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Abstract 17 

While the relative importance of climate filtering is known to be higher for woody species 18 

assemblages than herbaceous assemblage, it remains largely unexplored whether this pattern 19 

is also reflected between the woody overstory and herbaceous understory of forests. While 20 

climatic variation will be more buffered by the tree layer, the understory might also respond 21 

more to small-scale soil variation, next to experiencing additional environmental filtering due 22 

to the overstory’s effects on light and litter quality. For (sub)tropical forests, the understory 23 

often contains a high proportion of fern and lycophyte species, for which environmental 24 

filtering is even less well understood. We explored the proportional importance of climate 25 

proxies and soil variation on the species, functional trait and (functional) diversity patterns of 26 

both the forest overstory and fern and lycophyte understory along an elevational gradient 27 

from 850 to 2100 m a.s.l. in northern Taiwan. We selected nine functional traits expected to 28 

respond to soil nutrient or climatic stress for this study and furthermore verified whether they 29 

were positively related across vegetation layers, as expected when driven by similar 30 

environmental drivers. We found that climate was a proportionally more important predictor 31 

than soil for the species composition of both vegetation layers and trait composition of the 32 

understory. The stronger than expected proportional effect of climate for the understory was 33 

likely due to fern and lycophytes’ higher vulnerability to drought, while the high importance 34 

of soil for the overstory seemed driven by deciduous species. The environmental drivers 35 

affected different response traits in both vegetation layers, however, which together with 36 

additional overstory effects on understory traits, resulted in a strong disconnection of 37 

community-level trait values across layers. Interestingly, species and functional diversity 38 

patterns could be almost exclusively explained by climate effects for both vegetational layers, 39 

with the exception of understory species richness. This study illustrates that environmental 40 

filtering can differentially affect species, trait and diversity patterns and can be highly 41 
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divergent for forest overstory and understory vegetation, and should consequently not be 42 

extrapolated across vegetation layers or between composition and diversity patterns. 43 

 44 

Key words 45 

Trait-environment relationship, ferns, lycophytes, forest overstory, forest understory, 46 

functional traits, functional diversity, species richness, subtropical montane cloud forest 47 

 48 

Introduction 49 

Although the effects of environmental or abiotic filtering on plant communities is often 50 

reflected in their species composition and richness, it is believed that this filtering mainly acts 51 

on the plants’ functional traits, rather than directly on the species’ identities (Lavorel and 52 

Garnier 2002, Kraft et al. 2015). Many studies have consequently observed strong trait – 53 

environment relationships across ecosystems (Wright et al. 2005, Ordoñez et al. 2009, 54 

Bruelheide et al. 2018). Not only functional trait composition, but also functional diversity 55 

can be affected by environmental filtering (Aros-Mualin et al. 2021). Functional diversity is, 56 

more specifically, expected to be reduced under environmentally stressful conditions, since 57 

only a limited number of functionally similar species will be able to establish (cf. trait 58 

underdispersion) (Weiher and Keddy 1995). The spatial extent at which environmental 59 

filtering occurs furthermore seems to differ among different environmental factors (Mokany 60 

and Roxburgh 2010, Bruelheide et al. 2018). While climatic factors mainly drive differences 61 

in species and trait composition across relatively large spatial scales, at smaller spatial scales, 62 

community (trait) composition is mainly structured by local-scale factors, such as variation in 63 

soil conditions (Bruelheide et al. 2018).  64 

A recent study focusing on large-scale trait-environment patterns, suggested that the 65 

relative importance of different drivers even differs between woody and herbaceous species 66 
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assemblages, with climatic variation more strongly impacting woody plant communities 67 

(Šímová et al. 2018). Consequently, within multi-layered forest ecosystems, environmental 68 

filtering might also differentially affect the woody overstory and herbaceous understory. For 69 

example, climate or (micro)climatic-related topography might more strongly impact the 70 

overstory, because the overstory is fully exposed to climatic variation, while the understory 71 

experiences buffered climatic variation under the protection of the forest canopy (Šímová et 72 

al. 2018, De Frenne et al. 2019). The species composition of the overstory might also be more 73 

likely to be filtered by more coarse-scale soil variation compared to that of the herbaceous 74 

understory, whose roots will be much more localized. The understory might additionally 75 

experience filtering due to small-scale environmental variation caused directly by variation in 76 

the overstory. Several studies have, for example, shown the impact of overstory related light 77 

availability and leaf litter on understory species composition (Komiyama et al. 2001, Wang et 78 

al. 2019, Majasalmi and Rautiainen 2020), trait composition (Maes et al. 2020) and 79 

functional diversity (Chabrerie et al. 2010).  80 

 Surprisingly little studies have, however, tried to quantify the similarities in 81 

environmental filtering between the over- and understory layers of forests (however see 82 

Ruokolainen et al. 2007, Rogers et al. 2008, Salazar et al. 2012). While this comparison is 83 

complicated for many temperate forest types, due to the often limited overstory species 84 

diversity, (sub)tropical forests offer an ideal study system to explore these relationships. In 85 

this study we focus on the proportional impact of several climate proxies (topography and 86 

ground fog frequency) and soil variation on the over- and the understory of the subtropical 87 

montane forests of northern Taiwan, along an elevation gradient ranging from 870 to 2130 m 88 

a.s.l.  89 

Interestingly, the understory of subtropical montane forests contains a high diversity 90 

of fern and lycophyte species, next to angiosperms. For this reason, we focus specifically on 91 
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the understory fern and lycophyte species in this study, while excluding angiosperms. Some 92 

studies have observed similar leaf trait-trait (Karst and Lechowicz 2007, Lin et al. 2020) and 93 

trait-environment relationships (Kessler et al. 2007, Kluge and Kessler 2007, Zhu et al. 2016, 94 

Campany et al. 2019) for ferns as for angiosperms, suggesting that functional patterns are 95 

similarly structured and thus comparable across both phylogenetic groups. Environmental 96 

filtering and trait-environment relationships nevertheless remain less well understood for fern 97 

and lycophyte communities, compared to angiosperm communities (Kessler et al. 2016). 98 

Effects of environmental filtering on understory fern community functional diversity has, for 99 

example, been observed in a few studies (Tanaka and Sato 2015, Zhang et al. 2017, Sessa et 100 

al. 2018), but not in others (Kluge and Kessler 2011, Aros-Mualin et al. 2021).  101 

To allow optimal trait comparisons across both vegetation layers, we measured the 102 

same nine functional leaf traits for both overstory woody species and understory fern and 103 

lycophyte species. These nine traits were specifically chosen for their expected link to soil 104 

nutrient and/or climatic stress. Using this dataset, we addressed the following research 105 

questions: 106 

- Do climate proxies and soil factors explain equal proportions of variation in the over- and 107 

understory community-level species and functional trait composition along the elevation 108 

gradient? 109 

- Are these potential climate proxy and soil filtering processes also reflected in species and 110 

functional diversity along the elevation gradient? 111 

- Can we find additional filtering of the understory species and trait composition due to 112 

variation in the overstory? 113 

 114 
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Methods 115 

Study design 116 

The study was performed in the Wulai district, New Taipei City, northern Taiwan, along an 117 

elevational transect ranging from Mt. Meilu (870 m a.s.l., 24.85°N 121.53°E) to Mt. Taman 118 

(2130 m a.s.l., 24.71°N 121.45°E, Fig. 1). The geological substrates mainly consist of 119 

argillite, shale, slate, sandstone and phyllite (Central Geological Survey, MOEA), with soils 120 

of low pH and high soil organic matter content. The study region is characterized by a humid 121 

subtropical climate (‘Cfa’ climate sensu the Köppen-Geiger system), with an average annual 122 

temperature of 16.1°C and average annual precipitation of 2070 mm (Lalashan weather 123 

station, 1374 m a.s.l., 24.68°N 121.40°E). Most precipitation falls during the summer, 124 

although the region is also affected by the north-eastern winter monsoon. The forest 125 

vegetation along the gradient varies from lower elevation Pyrenaria-Machilus subtropical 126 

winter monsoon forest, across mid-elevation Quercus montane evergreen broad-leaved cloud 127 

forest to higher elevation Chamaecyparis montane mixed cloud forest (Li et al. 2013). 128 

 Along the transect, six elevation zones were delimited at 850, 1100, 1350, 1600, 1850 129 

and 2100 m a.s.l. ± 50 m (Fig. 1). At each elevation zone, ten 10 m × 10 m plots were 130 

established across a secondary gradient in aspect and topography, ranging from the northeast 131 

facing (windward) to the southwest facing slope (leeward) across the ridge. Plots were 132 

positioned at least 50 m apart. Due to logistic constraints, only 9 plots were established at the 133 

1850 m elevation zone, resulting in a total of 59 plots. For each plot, we recorded the 134 

presence of all woody species (angiosperm and gymnosperm shrubs and trees) taller than 2 m 135 

and with diameter in breast height (DBH) ≥ 1 cm (i.e. the ‘overstory’ vegetation). We also 136 

recorded the presence of all terrestrial (non-epiphytic) fern and lycophyte species, which 137 

together make up 66% of the plot-level herbaceous understory species richness in our study 138 

(i.e. the ‘understory’ vegetation). 139 
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 140 

Climate proxies 141 

We measured two topographic variables (i.e. elevation and heat load) that are known to relate 142 

to (micro)climatic conditions. The exact elevation of each plot was measured using GPS 143 

(GPSMAP 64st, Garmin, USA). To calculate heat load, we first measured the slope of each 144 

plot with a clinometer (SUUNTO PM-5/360 PC Clinometer, SUUNTO, Finland) from the 145 

upper plot edge, and the aspect of each plot with a compass (SILVA, Sweden). Aspect was 146 

then transformed into folded aspect, which was defined as the azimuth angle difference 147 

between the aspect and 45° (McCune and Keon 2002).We calculated heat load based on 148 

folded aspect and slope using equation 2 of McCune and Keon (2002). We additionally 149 

extracted average annual ground fog frequency for each plot from the ground fog frequency 150 

raster map for Taiwan (250 m per pixel resolution), developed by Schulz et al. (2017), based 151 

on MODIS satellite data. Ground fog frequency is expected to be an important environmental 152 

factor impacting cloud forest vegetation through effects on temperature, light availability, 153 

evapotranspiration and water availability (Fahey et al. 2016). 154 

 155 

Soil variables 156 

For each plot, four soil samples of the top 0-10 cm were collected and pooled together for soil 157 

analysis. Each pooled soil sample was analyzed for pH, carbon:nitrogen ratio, total nitrogen, 158 

and phosphorous, potassium, magnesium, zinc, calcium, manganese, copper and iron content. 159 

See Appendix S1 for details of the soil chemical analysis.  160 

To prevent collinearity among soil predictor variables, we performed a principal 161 

component analysis (PCA) on all measured soil chemical variables (after logarithmic 162 

transformation of Ca, C:N ratio, Mg, Mn, P and Zn and subsequent standardization to zero 163 

mean and unit standard deviation for all variables, Appendix S2). The three retained soil PC 164 
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axes together explained 81.4% of the total variation. The first axis (termed ‘soil NPK’ in the 165 

text) reflected a gradient in nitrogen, phosphorous and potassium, next to several other 166 

micronutrients. The second axis (‘soil pH’) reflected an increase in pH and soil manganese, 167 

while the third axis (‘soil Cu’) was most strongly related to soil copper (positively) and 168 

calcium and iron (negatively) (Appendix S2). 169 

We additionally measured soil depth at four positions in each plot using a 30 cm long 170 

soil depth meter (diameter 0.6 cm) and averaged values per plot. Soil more than 30 cm deep 171 

was recorded as 35 cm (16.9 % of the plots). Soil rockiness (the percentage content of rocks 172 

in the top 0-10 cm of the soil) was also estimated.  173 

 174 

Functional traits 175 

Nine leaf traits were measured for 91 overstory woody species (sampled during 10/2014 and 176 

12/2016-09/2018) and 48 understory fern and lycophyte species (sampled during 5/2017-177 

10/2018), including all common species present in the plots and covering 74.0% and 63.2% 178 

of our over- and understory species pools, respectively (Appendix S3). The nine measured 179 

traits consisted of specific leaf area (SLA, mm2/mg), leaf dry matter content (LDMC, mg/g), 180 

area-based leaf chlorophyll content (SPAD units), leaf nitrogen content (leaf N, mg/g), leaf 181 

area (cm2), leaf thickness (Lth, mm), equivalent water thickness (EWT, mg/mm2), leaf 182 

13C/12C stable isotope ratio (δ13C, ‰) and leaf 15N/14N stable isotope ratio (δ15N, ‰). Note 183 

that the first four traits are related to the leaf economics spectrum (LES) (cf. Wilson et al. 184 

1999, Wright et al. 2004). Trait measurements largely followed standard protocols (Pérez-185 

Harguindeguy et al. 2013), with some modifications for fern and lycophyte species. See 186 

Appendix S1 for trait measurement details. 187 

 These traits are expected to vary along climatic and soil variation gradients, because 188 

of their expected links to either soil nutrient stress (LES traits, δ15N, Lth; Wright and Cannon 189 
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2001, Hodgson et al. 2011), temperature or climatic stress (LES traits, leaf area; Wright et al. 190 

2005, Dong et al. 2020) or drought (leaf area, Lth, EWT, δ13C; Medeiros et al. 2019, 191 

Maréchaux et al. 2020). While high values of δ13C are known to reflect high long-term water-192 

use efficiency, and thus drought tolerance (Farquhar et al. 1982, Pérez-Harguindeguy et al. 193 

2013), δ15N relates to a plant’s nitrogen acquisition strategy (Craine et al. 2015). More 194 

specifically, δ15N values around 0 ‰ usually indicate nitrogen fixation, while values around -195 

2, -3 and -6 ‰ indicate plant nitrogen acquisition through arbuscular, ericoid and 196 

ectomycorrhiza, respectively (Craine et al. 2015). Note that EWT expresses the water mass 197 

content of a fresh leaf per unit leaf area, and is sometimes also called ‘succulence’ 198 

(Mantovani 1999, Féret et al. 2019).  199 

 All leaf level trait values were averaged at the species level after exclusion of leaf-200 

level outliers (Z-score > 2.5 at the species level), as we assumed these values to most likely 201 

occur from measurement errors. This resulted in the exclusion of 0.61 % and 0.16 % of the 202 

trait values from the full leaf × trait matrix for the over- and understory, respectively. For leaf 203 

area we did not remove ‘outliers’, since all trait values could be verified for measurement 204 

errors. Missing trait values for nine overstory species were replaced by mean trait values 205 

across all overstory species, prior to further data analysis. 206 

 207 

Data analysis 208 

We calculated the plot-level community mean (CM) values for each trait, as the 209 

average trait across all species present in the plot. Since only presence-absence data was 210 

collected, CM trait values were not weighted by species abundance. Species richness was 211 

calculated as the number of species present in the plot. We calculated two measures of 212 

functional diversity for each plot. Scheiner et al. (2017) has recently proposed to express 213 

functional diversity by the two parameters trait dispersion (M’) and trait ‘evenness’ or 214 
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equability (1E(T)), next to species richness. While M’ quantifies ‘magnitude’, i.e. the amount 215 

of difference in trait values among species in a community, 1E(T) quantifies ‘variability’, i.e. 216 

the extent to which species are equally different from each other in trait values. Both 217 

measures are based on pairwise trait dissimilarities. Unlike the more traditionally used 218 

functional diversity parameters (i.e. functional richness, evenness and divergence), M’ and 219 

1E(T) are independent from species richness and evenness, and thus solely reflect trait 220 

magnitude and variability, respectively (Scheiner 2019, Kosman et al. 2021). M’ and 1E(T) 221 

were calculated with the R script provided by Malavasi et al. (2018), based on the formulas of 222 

Scheiner et al. (2017), using Gower dissimilarity on the species × trait matrix (with traits 223 

standardized to Z-scores) to construct the trait dissimilarity matrix. Leaf area was 224 

logarithmically transformed prior to CM and functional diversity calculation. CM δ15N was 225 

additionally transformed using the equation (x + 4)2 for the overstory dataset and log (x + 2.5) 226 

for the understory dataset to obtain symmetrical distribution. 227 

Before statistical analysis, we calculated variance inflation factors (VIF) to identify 228 

potential collinearity issues, separately among the different climate proxies and among soil 229 

variables. Collinearity was identified for folded aspect and heat load (VIF > 5), and thus we 230 

excluded folded aspect from all statistical models. We consequently retained three climate 231 

proxies (elevation, heat load and ground fog frequency) and five soil variables (soil depth, 232 

soil rockiness and three soil PC axes, namely soil NPK, soil pH and soil Cu). Heat load was 233 

squared and soil rockiness was square root transformed prior to statistical analyses to 234 

improve symmetrical distribution of their values.  235 

To test the effects of climate proxies and soil variables on the over- and understory 236 

species composition, we performed separate redundancy analyses (RDA) on the respective 237 

plot × species matrices. These RDA models were repeated on the plot × species matrices 238 

including only species for which traits were measured. Similar RDA models were performed 239 
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for the over- and understory plot × CM trait matrices, with CM of traits standardized to Z-240 

scores (CWM-RDA, Nygaard and Ejrnæs 2004). The overstory trait RDA model was also 241 

repeated after excluding all deciduous species, to assess the potential effect of deciduous 242 

species on the trait patterns. 243 

After assuring global significance of each of the global RDA models containing all 244 

environmental predictors, we performed variation partitioning on each model to assess the 245 

proportions of variation in each plot × species or plot × CM trait matrix explained by either 246 

climate proxies or soil variables, expressed by adjusted R2. Next, we performed forward 247 

model selection among all environmental predictors, based on adjusted R2-values 248 

(conditional effects) and their significance assessed using Monte Carlo permutation tests 249 

(9999 permutations). This model selection allowed us to assess which environmental 250 

variables were most important predictors for each species and CM trait dataset. We are aware 251 

that the CWM-RDA method is prone to inflated Type I error rate when using the standard 252 

Monte Carlo permutation test (Šmilauer and Lepš 2014, Zelený 2018). Since there is no 253 

published solution to this problem, however, we nonetheless use these tests. Before forward 254 

model selection, we again used VIFs to ensure that no collinearity occurred among any of the 255 

combined climate and soil variables. All multivariate analyses were performed with the 256 

‘vegan’ R package (Oksanen et al. 2017).  257 

We additionally performed partial redundancy analysis for the understory plot × 258 

species and plot × CM trait datasets, to assess the potential additional effects of the overstory. 259 

To achieve these models, we first performed two PCA’s, one on the overstory plot × species 260 

matrix and one on the overstory plot × CM trait matrix. For both models, we only retained 261 

PCA axes for which the eigenvalue was larger than the average inertia (Kaiser-Guttman 262 

criterion, Ibanez 1973). Hence, we retained 15 and 3 axes for the overstory species and CM 263 

trait PCA’s, respectively. Next, we performed a partial RDA (pRDA) on the understory plot 264 
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× species matrix with all retained overstory species PCA axes as explanatory variables, while 265 

partialling out the effects of all measured environmental variables, and assessed the model’s 266 

overall significance. Similarly, we assessed the effect (including overall significance) of the 267 

retained overstory trait PCA axes on the understory plot × trait matrix while partialling out all 268 

climate proxies and soil variables. 269 

The effects of climate proxies and soil variables on species and functional diversity 270 

were assessed using generalized linear models. For species richness (a count variable) we 271 

used a Poisson probability distribution and log link function. For M’ and 1E(T) we used a 272 

gamma probability distribution with inverse link function, since these variables consist of 273 

positive, continuous, right skewed data. Due to the nonlinear relationship between elevation 274 

and understory species richness, and fog frequency and overstory 1E(T), we included the 275 

quadratic term for elevation and fog frequency to the respective models. We performed 276 

variation partitioning on the full diversity models to quantify the proportion of explained 277 

deviance by climate proxies and soil variables. Each full model was then reduced using a 278 

AIC-based comparison of all predictor-subset combinations of the full model, using the 279 

‘dredge’ function in the ‘MuMIn’ R package (Barton 2019). Model assumptions were 280 

checked using the ‘DHARMa’ R package (Hartig 2021).  281 

If traits and diversity are shaped by similar environmental drivers for the under- and 282 

overstory along our gradient, we expect them to be positively correlated between vegetation 283 

layers. To verify this, we performed simple linear regressions between each understory CM 284 

trait (response) and overstory CM trait (predictor). Based on the scatterplots for these 285 

regressions, we also included a quadratic term for the CM SLA model (i.e. understory CM 286 

SLA ~ overstory CM SLA + (overstory CM SLA)2). These regressions were also performed 287 

for overstory CM traits excluding deciduous species. Similar regressions were additionally 288 

constructed for S, M’ and 1E(T) between under- and overstory. All p-values of the pairwise 289 
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regressions were corrected for type-I error inflation using the false discovery rate method 290 

(Benjamini and Hochberg 1995) with the ‘p.adjust’ function in the ‘stats’ R package. All 291 

analyses were performed with R version 4.0.5. 292 

 293 

Results 294 

Species composition of both over- and understory species was significantly affected by 295 

climate proxy and soil variation, together explaining 29.9% and 30.7% of the total variation 296 

(i.e. adjusted R2), respectively (Fig. 2A&B). Variation partitioning indicated that for both 297 

over- and understory species composition, climate proxies explained a higher relative 298 

proportion of this variation (overstory: 80.4%, understory: 85.0%) than soil (overstory: 299 

54.9%, understory: 54.2%). However, for both vegetation layers, around one third of the 300 

explained variation was shared by climate proxies and soil (Fig. 2A&B). The final RDA 301 

models after forward model selection retained all climate proxy variables and soil pH for both 302 

the overstory and understory species composition. For the overstory species composition, soil 303 

NPK and soil Cu were additionally retained (Table 1, Fig. 3A&B). RDA and variation 304 

partitioning results were barely affected when RDA was performed on the plot × species 305 

matrices including only species for which traits were measured (Appendices S4 & S5). The 306 

pRDA indicated that an additional 7.1% (p < 0.001) of the total variation in understory 307 

species composition was explained purely by overstory species composition. 308 

 CM trait composition variation was also related to climate proxies and soil for both 309 

over- (adjusted R2 = 49.3%) and understory species (adjusted R2 = 42.2%) (Fig. 2C&D). 310 

Variation partitioning showed that climate proxies were the most important predictors of CM 311 

trait variation for understory species (77.4% of the total explained variation for climate 312 

proxies vs. 58.5% for soil), while soil explained most variation for overstory CM traits 313 

(58.4% for climate proxies vs. 80.5% for soil). For both vegetation layers’ trait composition, 314 
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around one third of the explained variation was shared by climate proxies and soil (Fig. 315 

2C&D). After forward model selection, elevation, ground fog frequency, soil pH and soil Cu 316 

were retained for both CM trait RDAs, while soil NPK was additionally retained for the 317 

overstory CM trait RDA (Fig. 3C&D). The RDA results were largely similar for overstory 318 

traits excluding deciduous species. However, climate proxies became more important than 319 

soil after variance partitioning (Appendices S4 & S5). 320 

The results of the CM trait RDAs furthermore suggest an increase in CM LDMC with 321 

elevation for both vegetation layers and a decrease in CM of leaf area and δ15N with elevation 322 

for the overstory. High ground fog frequency seems to result in lower CM EWT for both 323 

vegetation layers, while high soil pH seems to result in high CM of SLA and leaf N and low 324 

CM Lth for the overstory, and high CM leaf N for the understory (Fig. 3C&D). Note that 325 

these patterns can be inferred from Fig. 3 because the involved environmental variables and 326 

traits were well represented by the first two RDA axes (high axis loadings). Evaluation of the 327 

third RDA axis loadings for the understory furthermore suggests that high soil pH is also 328 

related to high CM leaf N for the understory (results not shown). The pRDA showed that the 329 

overstory trait composition could explain an additional 4.5% (p = 0.011) of the variation in 330 

the understory trait composition after partialling out the effects of climate proxies and soil 331 

variables. 332 

 CM of LDMC and leaf N were positively related, while CM of Lth and δ15N were 333 

negatively related between both vegetation layers. CM SLA showed a parabolic relationship, 334 

with the highest values for the understory at intermediate values for the overstory species. 335 

CM of leaf area, chlorophyll content, δ13C and EWT, on the other hand, were not 336 

significantly related between both vegetation layers (Fig. 4, Appendix S6). Excluding 337 

deciduous species for the overstory weakened, but did not change the direction of all trait - 338 
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trait relationships, except for leaf thickness, for which the negative relationship strengthened 339 

(Appendices S6 & S7).  340 

 Compared to soil, climate proxy variables explained more of the variation in species 341 

richness, functional divergence and functional equability for both vegetation layers (Table 1, 342 

Appendix S8). Soil variation nonetheless contributed a small additional proportion to the total 343 

explained variation (< 20%) in the understory species richness and functional equability for 344 

both vegetation layers (Table 1, Appendix S8). While elevation was the strongest climate 345 

proxy predictor for all diversity measures of both the over- and understory, the direction of 346 

these relationship differed between both vegetation layers. While overstory species richness 347 

declined with elevation, understory species richness was highest at intermediate elevation 348 

(Fig. 5A). Functional dispersion increased with elevation for both vegetation layers (Fig. 5C), 349 

while functional equability increased with elevation for the overstory, and decreased for the 350 

understory (Fig. 5E). Soil pH was the strongest soil predictor for understory species richness 351 

(positive relationship) (Fig. 5B) and functional equability (negative relationship) (Fig. 5F).  352 

 Species richness and functional equability were not significantly related for both 353 

vegetation layers, while functional dispersion was significantly positively related between the 354 

over- and understory (Appendices S6 & S9). 355 

 356 

Discussion 357 

Species and trait composition 358 

Climate proxies were more strongly related than soil to the species composition of the 359 

overstory. This result was expected, since, unlike the understory, the overstory is fully 360 

exposed to climatic variation (Šímová et al. 2018, De Frenne et al. 2019). Surprisingly, 361 

however, also the species and trait composition of the fern and lycophyte understory were 362 

mainly shaped by climate proxies. This nonetheless agrees with the literature, where climate 363 
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often strongly impacts fern trait composition (e.g. Kessler et al. 2007, Kluge and Kessler 364 

2007, Sessa and Givnish 2014). It has been suggested that the limited potential for controlling 365 

evaporation makes ferns more sensitive to drought than angiosperms (Brodribb and Holbrook 366 

2004, Zhang et al. 2014). This could thus explain why elevation (temperature) and ground 367 

fog frequency (relative humidity) rather than soil variation were the main drivers of fern 368 

species and trait composition in our study.  369 

 The high relative importance of elevation is not surprising, considering the quite steep 370 

elevational gradient of 1260 m in our dataset. The trait responses followed expectations of 371 

more resource conservative (e.g. high LMDC) and smaller leaves with increasing elevation 372 

for both vegetation layers (Wright et al. 2005, Dong et al. 2020). The high ground fog 373 

frequency likely increased water availability, as suggested by drought-related trait states 374 

(high EWT for both vegetation layers and Lth for understory) in low fog plots in our study (cf. 375 

Medeiros et al. 2019, Maréchaux et al. 2020). Frequent fog can, however, additionally reduce 376 

light availability (up to 10-50%) and local temperature (up to 3-6°C) (Lai et al. 2006, 377 

Reinhardt and Smith 2008) and negatively impact photosynthesis by preventing leaf 378 

transpiration and promoting the growth of epiphyllous lichens and algae. While these 379 

conditions are highly suitable for fern species, which often seem adapted to low light and 380 

high water availability (Sessa and Givnish 2014, Hernández-Rojas et al. 2020), they likely 381 

present less suitable growing conditions for most tree species by hampering photosynthesis 382 

(Fahey et al. 2016). These potential different responses of both vegetation layers were, 383 

however, not reflected in their respective trait composition. More detailed future work using 384 

field-based fog or relative humidity measurements should be used to further explore these 385 

potential effects.  386 

Soil did nevertheless still impact the species and trait composition of both vegetation 387 

layers and was, unexpectedly, more important than climate proxies in structuring overstory 388 
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trait composition. The higher importance of soil for overstory traits compared to species 389 

composition was not due to differences in the species included in both models, since the 390 

species RDA model including only species for which traits were measured gave similar 391 

results. The ‘soil pH’ ordination axis was the most important soil driver, and likely better 392 

reflects plant nutrient availability than soil NPK in the typically highly acidic soils with low 393 

decomposition rates and high soil organic matter of cloud forests (Fahey et al. 2016). The 394 

high nutrient levels following standard soil analysis of these soils likely reflect nutrients 395 

trapped in undecomposed organic matter, rather than plant available nutrients. This could 396 

explain the presence of acquisitive leaf traits (high SLA and leaf N) in less acidic soils for 397 

both vegetation layers (Wright and Cannon 2001). The lower relative importance of soil 398 

variables compared to climate proxies for the understory, on the other hand, might be because 399 

understory fern species respond to more small-scale soil variation than that measured at the 400 

plot-level in this study.  401 

Interestingly, if deciduous species are excluded from the overstory, climate proxies 402 

become the most important driver of overstory trait composition, due to reduced importance 403 

of soil pH. Deciduous woody species are more common on steep wind-exposed slopes in 404 

northern Taiwan, probably because of their ability to avoid environmental stress during 405 

winter by shedding their leaves. These steep slopes usually have higher soil pH in 406 

comparison with less steep of flat ridges at the same elevation, perhaps due to surface erosion 407 

removing more acidic soil and litter and increasing availability of more cation-rich weathered 408 

parental rock material. This contradiction between seemingly stress-adapted niches and more 409 

acquisitive LES traits (cf. low leaf longevity, Wright et al. 2004) of deciduous species, makes 410 

it difficult to assess if these soil pH patterns are caused by LES nutrient-availability or wind-411 

exposure and slope. This shows how soil, topography and climate can interact in their impact 412 
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on species- and trait composition, as also illustrated by the high overlap in explained 413 

variation by climate proxies and soil for all variation partitioning analyses.  414 

 We found that the overstory can act as an additional filter on the understory’s species 415 

and trait composition, through potential light availability or leaf litter effects, as observed in 416 

previous studies (Komiyama et al. 2001, Wang et al. 2019, Maes et al. 2020, Majasalmi and 417 

Rautiainen 2020). The observational nature of our study does, however, not allow us to assess 418 

the causality of this effect. Alternatively, the relationship between overstory and understory 419 

could be caused by unmeasured environmental conditions affecting species and trait 420 

composition of both layers simultaneously.  421 

Despite some similarities in the environmental responses of both vegetation layers, 422 

only two of the nine measured traits showed a significant positive relationship between over- 423 

and understory. This illustrates that environmental filtering differs substantially for trees and 424 

ferns and is most clearly illustrated by Lth. For ferns, Lth seemed to respond to drought (cf. 425 

Kluge and Kessler 2007), but was linked to low nutrient availability in trees (cf. Read et al. 426 

2006), resulting in a negative correlation between both. Direct impact of the overstory on the 427 

understory could also have shaped unexpected trait relationships. The negative correlation for 428 

δ
15N might, for example, reflect niche differentiation among vegetation layers to prevent 429 

competition for different nitrogen sources. The quadratic relationship for SLA could also be 430 

due to overstory impact on the understory. While nutrient availability mainly structured SLA 431 

for the overstory, for the understory, SLA might be affected by a combination of nutrient 432 

limitation under low overstory SLA (cf. Kessler et al. 2007) and more strong light 433 

competition due to shading under high overstory SLA.  434 

 435 

Species and functional diversity 436 
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Species richness was most strongly affected by elevation for both vegetation layers. Both the 437 

decrease in overstory species richness and humped-shaped relationship for understory fern 438 

species along elevation are consistent with previous studies in (sub)tropical forests (Kluge 439 

and Kessler 2011, Qian and Ricklefs 2016, Hernández-Rojas et al. 2020). At lower elevation, 440 

lower water availability is expected to reduce diversity of drought-sensitive lifeforms such as 441 

ferns and lycophytes (Kessler et al. 2011, Weigand et al. 2020). At higher elevations, on the 442 

other hand, species richness of both ferns and angiosperms will be reduced by the stronger 443 

climatic stress associated with lower temperatures (Kessler et al. 2011). Interestingly, soil 444 

explained a much higher proportion of variation in understory than overstory species richness, 445 

thus showing the opposite pattern as observed for species and trait composition. The impact 446 

of soil productivity (soil pH), next to climate on fern species richness is nonetheless in 447 

agreement with previous work (Tuomisto et al. 2014, Weigand et al. 2020). Not surprisingly, 448 

species richness was not correlated between the two vegetation layers, further illustrating that 449 

species richness is shaped by different environmental drivers for overstory trees and 450 

understory ferns and lycophytes. 451 

 Functional diversity patterns suggested that for the overstory, the community trait 452 

composition is not experiencing increased trait convergence among species with elevation, as 453 

expected under increased environmental filtering (Weiher and Keddy 1995). On the contrary, 454 

species trait overlap seems to be reduced, resulting in higher average trait distances among 455 

species (M’), combined with high equal spacing of species in the trait space (1E(T)), a pattern 456 

usually attributed to increased importance of competition among species (Kraft et al. 2008). 457 

Functional equability was nonetheless highest at intermediate ground fog frequency levels, 458 

potentially reflecting trait clustering (environmental filtering) due to drought stress and high 459 

air humidity at each respective end of the ground fog frequency gradient.  460 
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For the understory, trait composition seemingly clustered in separate distinct trait sets, 461 

potentially reflecting (environmental) filtering of a few alternative trait combinations for 462 

ferns at high elevation (increasing M’, decreasing 1E(T)). A similar pattern was also observed 463 

for terrestrial fern communities along four tropical elevation gradients (Aros-Mualin et al. 464 

2021). Elevation related most strongly to functional dispersion in both vegetation layers and 465 

functional equability for the overstory. This again mirrors the results of Aros-Mualin et al. 466 

(2021), who found that temperature was the most important predictor of fern functional 467 

diversity. Functional equability of the understory, on the other hand, was almost equally 468 

strongly affected by soil variation and climate proxies. This soil (pH)-driven environmental 469 

trait filtering for the fern understory (cf. Zhang et al. 2017, Sessa et al. 2018), but not the 470 

overstory, thus mirrors the impact of soil on the species richness patterns in our study. 471 

 472 

Conclusions 473 

Both climate proxies and soil were important predictors of species and trait composition of 474 

both vegetation layers. The stronger effects of climate proxies for understory ferns and 475 

lycophytes compared to overstory trees is likely due to their higher vulnerability to drought. 476 

The environmental drivers furthermore seem to affect very different response traits in both 477 

vegetation layers, which together with additional overstory effects on understory traits, 478 

results in a disconnection of community-level trait values across layers. Interestingly, the 479 

relative importance of soil and climate proxies on species or trait composition cannot be 480 

extrapolated to species or trait diversity, which showed very different patterns. This study 481 

illustrates that environmental filtering can differentially affect species, trait and diversity 482 

patterns and can be highly divergent for forest overstory and understory vegetation. 483 

 484 
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Tables 689 

Table 1. Parameter estimates of the reduced redundancy analyses (RDA) for species 690 

and trait composition and the reduced generalized linear models for species richness (S), 691 

functional divergence (M’) and functional equability (1E(T)), for the overstory and 692 

understory datasets separately. Test statistic (F) for each retained predictor and full model 693 

adjusted R2 provided. For soil principal components ‘soil NPK’, ‘soil pH’ and ‘soil Cu’, see 694 

Table 1. (*)0.10 ≥ p-value > 0.05; *0.05 ≥ p-value > 0.01; **0.01 ≥ p-value > 0.001; ***0.001 ≥ 695 

p-value. sqrt = square root transformation, sq = squared transformation of environmental factor. 696 

El = elevation, fog = ground fog frequency. 697 

 698 

  climate proxies soil   

  elevation fog 
heat 
loadsq 

soil 
depth 

soil 
NPK 

soil 
pH 

soil 
Cu 

soil 
rockinesssqrt 

R2 

overstory          

species 
composition 10.4*** 4.7*** 1.6(*) - 1.7* 3.2*** 1.6(*) - 29.2 
CM trait 
composition 10.0*** 4.2** - - 4.6** 13.3*** 7.7*** - 49.3 
S 18.1*** 3.1(*) 10.0** - - -  - - 36.5 
M’ 97.5*** - 2.5 - - -  - - 64.2 
1E(T) 

5.3* 
fog: 12.1** 
fog2: 9.2** 5.0* - 3.6(*) -  - - 48.5 

understory          
species 
composition 10.4*** 7.3*** 1.9*  -  - 3.9*** - - 29.8 
CM trait 
composition 21.0*** 5.4*** - - - 3.9** 7.2*** - 42.2 

S 
el: 11.4** 

el2: 69.7*** - - - 5.1* 6.4*sq   4.3* 65.7 
M’ 14.4*** 4.0(*) - - - -  - - 31.7 
1E(T)  8.2** - 7.5** 3.2(*)  - 9.8** 4.6* - 46.5 
  699 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.06.459058doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459058
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 

 

Figure legends 700 

Figure 1. Location of the six elevation zones at which vegetation plots were established 701 

in northern Taiwan. 702 

 703 

Figure 2. Venn diagrams visualizing the variation partitioning between climate proxy 704 

and soil variable effects on A. the overstory plot × species matrix, B. the understory plot 705 

× species matrix, C. the overstory plot × community mean (CM) trait matrix, D. the 706 

understory plot × CM trait matrix, using redundancy analysis (RDA). Numbers in the 707 

Venn diagrams correspond to the relative proportions of the total explained variation. The 708 

total explained variance (adjusted R2) is also presented. 709 

 710 

Figure 3. Triplots for the redundancy analyses (RDA) after forward model selection, 711 

exploring the effect of environment (climate proxies and soil) on A. the overstory plot × 712 

species matrix, B. the understory plot × species matrix, C. the overstory plot × 713 

community mean (CM) trait matrix, D. the understory plot × CM trait matrix. Plots 714 

visualized as points, with colors indicating plot elevation, 40% most common species with 715 

20% best fit to the RDA axes are visualized as codes (see Appendix S3), CM trait vectors 716 

visualized as vector tips with names in italics, environmental variables visualized as vectors. 717 

Note that ‘soil NPK’, ‘soil pH’ and ‘soil Cu’ refer to the first three soil PCA axes, 718 

respectively (Table 1). Chl = leaf chlorophyll content, δ13C = the leaf 13C/12C stable isotope 719 

ratio, δ15N = the leaf 15N/14N stable isotope ratio, EWT = equivalent water thickness, Lth = 720 

leaf thickness.  721 

 722 

Figure 4. Scatterplots for pairwise regressions between plot-level overstory and 723 

understory community mean (CM) trait values. Solid regression line + SE presented for 724 
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significant regressions, dashed line for marginally significant regression (see Appendix S6). 725 

Each datapoint corresponds to one vegetation plot, with colors indicating plot elevation. δ13C 726 

= the leaf 13C/12C stable isotope ratio, δ15N = the leaf 15N/14N stable isotope ratio, EWT = 727 

equivalent water thickness, Lth = leaf thickness. 728 

 729 

Figure 5. Scatterplots between three species and functional diversity measures, on the 730 

one hand and elevation and the second soil PCA axis (soil pH), on the other hand. Blue 731 

circles and lines = overstory species, green triangles and lines = understory species. Solid 732 

regression line + SE presented for significant regressions (Table 1).  733 
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Figures 734 

 735 

Figure 1.  736 
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Figure 2.   738 
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739 

Figure 3. 740 
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 741 

Figure 4. 742 
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Figure 5. 744 
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