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Abstract 16 
Human behaviour across the life span is driven by the psychological need to belong, 17 
from kindergarten to bingo nights. Being part of social groups constitutes a backbone 18 
for communal life, and confers many benefits for physical and mental health. 19 
Capitalizing on neuroimaging and behavioural data from ∼40.000 participants from the 20 
UK Biobank population cohort, we used structural and functional analyses to explore 21 
how social participation is reflected in the human brain. Across three different types of 22 
social groups, structural analyses point towards variance in ventromedial prefrontal 23 
cortex, fusiform gyrus and anterior cingulate cortex as structural substrates tightly 24 
linked to social participation. Functional connectivity analyses emphasized the 25 
importance of default mode and limbic network, but also showed differences for sports 26 
teams and religious groups as compared to social clubs. 27 
Taken together, our findings establish the structural and functional integrity of the 28 
default mode network as a neural signature of social belonging. 29 
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Introduction 36 
Belonging to social groups is an indispensable ingredient of everyday life, providing 37 
well-documented benefits for mental health and well-being. Regular engagement in 38 
social groups of varying complexity has been structuring societies for thousands of 39 
years. Experiencing the team spirit in a vibrant soccer match, enjoying a beer in a bar 40 
with like-minded persons or resting in collective silent prayer - these are formative 41 
experiences that scaffold human social life. These group events are some of many 42 
examples of social participation. 43 
The definition of social participation has taken many forms in previous work. Yet, a 44 
content analysis revealed the "involvement in activities that provide interactions with 45 
others" as a key recurring theme (Levasseur, Richard, et al., 2010). In contrast, the 46 
type of activity or level of involvement with the group are more variable. Social 47 
participation is associated with enhanced subjective and objective health outcomes 48 
(Leone & Hessel, 2016; Sirven & Debrand, 2008), reduction of depressive symptoms 49 
(Chiao et al., 2011) and improved overall quality of life (Lestari et al., 2021; Levasseur, 50 
Desrosiers, et al., 2010). A representative population-based study in the US showed 51 
lower levels of self-rated physical health for people who experience social 52 
disconnectedness and perceived isolation (Cornwell & Waite, 2009). The central 53 
relevance of social participation was also underscored by the WHO in the context of 54 
aging and rehabilitation (WHO, 2002), finding its way into political programs and 55 
recommendations aiming to improve global health in disadvantaged populations 56 
(Francés et al., 2016). The recent European health policy framework Health 2020 57 
emphasized participation as a core principle for health equity and well-being (Boyce & 58 
Brown, 2017). 59 
The close links between social participation and well-being holds across the life span 60 
and is not limited to aging. A transnational study investigated 1047 participants with an 61 
average age of 35.5 years from Europe, North-Africa, Western Asia and the Americas 62 
in terms of mental health in a period of pandemic-related restrictions on social relations 63 
(Ammar et al., 2020). A decrease of social participation due to these restrictions took 64 
a negative toll on life satisfaction. Comparing Italian, American and Iranian students, a 65 
different study showed positive associations between social participation and well-66 
being, largely mediated by the sense of community (Cicognani et al., 2008). The 67 
concept of social participation is closely related to sense of community, sharing several 68 
positive effects on individual and social life (Talò et al., 2014). 69 
The sense of community emphasizes the aspect of shared emotional connection of a 70 
membership in a community or group. This aspect might be an important explanatory 71 
factor of the high social gain in relationships within groups in the periphery of one´s 72 
social network. Resulting feelings of connectedness with others in conjunction with 73 
social participation was recently discussed as a buffer for less decline in well-being in 74 
the sense of a resource (Sharifian & Grühn, 2019). Belonging to a group helps to 75 
increase self-acceptance, thus being an important factor in coping processes, 76 
especially in challenging situations (Thoits, 2011). Furthermore, the sense of belonging 77 
directly and persistently contributes to people’s resilience (Scarf et al., 2016). 78 
A further concept that is closely linked to resilience is the sense of meaning and 79 
purpose in life. It denotes the skills and readiness for mastering difficult circumstances 80 
(Feldman, 2020). A recent study links the association between social interaction and 81 
meaning in life to the brain (Mwilambwe-Tshilobo et al., 2019). These authors reported 82 
an increased functional connectivity between the default and limbic networks to be 83 
associated with a greater sense of life meaning. The increase of perceived meaning in 84 
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life was repeatedly associated with social participation and belonging to others (Adams 85 
et al., 2011; Sharifian & Grühn, 2019). Hence, current limitations of social contacts are 86 
a challenge for purposeful living. 87 
In the context of the COVID-19 pandemic with widespread loneliness and reduced 88 
possibilities of participation due external circumstances, individual resilience gains 89 
relevance from a public health standpoint. Being able to cope with and quickly recover 90 
from a disaster is critically dependent on active belonging to a group within the 91 
resilience process (Quinn et al., 2020). A closer look at the biological manifestations of 92 
social belonging and participation at the population-level is imperative, especially as 93 
COVID-19 challenged not only regions or communities but affected entire populations. 94 
Such confronted life events and overcome obstacles are important to be investigated 95 
for the angle of psychopathology and clinical symptoms. 96 
In the present population-based approach, we shift the focus towards factors that are 97 
known to be key for successful resilience and mental well-being. Regarding how a 98 
particular individual handles stressors, previous studies underlined the association 99 
between the experience of control as well as resilient coping and the activation of the 100 
medial prefrontal cortex (Maier & Watkins, 2010; Sinha et al., 2016). Neuroimaging 101 
data from real-life contexts offers important insight into social belonging and its many 102 
wide-ranging consequences. One way to understand the broader link between social 103 
interactions and its influence on brain architecture has been proposed by the social 104 
brain hypothesis. The intensified need and intricacy of social relationships in humans 105 
may have spurred refinement towards more complex representation of social bonds in 106 
the brain (Dunbar, 2009). Brain systems that have long been described to be closely 107 
implicated in social cognition processes involve the default mode network (DMN; Mars 108 
et al., 2012). However, based on previous works, the neural basis of social participation 109 
and belonging remain obscure. Taken together no human brain-imaging assessments 110 
of participation in different group contexts exist, in part because such characteristics of 111 
people’s everyday social life have seldom been systematically acquired before the 112 
emergence of large population datasets such as the UK Biobank cohort. Combining 113 
structural and functional neuroimaging as well as demographic profiling with a 114 
population-based approach, we investigated three particular forms of social 115 
participation: sports teams, religious groups and social clubs. Using a population 116 
cohort to examine and understand systematic variations of social belonging and 117 
resilience help inform public-health decision making, which ultimately can foster 118 
implementation and even interventions in practice. 119 
  120 
 121 
Materials and Methods 122 
Data resources 123 
The UK Biobank is a prospective epidemiology resource that offers extensive 124 
behavioural and demographic assessments, medical and cognitive measures, as well 125 
as biological samples in a cohort of ~500,000 participants recruited from across Great 126 
Britain (https://www.ukbiobank.ac.uk/). This openly accessible population dataset aims 127 
to provide multimodal brain-imaging for ~100,000 individuals, planned for completion 128 
in 2022. The present study was based on the recent data release from February/March 129 
2020 that augmented brain scanning information to ~40,000 participants. 130 
In an attempt to improve comparability and reproducibility, our study built on the 131 
uniform data preprocessing pipelines designed and carried out by FMRIB, Oxford 132 
University, UK (Alfaro-Almagro et al., 2018). We involved data from the ~40,000 133 
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participant release with brain-imaging measures of grey matter morphology (T1-134 
weighted MRI [sMRI]) and neural activity fluctuations (resting-state functional MRI 135 
[fMRI]) from 48% men and 52% women, aged 40-69 years when recruited (mean age 136 
54.9, standard deviation [SD] 7.5 years). Our study focused on regular social 137 
engagement as captured by membership in social group (Bzdok & Dunbar, 2020; 138 
Hawkley et al., 2003; Luhmann & Hawkley, 2016). This self-reported item was based 139 
on the following question: “Which of the following do you attend once a week or more 140 
often?” (data field 6160). Our study focussed on three target groups: people reporting 141 
engagement in sports teams, religious groups and social clubs. 142 
Similar measures are found in widely used assessments of social embeddedness 143 
(Cohen & Hoberman, 1983; Cyranowski et al., 2013; Hawkley et al., 2005). 144 
Conceptually similar (Cyranowski et al. 2013) are also contained in other standard 145 
measurement-tools of social embeddedness, such as the Revised UCLA Loneliness 146 
Scale (Hawkley et al. 2005) and the Interpersonal Support Evaluation List (Cohen and 147 
Hoberman 1983). A variety of studies showed single-item measures of social traits to 148 
be reliable and valid (Atroszko et al., 2015; Dollinger & Malmquist, 2009; Mashek et 149 
al., 2007). Previous research has used such individual items for successfully 150 
measuring social support (Atroszko et al. 2015), community connectedness (Mashek 151 
et al. 2007), and perceived social isolation (Ong et al., 2016). For example, the 152 
separate item "There are people I can talk to" correlates very highly (r = .88) with the 153 
specific dimension of the R-UCLA Loneliness Scale that corresponds to the objective 154 
frequency of social interaction (Hawkley et al. 2005). 155 
The present analyses were conducted under UK Biobank application number 25163. 156 
All participants provided informed consent. Further information on the consent 157 
procedure can be found elsewhere 158 
(http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200). 159 
 160 
Multimodal brain-imaging and preprocessing procedures 161 
Magnetic resonance imaging scanners (3T MRI Siemens Skyra) were matched at 162 
several dedicated imaging sites with the same acquisition protocols and standard 163 
Siemens 32-channel radiofrequency receiver head coils. To protect the anonymity of 164 
the study participants, brain-imaging data were defaced and any sensitive meta-165 
information was removed. Automated processing and quality control pipelines were 166 
deployed (Alfaro-Almagro et al., 2018; Miller et al., 2016). To improve homogeneity of 167 
the imaging data, noise was removed by means of 190 sensitivity features. This 168 
approach allowed for the reliable identification and exclusion of problematic brain 169 
scans, such as due to excessive head motion. 170 
Structural MRI: The sMRI data were acquired as high-resolution T1-weighted images 171 
of brain anatomy using a 3D MPRAGE sequence at 1 mm isotropic resolution. 172 
Preprocessing included gradient distortion correction (GDC), field of view reduction 173 
using the Brain Extraction Tool (Smith, 2002) and FLIRT (Jenkinson et al., 2002; 174 
Jenkinson & Smith, 2001), as well as non-linear registration to MNI152 standard space 175 
at 1 mm resolution using FNIRT (Andersson et al., 2007). To avoid unnecessary 176 
interpolation, all image transformations were estimated, combined and applied by a 177 
single interpolation step. Tissue-type segmentation into cerebrospinal fluid (CSF), grey 178 
matter (GM) and white matter (WM) was applied using FAST (FMRIB’s Automated 179 
Segmentation Tool, (Zhang et al., 2001) to generate full bias-field-corrected images. 180 
SIENAX (Smith et al., 2002), in turn, was used to derive volumetric measures 181 
normalized for head sizes. 182 
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Functional MRI: The fMRI data of intrinsic neural activity were acquired without 183 
engagement in a predefined experimental task context at 2.4 mm spatial resolution, 184 
time to repeat=0.735s, and with multiband acceleration of 8. A single-band reference 185 
image with higher between-tissue contrast and without T1-saturation effects was 186 
acquired within the same geometry as the time series of neural activity maps. The 187 
reference scan was used for the alignment to other brain-imaging modalities and 188 
correction for head motion. Preprocessing was performed using MELODIC (Beckmann 189 
& Smith, 2004), including EPI and GDC unwarping, motion correction, grand-mean 190 
intensity normalization, and high-pass temporal filtering (Gaussian-weighted least-191 
squares straight line fitting, sigma=50s). The ensuing images were submitted to motion 192 
correction using MCFLIRT (Jenkinson et al. 2002). Structured artefacts were removed 193 
by combining ICA and FMRIB’s ICA-based X-noiseifier (Griffanti et al., 2014). To help 194 
reduce unnecessary interpolation effects, all intermediate warp operations were 195 
merged into a composite transformation allowing for simultaneous application to fMRI 196 
maps. For the display of results (see Figures 1-3), maps were projected to the cortical 197 
surface. This was done via volume-to-surface mapping in wb_command 198 
(www.humanconnectome.org), based on the Human Connectome Project (HCP) 199 
group average template “S1200_MSMAll”.  200 

 201 
Analysis of associations between social participation and grey matter patterns 202 
Neurobiologically interpretable measures of grey matter volume were extracted in all 203 
participants by summarizing whole-brain sMRI maps in Montreal Neurological Institute 204 
(MNI) reference space. This feature generation step was guided by the topographical 205 
brain region definitions of the widely used Schaefer-Yeo atlas comprising 100 parcels 206 
(Schaefer et al. 2018). The participant-level brain region volumes provided the input 207 
variables for our Bayesian hierarchical modeling approach (cf. below). As a data-208 
cleaning step, inter-individual variation in brain region volumes that could be explained 209 
by variables of no interest were regressed out: body mass index, head size, average 210 
head motion during task-related brain scans, average head motion during task-211 
unrelated brain scans, head position and receiver coil in the scanner (x, y, and z), 212 
position of scanner table, as well as the data acquisition site. 213 
To examine population variation of our atlas regions in the context of regular social 214 
participation, we have purpose-designed a Bayesian hierarchical model, building on 215 
our previous research (Bzdok et al., 2017; Bzdok et al., 2020; Kiesow et al., 2020). In 216 
contrast, classical linear regression combined with statistical significance testing would 217 
simply have provided p-values against the null hypothesis of no difference between 218 
individuals with high and low social participation in each brain region. Instead of limiting 219 
our results and conclusions to strict categorical statements, each region being either 220 
relevant for differences in social participation or not, our analytical strategy aimed at 221 
full probability distributions that expose how brain region volumes converge or diverge 222 
in their relation to social participation as evidenced in the UK Biobank population. In a 223 
mathematically rigorous way, our approach estimated coherent, continuous estimates 224 
of uncertainty for each model parameter at play for its relevance in social participation. 225 
Our study thus addressed the question "How certain are we that a regional brain 226 
volume is divergent between high and low social participation individuals?". Our 227 
analysis did not ask "Is there a strict categorical difference in region volume between 228 
high and low social participation individuals?". 229 
The elected Bayesian hierarchical framework also enabled simultaneous modeling of 230 
multiple organizational principles: i) segregation into separate brain regions and ii) 231 
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integration of groups of brain regions in form of spatially distributed brain networks. 232 
Two regions of the same atlas network are more likely to exhibit similar volume effects 233 
than two regions belonging to two separate brain networks. Each of the region 234 
definitions was pre-assigned to one of the 7 large-scale network definitions in the 235 
Schaefer-Yeo atlas (Schaefer et al. 2018) or the collection of subcortical regions from 236 
the Harvard-Oxford atlas (Desikan et al., 2006), providing a native multilevel structure. 237 
Setting up a hierarchical generative process enabled our analytical approach to borrow 238 
statistical strength between model parameters at the higher network level and model 239 
parameters at the lower level of constituent brain regions. By virtue of exploiting partial 240 
pooling, the brain region parameters were modeled themselves by the hyper-241 
parameters of the hierarchical regression as a function of the network hierarchy to 242 
explain social participation. Assigning informative priors centered around zero provided 243 
an additional form of regularization by shrinking coefficients to zero in the absence of 244 
evidence to the contrary. We could thus provide fully probabilistic answers to questions 245 
about the morphological relevance of individual brain locations and distributed cortical 246 
networks by a joint varying-effects estimation that profited from several biologically 247 
meaningful sources of population variation. 248 
The model specification placed emphasis on careful inference of unique posterior 249 
distributions of parameters at the brain network level to discriminate individuals with 250 
(encoded as outcome 0) and without (outcome 1) a certain social group membership: 251 
 252 
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 269 
where sigma parameters estimated the overall variance across the p brain regions that 270 
belong to a given atlas network, independent of whether the volume effects of the 271 
respective constituent brain regions had positive or negative direction. As such, the 272 
network variance parameters sigma directly quantified the magnitude of intra-network 273 
coefficients, and thus the overall relevance of a given network in explaining regular 274 
social participation based on the dependent region morphology measures. All regions 275 
belonging to the same brain network shared the same variance parameter in the 276 
diagonal of the covariance matrix, while off-diagonal covariance relationships were 277 
zero. 278 
Probabilistic posterior distributions for all model parameters were estimated for the 279 
hierarchical models. Our Bayesian approach could thus simultaneously appreciate 280 
grey matter variation in segregated brain regions as well as in integrative brain 281 
networks in a population cohort. The approximation of the posterior distributions was 282 
carried out by the NUTS sampler (Gelman et al., 2014), a type of Markov chain Monte 283 
Carlo (MCMC), using the PyMC3 software suite (Salvatier et al., 2016). After tuning 284 
the sampler for 4,000 steps, we drew 1,000 samples from the joint posterior distribution 285 
over the full set of parameters in the model for analysis. Proper convergence was 286 
assessed by ensuring Rhat measures (Gelman et al. 2014) stayed below 1.02. 287 
 288 
Analysis of associations between social participation and functional connectivity 289 
patterns 290 
Quantitative measures of functional connectivity were computed for cortex-wide brain 291 
regions as defined by the Schaefer-Yeo atlas (Schaefer et al. 2018). Functional 292 
connectivity profiles for each participant were derived by computing Pearson’s 293 
correlation between their neural activity fluctuations. To this end, in each participant, 294 
the time series of whole-brain fMRI signals, obtained in the absence of an externally 295 
structured experimental task, were summarized by averaging for each brain region in 296 
the atlas. The approach yielded the functional coupling signature of the whole cortex 297 
as a 100 x 100 region coupling matrix for each participant. The ensuing region-region 298 
coupling estimates underwent standardization across participants by centering to zero 299 
mean and unit scaling to a variance of one (cf. next step). Inter-individual variation in 300 
the functional coupling strengths between brain regions that could be explained by 301 
variables of no interest were regressed out in a data-cleaning step (analogous to sMRI 302 
analysis): body mass index, head size, average head motion during task-related brain 303 
scans, average head motion during task-unrelated brain scans, head position as well 304 
as receiver coil in the scanner (x, y, and z), position of scanner table, and data 305 
acquisition site, as well as age, sex and age-sex interactions. 306 
We then sought the dominant coupling regime – signature or “mode” of population 307 
covariation – that provides insight into how functional variability in 100 brain regions 308 
can explain regular social participation. Partial least squares (PLS) was an ideal 309 
analytical method to decompose the obtained 100 x 100 fingerprint matrix of functional 310 
couplings with respect to social participation. The variable set X was constructed from 311 
the lower triangle of the participants’ functional coupling matrices. The target vector y 312 
encoded more socially engaged participants as +1 and participants without a given 313 
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social group membership as -1. PLS involves finding the matrix factorization into k low-314 
rank brain representations that maximize the correspondence with our social trait of 315 
interest. PLS thus identified the matrix projection that offered the maximal covariance 316 
between sets of region couplings in the context of participant reports of social 317 
participation. 318 
In other words, the extracted functional coupling mode identified the driving linear 319 
combinations of cortical brain connections that featured the best correspondence to 320 
regular social participation. Concretely, positive (negative) modulation weights 321 
revealed increased (decreased) correlation strengths, relative to average functional 322 
coupling. This is because the computed functional connectivity estimates were initially 323 
normalized to zero mean and unit variance across participants. For example, a 324 
functional connectivity input into PLS of 0 denoted the average functional coupling 325 
strength in our UK Biobank sample, rather than an absence of functional connectivity 326 
between the region pair. The derived pattern of PLS weights, or canonical vectors, thus 327 
indicated deviations from average functional coupling variation in our cohort. Moreover, 328 
the variable sets were entered into PLS after a confound-removal procedure (cf. 329 
above). 330 
Next, we assessed the statistical robustness of the resulting dominant PLS mode of 331 
functional coupling deviations related to social participation in a non-parametric 332 
permutation procedure, following previous research (Miller et al. 2016). Relying on 333 
minimal modeling assumptions, a valid empirical null distribution was derived for the 334 
Pearson’s correlation between low-rank projections of the dominant mode resulting 335 
from PLS analysis. In 1,000 permutation iterations, the functional connectivity matrix 336 
was held constant, while the social participation labels were submitted to random 337 
shuffling. The constructed surrogate datasets preserved the statistical structure 338 
idiosyncratic to the fMRI signals, yet permitted to selectively destroy the signal 339 
properties that are related to social participation (Efron, 2012). The generated 340 
distribution of the test statistic reflected the null hypothesis of random association 341 
between the brain’s functional coupling and regular social participation across 342 
participants. We recorded the Pearson’s correlations rho between the perturbed low-343 
rank projections in each iteration. P-value computation was based on the 1,000 344 
Pearson’s rho estimates from the null PLS model.  345 

 346 
Demographic profiling analysis of the brain correlates of social participation 347 
We finally performed a profiling analysis of the brain regions that were most strongly 348 
associated with regular social participation. Based on our results in brain structure, we 349 
carried out a rigorous test for multivariate associations between our top regions and a 350 
diverse set of indicators that exemplify the domains of a) basic demographics, b) 351 
personality features, c) substance-use behaviours, and d) social network properties 352 
(for details see https://www.ukbiobank.ac.uk/data-showcase/). The set of behavioural 353 
variables and the set of brain measures were z-scored across participants to conform 354 
to zero mean and unit variance. The brain variables were submitted to the top 10 355 
(sMRI) of brain measures that were identified as most important in the context of social 356 
participation (cf. above). In the case of brain structure, the target brain regions were 357 
selected based on the (absolute) modes of the Bayesian posteriors of marginal 358 
parameter distributions at the region level (cf. above). In the case of brain function, the 359 
target brain connections were selected based the (absolute) effect sizes from the 360 
dominant PLS mode (cf. above). 361 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 7, 2021. ; https://doi.org/10.1101/2021.09.06.459167doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459167


Using the two variable sets of brain and behaviour measurements, we then carried out 362 
a bootstrap difference analysis of the collection of target traits in individuals with high 363 
versus low social participation (Efron & Tibshirani, 1994). In 1,000 bootstrap iterations, 364 
we randomly pulled equally sized participant samples to perform a canonical 365 
correlation analysis (CCA), in parallel, in individuals with and without social group 366 
membership (Miller et al., 2016; Wang et al., 2020). In each resampling iteration, this 367 
approach estimated the doubly multivariate correspondence between the brain and 368 
behaviour indicators in each group. The ensuing canonical vectors of the dominant 369 
CCA mode indicated the most explanatory demographic associations in a given pull of 370 
participants. To directly estimate resample-to-resample effects in group differences, 371 
the canonical vectors of behavioural rankings were subtracted elementwise between 372 
participants from both groups, recorded, and ultimately aggregated across the 1,000 373 
bootstrap datasets. 374 
This analytical tactic allowed propagating the noise of participant sampling variation 375 
into the computed uncertainty estimates of group differences in the UK Biobank cohort. 376 
Statistically defensible behavioural dimensions were determined by whether the (two-377 
sided) bootstrap confidence interval included zero or not in the 5/95% bootstrap 378 
population interval. In a fully multivariate setting, this non-parametric modeling scheme 379 
directly quantified the statistical uncertainty of how a UK Biobank trait is differentially 380 
linked to brain-behaviour correspondence as a function of regular social participation. 381 
 382 
 383 
Results 384 
We have mined the UK Biobank resource with a focus on social participation that 385 
indicate weekly attendance in a sports team, religious group or social club. Brain region 386 
information on structural volume and functional coupling was extracted in ~40,000 UK 387 
Biobank Imaging participants guided by the Schaefer-Yeo reference atlas (Schaefer et 388 
al., 2018). All results have adjusted the brain features for variation that could be 389 
explained by age and sex/gender (cf. methods).  390 
 391 
Structural brain correlates of sports team participation 392 
At the network level, in participants who attend sports teams at least once every week, 393 
the highest explanatory relevance across spatially distributed brain regions emerged 394 
in the visual network (posterior sigma = 0.08; 10-90% highest posterior density [HPD] 395 
= 0.05/0.10), followed by the DMN (sigma = 0.05, HPD = 0.04/0.07) and the limbic 396 
network (sigma = 0.05, HPD = 0.01/0.08). Further volume associations for sports team 397 
members were located to (in descending order, based on the explanatory quality): the 398 
salience network (sigma = 0.05, HPD = 0.02/0.07), frontoparietal control network 399 
(sigma = 0.05, HPD = 0.01/0.07), somatomotor network (sigma = 0.03, HPD = 400 
0.01/0.05) and dorsal attention network (sigma = 0.02, HPD = 0.01/0.04). Overall, the 401 
largest but most uncertain brain-behaviour association was featured by the limbic 402 
network. In contrast, as indicated by the narrowness of the inferred network-level 403 
posterior parameter distribution, the network with the most certain contribution to 404 
explaining volume variation in the context of sports team membership was the DMN 405 
(Fig. 1). 406 
At the region level of the obtained Bayesian hierarchical modeling solution, positive 407 
volume effects emerged especially in the left lingual gyrus (posterior mean = 0.05, 10-408 
90% HPD = 0.01/0.10), right posterior cingulate cortex (mean = 0.08, HPD = 409 
0.03/0.14), left middle temporal gyrus (mean = 0.09, HPD = 0.04/0.14), left middle 410 
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frontal gyrus (LH_Default_PFC_6; mean = 0.05, HPD = 0.01/0.08 and 411 
LH_Default_PFC_7; mean = 0.07, HPD = 0.03/0.11) and right parahippocampal gyrus 412 
(mean = 0.09, HPD = 0.03/0.16). Negative associations between volume of brain 413 
regions and sports team membership were found for the left (mean = -0.10, 10-90% 414 
HPD = -0.14/-0.05) and right inferior occipital gyrus (mean = -0.06, HPD = -0.11/-0.01), 415 
left lingual gyrus (mean = -0.09, HPD = -0.13/-0.04), left middle occipital gyrus (mean 416 
= -0.10, HPD = -0.16/-0.05), left middle temporal gyrus (mean = -0.08, HPD = -0.13/-417 
0.03), left (mean = -0.05, HPD = -0.10/-0.01) and right superior frontal gyrus (mean = 418 
-0.09, HPD = -0.14/-0.01), as well as right superior temporal gyrus (mean = -0.06, HPD 419 
= -0.11/-0.01). Overall, we found regions of the default and limbic network as well as 420 
lingual gyrus, prefrontal and temporal cortex to be the key brain correlates linked to 421 
weekly engagement in a sports team. 422 
 423 
Structural brain correlations of religious group participation 424 
At the network level, for people who attend religious groups on a weekly basis, we 425 
found the strongest association between regular social participation and volume 426 
variation for the limbic network (posterior sigma = 0.15, 10-90% HPD = 0.05/0.21), 427 
somatomotor network (sigma = 0.09, HPD = 0.05/0.11) and the DMN (sigma = 0.07, 428 
HPD = 0.05/0.09). In descending order of explanatory quality, the frontoparietal control 429 
network (sigma = 0.06, HPD = 0.03/0.09) and salience network (sigma = 0.06, HPD = 430 
0.03/0.09) showed relevant effects, accompanied by dorsal attention network (sigma 431 
= 0.05, HPD = 0.02/0.07) and visual network (sigma = 0.04, HPD = 0.02/0.07). Similar 432 
to our hierarchical pattern analysis on sports teams (cf. above), the prominent effect 433 
with greatest uncertainty was seen in the limbic network, while the most certain 434 
network-level volume effect was located to the DMN. 435 
Regarding region-level effects of the obtained Bayesian hierarchical modeling solution, 436 
we identified several relevant regions that characterize regular attendees of religious 437 
groups. Positive volume effects became apparent in the left postcentral gyrus 438 
(posterior mean = 0.10, 10-90% HPD = 0.02/0.17), left precentral gyrus 439 
(LH_SomMot_4; mean = 0.14, HPD = 0.07/0.20; LH_Default_Temp_1; mean = 0.11, 440 
HPD = 0.03/0.18), right precentral gyrus (mean = 0.06, HPD = 0.01/0.12), right middle 441 
temporal gyrus (mean = 0.08, HPD = 0.01/0.14), right superior temporal gyrus (mean 442 
= 0.10, HPD = 0.03/0.16) and right rostral anterior cingulate cortex (mean = 0.09, HPD 443 
= 0.02/0.16). Furthermore, we identified a set of regions that showed a negative 444 
association with religious group participation: left inferior parietal lobule (mean = -0.08, 445 
HPD = -0.13/-0.01), left inferior frontal gyrus (mean = -0.07, HPD = -0.13/-0.01), right 446 
paracentral lobule (mean = -0.07, HPD = -0.13/-0.01), right dorsal anterior cingulate 447 
cortex (mean = -0.16, HPD = -0.26/-0.06) and right inferior frontal gyrus (mean = -0.09, 448 
HPD = -0.15/-0.03). As such, similar to our results for sports team members (cf. above), 449 
the default and limbic network were highlighted in spiritually active people.  450 
 451 
Structural brain correlates of social club participation 452 
At the network level, social participation in the form of weekly attendance of social 453 
clubs was also linked to a collection of grey matter deviations of atlas region sets. In 454 
this third and last analysis of social participation, the largest explained variance and 455 
also the most uncertain effect was found for the limbic network (posterior sigma = 0.15, 456 
10-90% HPD = 0.05/0.20). The following networks were less explanatory (in 457 
descending order): the visual network (sigma = 0.08, HPD = 0.05/0.10), salience 458 
network (sigma = 0.06, HPD = 0.03/0.09), somatomotor network (sigma = 0.05, HPD 459 
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= 0.02/0.08), dorsal attention network (sigma = 0.05, HPD = 0.02/0.07), DMN (sigma 460 
= 0.04, HPD = 0.01/0.06) and control network (sigma = 0.03, HPD = 0.01/0.05). The 461 
most informative distribution among the seven networks for social club attendance is 462 
the visual network, followed closely by the default network. 463 
At the region-level of the obtained Bayesian hierarchical modeling solution, we found 464 
volume effects characterizing social club members for the atlas region sets. A positive 465 
effect for grey matter volume was found for the left (posterior mean = 0.07, 10-90% 466 
HPD = 0.01/0.13) and right parahippocampal gyrus (mean = 0.11, HPD = 0.04/0.19), 467 
left inferior temporal gyrus (mean = 0.11, HPD = 0.05/0.17), right fusiform gyrus (mean 468 
= 0.11, HPD = 0.04/0.17), right cuneus (mean = 0.09, HPD = 0.03/0.14) and right 469 
anterior cingulate cortex (mean = 0.11, HPD = 0.03/0.19). We identified the most 470 
relevant negative volume deviations for social club participants in the left lingual gyrus 471 
(mean = -0.06, HPD = -0.11/-0.01), left precentral gyrus (mean = -0.06, HPD = -0.11/-472 
0.01), left dorsal and ventral anterior cingulate cortex (mean = -0.11, HPD = -0.18/-473 
0.04), right lingual gyrus (mean = -0.10, HPD = -0.15/-0.03) and right middle temporal 474 
gyrus (mean = -0.13, HPD = -0.22/-0.04). In agreement with our findings for sports 475 
team and religious group members, regions of the limbic and default network were 476 
again found to be prominent (Table 1). In addition, among all three groups, similar 477 
regions tended to come to the fore, including parahippocampal and fusiform gyrus, 478 
anterior cingulate cortex, temporal and prefrontal cortex (Fig. 2). 479 
 480 
Functional brain correlates of social participation 481 
Next, fMRI data from our UK Biobank cohort were examined to investigate possible 482 
deviations in functional coupling fingerprints related to weekly engagement in sports 483 
teams, religious groups and social clubs. The cortex-wide functional connectivity 484 
profiles of each participant were submitted to a multivariate pattern-learning algorithm 485 
that identified a collection of reliable positive and negative shifts in network connectivity 486 
in the context of social participation (p < 0.05). In so doing, the single most coherent 487 
pattern of deviation for the functional connectome of participants within each of the 488 
three groups was identified (Fig. 3).  489 
The regular attendees of sports teams showed wide-ranging deviations in intra-490 
network connectivity of default and limbic network. The somatomotor network revealed 491 
negative coupling effects in intra-network connectivity. An increase in inter-network 492 
connectivity was dominated by connections from the DMN, but also featured the limbic 493 
and frontoparietal control network’s functional ties to the somatomotor network. 494 
Strengthened coupling was detected between the DMN and most other examined 495 
large-scale functional networks, including visual network, somatomotor network, 496 
frontoparietal control network and limbic network. The frontoparietal control network 497 
was found to exhibit enhanced coupling links especially with both the visual and 498 
somatomotor networks. A decrease in functional coupling strength was observed for 499 
the somatomotor network, the visual network and the dorsal attention network. 500 
People participating in religious groups in turn were especially characterized by a 501 
compounding of within-network functional connections within the DMN, limbic network 502 
and to some extent also in the frontoparietal control network. These three neural 503 
network systems showed enhanced within- and between-network functional 504 
connectivity patterns. In contrast, the dorsal attention network and the visual network 505 
both showed reduced within-network connectivity strengths. Connectivity strengths 506 
between regions of the DMN and the neural circuits of the limbic, frontoparietal control 507 
and dorsal attention network were significantly increased. Furthermore, we identified a 508 
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decrease in connectivity strengths between the visual network and several other large-509 
scale networks, including dorsal attention network, frontoparietal control network, 510 
salience network as well as the somatomotor network to a reduced extent. 511 
In contrast to these two types of social participation, social participation in social clubs 512 
did not lead to a salient increase of functional connectivity strengths within most of the 513 
aforementioned networks. Instead, a relevant decrease in functional connectivity was 514 
noted within DMN and limbic networks as the single most coherent pattern of deviation. 515 
The DMN in turn showed enhanced functional coupling with the somatomotor and the 516 
dorsal attention networks.  517 
As such, among all three types of social participation, the default and the limbic network 518 
stuck out in the overall collection of observed deviations in region-region coupling 519 
strengths. This insight was evidenced by enhanced connectivity patterns in active 520 
members of sports teams and religious groups, and by diminished connectivity 521 
patterns in social club participants. Additionally, reminiscent of our general findings 522 
from the structural analyses (cf. above), the default and limbic network played a 523 
prominent role among the systematic shifts of between-network coupling. 524 
 525 
Demographic profiling analyses of social participation 526 
In the final set of analyses, we have linked grey matter volume deviation in the most 527 
relevant identified regions (top 10%) to behavioural and sociodemographic data via a 528 
multivariate pattern analysis in each of the three groups of social participation (Fig. 4). 529 
In terms of consistent findings across groups, the time spent watching television ranked 530 
highest in all three separate analyses: sports teams (mean = -0.39, 5/95% confidence 531 
interval [CI] = -0.90/-0.07), religious groups (mean = -0.44, CI = -0.73/-0.08) and social 532 
clubs (mean = -0.56, CI = -0.93/-0.16). Another of our findings that were broadly 533 
consistent across all three groups pertained to the number of persons in the closest 534 
family circle: the number of siblings, brothers and sisters, showed high concordance 535 
across members of sports teams (meansisters = -0.20, 5/95% CI = -0.66/0.10; 536 
meanbrothers = -0.16, CI = -0.71/0.15), of religious groups (meansisters = -0.40, CI = -537 
0.73/0.01; meanbrothers = -0.41, CI = -0.77/-0.01) and of social clubs (meansisters = -0.32, 538 
CI = -0.68/0.06; meanbrothers = -0.31, CI = -0.66/0.06). Group membership was also 539 
reflected by similarities in health-related lifestyle behaviours. Again, all three forms of 540 
social participation showed similar convergence for the type and extent of the 541 
consumption of alcohol intake (amount of alcohol drunk on a typical drinking day, 542 
alcohol intake frequency) and tobacco use (past tobacco smoking, current tobacco 543 
smoking). To a varying extent, different psychological conditions also showed a high 544 
concordance within all three groups of social participation. These psychological 545 
conditions included including loneliness, mood swings, neuroticism, fed-up feelings, 546 
suffer from "nerves", tense, miserableness, irritability and sensitivity. In sum, charting 547 
relevant brain-behaviour associations revealed a high concordance among all three 548 
forms of social participation on sociodemographic and behavioural level for family 549 
structure, alcohol and tobacco consumption. 550 
 551 
Discussion 552 
Experiencing times of unmet social desire and not being able to fulfil one’s need to 553 
belong can be a wake-up call and highlights the pivotal importance of community and 554 
social exchange. Consequently, exploring the neurobiological substrates of social 555 
participation and their ties to physical and mental health is imperative. In our present 556 
investigation, the DMN and the limbic system were placed in the center of robust brain 557 
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manifestations across three examined types of social participation in ~40,000 UK 558 
Biobank participants: sports teams, religious groups, and social clubs. First, our 559 
structural analyses demonstrated the importance of prefrontal and cingulate cortex. 560 
Parts of the ventromedial prefrontal cortex (vmPFC) emerged as particularly relevant 561 
for participation in all three social groups. Second, in our analyses of functional 562 
coupling fingerprints, the DMN and limbic system also emerged consistently among all 563 
three groups as the cornerstone of the neural bases indicative of social embeddedness 564 
via group membership. Third, the combination of neuroimaging with behavioural and 565 
sociodemographic data showed a high consistency among all three types of 566 
participation for alcohol and tobacco consumption as well as certain psychological 567 
states. Hence, participants of sport teams, religious groups and social clubs do not 568 
only show similarities on the neural level, but also on the level of substance use 569 
behaviour and mood. 570 
The close involvement of the DMN in social and affective processes has been reported 571 
on multiple occasions (Amft et al., 2015; Amodio & Frith, 2006; Hyatt et al., 2015; Mars 572 
et al., 2012; Redcay & Schilbach, 2019; Schilbach et al., 2008). The relevance of the 573 
DMN in subserving advanced social capacities in various contexts has repeatedly been 574 
highlighted based on studies of both functional connectivity and grey matter volume 575 
(Che et al., 2014; Chen et al., 2010; Finlayson-Short et al., 2020; Lee, 2014; Morita et 576 
al., 2021; Takeuchi et al., 2014). Volume variation in the DMN related to social 577 
cognition has been reported for the prefrontal cortex as well as the anterior cingulate 578 
cortex (Morita et al., 2021) and posterior cingulate cortex (Che et al., 2014). Volume 579 
associations with the limbic system were previously linked to the extent of social 580 
support and satisfying friendship bonds (Taebi et al., 2020). Extending these previous 581 
findings, our present study reveals volume deviation and shifts in functional 582 
connectivity patterns that center on the DMN. We linked this neural system to real-583 
world membership in a sports team, religious group or social club on the population 584 
level for the first time. This broadens the interpretational perspective on the DMN by 585 
adding relevant aspects of everyday life that cannot usually be studied in experimental 586 
MRI research.  587 
Looking at specific regions related to the DMN, we found that the vmPFC showed a 588 
positive volume effect in participants of social clubs and a negative volume effect in 589 
participants of sports teams and religious groups. Lesion studies as well as 590 
neuroimaging studies in humans and animals pointed out the important role of the 591 
vmPFC in complex forms of social cognition, such as mentalization, empathy and 592 
decision making (Hiser & Koenigs, 2018; Leopold et al., 2012; Shamay-Tsoory et al., 593 
2003). Larger volume of the vmPFC has been directly linked to the size of an 594 
individual’s social network and mentalizing competences (Lewis et al., 2011; Powell et 595 
al., 2012).  596 
The anterior cingulate cortex (ACC) and parahippocampal gyrus are often attributed to 597 
the limbic system. The parahippocampal gyrus revealed additional grey matter volume 598 
within sports team and social club participants. The ACC showed significant volume 599 
deviations for religious groups and social clubs but none for sport teams. For religious 600 
groups, ventral parts of ACC showed positive volume effects, while dorsal parts 601 
showed negative volume effects. For social club members, dorsal and ventral volume 602 
effects for cingulate cortex differed between the two hemispheres. Given that social 603 
behaviour is potentially most uniquely developed in the human species (Frith & Frith, 604 
2010) it may come as no surprise to find brain asymmetry features, as hemispheric 605 
asymmetry is also exceptionally well developed in the human brain (Hartwigsen et al., 606 
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2021). The regional findings match the notable interindividual variability of the limbic-607 
trait associations at the network-level of our Bayesian hierarchical analyses. Only 608 
recently, grey matter volume increase in the dorsal and perigenual ACC was linked to 609 
social affective benefit (Gan et al., 2021). The community-based cohort study recorded 610 
daily-life social contacts and affective valence via smartphone for one week and 611 
combined the data with neuroimaging. Applied to the current results, this might indicate 612 
less social affective benefit from the membership in religious groups.  613 
The fusiform gyrus is classically associated with processing information from other 614 
people’s faces. These neural processes assist in recognizing a person identity from 615 
their unique facial features – hence, especially stable features of other’s faces 616 
(Schilbach et al., 2012). The posterior superior temporal sulcus in turn is repeatedly 617 
linked to basic sensory input relevant for processing social interactions (right 618 
hemisphere; Isik et al., 2017; Walbrin et al., 2018) and also to face processing (Bzdok 619 
et al., 2011; Bzdok et al., 2012). Furthermore, this region is classically linked to 620 
processing variable facial features like eye gaze and emotional cues.  621 
Previous studies compared the neuronal activation of fusiform gyrus and posterior 622 
superior temporal sulcus through trustworthiness, attractiveness, emotion and age 623 
judgments (Bzdok et al., 2012; Oosterhof & Todorov, 2008). While posterior superior 624 
temporal sulcus was associated with trustworthiness judgments, the fusiform gyrus 625 
was recruited by attractiveness judgments. In our study we found a volume increase 626 
of the fusiform gyrus for participants of sports teams and social clubs, but none for 627 
participants of religious group. With respect to the posterior superior temporal sulcus 628 
we found volume decrease within the group of sports team attendees and volume 629 
increase within attendees of religious groups. This suggests that processing of facial 630 
properties of other individuals may be of greater importance in social clubs and sport 631 
teams than in religious groups.  632 
Those regions with the most pronounced volume deviations in our study have been 633 
widely connected to characteristics of social participation such as social network size. 634 
A previous functional neuroimaging study with resting-state functional magnetic 635 
resonance imaging found a positive association between social network size and the 636 
connectivity strength between the amygdala and superior temporal sulcus, as well as 637 
that between fusiform gyrus and to vmPFC respectively (Bickart et al., 2012). A related 638 
study by Bickert and colleagues (2011)  linked the human social network size to brain 639 
structure of caudal inferior temporal sulcus, medial frontal cortex and ACC. The 640 
number of social contacts within one’s online social network (Facebook) has previously 641 
been linked to cortical volume deviation in the posterior superior temporal sulcus, as 642 
well as middle temporal gyrus (Kanai et al., 2012). Extending these results from human 643 
to non-human primates, macaques with a larger social network showed an increase in 644 
grey matter volume in rostral prefrontal cortex, ACC  and superior temporal sulcus 645 
(Sallet et al., 2011). Our analysis regarding social participation highlighted several 646 
regions that were mentioned in the context of social network size. This indicates, that 647 
social participation is linked to a larger social network. 648 
Only recently, the relevance of the DMN in the context of a lack of social connection, 649 
in other words loneliness has been highlighted (Spreng et al., 2020). Based on the 650 
results in Spreng and colleagues (2020) and those of our study, we can say that 651 
overlapping networks are implicated both for social isolation and social participation.  652 
Results included similar volume deviations in regions for participants feeling lonely, 653 
such ACC, posterior superior temporal sulcus and fusiform gyrus. Even on the network 654 
level, the relevance of DMN within lonely participants was alike the results within the 655 
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groups of social participation. Hence, loneliness and social participation seem to tap 656 
on similar brain networks and may even be viewed as opposite ends of a continuum. 657 
Besides loneliness as a subjective form of social isolation, social support reflects an 658 
objective form of social isolation.  659 
Social support is another key construct closely related to social participation. The 660 
construct of social support comprises closest friends and family, with a direct impact 661 
on health and well-being (Dunbar, 2018). Perhaps counterintuitive at first glance, 662 
results for social support and variance in brain regions showed less concordance to 663 
our results for social participation (Schurz et al., 2021). Although both assess lifestyle 664 
phenotypes that are related to forms of social cognition, only the effect of the limbic 665 
network and the volume deviation in the ACC appear to be more closely borne out by 666 
our present results. We speculate that the relevance of DMN and limbic system for 667 
social participation might derive from two sides. On the one hand, subjective aspects 668 
may be rooted in the DMN and reflect components like the sense of belonging to a 669 
group, hence less loneliness. Similarly, objective aspects of social participation may 670 
be linked to the limbic system and are possibly referring to a larger social network, 671 
providing social support.  672 
On the conceptual level, social participation is not only used in various ways as a term 673 
but also measured in sometimes diverging ways (Chang & Coster, 2014), with 674 
constituent aspects consisting of a social role (e.g., daughter/son, friend, club member)  675 
and a social task (e.g., work environment, school). To date, the construct of social 676 
participation is predominantly discussed in the context of rehabilitation and healthy 677 
aging, being extensively investigated as an outcome measure (Douglas et al., 2017; 678 
Piškur et al., 2014). 679 
As an empirical approach taken by our study, we examined three concrete forms of 680 
structured social participation with regular attendance. Sharing the same interest might 681 
in part be a consequence of shared personality traits, potentially linked to 682 
corresponding neural correlates. In support of this hypotheses, similarity of (autistic) 683 
personality traits in friendships of healthy adults was recently shown to be linked to 684 
friendship quality (Bolis et al., 2021). Especially as interindividual similarity in 685 
personality, social cognition and behaviour promote getting “in sync” and building 686 
meaningful social relationships (Hyon et al., 2020; Redcay & Schilbach, 2019).  687 
In addition to a number of commonalities in brain structure and function, we also found 688 
differences between participants of sports teams, social clubs and religious groups. 689 
These differences might depend on the types of regular experienced interaction with 690 
the people who tend to be at the periphery of one’s social circles. For regular physical 691 
activity, positive effects on brain development and cognition in adolescence are 692 
presented (Herting & Chu, 2017). Herein reviewed neuroimaging studies reported 693 
volume increase in hippocampus and lingual gyrus was related to aerobic training. 694 
Improved cognition due to physical activity included executive functions, cognitive 695 
flexibility and inhibitory control. A review study attributes an increase in grey matter 696 
volume to physical activity for all brain regions except for superior temporal gyrus and 697 
fusiform gyrus (Batouli & Saba, 2017). However, in our study we found volume 698 
deviation for these two regions in sport team members as well. This in fact may be 699 
driven by social aspects of sport participation rather than physical activity.  700 
For groups related to religious beliefs and spirituality, altered functional coupling 701 
patterns in the DMN have been reported and was discussed in the context of mystical 702 
and "insight" experiences (van Elk & Aleman, 2017). Differences in social processing 703 
between religious and nonreligious participants were found but controversial discussed 704 
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at the same time, with special attention to peer influence and membership in religious 705 
groups (Grafman et al., 2020). Furthermore, no consistent grey matter volume 706 
differences for religiosity and mystical experiences were found in a recent voxel-based 707 
morphometry study (van Elk & Snoek, 2020). A meta-analytic study found no positive 708 
longevity effects based on individuals' beliefs but still suggests positive health effects 709 
from simply belonging to a religious group (Shor & Roelfs, 2013). These effects include 710 
health-related behaviours and a sense of comfort and meaning, as the sheer result of 711 
social participation. 712 
Adolescents with regular participation in different types of social clubs had a healthier 713 
lifestyle and protective effect of belonging to at least one club was described 714 
(Borraccino et al., 2020; Zambon et al., 2010). Older adults participating in social 715 
activities benefit from reduction of stress and improvements in several important 716 
dimensions of mental health (Mackenzie & Abdulrazaq, 2021). Another systematic 717 
review associated long-term commitment to social activity groups with executive 718 
functioning, social network size and global cognition (e.g. memory, executive function; 719 
Kelly et al., 2017). The surveyed intervention studies included sport groups (e.g., Tai 720 
Chi, walking) and social clubs (e.g., photo group, quilt group).  721 
Hence, societies offering more ample opportunities for participation in sports, religious 722 
or social activities, not only dampen loneliness and cognitive decline but improve 723 
people’s resilience and might reduce the risk for dementia. In contrast, loneliness and 724 
social isolation are associated with loss of cognitive capacity (Lara et al., 2019), such 725 
as measured by Wechsler Adult Intelligence Scale, Consortium to Establish a Registry 726 
for Alzheimer´s Disease and digit span test. The previous studies provide various 727 
results concerning the impact of the particular nature of the investigated groups. 728 
Reported positive effects on health and cognition as well as deviations in brain 729 
structures might primarily derive from the recurring engagement with a group per se. 730 
In our study, we reported minor differences in brain structure and function among all 731 
three examined groups of social participation. However, similarities tended to dominate 732 
on structural and functional level in our collective findings. 733 
Within our results, convergence was also shown across the different demographic 734 
profiling  analyses. These brain-phenotype associations showed high similarity within 735 
most factors among participants of sports teams, religious groups and social clubs. 736 
Highest overlap across all three groups was observed in the factors television 737 
consumption, number of siblings, health-related lifestyle behaviour and psychological 738 
conditions. Although the direction of the revealed associations has no single answer in 739 
the fully multivariate setting, previous research reported general positive effects of 740 
group participation on substance use (Elder et al., 2000). Indeed, a wide range of 741 
previous studies presented heterogenous effects of physical activity on increased risk 742 
for substance use among adolescents (Murray et al., 2021; Terry-Mcelrath et al., 743 
2011). While the similarity within psychological conditions, health factors and 744 
substance-use (limited to tobacco, nicotine, alcohol) is in line with recent findings in 745 
people receiving high social support (Schurz et al., 2021), being explained by general 746 
health effects of social relations (Holt-Lunstad et al., 2010), watching television and 747 
family size stand out. The individual consumption of television of adolescents was 748 
associated with the TV consumption of their peer group (Fletcher, 2006). Furthermore, 749 
siblings foster social competence, especially in a young age (Downey et al., 2015). 750 
More specific, perspective taking can be improved by siblings but findings vary and 751 
depend on the family context (Sang & Nelson, 2017). Again, despite of differences in 752 
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the participated activity, commonalities exceed among the investigated groups in the 753 
demographic profiling analyses. 754 
Membership to social groups scaffolds human life in society. Extending previous 755 
experimental neuroscience evidence, our investigation shows that brain substrates of 756 
social participation are interrelated with health-related concepts like social support and 757 
psychological well-being at the population level. Among all three examined types of 758 
groups, we identified the DMN and limbic network as central for social participation. 759 
Both highlighted networks gained further relevance in the context of belonging to a 760 
group, as aspects of everyday life participation were studied in a population cohort and 761 
could be related to additional demographic and everyday-life information. In a 762 
comprehensive demographic profiling analysis, we here find concrete benefits of social 763 
participation in groups such as reduced substance use and improved psychological 764 
well-being. 765 
Overall, our collective findings could be taken to suggest that the concrete type of 766 
social participation may be of less importance than the regular attendance itself. 767 
Looking for a way to harness the positive effects of social participation, this calls for 768 
accessible forms of routine interventions in cohesive social groups, sometimes 769 
described as ‘social prescribing’. This is all the more important in periods of social 770 
isolation in which a lack of social participation takes its toll on mental health. 771 
 772 
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Table 1. List of analyzed 7 networks, based on Schaefer-Yeo atlas, in decreasing order of 1178 
explained variance (top to bottom) based on highest posterior density (HPD). 1179 
 Social participation Social 

support 

Loneliness 

 Sports team Religious 
group 

Social club (Schurz et al., 2021) (Spreng et al., 
2020) 

 visual limbic** limbic** salience default* 
 default* somatomotor visual* limbic** limbic** 
 limbic** default* salience somatomotor dorsal attn 
 salience control somatomotor dorsal attn somatomotor 
 control salience dorsal attn visual visual 
 somatomotor dorsal attn default* default control 
 dorsal attn visual control control salience 

 Note. *most informative distribution, **largest but most uncertain effect 1180 
 1181 
 1182 
 1183 
 1184 

 1185 
 1186 
Figure 1. Three forms of social participation show strong network-wide effects 1187 
in the default mode system and limbic systems. A Bayesian hierarchical framework 1188 
was used to jointly analyze overall volume variation in seven major brain networks at 1189 
the population-level (UK Biobank cohort with n = ~ 40.000 participants), separately to 1190 
identify members of sports teams (a), religious groups (b) and social clubs (c). 1191 
Contributions exhibit the amount of variance explained by every distributed canonical 1192 
network, according to the 10-90% highest posterior density interval (HDI). A narrow 1193 
(wide) posterior parameter distribution posterior density stands for a certain (uncertain) 1194 
effect. A more positive (less positive) value for the mean posterior parameter density 1195 
(x axis, sigma parameter) indicates for a higher (lower) explained variance across the 1196 
dependent spatially distributed atlas regions in that network. By rough analogy to 1197 
classical ANOVA, the network definitions could be viewed as “factors” and the region 1198 
definitions could be viewed as “levels”. Results are adjusted for effects of age and sex. 1199 
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 1201 
 1202 
Figure 2. Population associations with regions of the default and limbic systems 1203 
dominate the neural correlates of social participation. At the region level, our 1204 
Bayesian hierarchical model identified for which brain regions variability in grey matter 1205 
volume explains participants’ reported weekly engagement in social groups. Strongest 1206 
associations to day-to-day social support (cf. Fig. 1) were determined based on effect 1207 
sizes (mean parameter) of the marginal posterior parameter distributions (volume 1208 
measures in standard units). In the context of our modeling solution, the ventromedial 1209 
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prefrontal cortex showed no volume deviation in right hemisphere of (a) sport teams 1210 
participants. A ventromedial prefrontal gray matter decrease was shown in (b) religious 1211 
groups (light green) and a substance increase in participants of (c) social clubs 1212 
(yellow). The anterior cingulate cortex showed no volume deviation in (d) sports team 1213 
members in members of (e) religious groups in the left hemisphere. A volume decrease 1214 
in the anterior cingulate cortex was instead shown in members of (f) social clubs (light 1215 
green). The parahippocampal area showed a volume increase within the group of (g) 1216 
sports teams (yellow) and (i) social clubs (yellow), while no volume deviation was 1217 
shown for (h) religious groups. For the lingual gyrus, positive and negative volume 1218 
effects were shown for (j) sports teams, and no volume effects for (k) religious groups. 1219 
Negative volume effects were shown for (l) social clubs. Within the temporal lobe of 1220 
sports team members (m, p), both hemispheres had negative volume effects in the 1221 
superior and middle temporal gyrus (green). For members of religious groups (n, q), 1222 
volume decrease in both hemispheres was demonstrated in superior and middle 1223 
temporal gyrus (yellow). The social club participants (o, r) showed a volume decrease 1224 
(green) in right hemisphere and volume increase in left hemisphere in fusiform gyrus 1225 
and inferior temporal gyrus.  1226 
 1227 
 1228 
 1229 
 1230 

 1231 
 1232 
Figure 3. Signatures of functional coupling fluctuations highlight the relevance 1233 
of intra- and inter-network deviations of the default and limbic network in social 1234 
participation. Functional connectivity shifts are shown for the dominant population 1235 
mode related to weekly social participation (connectivity links in standard units). The 1236 
leading mode identified positive (red) and negative (blue) shifts in network connectivity 1237 
using a pattern-learning algorithm, with statistical significance at p < 0.05 (one-sided 1238 
test) using nonparametric permutation testing. The intra- and inter-network connectivity 1239 
is depicted for the participants of (a) sports teams, (b) religious groups and (c) social 1240 
clubs. L/R refers to left and right hemisphere. The default and limbic network showed 1241 
an increase in connectivity strengths in members of sport teams and religious groups 1242 
and a decrease in members of social clubs. 1243 
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 1245 
 1246 
Figure 4. Demographic profiling analysis pinpoints indicators of mental health, 1247 
smoking and alcohol consumption consistently across three groups of social 1248 
participation. Multivariate pattern-learning (cf. Methods) was used to explore how the 1249 
top brain regions (see Fig. 2) are linked to a variety of behavioral indicators with their 1250 
robust cross-links to weekly social participation. Behavioral measures covered 1251 
domains of mental and physical well-being, lifestyle choices, and social 1252 
embeddedness. In 1,000 bootstrap resampling iterations, our entire pattern-learning 1253 
pipeline in grey matter volume was repeated separately in the two participant groups: 1254 
UK Biobank participants who regularly share life experience with close others and 1255 
those with little such exchange of personal events. The computed differences in brain-1256 
behavior associations between both groups (i.e., dominant canonical vector entries) 1257 
were gathered across the 1,000 perturbed realizations of our original dataset to obtain 1258 
faithful bootstrap intervals. These estimates of uncertainty directly quantified how 1259 
group-related deviations vary in the wider population. Asterisks indicate statistical 1260 
relevance based on excluding zero between the 5/95% quantiles of the bootstrap 1261 
distribution. These brain-behavior associations showed great correspondence for 1262 
regular intake of alcohol and tobacco as well as multifaceted aspects of psychological 1263 
well-being across participants of (a) sports teams, (b) religious groups and (c) social 1264 
clubs.  Further consistent findings across all three forms of social participants included 1265 
the time spent watching television, number of siblings and further mental health 1266 
conditions. The boxplot whiskers depict the interquartile range. 1267 
 1268 
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