RORA regulates the gene RNASEL specifically in neuronal 
cell types [15]. As shown in Fig. 3D, cellular expression levels of RORA and RNASEL show 
high Pearson correlation coefficients in several neuronal cell types, especially in inhibitory types, 
such as In6b (r = 0.831), In8 (r = 0.790), Ex9 (r = 0.746), In6a (r = 0.742), compared to glial cell 
types, e.g., microglia (r = 0.6436) and oligodendrocyte (r = 0.492). 

Both genes are found to be involved in brain diseases. For example, the overactivation of 
RNASEL may be harmful in neurodevelopmental and inflammatory genetic diseases such as 
the Aicardi-Goutières syndrome [16].  RNASEL expression may result from signals from 
activation of NMDA receptors in cortical neurons by glutamate, and it may lead to the 
degradation of RNA molecules; degradation of mitochondrial RNA by RNASEL may contribute 
to neuronal death overall [17].  
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Decreased levels of nuclear receptor TF RORA have been found in the prefrontal cortex and 
cerebellar neurons of individuals with Autism Spectrum Disorder (ASD) [18]. Retinoic Acid 
signaling pathways are some of the neuronal circuits that are disrupted in ASD individuals [19].  
In fact, the decreased expression of RORA impacts the regulation of its target genes in ASD 
individuals (several that are ASD-relevant genes) and tends to be associated with the 
pathobiology of ASD, such as decreases in neuronal differentiation and survival, poorer synaptic 
transmission, and neuroplasticity, worse cognition and spatial learning, memory impairment, 
and disrupted development of the cortex and cerebellum [18].  Furthermore, it has been found 
that RORA is involved in the differentiation of Purkinje cells, development of the cerebellum 
region, protection of neurons against oxidative stress, circadian clock rhythm regulation, and 
suppression of inflammatory processes [18].  
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Figure 3. Trans-eQTL hotspots. A. Trans-eQTL hotspots represent trans-eSNPs that have 
associations with at least three trans-eGenes. B. Trans-eGenes associated with the same trans-
eSNPs is co-regulated. C. Examples of trans-eQTL hotspots. D. Cell-type-specific TF-TG 
relationships detected by our mediator-trans-cis-QTL network. 

Trans-eQTLs identify novel disease mechanisms 
It has been proposed that trans-eQTLs explain 60-90% of the heritability of gene expression 
[12,20]. However, functional annotation of GWAS variants largely relies on the use of cis-
eQTLs, which may miss key biological underpinnings of human traits and disease. Trans-eQTLs 
may provide novel insights into the biological mechanisms underlying psychiatric illnesses. 
Motivated by these ideas, we performed colocalization analysis [21] between SCZ GWAS [22] 
and trans-eQTLs to unveil previously uncharacterized SCZ-associated biological pathways 
driven by trans-regulatory mechanisms (Methods). These results were then compared with the 
colocalization results between SCZ GWAS and cis-eQTLs. We found that some loci only 
colocalized with cis- or trans- eQTLs but some colocalized with both. 
 
In total, we found that trans-eQTLs could explain 55 out of 142 SCZ-associated genome-wide 
significant (GWS) loci (Fig. 4A). In contrast, cis-eQTLs explained 78 GWS loci (Fig. 4A). Thirty-
two GWS loci colocalized with both cis- and trans-eQTLs, suggesting that a subset of SCZ loci 
may exert their effects via multiple regulatory mechanisms. Furthermore, 23 GWS loci 
colocalized only with trans-eQTLs but not with cis-eQTLs, suggesting that trans-eQTLs may 
provide regulatory mechanisms for previously unexplained loci. 

Colocalization analysis resulted in 90 and 282 SCZ-associated trans- and cis-eGenes; we refer 
to these as SCZ-(trans/cis)-eGenes, respectively (Fig. 4B). As expected, none of the SCZ-cis- 
and SCZ-trans-eGenes overlapped, demonstrating that trans-eQTLs can pinpoint distinct SCZ-
associated genes and biological pathways. In particular, SCZ trans-eGenes were found to be 
enriched for JUN kinase activity (FDR=0.0056), a signaling pathway involved with neuronal 
apoptosis, neurite outgrowth, and dendrite arborization [23]. 

Notably, two of the 90 SCZ trans-eGenes (AKAP11, SETD1A) also harbor SCZ-associated rare 
variants (de novo loss-of-function (LoF) variation) [24] (Fisher’s exact test, P=0.0096, 
OR=14.62, 95% CI=1.67-59.06). This contrasts with SCZ cis-eGenes, none of 282 which 
overlapped with the genes that harbor SCZ-associated rare de novo LoF variants. This result 
corroborates the omnigenic hypothesis [12]. According to this hypothesis, genes can be divided 
into core genes that directly affect the disease-related biological processes and peripheral 
genes that regulate core genes. Core genes are likely to be affected by rare variants with large 
effect sizes, suggesting that these two SCZ trans-eGenes are likely core genes. Also, the 
hypothesis suggests that core genes are also likely to be targeted by trans-regulatory 
mechanisms, which is also consistent that these two genes are trans-eGenes of SCZ rare 
variants and mediated by peripheral genes. 
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To provide additional support for the omnigenic hypothesis, we explored the network properties 
of SCZ trans-eGenes. Core genes are thought to be enriched for network hubs [25]. Therefore, 
we measured module membership (kME; a measure of network centrality) of SCZ-eGenes in 
brain co-expression networks constructed from the same samples [26]. SCZ trans-eGenes 
showed significantly higher kME values than did cis-eGenes or brain-expressed genes in 
general (Fig. 4C, Two-Sample Wilcoxon test: cis vs. trans, P=9.64x10-7; all vs. trans, 
P=2.87x10-9; all vs. cis, P=0.099). These results demonstrate that SCZ trans-eGenes are 
characterized by greater network connectivity. 

A significant portion of SCZ-associated trans- and cis-eGenes were found to be differentially 
regulated in brain tissue of SCZ-affected individuals [26] (Fisher’s exact test: trans, P=0.0094, 
OR=1.87, 95% CI=1.14-2.98; cis, P=0.035, OR=1.38, 95% CI=1.01-1.85). However, they were 
enriched in different SCZ-associated co-expression networks. SCZ- trans-eGenes showed 
selective enrichment in the SCZ-associated gene module 7 (geneM7, beta=0.0033, 
FDR=0.011), a neuronal module involved with synaptic vesicle formation, and which exhibits 
elevated expression signatures in SCZ (Fisher’s exact test: P=8.02x10-5, FDR=0.0014, 
OR=5.52, 95% CI=2.42-11.10). In contrast, SCZ cis-eGenes were only nominally enriched in 
the gene module 8 (geneM8, beta=-0.0030, FDR=0.017), a neuronal module downregulated in 
SCZ (Fisher’s exact test: P=0.018, FDR=0.53, OR=2.31, 95% CI=1.13-4.24). Therefore, SCZ-
associated trans- and cis-eGenes may account for different expression signatures of SCZ. 

Cell-type expression profiles of SCZ-eGenes illustrated potential cell types that contribute to 
distinct expression features (Fig. 4D). Both SCZ-associated trans- and cis-eGenes were highly 
expressed in neurons, which is consistent with previous findings that neurons are the primary 
cell type underlying SCZ etiology [27–29]. However, SCZ cis-eGenes exhibited relatively higher 
expression in lower layer neurons (Ex7-8), while SCZ trans-eGenes showed upper-to-lower 
layer gradient expression. Furthermore, while SCZ cis-eGenes were relatively depleted in 
inhibitory neurons, SCZ trans-eGenes were highly expressed in parvalbumin-expressing 
GABAergic interneurons (In6). In fact, recent studies have found that glutamatergic and 
dopaminergic dysfunction is associated with key symptoms of SCZ [30], and this may result 
from defects in neurotransmission by GABAergic interneurons. Notably, these neurons are 
responsible for inhibiting control of cortical and subcortical circuits and are dysfunctional in 
bipolar disorder as well as SCZ [31].  

One example of a SCZ-trans-eGene is CENPX, which is associated with kinetochore assembly 
and DNA damage repair [32]. SCZ GWAS colocalized with trans-eQTLs for CENPX, which was 
mediated by cis-eQTLs for RPS17, a gene that encodes a ribosomal protein (Fig. 4E). This 
result suggests that an SCZ GWAS SNP may affect a nearby gene RPS17, which in turn 
regulates CENPX, a gene located in a different chromosome. Together, these results 
demonstrate how the integration of GWAS variants, cis-eQTLs, and trans-eQTLs can enhance 
our mechanistic understanding of disease etiology. 
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Figure 4. Trans-eQTLs identify novel SCZ risk genes and biological pathways. A. The 
number of SCZ GWS loci explained by cis- and trans-eQTLs. B. SCZ cis-eGenes do not overlap 
with SCZ trans-eGenes. C. Trans-eGenes that colocalize with SCZ GWAS exhibit greater 
network centrality. D. Cellular expression profiles of SCZ-associated cis- and trans-eGenes. E. 
An SCZ GWS locus colocalizes with trans-eQTLs for CENPX (left). This GWS locus is a cis-
eQTL for RPS17, a cis-mediator of CENPX (right). 

Discussion 
In this work, we report one of the first systematic searches and detailed studies of genome-wide 
trans-eQTLs in the dorsolateral prefrontal cortex (DLPFC). By leveraging the extensive resource 
built by the PsychENCODE consortium [10], we detected 77,304 trans-eQTLs (at an FDR 
threshold of 0.25) and 382 trans-eQTL hotspots. We reasoned that trans-eQTLs might provide 
new avenues for investigating trans-regulatory mechanisms, thereby providing critical insights 
for understanding the regulatory landscape in psychiatric disease and human health.  
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Coupled with increased multiple testing burdens, smaller effect sizes of trans-eQTLs make their 
identification considerably more challenging than the identification of cis-eQTLs. Indeed, we 
found that trans-eQTLs exhibit smaller effect sizes compared with cis-eQTLs. Furthermore, 
trans-eQTLs were less enriched in regulatory elements compared with cis-eQTLs, suggesting 
that trans-regulatory architectures may differ from those associated with cis regulation. 

Despite these differences, a significant portion of trans-eQTLs overlapped with cis-eQTLs, 
suggesting that trans-acting variants may often exert their effects via cis-mediators. We found 
that trans-eGenes with evidence of cis-mediators displayed larger effect sizes and co-
expression signatures with cis-mediators. Intriguingly, cis-mediators were involved with fatty 
acid metabolism, which contributes to ~20% of the energy source of the brain [33]. This result 
indicates that trans-regulatory mechanisms may involve various biological processes that 
influence fundamental cellular function and psychiatric disease progression. 

We also found that, in addition to cis-mediation, trans-eQTLs may also result from inter-
chromosomal interactions. Understanding mechanisms that underlie trans-eQTL associations 
will provide important insights into trans-regulatory networks.  

We further deconvolved trans-regulatory networks into specific cell-type-specific trans-
regulatory networks and investigated the potential effects of the mediators we identified on 
trans-genes. These analyses uncovered a strong link between RORA regulation of RNASEL, 
both of which are associated with the immune system response and naive T cell states, and 
which also harbor polymorphisms associated with elevated cancer risk and mortality. Additional 
diseases beyond psychiatric disorders have been found to relate to RORA and RNASEL. For 
example, both genes have been shown to be associated with prostate cancer. In affected men, 
RORA is typically inactivated [34], and RNASEL has been considered to be a candidate for the 
hereditary prostate cancer gene (HPC1) [35]. In fact, there have been some mutations in the 
tumor suppressor gene RNASEL that lead to Ribonuclease L dysfunction, inflammation, 
infection, and increased risk of prostate cancer, suggesting links between innate immunity and 
tumor suppression [36]. These findings can help provide more insights into age-related 
changes, the roles of CFSs and genomic instability, the roles of the adaptive immune response 
(especially of T cells), and the potential roles of the central nervous system in the onset and 
progression of one of the world’s leading cancer types [37]. 

Given the differences between cis- and trans-eQTLs, we hypothesized that trans-eQTLs might 
provide novel insights into the biology of psychiatric disorders. Motivated by this notion, we 
related trans-eQTLs to SCZ GWAS variants to decipher trans-regulatory mechanisms that may 
contribute to SCZ etiology. Trans-eQTLs identified novel SCZ risk genes, a subset of which 
explained previously uncharacterized SCZ GWS loci. In total, trans-eQTLs explained 55 out of 
142 SCZ GWS loci. 

SCZ trans-eGenes differed from SCZ cis-eGenes in multiple respects. For example, SCZ- trans-
eGenes included SETD1A and AKAP11, high-confidence SCZ risk genes that harbor rare de 
novo LoF variation [24]. In contrast, SCZ cis-eGenes did not overlap with any of the rare 
variation-targeted SCZ risk genes. SETD1A encodes a histone methyltransferase. Mice that 
carry an LoF mutation in SETD1A showed cognitive deficits, abnormal neuronal morphology, 
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and transcriptional alterations, further implicating its role in SCZ etiology [38]. Moreover, we 
observed enhanced network centrality of SCZ trans-eGenes compared with SCZ cis-eGenes. 
This is consistent with our recent finding that hub genes were not enriched for schizophrenia 
heritability when cis-regulatory mechanisms were used to map genetic risk factors to genes [39]. 
These characteristics of SCZ trans-eGenes (e.g., overlap with rare variation and network 
centrality) correspond to the definition of the core genes from the omnigenic hypothesis [12] that 
are likley trans-regulated by rare variants, suggesting that trans-eQTLs may play crucial roles in 
understanding core biological principles of SCZ. 

Cellular expression profiles further substantiated distinct biological processes represented by 
SCZ-associated trans- and cis-eGenes. While SCZ cis-eGenes were enriched in lower layer 
neurons, SCZ trans-eGenes were enriched in upper-layer neurons, suggesting that cis- and 
trans-regulatory mechanisms may influence distinct cortical circuitry. Moreover, SCZ trans-
eGenes were enriched in parvalbumin-expressing interneurons, whose genetic and 
transcriptional association with SCZ were reported previously [26,40,41]. 

Other studies such as [42] have mapped eQTLs in individual cell types, and these have 
demonstrated the importance of individual cell subtypes in analyzing the effects of cell type-
specific eQTL in other contexts, such as in human fibroblasts. In the example case of 
fibroblasts, this cell-type approach in capturing gene regulation has been demonstrated to be 
highly effective in that such regulations have not been captured by traditional bulk RNA-seq 
approaches. That study also performed induced pluripotent stem cell (IPSC) reprogramming, 
which may provide a future avenue of study. Another study [43] analyzed cell-type-specific 
eQTL models and performed genome-wide cis ct-eQTL analyses in the blood and brain, and 
identified the importance of myeloid cells in AD risk. The authors of that study identified several 
blood and brain AD biomarkers implicating microglia and the immune system in AD progression. 

In conclusion, the transcriptional architecture of the human brain is orchestrated by both cis- 
and trans-regulatory variants, and trans-eQTLs can provide insights into disease biology that 
has been previously unexplored. 

Methods and Materials 

QTL analysis 
We used the standard pipelines from ENCODE, GTEx, and other large consortia to uniformly 
process the raw sequencing data from PsychENCODE [44] (including RNA-seq and genotype 
data), as well as to identify functional genomic elements, such as brain enhancers, expressed 
genes, and eQTLs. We also processed other data types, such as Hi-C and single-cell data. We 
followed the GTEx pipeline for identifying all trans-eQTLs. We did this to ensure maximal 
compatibility between our results and our previously published cis-eQTL results and also to 
optimally enable comparisons between our results and those published previously. We found 
that lowly expressed genes that were not detected in a subset of samples can be falsely 
associated with SNPs due to the statistical fluctuation introduced by inverse quantile 
normalization. Therefore, genes that were not detected in any of 1,387 samples were removed 
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from the analysis, leaving 12,278 genes. We used the QTLtools software package for trans-
eQTL identification. Following the normalization scheme used by GTEx, the gene expression 
matrix was first normalized using quantile normalization, followed by inverse quantile 
normalization to map to a standard normal distribution (and to remove outliers). 50 PEER 
factors, genotype PCs, gender, and respective study were used as covariates in our 
calculations to identify cis-eQTLs. (Given our much larger sample size, we used considerably 
more PEER factors than GTEx.) For trans-eQTLs, we calculated the associations between gene 
expression and variants greater than the 5Mb window of each gene’s TSS (both upstream and 
downstream). These calculations were performed using genotype and gene expression data 
from 1,387 individuals (associations between a total of 12k genes and 5,312,508 variants were 
tested for potential QTLs). 

We performed multiple testing corrections on nominal P-values by limiting FDR values to less 
than 0.05, 0.1, 0.15, 0.2, and 0.25 and generated several different lists of trans-eQTLs. We 
identified ~77k trans-eQTLs involving ~10K eGenes with FDR<0.25 (Supplemental File 1). We 
used this trans-eQTL list for the following analysis. 

Enrichment of genomic elements 
We annotated SNPs of cis-eQTL, trans-eQTL, cQTL, and all SNPs used for QTL calculations to 
find the overlap of SNPs with genomic elements using SnpEff. We then tested the enrichment of 
the QTL SNPs in different genomic elements using Fisher’s exact test by using all SNPs used 
for QTL calculation as background. We also calculated the ratio of the number of SNPs in each 
genomic element to the total number of input SNPs. We selected Promoter, UTR, Exon, Intron, 
Downstream, TFBS, Enhancer, Brain Enhancer, and ePromoter regions for enrichment and 
ratio calculations.  

Mediation analysis 

Trans-eQTLs that survived a genome-wide threshold of FDR<0.25 were further pruned for LD 
(r2>0.6), resulting in 74,143 independent trans-eQTLs. We overlapped trans- and cis-eQTLs 
that are in LD with a given independent trans-eQTL and ran colocalization analysis using the 
default settings of coloc [21]. Trans- and cis-eQTL pairs that survived colocalization analysis 
with the posterior probability (H4 PP, the posterior probability that indicates cis- and trans-
eQTLs are sharing causal variants) greater than 0.5 were selected for mediation analysis. We 
used the SNP dosage and gene expression for the trans-eGenes and cis-eGenes associated 
with the SNP as input for the mediation analysis. We used the mediation package in R for the 
mediation analysis [45]. 

Characterization of trans-eQTLs that have cis-mediators 

We identified the trans-eGenes overlapped with of cis-eGenes, trans-eGenes not overlapped 
with cis-eGenes and cis-eGenes, which are mediators for trans-eGenes. We then compared the 
effect sizes of eGenes in these three categories using Kolmogorov–Smirnov test. 
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We hypothesize that cis-eQTLs may exert their effects on trans-eGenes via cis-eGenes that act 
as mediators. In this scenario, trans- and cis-eGene pairs that survive mediation analysis 
(mediation pairs) would need to be co-regulated. We, therefore, leveraged individual-level 
normalized expression data from Wang et al. [10] and measured expression correlation 
between cis- and trans-eGenes across 1,813 individuals. Because cis-mediator may act as both 
activators and repressors, we calculated absolute Pearson correlation coefficients associated 
with cis- and trans-eGene expression. Expression correlation coefficients of mediation pairs 
(mediation FDR<0.05) were then compared against expression the correlations of random gene 
pairs (random pairs) and colocalized, but not mediated cis- and trans-eGene pairs (coloc pairs). 
To generate random pairs, pairs of genes were randomly selected after matching for the 
expression level with cis- and trans-eGene pairs. Coloc pairs were identified as cis- and trans-
eGene pairs that are colocalized (H4 PP>0.5) but do not show a sign of mediation (mediation 
P>0.1). 

We also surveyed the function of cis-mediators via gene ontology (GO) analysis using gProfiler 
[46]. We used all cis-eGenes as a background gene list. GO terms that survived multiple testing 
corrections with the g:SCS threshold less than 0.05 were selected. 

Interchromosomal interactions 

SNPs may affect genes located in another chromosome via interchromosomal interactions. 
Therefore, we quantified interchromosomal interactions between trans-eSNPs and trans-
eGenes (trans-eQTL association FDR<0.25) using normalized chromatin contact matrices of the 
adult DLPFC [10] at 100kb resolution. Contact frequencies between trans-eSNPs and trans-
eGenes were compared against contact frequencies between randomly selected 100kb bins 
with matching chromosomes. Since interchromosomal contact frequencies are often zero, we 
only retained and compared non-zero interaction frequencies between trans-eQTLs and random 
pairs. 

Trans-eQTL hotspots 
Trans-eSNPs that are associated with 3 or more trans-eGenes were classified as trans-eQTL 
hotspots. Among 74,143 independent trans-eQTLs, 382 variants were identified as trans-eQTL 
hotspots. With the hypothesis that trans-eGenes associated with a given hotspot share a 
common trans-regulator, we evaluated whether trans-eGenes associated with hotspots may be 
more co-regulated than expected by chance. To this end, we calculated the mean absolute 
Pearson correlation coefficient among trans-eGenes associated with a given trans-eQTL 
hotspot using the individual-level normalized expression data from Wang et al [10]. Mean 
absolute expression correlation coefficients were compared between trans-eQTL hotspots and 
randomly selected expression-matched gene sets. 

Schizophrenia (SCZ) GWAS vs. trans-eQTL colocalization 
Because the number of trans-eQTLs is much smaller than cis-eQTLs, we relaxed the thresholds 
for trans-eQTLs for colocalization analyses, and retained only trans-eQTLs with p<1e-5 . We 
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overlapped trans-eQTLs (here, trans-eQTLs with p<1e-5 were retained) with SCZ GWS loci 
(defined on the basis of LD [r2>0.6] with the index SNP) using the intersect function of bedtools. 
We then performed colocalization analysis between SCZ GWAS and trans-eQTLs using the 
default setting of coloc [21]. Trans-eQTLs that colocalized with SCZ GWAS at a threshold of H4 
PP>0.6 were selected to identify trans-eGenes associated with SCZ (hereafter referred to as 
SCZ trans-eGenes). 

To draw direct comparisons with SCZ trans-eGenes, SCZ cis-eGenes were defined using the 
same colocalization posterior probability as that we had used for SCZ trans-eGenes (H4 
PP>0.6). We filtered previously defined SCZ risk genes [10] using a threshold of H4 PP>0.6. 

Characterization of SCZ trans-eGenes 
Genes with excess of rare de novo LoF variation in SCZ were obtained from the SCHEMA 
browser [47]. 32 genes that showed significant association with SCZ at an FDR<0.05 [24] were 
overlapped with SCZ trans-eGenes. We performed Fisher’s exact test between genes with 
SCZ-associated rare variation and SCZ trans-eGenes. Protein-coding genes were used as a 
background list in performing Fisher’s exact test. 

To interrogate potential dysregulation of SCZ-trans/cis-eGenes in SCZ-affected individuals, they 
were intersected with genes that were differentially expressed in postmortem brain samples with 
SCZ (SCZ-DEGs) or co-expression modules associated with SCZ (SCZ-modules) [26]. SCZ-
DEGs were selected based on FDR<0.05 regardless of whether the genes were upregulated or 
downregulated in SCZ. We ran Fisher’s exact test between SCZ-trans/cis-eGenes and SCZ-
DEGs/SCZ-modules with the background list defined as genes whose expression was detected 
in Gandal et al [26]. Because Gandal et al [26] defined 34 co-expression modules (20 of which 
are associated with SCZ), P-values for over-representation analysis between SCZ-trans/cis-
eGenes and SCZ-modules were corrected for multiple testing. 

Network connectivity (kME values) was also obtained from Gandal et al [26]. Each gene was 
assigned to a co-expression module via weighted gene co-expression network analysis 
(WGCNA) [48]. We quantified the kME value of a given gene in a co-expression module to 
which the gene belonged. We then compared kME values of SCZ trans-eGenes with kME 
values of SCZ cis-eGenes or all genes. 

Next, we interrogated cellular expression profiles of SCZ-trans/cis-eGenes using single-cell 
RNA-seq data [10], as described previously [27]. We scaled expression profiles of each cell and 
calculated the average expression of SCZ-trans/cis-eGenes in a given cell. This cell-level 
expression value of a given gene was then aggregated based on the cell types (neurons, 
astrocytes, microglia, endothelial cells, oligodendrocytes, and oligodendrocyte precursor cells) 
or neuronal subtypes (namely, excitatory, and inhibitory neuronal subtypes). 

Trans-regulatory network linking variants and regulatory elements to genes  
To analyze how eQTLs affect gene regulatory networks, we combined trans-eQTLs with gene 
regulatory networks from four brain cell types: neurons (excitatory and inhibitory) and glial cells 
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(microglia and oligodendrocytes). We mapped both cis-eQTLs and trans-eQTLs onto the gene 
regulatory network, which may provide information about how eQTLs break certain TF binding 
sites (TFBSs) and thereby result in changes to gene regulatory networks. 
 
For the cis-network, we used all genes in eQTL pairs (SNPs and Genes) as target genes (TGs). 
We filtered network edges by overlapping SNPs with binding sites on enhancers or promoters. 
We then evaluated whether these SNPs break the corresponding TFs using motifbreakR, which 
works with position probability matrices to interrogate SNPs for their potential effects on TF 
binding. We filtered the edges, thereby leaving only those edges that have SNPs with their 
target genes. The final results provided us with a data set that contains each edge representing 
SNPs -> TFs -> enhancer/promoter -> TGs linkages. We can visualize the results by plotting a 
genomic region surrounding certain SNPs, as well as potentially disrupted motifs. 
 
Generating the trans-network entailed a similar procedure. However, for trans-eQTL pairs, the 
SNPs may not be on the same chromosome as their target genes. When overlapping SNPs on 
binding sites, this introduces many problems. Therefore, we used mediator-eQTL data instead 
of trans-eQTL data when filtering out edges. After we carried out the same analysis as that 
detailed above for the cis-network, we mapped mediators back to trans-eQTLs (along with their 
target genes) to generate the results associated with the trans-network. 
 
As a result, we built a mediator-trans-cis-QTL Gene Regulatory Network (GRN) using mediators 
(TFs) and trans-network (TGs) cis-network results; this regulatory network links SNPs to 
mediators to the trans-genes that are regulated by them, respectively. Next, we utilized two 
types of predicted cell-type GRNs from scGRNom [15] for the major brain cell types: excitatory 
neurons (Ex1, Ex2, Ex3e, Ex4, Ex5, Ex6a, Ex6b, Ex8, and Ex9), inhibitory neurons (In1a, In1b, 
In1c, In3, In4a, In4b, In6a, In6b, In7, and In8), microglia, and oligodendrocytes. The first 
predicted GRN type corresponds to cell-type open chromatin regions from scATAC-seq data. 
The second predicted GRN type corresponds to a filtered network with the top 10% TFs that 
have absolute coefficients for a given target gene regardless of whether the region is 
characterized by cell-type-specific open chromatin. We then overlaid these TF-TG edges in both 
versions of cell-type GRNs with those in our mediator-trans-cis-eQTL network to determine cell-
type specific TF-TG relationships detected by our mediator-trans-cis-eQTL network.  

Supplementary information 
Supplemental File 1 – trans-eQTLs with FDR<0.25 in DLPFC 
Supplemental File 2 – mediation analysis results for trans-eQTLs 
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