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Abstract 

As a social species, ready exchange with peers is a pivotal asset - our “social capital”. Yet, single-person 
households have come to pervade metropolitan cities worldwide, with unknown consequences in the 
long run. Here, we systematically explore the morphological manifestations associated with singular 
living in ~40,000 UK Biobank participants. The uncovered population-level signature spotlights the 
highly associative default mode network, in addition to findings such as in the amygdala central, 
cortical and corticoamygdaloid nuclei groups, as well as the hippocampal fimbria and dentate gyrus. 
Sex-stratified analyses revealed male-specific neural substrates, including somatomotor, saliency and 
visual systems, while female-specific neural substrates centred on the dorsomedial prefrontal cortex. 
In line with our demographic profiling results, the discovered neural imprint of living alone is 
potentially linked to alcohol and tobacco consumption, anxiety, sleep quality as well as daily TV 
watching. The secular trend for solitary living will require new answers from public-health decision 
makers.  
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Introduction 

Some animals have evolved by adapting to the benefits of living in a social group. In the primate 

lineage, this mode of living and coordination has probably improved the identification of scarce 

resources, and may have refined cooperating and dealing with predators and prey as a cohesive group 

(Dunbar & Shultz, 2017). As a result, various behaviour, neuronal, hormonal, cellular and genetic 

mechanisms have likely co-evolved to support these advantageous social forms (Robinson et al., 2008; 

Adolphs, 2009). For humans, the consequences of detachment from social group living can be 

expected to be pervasive due to the impoverished social environment. Indeed, social isolation is 

known to affect mental and physical well-being (Bzdok & Dunbar, 2020a). Such a state of deprived 

everyday stimulation is deemed so bad by society that it is used as an institutionalized form of 

punishment for individuals incarcerated in prisons (Cloud et al., 2015). Here we have investigated the 

impact of living alone on brain structure in a large community cohort of participants recruited from 

across the United Kingdom. This recently emerged population resource opens a unique window to see 

into the impact of the day-to-day social experience at the population scale in a naturalistic approach 

that goes beyond what traditional psychological and neuroscience experiments can do. 

 

A wealth of neuroscience research now suggests that social abilities in humans and at least 

some non-human primates are realized by invoking a cohesive set of brain regions referred to as the 

‘Social Brain’. Early support for the Social Brain idea came from evidence that, across species, the 

neocortex-to-brain volume ratio tracks the number of individuals per social group (Dunbar, 1992; 

Dunbar & Shultz, 2007a; b). This insight has been argued to imply that brain circuits particularly tuned 

to serving social processes have expanded via selection pressures acting over evolutionary time. For 

example, numerous subregions within the medial-temporal limbic system and medial prefrontal 

cortex show high neural responses to social information processing (e.g. face, expression, gaze) and 

dynamic social interaction (Noonan et al., 2016). This includes information of faces (Kanwisher et al., 

1997; Ku et al., 2011), facial expression and gaze direction (Morin et al., 2015), species-specific 
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vocalizations (Joly et al., 2012) and biological motion (Perrett et al., 1992). These brain circuits linked 

to social interplay are therefore key candidates in which differences in solitary living would be 

expected to manifest. 

 

As such, we confront the question whether these recently evolved brain circuits that enable 

advanced coping with living in social groups may expose susceptibility when people undergo social 

scarcity in the environment. Clues to answer this question come from studies that have shown robust 

correlation of the size of individuals’ social network with indexes of structural and functional brain 

organisation. In humans, such studies have again typically implicated regions in the prefrontal cortex 

and the temporal lobe, particularly the amygdala (Bickart et al., 2011; Lewis et al., 2011; Von Der Heide 

et al., 2014; Noonan et al., 2018). Further, there is evidence that this pattern of effects may not simply 

reflect the individual’s predisposition towards seeking or avoiding social companionship. Instead, the 

brain may show plasticity effects in the face of recurring social experiences. In particular, Sallet and 

colleagues (Sallet et al., 2011) conducted controlled experiments with random allocation of monkeys 

to social housing for parallel laboratory studies (groups of 1-7 monkeys). This rare experimental feat 

demonstrated that the mid superior temporal sulcus (mSTS) and the medial prefrontal cortex both 

showed plasticity adaptations to daily living in a social group that has an experimentally imposed size. 

Later anatomical work has provided indicators that the temporal parietal junction (TPJ) is a strong 

candidate to be the human homologue of macaque mSTS (Mars et al., 2013), a region identified in 

humans as engaged in instantiating mental models of other people’s thoughts (Frith & Frith, 2006). 

These brain regions are also spatially contiguous with the default mode network (DNM) (Mars et al., 

2012). 

 

Collectively, these earlier studies bring to the surface how not only richness but also paucity 

of the social environment reverberates with specific brain systems. At its extreme, small-scale studies, 

in the context of arctic exploration or astronaut training and experience, have shown that enduring 
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periods of social isolation is associated with increased stress hormone responses (Jacubowski et al., 

2015; Weber et al., 2019). In the brain, these experiences of social isolation correlated with broad 

reductions in global cortical activity (Jacubowski et al., 2015; Weber et al., 2019) and specific 

reductions of the gray matter volume in prefrontal and hippocampal regions (Stahn et al., 2019). More 

generally, paucity of opportunity for social interaction in the real world has profound consequences 

for mental and physical health (Bzdok & Dunbar, 2020b). For example, social isolation is a major risk 

factor for age-related cognitive decline and Alzheimer’s dementia (Heinrich & Gullone, 2006).  

 

Even the mere subjective perception of social disconnection from others, loneliness, takes a 

toll on mental health and cognition in all ages (reviewed by (Cacioppo & Hawkley, 2009). The 

perception of social disconnection is also associated with reduced overall life expectancy, and 

increases vulnerability to Alzheimer’s disease related dementias. Indeed, we recently identified brain 

signatures of loneliness in gray matter morphology, intrinsic functional coupling, and fiber tract 

microstructure and found that they converged on the DMN (Spreng et al., 2020). This study also 

identified brain signatures to be more pronounced in males than females. On its flipside, objective 

measures of social isolation have been linked to the limbic and salience networks (Schurz et al., 

2021b). Again, there are sex-specific effects in the amygdala of various measures of social connection 

included not only household size, but also subject loneliness as well as objective social support (Kiesow 

et al., 2020). This array of robust brain-behavior associations speak to the relevance of social isolation 

has on the individual and the potential underlying neural substrates. As one possible interpretation, 

quantifiable sex-related divergences in social experience may be reflected in distinct neural profiles 

associated with living alone.   

 

Finally, there are now swelling numbers of single-person households in numerous 

metropolitan cities across the globe. Hence, solitary living is becoming an increasing burden on 

modern societies (Raymo, 2015; Byron, 2019; Jackie Tang, 2019; Statistics, 2019). These compounding 
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developments now warrant deeper understanding into the primary biology underlying lack of regular 

social interaction in the home environment. Decisive steps towards filling this knowledge gap may 

bring crucial insights into the associated mental and physical health consequences. In the present 

population neuroscience study, we take a naturalistic approach by utilising the large UK Biobank 

population imaging cohort (n=~40,000 aged 40-69 years, mean age 54.9) to examine the gray matter 

correlates of living alone relative to living with other persons at home. We then explored putative sex-

specific differences in the day-to-day experience of living alone, subsequently contextualized the 

results by their relation to perceived loneliness and regular social support, and conduct a careful 

demographic profiling analysis across key behavioral traits. 

 

Methods 

Population data source 

The UK Biobank is a prospective epidemiology resource that offers extensive behavioral and 

demographic assessments, medical and cognitive measures, as well as biological samples in a cohort 

of ~500,000 participants recruited from across Great Britain (https://www.ukbiobank.ac.uk/). This 

openly accessible population dataset aims to provide multimodal brain-imaging for ~100,000 

individuals, planned for completion in 2022. The present study was based on the recent data release 

from February 2020 that augmented brain scanning information to ~40,000 participants. The present 

analyses were conducted under UK Biobank application number 25163. All participants provided 

informed consent. Further information on the consent procedure can be found elsewhere 

(http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200). 

 

In an attempt to improve comparability and reproducibility, our study built on the uniform 

data preprocessing pipelines designed and carried out by FMRIB, Oxford University, UK (Alfaro-

Almagro et al., 2018). Our study involved data from the ~40,000 participant release with brain-imaging 

measures of gray matter morphology (T1-weighted MRI [sMRI]) from 48% men and 52% women, aged 
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40-69 years when recruited (mean age 55, standard deviation [SD] 7.5 years). Our study focused on 

single-person household status as a measure of richness of the social environment (Hawkley et al., 

2003; Luhmann & Hawkley, 2016; Bzdok & Dunbar, 2020b). This self-reported item was based on the 

following question: "Including yourself, how many people are living together in your household? 

(Include those who usually live in the house such as students living away from home during term, 

partners in the armed forces or professions such as pilots)" 

(https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=709). Our analyses distinguished between 

people living by themselves (encoded as ‘1’) or living with other people (encoded as ‘0’) at home. 

 

Binary target outcomes are found in widely used assessments of social embeddedness 

(Hawkley et al., 2005; Cyranowski et al., 2013). As one example, the Social Relationships scales of the 

NIH Toolbox (Cyranowski et al., 2013) feature the dimension of emotional social support. This 

dimension holds items such as "I have someone I trust to talk with about my problems", or "I can get 

helpful advice from others when dealing with a problem". A variety of studies showed such single-

item measures of social traits to be reliable and valid (Mashek et al., 2007; Dollinger & Malmquist, 

2009) Our own previous research has used yes-no items to study individuals who live alone. 

 

Multimodal brain-imaging and preprocessing procedures 

Magnetic resonance imaging (MRI) scanners were matched at several dedicated imaging sites with 

the same acquisition protocols and standard Siemens 32-channel radiofrequency receiver head coils 

(3T Siemens Skyra). To protect the anonymity of the study participants, brain-imaging data were 

defaced and any sensitive meta-information was removed. Automated processing and quality control 

pipelines were deployed (Miller et al., 2016; Alfaro-Almagro et al., 2018). To improve homogeneity of 

the imaging data, noise was removed by means of 190 sensitivity features. This approach allowed for 

the reliable identification and exclusion of problematic brain scans, such as due to excessive head 

motion. 
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Structural MRI: The sMRI data were acquired as high-resolution T1-weighted images of brain 

anatomy using a 3D MPRAGE sequence at 1 mm isotropic resolution. Preprocessing included gradient 

distortion correction (GDC), field of view reduction using the Brain Extraction Tool  and FLIRT 

(Jenkinson & Smith, 2001; Jenkinson et al., 2002), as well as non-linear registration to MNI152 

standard space at 1 mm resolution using FNIRT (Andersson et al., 2007). To avoid unnecessary 

interpolation, all image transformations were estimated, combined and applied by a single 

interpolation step. Tissue-type segmentation into cerebrospinal fluid (CSF), gray matter (GM) and 

white matter (WM) was applied using FAST (FMRIB’s Automated Segmentation Tool, (Zhang et al., 

2001)) to generate full bias-field-corrected images. SIENAX (Smith et al., 2002), in turn, was used to 

derive volumetric measures normalized for head sizes. 

  

Analysis of associations between living alone and gray matter variation 

Neurobiologically interpretable measures of gray matter volume were extracted in all participants by 

summarizing whole-brain sMRI maps in Montreal Neurological Institute (MNI) reference space. This 

feature generation step was guided by the topographical brain region definitions of the widely used 

Schaefer-Yeo atlas comprising 100 parcels (Schaefer et al., 2018). The derived quantities of local gray 

matter morphology provided 100 average volume measures for each participant. The participant-level 

brain region volumes provided the input variables for our Bayesian hierarchical modeling approach 

(cf. below). As a data-cleaning step, inter-individual variation in brain region volumes that could be 

explained by variables of no interest were regressed out: age, age2, sex, sex*age, sex*age2, body mass 

index, head size, head motion during task-related brain scans, head motion during task-unrelated 

brain scans, head position and receiver coil in the scanner (x, y, and z), position of scanner table, as 

well as the acquisition site of the MRI data. 
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To examine population variation of our atlas regions in the context of household status, we 

purpose-designed a Bayesian hierarchical model, a natural choice of method building on our previous 

research (Bzdok et al., 2017a; Bzdok & Dunbar, 2020b; Kiesow et al., 2020; Kiesow et al., 2021; Schurz 

et al., 2021b). In contrast, classical linear regression combined with statistical significance testing 

would simply have provided p-values against the null hypothesis of no difference between participants 

living in a single-person household or not in each brain region. Instead of limiting our results and 

conclusions to strict categorical statements, each region being either relevant for differences in 

household size, our analytical strategy aimed at full probability distributions that expose how brain 

region volumes converge or diverge in their relation to household size as evidenced in the UK Biobank 

population. In a mathematically rigorous way, our approach estimated coherent, continuous 

estimates of uncertainty for each model parameter at play for its relevance in household situations. 

Our study thus addressed the question "How certain are we that a regional brain volume is divergent 

between individuals living alone or not?". Our analysis did not ask "Is there a strict categorical 

difference in region volume between individuals living alone or not?". 

 

The elected Bayesian hierarchical framework also enabled simultaneous modelling of multiple 

organizational principles in one coherent estimation: i) segregation into separate brain regions and ii) 

integration of groups of brain regions in the form of spatially distributed brain networks. Two regions 

of the same atlas network are more likely to exhibit similar volume effects than two regions belonging 

to two separate brain networks. Each of the region definitions was pre-assigned to one of the seven 

large-scale network definitions in the Schaefer-Yeo atlas (Schaefer et al., 2018), providing a native 

multilevel structure to be modelled explicitly. 

 

Setting up a hierarchical generative process enabled our analytical approach to borrow 

statistical strength between model parameters at the higher network level and those at the lower 

level of constituent brain regions. By virtue of exploiting such partial pooling of information, the brain 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2021. ; https://doi.org/10.1101/2021.09.06.459185doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459185
http://creativecommons.org/licenses/by/4.0/


9 
 

region parameters were modelled themselves by the hyper-parameters of the hierarchical regression 

as a function of the network hierarchy to explain interindividual differences in solitary living. Assigning 

informative priors centered around zero provided an additional form of regularization by shrinking 

coefficients to zero in the absence of evidence to the contrary. We could thus provide fully 

probabilistic answers to questions about the morphological relevance of individual brain locations and 

distributed cortical networks by a joint varying-effects estimation that profited from several 

biologically meaningful sources of population variation. 

 

Our model specification placed emphasis on careful inference of unique posterior distributions 

of parameters at the brain network level to discriminate individuals living with others (encoded as 

outcome 0) or those living alone (outcome 1) at their household: 

 

𝑦 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖( 𝑝) 

𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑥1 ∗  𝛽𝑟𝑒𝑔𝑖𝑜𝑛1
 +  … +  𝑥𝑝 ∗  𝛽𝑟𝑒𝑔𝑖𝑜𝑛𝑝

+ 

𝛼𝑚𝑒𝑛[𝑠𝑒𝑥] +  𝛼𝑤𝑜𝑚𝑒𝑛[𝑠𝑒𝑥] + 𝛼𝑚𝑒𝑛_𝑎𝑔𝑒[𝑠𝑒𝑥] ∗ 𝑎𝑔𝑒𝑚𝑒𝑛  + 𝛼𝑤𝑜𝑚𝑒𝑛_𝑎𝑔𝑒[𝑠𝑒𝑥] ∗  𝑎𝑔𝑒𝑤𝑜𝑚𝑒𝑛  

 

     𝛽𝑟𝑒𝑔𝑖𝑜𝑛𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑉𝑖𝑠𝑢𝑎𝑙
 ~ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙 ([

0
⋮
0

] , Σ𝑉𝑖𝑠𝑢𝑎𝑙) ; Σ𝑉𝑖𝑠𝑢𝑎𝑙 = [

𝜎𝑜
2 ⋯

⋮ ⋱ ⋮
⋯ 𝜎𝑜

2
] 

    𝛽𝑟𝑒𝑔𝑖𝑜𝑛𝑛𝑒𝑡𝑤𝑜𝑘_𝑆𝑜𝑚𝑀𝑜𝑡
 ~ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙 ([

0
⋮
0

] , Σ𝑆𝑜𝑚𝑀𝑜𝑡) ; Σ𝑆𝑜𝑚𝑀𝑜𝑡 = [

𝜎𝑝
2 ⋯

⋮ ⋱ ⋮
⋯ 𝜎𝑝

2
] 

𝛽𝑟𝑒𝑔𝑖𝑜𝑛𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝐿𝑖𝑚𝑏𝑖𝑐
 ~ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙 ([

0
⋮
0

] , Σ𝐿𝑖𝑚𝑏𝑖𝑐) ; Σ𝐿𝑖𝑚𝑏𝑖𝑐 = [

𝜎𝑞
2 ⋯

⋮ ⋱ ⋮
⋯ 𝜎𝑞

2
] 

    𝛽𝑟𝑒𝑔𝑖𝑜𝑛𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑒
 ~ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙 ([

0
⋮
0

] , Σ𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑒 ) ; Σ𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑒 =  [

𝜎𝑟
2 ⋯

⋮ ⋱ ⋮
⋯ 𝜎𝑟

2
] 

  𝛽𝑟𝑒𝑔𝑖𝑜𝑛𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝐶𝑜𝑛𝑡𝑟𝑜𝑙
 ~ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙 ([

0
⋮
0

] , Σ𝐶𝑜𝑛𝑡𝑟𝑜𝑙  ) ; Σ𝐶𝑜𝑛𝑡𝑟𝑜𝑙 =  [

𝜎𝑠
2 ⋯

⋮ ⋱ ⋮
⋯ 𝜎𝑠

2
] 
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      𝛽𝑟𝑒𝑔𝑖𝑜𝑛𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝐷𝑜𝑟𝑠𝑎𝑙𝐴𝑡𝑡𝑛
 ~ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙 ([

0
⋮
0

] , Σ𝐷𝑜𝑟𝑠𝑎𝑙𝐴𝑡𝑡𝑛 ) ; Σ𝐷𝑜𝑟𝑠𝑎𝑙𝐴𝑡𝑡𝑛 = [

𝜎𝑡
2 ⋯

⋮ ⋱ ⋮
⋯ 𝜎𝑡

2
] 

   𝛽𝑟𝑒𝑔𝑖𝑜𝑛𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝐷𝑒𝑓𝑎𝑢𝑙𝑡
 ~ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙 ([

0
⋮
0

] , Σ𝐷𝑒𝑓𝑎𝑢𝑙𝑡 ) ; Σ𝐷𝑒𝑓𝑎𝑢𝑙𝑡 = [

𝜎𝑢
2 ⋯

⋮ ⋱ ⋮
⋯ 𝜎𝑢

2
] 

 

           𝛼𝑚𝑒𝑛 ~ 𝒩(0, 1) 

       𝛼𝑤𝑜𝑚𝑒𝑛 ~ 𝒩(0, 1) 

    𝛼𝑚𝑒𝑛_𝑎𝑔𝑒 ~ 𝒩(0, 1) 

𝛼𝑤𝑜𝑚𝑒𝑛_𝑎𝑔𝑒 ~ 𝒩(0, 1) 

 

where sigma parameters estimated the overall variance across the p brain regions that belong 

to a given atlas network, independent of whether the volume effects of the respective constituent 

brain regions had positive or negative direction. As such, the network variance parameters sigma 

directly quantified the magnitude of intra-network coefficients, and thus the overall relevance of a 

given network in explaining lack of social interaction at home based on the dependent region 

morphology measures. All regions belonging to the same brain network shared the same variance 

parameter in the diagonal of the covariance matrix, while off-diagonal covariance relationships were 

zero. 

 

Full probabilistic posterior distributions for all model parameters were inferred for the 

hierarchical modelling solution. By espousing a Bayesian attitude, we could thus simultaneously 

appreciate gray matter variation in segregated brain regions as well as in integrative brain networks 

in a population cohort. The approximation of the posterior distributions was carried out by the NUTS 

sampler (Gelman et al., 2014), a type of Markov chain Monte Carlo (MCMC), using the PyMC3 software 

(Salvatier et al., 2016). After tuning the sampler for 4,000 steps, we drew 1,000 samples from the joint 

posterior distribution over the full set of parameters in the model for analysis. Proper convergence 

was assessed by ensuring Rhat measures (Gelman et al., 2014) stayed below 1.02. 
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For illustration purposes, all brain images in MNI space were mapped onto a pial surface 

(Glasser et al., 2016) using the Connectome Workbench command-line tools. 

 

Post-hoc characterization of the brain substrates of solitary living regarding social isolation traits 

Next, we sought to deepen insight into the set of relevant regions that was most robustly linked to 

residing in a single-person home. For this purpose, we quantified the strength of association of the 

volume measures from the top brain regions with external measures of objective and subjective social 

isolation that were not invoked in any previous steps of the analysis workflow: the opportunity of daily 

social exchange with others to confide is a well-accepted indicator for regular social support (data 

field: 2110; "How often are you able to confide in someone close to you?") (Schurz et al., 2021a), while 

the experience of loneliness is commonly viewed to capture especially the feeling or personal 

impression of being social disconnected from others (data field: 2020; Do you often feel lonely? 

(Spreng et al., 2020)). Here, we examined all four possible combinations of these two complementary 

traits of social isolation in our UK Biobank sample. Given the four-group distinction setting, linear 

discriminant analysis was a natural choice of method. This classification machine learning algorithm 

(Bzdok, 2017; Bzdok et al., 2017b) afforded inferential statements about the effect sizes paired with 

the region-wise associations with each of the four disparate qualities of social isolation (i.e., each 

combination of subjective loneliness and objective social support). 

 

Demographic profiling analysis of the brain substrates of solitary living 

We finally performed a profiling analysis of the brain regions that were most strongly associated with 

residing in a single-person home. We carried out a rigorous test for multivariate associations between 

our top region set and a diverse set of lifestyle indicators that exemplify the domains of a) basic 

demographics, b) personality features, c) substance-use behaviors, and d) social network properties 

(for details see https://www.ukbiobank.ac.uk/data-showcase/). Each of the behavioral variables and 

brain measures was z-scored across participants to conform to a mean of zero and a standard 
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deviation of one. The brain variables that were submitted to this analysis were identified based on 

their importance in the context of solitary living (cf. above). These target brain regions were elected 

based on the (absolute) modes of the Bayesian posteriors of marginal parameter distributions at the 

region level. 

 

Using the two separate variable sets, brain measurements and behavior measurements, we 

then carried out a bootstrap difference analysis of the collection of target traits in single-person versus 

multi-person households (Efron & Tibshirani, 1994). In 1,000 bootstrap iterations, we randomly pulled 

equally sized participant samples to perform a canonical correlation analysis (CCA), in parallel, 

according to household status (Miller et al., 2016; Wang et al., 2018). In each resampling iteration, 

this approach estimated the doubly multivariate correspondence between the brain and behavior 

indicators in each of the two groups. The ensuing canonical vectors of the leading CCA mode indicated 

the most explanatory demographic associations in a given pull of participants. To directly estimate the 

certainty of the brain-behavior cross-associations in the face of resample-to-resample variation, these 

canonical vectors of behavioral rankings, from CCA applications to single-person vs. multi-person 

households, were subtracted elementwise, recorded, and ultimately aggregated across the 1,000 

bootstrap datasets. 

 

We thus propagated the noise due to participant sampling variation into the computed 

uncertainty estimates of group differences in the UK Biobank population cohort. Statistically relevant 

behavioral dimensions were determined by whether the (two-sided) bootstrap confidence interval 

included zero or not in the 5/95% bootstrap interval. In a fully multivariate setting, our non-parametric 

modelling tactic directly quantified the statistical uncertainty of how a UK Biobank trait is differentially 

linked to brain-behavior correspondence as a function of household size. 
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Results 

Network-level results whole population: 

By deploying an integrative Bayesian hierarchical modelling framework, we associated the objective 

experience of living alone with volume variation across the 100 brain regions that belong to the 7 

spatially distributed brain networks that populate the human cerebral cortex, according to the 

Schaefer-Yeo reference atlas (Schaefer et al., 2018). At the network level, volume variation was most 

prominently associated with living alone in the default network, with the largest share of explained 

variance (posterior sigma=.065; 10-90% highest posterior density [HPD]=.044/.083; Fig. 1). The highest 

explanatory relevance of the collection of default network regions in living alone was followed by 

overall effects of the limbic network (sigma=.054, HPD=.001/.081), somatomotor network 

(sigma=.051, HPD=.019/.076), visual network (sigma=.050, HPD=.021/.074), as well as salience 

(sigma=.037, HPD=.002/.055), dorsal attention (sigma=.025, HPD=.001/.038), fronto-parietal 

(sigma=.021, HPD=.001/.031) networks. As such, our quantitative findings indicate the deepest layers 

of the neural processing hierarchy – the DMN regions – to play the strongest role in the brain 

manifestations of solitary living. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2021. ; https://doi.org/10.1101/2021.09.06.459185doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459185
http://creativecommons.org/licenses/by/4.0/


14 
 

 

Figure 1. Solitary living is associated with default mode structure at the network and region level. 
Our Bayesian hierarchical modelling framework estimated the gray matter effects jointly of single 
regions and distributed networks of brain regions in explaining living alone. Roughly analogous to 
ANOVA, the network definitions could be viewed as factors and the region definitions could be viewed 
as continuous factor levels. Our framework allowed to begin quantifying the degree to which volume 
variation in each canonical network of regions reliably relates to living alone, as well as each separate 
region from those brain networks. Histograms show the inferred marginal posterior parameter 
distributions of the overall explanatory variance (sigma parameter) for each major brain network 
(volume measures in standard units). Horizontal black bars indicate the highest posterior density 
interval (HPI) of the model’s network variance parameters, ranging from 10 to 90% probability. 
Posterior distributions for the variance parameter (sigma) of each brain network are ordered from 
strongest (DMN; top left) to weakest (fronto-parietal; bottom right). The two brain renderings show 
the individual brain regions which were found to have the most robust relationship with living alone 
with their posterior parameter distributions (mean parameter). The brain regions that emerged as the 
most explanatory were in the lateral temporal lobe (pSTS, mSTS, aSTS, MTG/ITG), and frontal cortex 
(IFG, and dmPFC). a/m/pSTS = anterior/middle/posterior superior temporal sulcus, IFG = inferior 
frontal gyrus, dmPFC = dorsomedial prefrontal cortex, MTG = middle temporal gyrus, ITG = inferior 
temporal gyrus. L/R=left/right. Overall, the DMN and the limbic system showed overwhelming effects 
in explaining inter-individual variation in living alone. 

 

Next, we investigated the impact of biological sex on the relationship between living alone and gray 

matter volume at the network-level. We found no salient differences in the degree of gray matter 

(GM) volume variation associated with living alone between the two sexes. Indeed, within the two 
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groups the pattern of network effects were mostly similar to those of the whole population. For 

example, the top three networks that collectively explain most variance in women - limbic (posterior 

sigma=.072; 10-90% highest posterior density [HPD]=.002/.106; Fig. S1), somatomotor (sigma=.058; 

HPD=.015/.093) and default (sigma=.057; HPD=.032/.08) - were those that also collectively explained 

the most GM variation at the whole population, albeit in a different ranked order. Similarly, men 

showed significant GM variation within the DMN (sigma=.066; HPD=.037/.092) and limbic network 

(sigma=.063; HPD=.002/.096), but contrary to the whole population, the salience network (Ventral 

Attention; sigma=.061; HPD=.003/.087) explained the third most variance.  

  

Region-level whole population: 

We next inspected the inferred associations between living alone and regional brain structure. Using 

the previously described Bayesian hierarchical approach we focused on variation in GM volume in the 

100 individual atlas regions (Fig. 1, Supplementary Table 1). Positive volume effects associated with 

living alone emerged in the right middle temporal gyrus/ inferior temporal gyrus (posterior 

mean=.089, 10-90% HPD=.033/.147), right anterior superior temporal sulcus (mean=.086, 

HPD=.031/.145), right middle superior temporal sulcus (mean=.080, HPD=.019/.136) and right inferior 

frontal gyrus (mean=.062, HPD=.015/.113). By contrast, negative volume effects became apparent in 

the left posterior superior temporal sulcus (mean=-.076, HPD=-.125/-.021) and right dorsomedial 

prefrontal cortex (mean=-.097, HPD=-.144/-.047). Lateral temporal subregions thus tended to explain 

the greatest amount of inter-individual variance in living alone.  

 

Region-level sex differences: 

When we turned to examine regional sex differences in the relationship between living alone and GM 

volume, we reported relevant effects in a range of association cortical regions broadly linked to action 

and perception. Our Bayesian hierarchical inference revealed a relatively right lateralized set of 

positive GM volume effects (Supplementary Table 2), indexing greater GM volume effects in men than 
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women. These regions included the insula (mean=.076, 25-75% HPD=.013/.103), cuneus (mean=.075, 

HPD=.016/.099), precuneus/posterior cingulate cortex (mean=.059, HPD=.008/.099), motor/dorsal 

supplementary motor cortex (mean=.055, HPD=.006/.083) and posterior cingulate sulcus (mean=.052, 

HPD=.004/.079). Only motor/dorsal supplementary motor cortex showed positive volume effects in 

the left hemisphere (mean=.05, HPD=.003/.075). By contrast negative volume effects, indexing 

greater GM volume associations with living alone in women than men, were lateralized to the left 

hemisphere. The only significant effects evident were in the PFC; frontal polar cortex (mean=-.093, 

HPD=-.127/-.05) and dorsal premotor cortex (mean=-.07, HPD=-.109/-.02). These two frontal regions, 

both belonging to the DMN.  
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Figure 2. Degrees of sex bias characterize the gray matter substrates associated with living alone. 
Results highlight the brain regions that show different relationships to the experience of living alone 
in men and women. A. Sex contrast effects (male minus female) in the left (left column) and right 
(right column) hemispheres on lateral (upper rendering) and medial (lower rendering) at the region 
level (subtracting women’s posterior parameter distribution for a given effect from that inferred from 
males). For example, means of the posterior parameter distribution above zero can indicate a 
relatively male-biased effect with a positive volume effect associated with living alone (towards red 
color). Accordingly, in this case, for means below zero there would be a relatively female-biased 
volume effect for such brain-behavior association (towards blue color). B-C. Repetition of the Bayesian 
hierarchical analysis separately in (B) only males and (C) only females from our UK Biobank cohort: 
relevant gray matter effects (means of the marginal posterior parameter distributions). The 
neurostructural concomitants of living alone in men and women are notably different in a disparate 
assortment of brain regions. In men but not women, the dorsal premotor region emerges as robustly 
explanatory of living alone. Conversely the middle temporal gyrus/inferior temporal gyrus and dmPFC 
emerges in women but not men. FPC = frontal polar cortex, PMd = premotor dorsal, Md/SMd = dorsal 
motor/dorsal supplementary motor cortex, Cun = Cuneus, INS = insular cortex, pCS = posterior 
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cingulate sulcus, PreC/PCC = PreCuneus/posterior cingulate cortex, MTG = middle temporal gyrus, ITG 
= inferior temporal gyrus, dmPFC = dorsomedial prefrontal cortex. L/R = left/right. 

 

 

Key regional effects are distinctly related to loneliness and quality of social support 

The effects reported above describe brain regions that bear some type of association with living alone. 

But these effects by themselves cannot speak to whether these differences are related to felt or actual 

social isolation. In a sub-analysis, we thus addressed this question by teasing apart the contributions 

to GM volume effects with relation to subjective social isolation (loneliness) and/or objective social 

isolation (living alone). To this end we, conducted a post-hoc analysis in our UK Biobank sample that 

explicitly interrogated links to four participant subgroups: i) individuals who were not lonely and had 

good social support, ii) individuals who were lonely despite good social support, iii) individuals who 

were not lonely but had poor social support, and iv) individuals who were lonely and had poor social 

support. We focused the analysis on those six brain regions whose GM variation was found to explain 

relevant variation in living alone (Figure 3).  

 

Indeed, lonely individuals (regardless of quality of social support) consistently show GM 

effects across the network identified in the primary living alone analysis (B, D). This includes positive 

weights in the MTG/ITG regardless of the reported quality of social support. Notably, the anterior and 

posterior STS - both showing positive effects in individuals living alone - reverse sign in lonely 

individuals depending on quality of social support. For example, there was a positive pSTS and negative 

aSTS when social support structures are strong, and the opposite with poor social support (B vs D). 

The prefrontal regions both showed negative relationships with loneliness, regardless of social 

support (B, D). This was in line with the negative association between dmPFC GM and living alone, but 

opposite to the positive association between the IFG and living alone (Figure 1). By contrast, 

individuals who are well surrounded (not lonely), regardless of the quality of the social support 

network, generally show a complementary pattern of brain-behavior associations (A, C). Here the 
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pattern of GM volume variation modulated by these two factors is predictably in the opposing 

directional weight than the living alone effects (Figure 1). For example, the temporal lobe clusters 

(particularly MTG/ITG) show positive effects in the whole population living alone analysis and negative 

effects when individuals are well surrounded (A, C). Similarly, the dmPFC cluster seen in individuals 

who are not lonely despite poor social support (C) showed reversed directional weight between 

original living alone contrast and the current analysis. However, this pattern is not always the case, 

with the IFG showing positive effects in individuals who live alone and individuals who report not being 

lonely (regardless of social support quality A,C).  
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Figure 3. Top brain substrates of solitary living show differential links with objective and subjective 
isolation. As a means to further functionally annotate the brain correlates that we identified as 
relevant for solitary living (cf. Figure 1; Bayesian hierarchical model), we conducted a post-hoc analysis 
to examine the interindividual differences in volume variation in the identified relevant brain regions. 
This descriptive approach estimated how the participants of our UK Biobank sample can be 
distinguished based on their self-report measures of subjective and/or objective social isolation, that 
is, probing against all combinations of loneliness and social support. We thus aimed to map out which 
solitary-living correlates are preferentially linked to facets of social isolation that were external to the 
upstream analysis steps. Gray matter volume variation associated with individuals who do not feel 
lonely and indicate good social support (well surrounded, A). We show effects in individuals who 
report loneliness despite good social support (lonely, B), individuals who are not lonely despite poor 
social support (less social support, C), individuals who are lonely and have poor social support (lonely 
less social support, D). Effects were thresholded at 0.01 before surface mapping to the Connectome 
brain. Overall, the brain correlates of solitary living show especially strong volumetric relationships 
with loneliness. In particular, the MTG/ITG, IFG, and dmPFC are highlighted in loneliness. 

 
 

 

Amygdala nuclei gray matter relationships with living alone: 

We next turned to a fine-scale assessment of a closely associated subcortical structure with our 

identified whole-brain correlates of solitary living - the amygdala. To this end, we examined the 

relationship between amygdala nuclei GM and living alone using Bayesian inference (Figure 4, 

Supplementary Table 3). Notably, there was a strong lateralisation in the amygdala volume effects. 

Further, all but one amygdala subregion with a relevant effect showed a negative association between 

GM volume and living alone. Negative volume effects associated with living alone emerged in the right 

central (posterior mean=-.048, 10-90% HPD=-.078/-.017), right cortical (mean=-.057, HPD=-.095/-

.019), right cortico-amygdaloid-transition (mean=.08, HPD=.019/.136), and left accessory basal 

nucleus (mean=-.109, HPD=-.196/-.018). The left accessory basal nucleus was the only robust effect 

we observed in the left amygdala. Conversely, we observed a positive effect in the right accessory 

basal nucleus (mean=.224, HPD=.136/.319). In sum, the majority of the salient relationships between 

amygdala nuclei GM volume and solitary living were on the right hemisphere. Most of these effects 

were also negative amygdala-household-living associations.  
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Figure 4. Specific amygdala nuclei groups are differentially affected in solitary living. Shows the 
results from Bayesian modelling applied to the amygdala based on the 9 cytoarchitectonically 
distinguishable nuclei groups from an automatically derived amygdala segmentation protocol (Saygin, 
Klienmann et al. 2017). The inferred Bayesian posterior parameter distributions indicate where 
volume variation can explain single person households. Shown as means of the marginal posterior 
parameter distributions, the results are mapped to 4 consecutive coronal sections of the left and right 
amygdala from anterior (top) to posterior (bottom) (hot/cold colors = positive/negative volume 
associations). The left and right accessory basal nucleus show particularly strong, but opposing 
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volumetric relationships. ME = Medial, AAA = Anterior Amygdala Area, CAT = Cortico-amygdaloid 
Transition Area, Co = Cortical, AB = Accessory Basal, La = Lateral Nucleus, Ba = Basal Nucleus, Ce = 
Central, PL = Paralaminar Nucleus. Overall, the amygdala nuclei with strong relationships to solitary 
living were primarily in the right hemisphere. 
 
 

Sex differentiation in amygdala nuclei relationships with solitary living:  

Given identified sex deviation in the association of cortical regions with living alone, we then sought 

to examine possible sex differences in amygdala nuclei (male – female, Supplementary Table 4). For 

example, male-biased positive volume effects can be indexed by greater volume contributions in men 

than women with less regular social interaction at home. Positive volume effects (that can be 

indicative of larger GM volume effect in men than women) were identified in the right paralaminar 

(mean=.084, 25-75% highest posterior density [HPD]=.040/.139), and right central nuclei (mean=.039, 

HPD=.002/.068), as well as the left lateral nucleus (mean=.091, HPD=.037/.125), and left anterior 

amygdaloid area (mean=.051, HPD=.021/.085). Negative sex-biased volume effects (that can be 

indicative of larger GM volume effect in women than men) were evident in right cortical (mean=-.09, 

HPD=-.124/-.045) and right lateral nuclei (mean=-.140, HPD=-.181/-.087), in addition to the left central 

nucleus (mean=-.067, HPD=-.096/-.034). We thus found various amygdala nuclei which showed 

diverging sex effects with respect to living alone. The sex effects also showed opposite patterns for 

the left and right amygdala for some nuclei. For example, the right central nucleus and left lateral 

nucleus showed a relationship of greater volume in men than women, while their opposite 

hemisphere counterparts, the left central nucleus and right lateral nucleus, showed greater volume 

effects in women than men. 

 

Hippocampus subregion volumetric relationships with living alone: 

Next, we examined the variation in volume amongst hippocampal subregions that explain the trait of 

living alone (Figure. 5, Supplementary Table 5). Several anatomical subregions in the hippocampus 

head showed relevant volume effects for the target phenotype. For example, our fine-resolution 
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mapping approach identified positive volume effects in the head of the hippocampus in left CA1 

(mean=.048, 10-90% highest posterior density [HPD]=.003/.094), right molecular layer (mean=.040, 

HPD=.008/.071), bilateral presubiculum (right mean=.043, 10-90% HPD=.002/.084, and left 

mean=.054, HPD=.014/.096), right CA2/3 (mean=-.09, HPD=-.127/-.054), and right dentate gyrus 

(mean=.099 HPD=0/0.203). Additionally, we identified salient negative volume effects in the head in 

the left dentate gyrus (mean=-.034, HPD=-.064/-.003) and left molecular layer (mean=-.034, HPD=-

.064/-.003). We also found relevant volume effects in the body of the hippocampus, including the 

bilateral presubiculum (right mean=.046, HPD=.013/.08, and left mean=-.044, HPD=-.079/-.01), right 

dentate gyrus (mean=-.113, HPD=-.192/-.038), and left CA4 (mean=.094, HPD=.018/.175). Overall, our 

model pinpointed various robust relationships between the hippocampus at a subregion resolution 

and living alone, many of which were located towards the anterior (head) portion of the 

hippocampus.  

 

In addition to the general trend of stronger structural associations of living with features of 

the head of the hippocampus than the body, we observed varying patterns of bilateral and lateralized 

volume effects. For example, the right and left presubiculum head both showed strong positive 

effects. However, the other laterality patterns show the opposite direction of effects comparing the 

two hemispheres. For example, the presubiculum body showed positive volume effects on the right 

and negative effects on the left. A similar pattern is found in the hippocampal tail (right mean=.046, 

10-90% highest posterior density [HPD]=.016/.079, left mean=-.046, HPD=-.079/-.015), dentate gyrus 

head, and molecular layer head. Unilateral positive volume effects were additionally found in the left 

CA4 body and left CA1 head. In the right hemisphere, unilateral negative volume effects were found 

in the fimbria (mean=-.036, HPD=-.059/-.014), CA2/3 head, as well as the dentate gyrus body. As such, 

there were generally diverging relationships between right and left hippocampal subregion volumes 

and solitary living. 
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Figure 5. Specific hippocampus subfields are differentially affected by solitary living. The 
hippocampus subregions have robust links to living alone, indicated by our Bayesian model inference 
based on 38 subregions from an automatically derived hippocampus MRI image segmentation 
protocol (Iglesias, Augustinack et al. 2015). Shown as means of the marginal posterior parameter 
distributions, volume variation that can be explained by single person households by each specific 
hippocampus subregion mapped onto 8 consecutive coronal sections of the left and right 
hippocampus from anterior (top) to posterior (bottom) direction (hot/cold colors = positive/negative 
volume associations). The majority of subregions with robust effects were additionally located 
towards the head portion of the hippocampus. CA = cornu ammonis, PrS = presubiculum, GC = granule 
cell layer of dentate gyrus, DG = dentate gyrus, ML = molecular layer. Together, the subregions which 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2021. ; https://doi.org/10.1101/2021.09.06.459185doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459185
http://creativecommons.org/licenses/by/4.0/


25 
 

explain inter-individual variation in living alone tend to have opposite effects in the left and right 
hippocampi. 
 

 

Sex differentiation in hippocampus subregion relationships with solitary living:  

Sex-specific analyses of hippocampal subregions (male – female, Supplementary Table 6) revealed 

positive volume effects in the right GC-ML-DG-head (mean=.137, 25-75% highest posterior density 

[HPD]=.029/.241), right CA4 body (mean=.133, HPD=.036/.215), right parasubiculum (mean=.01, 

HPD=.076/.128), and the right hippocampal fissure (mean=.063, HPD=.032/.092). We also identified 

two subregions in the left hemisphere with greater GM volume effects in men than women: molecular 

layer body (mean=.113, HPD=.08/.14) and the fimbria (mean=.043, HPD=.017/.069). By contrast, 

negative volume effects (which can indicate greater GM effects in women compared to men) were 

found in the right molecular layer body (mean=-.047, HPD=-.076/-.017), right hippocampal tail 

(mean=-.066, HPD=-.098/-.034), right subiculum body (mean=-.086, HPD=-.127/-.048), and right 

CA2/3 head (mean=-.117, HPD=-.157/-.08). There were also a number of subregions in the left 

hemisphere with greater GM volume effects in women than men: parasubiculum (mean=-.027, HPD=-

.055/-.003), presubiculum body (mean=-.054, HPD=-.095/-.022), and CA4 head (mean=-.12, HPD=-

.23/-.018). Overall, we isolated a collection of hippocampal subregions that featured robust 

incongruencies of structural relationships with living alone depending on sex. Right and left 

hippocampal subregions which also showed differential associations based on sex included the 

parasubiculum and molecular layer body. For example, the right parasubiculum and left molecular 

layer body showed greater volume in men than women, while the left parasubiculum and right 

molecular layer body showed greater volume in women than men. 

 

Self-medicative and protective factors linked to living alone are pinpointed by demographic 

profiling  
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Finally, we performed a demographic profiling analysis that set out from the brain regions that were 

most strongly associated with living alone (Figure 1). We tested for multivariate cross-associations 

between these regions (see methods) and a diverse set of factors that covered the domains of (a) 

basic demographics, (b) personality features, (c) substance-use behaviors, and (d) social network 

properties. The resulting associations revealed that the largest real-world explanatory factors (but 

most variance) that accounted for the GM volume effects were linked to interindividual differences in 

everyday behaviour. These lifestyle indicators included self-medicative behaviours such as time spent 

watching television, past smoking frequency, alcohol intake on a typical day drinking day, alcohol 

intake frequency.  Notably, potentially protective social factors also showed a strong association with 

the identified top brain regions, specifically the number of sisters and the number of brothers, 

suggesting family structure plays an important role in the social support system of individuals in a 

single-person household.  
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Figure 6. Demographic profiling analysis ranks lifestyle factors by relation to solitary living 
substrates in the brain. Multivariate pattern-learning (cf. Methods) was used to explore how the top 
brain regions (see Fig. 1) are linked to a portfolio of behavioral indicators in individuals living alone or 
with others. Behavioral markers covered domains of mental and physical well-being, lifestyle choices, 
and social embeddedness. In 1,000 bootstrap resampling iterations, our entire pattern-learning 
pipeline was repeated separately in the two participant groups: UK Biobank participants who live 
alone vs. with others. The computed differences in modelled brain-behavior associations between 
both groups (i.e., diverging canonical vector entries) were gathered across the 1,000 perturbed re-
draws of our original sample to obtain faithful bootstrap intervals. The derived estimates of 
uncertainty directly quantified how group-related deviations vary in the wider population. The boxplot 
whiskers show the interquartile range (i.e., 25/75% interquartile distance derived from bootstrap 
resampling distributions). The highlighted divergences in individuals living in a single-person 
household reveal characteristics of these population strata that implicate indicators of media 
consumption, health and smoking behavior, as well as alcohol consumption at the population level. 

 

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2021. ; https://doi.org/10.1101/2021.09.06.459185doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459185
http://creativecommons.org/licenses/by/4.0/


28 
 

Discussion 

Single-person households are becoming more common around the world, especially in many 

metropolitan cities (Nations, 2019). This unprecedented circumstance reduces the amount of daily 

social exchange for many people, with measurable sequelae for brain and behavior. Despite the 

known mental and physical health costs of solitary living, there is a knowledge gap in our 

understanding of the relationship between living alone and the brain at the population level. To begin 

addressing this need, the present population neuroscience study set out to systematically trace out 

brain manifestations linked to living alone in the ~40,000 UK Biobank cohort. We uncover a 

population-level signature that highlights structural alterations in the highly associative DMN, in 

addition to subregion-specific effects in particular hippocampus subfields and amygdala nuclei. Sex-

specific effects emerged in the highest association circuits in medial prefrontal cortex of women. 

Instead, males showed these effects at the intermediate (salience network) and lower (visual and 

somatomotor cortex) layers of the neural processing hierarchy. 

 

Our study showed the DMN to yield broad network-wide associations with living alone. 

Additionally, at the region-level, our analysis uncovered that all regional GM effects that distinguish 

single-household individuals from those living with one or more persons at home coalesce to parts of 

the DMN. Specifically, we identified robust GM volume effects in individuals living alone in the pSTS 

and dmPFC. Additionally, we identified consistent gray matter volume effects in a number of superior 

and middle temporal lobe regions in individuals living alone. Based on several decades of social 

neuroscience research, the DMN is well known to typically show neural activity responses during tasks 

in the social domain including perspective taking capacities (Theory of Mind) as well as certain forms 

of empathy (Frith & Frith, 2006). Furthermore, DMN aberration is at the cross-roads of a number of 

neurological and psychiatric conditions with aspects of disordered social cognition, such as 

Alzheimer’s disease (Hafkemeijer et al., 2012) and autism (Anderson et al., 2011). It is therefore 
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intriguing that, while our analysis approach was not specifically tuned to a particular brain system, the 

DMN emerged as a central point of convergence in solitary living across analyses. 

 

Our collective findings not only highlight the DMN in understanding the sociocognitive factors 

associated with living alone, but replicate key findings from experimental studies in macaque 

monkeys. Sallet and colleagues (2011) showed associations of the GM volume with the size of an 

individual monkeys’ social group size, defined as the number of animals the individual shared their 

home cage with, ranging from single-housed to seven-socially housed animals. In the present study in 

humans, we report a negative relationship between GM and living alone in the dmPFC and the 

posterior STS. Our human dmPFC atlas region overlaps with the likely human homologue of the 

monkey area 9/46D, identified by Sallet et al. as larger in monkeys living in larger social groups. In 

humans, this region is associated with neural activity responses when predictions are made and 

updated about the intentions of others (Behrens et al., 2008; Seo & Lee, 2008). By contrast, the pSTS 

atlas region, like the dmPFC, is believed to be involved in theory of mind. This part of the temporal 

lobe is dorsally adjacent to a possible candidate of the human homologue of the mSTS identified in 

the macaque as larger in animals living in larger social groups; the posterior temporal parietal junction 

(Mars et al., 2013). Given evidence that dmPFC neurons are involved in predicting another social 

agent’s choice (Seo et al., 2014), one possible interpretation of the collective present and previous 

findings in macaques and humans is that these kinds of social predictions occur less frequently in the 

absence of social interactions and result in reduced gray matter in individuals who live alone.  

 

Living alone is associated with detrimental physical and emotional consequences (Bzdok & 

Dunbar, 2020b). Many people know from their own experience that one does not need to physically 

be alone to succumb to the subjective feeling of loneliness. The results from the present study reveal 

the neurobiological commonalities between the emotional states of loneliness and living alone in the 

UK Biobank cohort. We find that many of the regions associated with single-person households also 
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bear some relation with loneliness. First, our findings speak to previous work showing positive 

association between MTG/ITG and pSTS and the experience of loneliness (Spreng et al., 2020) but now 

observe this relationship is linked to the quality of social support. For example, there is a main effect 

of loneliness in MTG/ITG GM effects, regardless of the quality of social support, with the predicted 

positive GM effects between MTG/ITG and loneliness in individuals who report good and poor social 

support systems. By contrast, we found associations between loneliness and social support quality in 

pSTS GM effects. GM effects are positive when loneliness is reported in individuals who have good 

social support, but negative when individuals have a poor social support system, regardless of their 

sense of loneliness. Further, we did not always observe a corresponding association between living 

alone and the state of loneliness, that was seen in the MTG/ITG (i.e., positive GM effects in living 

alone, positive GM effects in lonely states, negative GM effects in well surrounded individuals). For 

example, the IFG showed the counterintuitive pattern; positive effects in individuals living alone, but 

negative GM effects in lonely individuals and positive GM effects in well surrounded individuals. 

Future research should examine the interaction between these three social factors and link neural 

relationships with behaviour to further identify adaptive and maladaptive effects.  

 

An important source of interindividual variability in living alone turned out to be sex in our 

present study. In the UK, more men live alone before the age of 65 years, but notably this pattern 

reverses after that age (Esteve et al., 2020). Given known sex bias in primate behavioural and social 

development (Baron-Cohen et al., 1999; Key & Ross, 1999; Silk et al., 2003; Bhattacharya et al., 2016; 

Amici et al., 2019; Amici & Widdig, 2019), and various sex-dependent neuroanatomical differences 

reported in the amygdala, hippocampus, and various cortical regions (Lenroot & Giedd, 2010; Ritchie 

et al., 2018; Kiesow et al., 2020), we examined sex differences in neurobiological variability to solitary 

living. The sex-focused analyses corroborated the findings from the full sample, but notable patterns 

of differences became apparent between the sexes. Living alone in men was associated with a stronger 

negative volume effect than women in the frontal cortex and especially its medial portion, a region 
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associated with tracking the significance of multiple goals in parallel, as well as switching between 

them (Boorman et al., 2009). By contrast, living alone in women was associated with more negative 

GM relationships, compared to men, in a number of visual, sensory motor and attentional regions, as 

well as relatively posterior subregions within the DMN including precuneus and cingulate gyrus. In 

fact, the reported effects did not localise to the higher-order association areas but to regions known 

to be involved in perception, memory and action, which may reflect evidence of sex differences in 

cognitive abilities (Asperholm et al., 2019). For example, sex differences in face processing, such as 

women judging faces as more positive and arousing than men, may translate to fundamental 

differences in lower-level perceptual experiences of men and women who live alone (Lewin & Herlitz, 

2002; Proverbio, 2017; Mishra et al., 2019; Olderbak et al., 2019). Future research will be needed to 

directly link biological and cognitive differences to the sex-specific differences in behavioural 

strategies adopted when living alone. For example, women tend to entertain larger social networks 

and maintain more close friendships than men, especially later in life (Dunbar, 2018). This observation 

may act to protect women from the negative elements of living alone. By contrast, solitary living men, 

in this cohort, may be particularly adversely affected after retirement age if their social circles are 

grounded in their working environment. 

 

In our pattern analyses dedicated to the amygdala at subregion resolution, living alone was 

associated with distinct anatomically defined nuclei groups. Besides bilateral effects in the accessory-

basal nuclei group, the central nuclei group, cortical nuclei group and corticoamygdaloid transition all 

showed effects preferentially in the right hemisphere. The laterobasal nuclei group is commonly 

conceptualized as a likely integrator of preprocessed visual, auditory, gustatory, somatosensory, and, 

in part, olfactory environmental information (Aggleton et al., 1980; Iwai & Yukie, 1987; Stefanacci & 

Amaral, 2002; Yukie, 2002). As such, living alone may relate to stimulus-value associations subserved 

by the human laterobasal nuclei group that are believed to be implicated in associative processing of 

environmental information and the integration with self-relevant cognition in a way that is biased to 
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the right brain hemisphere. Instead, the centromedial nulcei group, the amygdala’s putative major 

output center, has been related to integration of information originating from various intra-amygdala 

circuits to mediate behavioral and autonomic responses (Pessoa & Adolphs, 2010), including motor 

behavior and response preparation in humans. These amygdala subregion deviations may in part 

reflect the previous observation that socially deprived individuals show  worse aptitude at significance 

detection, such as in detecting social cues from other’s faces or gestures to be overly negative and 

allocating attentional resources accordingly (Cacioppo et al., 2009). Such individuals are also known 

to react differently towards others, such as part of approach-vs-avoidance decisions and facial motor 

responses (Cacioppo et al., 2009). A right-hemispheric bias in such stimulus-response cycles could be 

related to the previous neuroimaging observation that the right hemisphere shows attention- and 

stress-related differences in socially deprived individuals (Cacioppo & Hawkley, 2009). Indeed, it has 

been proposed that social disconnection may trigger an evolutionary alarm signal and effects appear 

to lateralise to the right hemisphere as it could reflect increased attention towards threat and may 

link to the right ventral attention stream (Eisenberger et al., 2003; Cacioppo & Hawkley, 2009); flagging 

survival-relevant information in the environment. 

 

Indeed, both the amygdala and hippocampus are known to be affected by social stress. This 

includes long-term changes in gross morphology, dendritic remodelling (retraction in CA1 and CA3 in 

the hippocampus and expansion in amygdala), functional connectivity and changes in neurogenesis 

(Woolley et al., 1990b; Watanabe et al., 1992b; Magarin & McEwen, 1995; Magariños et al., 1996; 

Magariños et al., 1997b; Vyas et al., 2002; Vyas et al., 2006; Anacker et al., 2018; Biggio et al., 2019a). 

Here we show robust associations between living alone and GM structure at hippocampal subfield 

scale). This resolution goes far beyond previous studies, which were often limited to a crude 

posterior/anterior division in the primate brain (Fanselow & Dong, 2010). We report numerous 

bilaterally coherent effects in the molecular layer head, pre-subiculum, para-subiculum and 

hippocampus tail, many of which have been modulated by social experience and stress. Social isolation 
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is an extreme stress trigger and when induced by long term confinement is associated with broad 

reductions in global cortical activity and increased cortisol levels (Jacubowski et al., 2015; Weber et 

al., 2019). While inherently methodologically and ethically challenging to manipulate, findings from a 

number of studies in this area align with the current results. For example, experimentally induced 

social isolation during adolescence in monkeys chronically alters functional connectivity between the 

hippocampus and amygdala, and frontal cortical structures (Yuan et al., 2021). Similarly, in humans, 

the relative social isolation induced by a 14 month expedition of the Antarctic was exploited by 

researchers to reveal decreased GM volume in the DG hippocampal subfield, and decreased markers 

of neurogenesis at the end of the expedition (Stahn et al., 2019). Our observed effects in the DG 

(including the left CA4 body, right GC-DG-ML body, and bilateral GC-DG-ML head) fit with these and 

other studies of the neurostructural concomitants of living in limited social environments (Gould et 

al., 1998; Kempermann et al., 1998; Stranahan et al., 2006; Ibi et al., 2008; Dranovsky & Leonardo, 

2012; Li et al., 2013; Anacker et al., 2018; Biggio et al., 2019b). The anterior portion of the 

DG/hippocampus has also been found to be particularly associated with stress susceptibility (Anacker 

et al., 2018). The chronically stressful experience of solitary living may thus manifest in the form of 

altered DG structure and function, but also in cooperating anterior (head) structures. For example, we 

found robust effects in the molecular layer head in both the right and left molecular layer - a region 

which has been well-described as being particularly sensitive to chronic stress (Gould et al., 1990; 

Woolley et al., 1990a; Watanabe et al., 1992a; Magariños et al., 1997a). Finally, we also bilaterally 

identified both presubiculum subfields (head, body) in the context of solitary living. The presubiculum 

is composed of grid cells (Boccara et al., 2010) and recent work has suggested the hippocampus tracks 

social relationships in the form of a social cognitive map that relies on a hexagonal coding structure 

(Tavares et al., 2015). A strong relationship between the presubiculum and living alone may therefore 

indicate an alteration of the neural underpinnings of a robust cognitive map of social spaces.  
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Finally, we charted brain-behavior associations between explanatory real-world factors and 

variation in the set of brain regions associated with living alone. At population level, this test for robust 

cross-associations suggest that one set of factors, such as smoking and frequent alcohol intake, may 

reflect compensatory or self-medicating associative behaviours that run parallel to living alone. By 

contrast, family structure, indexed by numbers of brothers and sisters may speak to a protective role 

linked to the discovered brain-behavior cross-associations. This insight may reflect the stable nature 

of a sibling relationship, compared to friendship circles which may be periodically disconnected. 

Further, small but significant variance in GM effects were also explained by individual differences in 

loneliness and the ability to confide a social support structure, which fits well with the analysis that 

explored the interactions between these three factors. Indeed we can see evidence that many of these 

behavioural factors have changed at the population level during this period of social restrictions during 

the pandemic, with increased total video viewing time (including TV and online streaming, (OfCom, 

2020)), increased intake of alcohol in UK samples, particularly women (Sallie et al., 2020; Jackson et 

al., 2021), and increased smoking, mostly in younger age groups (Jackson et al., 2021). Collectively, 

these behavioural factors, including the likely positive effect of siblings, should be studied carefully 

alongside future investigations into the impact of living alone as they could provide targets to support 

individuals in such social environments. 

 

For millennia, primates have socially cohabited. However, it is only over the last 10-20 years 

that we have seen a significant trend for more people to live alone and to reside at a greater 

geographically distant from their immediate families. The parallel increase in the frequency of global 

crises also acts to accelerate and aggravate the progressive dislocation and alienation of normal social 

forms of living. At the extreme, and as a result of the coronavirus pandemic, there was more than 50% 

of the world’s entire population under stay and home orders in April 2020 . These unusual global 

circumstances and other extraordinary events, such as natural catastrophes or abrupt economic 

change, are likely to disproportionately jeopardize the well-being of people who live alone, increasing 
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demands on both individual resilience but also financially on government and charity resources in the 

future. While online social networks can partially recapitulate real-world networks (Kanai et al., 2012; 

Dunbar, 2016) they cannot replace them. Consequently, a growing appreciation of cognitive, 

psychological and neural implications of solitary living and loneliness could directly inform social and 

health policies. 
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Tables 

Table 1: Main effects of solitary living. Shows marginal posterior parameter distributions. 
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Table 2: Sex effects of solitary living. Shows marginal posterior parameter distributions (male - 
female effect). 
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Table 3: Main effects of solitary living in amygdala nuclei. Shows marginal posterior parameter 
distributions. 
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Table 4: Sex differentiation of solitary living in amygdala nuclei. Shows marginal posterior 
parameter distributions (male - female effect). 
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Table 5: Main effects of solitary living in hippocampus nuclei groups. Shows marginal posterior 
parameter distributions. 
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Table 6: Sex differentiation of solitary living in hippocampus nuclei groups. Shows marginal 
posterior parameter distributions (male - female effect). 
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Supplementary Figures:  
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Figure S1. Network level Sex differences: The Bayesian hierarchical modelling framework 
estimated the gray matter effects for distributed networks of brain regions in explaining living alone 
in male (top) and female (bottom) subgroups. Histograms show the inferred marginal posterior 
parameter distributions of the overall explanatory variance (sigma parameter) for each major brain 
network (volume measures in standard units). Horizontal black bars indicate the highest posterior 
density interval (HPI) of the model’s network variance parameters, ranging from 10 to 90% probability. 
Posterior distributions for the variance parameter (sigma) of each brain network are ordered from 
strongest (top left) to weakest (bottom right) for each sex.  
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