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Abstract 50 

The design of proteins that bind to a specific site on the surface of a target 51 

protein using no information other than the three-dimensional structure of the target 52 

remains an outstanding challenge.  We describe a general solution to this problem 53 

which starts with a broad exploration of the very large space of possible binding modes 54 

and interactions, and then intensifies the search in the most promising regions. We 55 

demonstrate its very broad applicability by de novo design of binding proteins to 12 56 

diverse protein targets with very different shapes and surface properties.  Biophysical 57 

characterization shows that the binders, which are all smaller than 65 amino acids, are 58 

hyperstable and bind their targets with nanomolar to picomolar affinities. We succeeded 59 

in solving crystal structures of four of the binder-target complexes, and all four are very 60 

close to the corresponding computational design models.  Experimental data on nearly 61 

half a million computational designs and hundreds of thousands of point mutants 62 

provide detailed feedback on the strengths and limitations of the method and of our 63 

current understanding of protein-protein interactions, and should guide improvement of 64 

both.  Our approach now enables targeted design of binders to sites of interest on a 65 

wide variety of proteins for therapeutic and diagnostic applications. 66 
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Introduction 67 

Protein interactions play critical roles in biology, and general approaches to 68 

disrupt or modulate these with designed proteins would have huge impact.  While 69 

empirical laboratory selection approaches starting from very large antibody, DARPIN or 70 

other protein scaffold libraries can generate binders to protein targets, it is difficult at the 71 

outset to target a specific region on a target protein surface, and to sample the full 72 

space of possible binding modes.  Computational methods can target specific target 73 

surface locations and provide a more principled and potentially much faster approach to 74 

binder generation than random library selection methods, as well as insight into the 75 

fundamental properties of protein interfaces (which must be understood for design to be 76 

successful).  Most current methods for computationally designing proteins to bind to a 77 

target surface utilize information derived from native complex structures on specific 78 

sidechain interactions or protein backbone placements optimal for binding1-3.  79 

Computational docking of antibody scaffolds with varied loop geometries has yielded 80 

binders, but the designed binding modes have rarely been validated with high-resolution 81 

structures4. Binders have been generated starting from several computationally 82 

identified hot-spot residues, which were then used to guide the positioning of naturally 83 

occurring protein scaffolds5. However, for many target proteins, there are no obvious 84 

pockets or clefts on the protein surface into which a small number of privileged 85 

sidechains can be placed, and guidance by only a small number of hotspot residues 86 

limits the approach to a  small fraction of possible interaction modes. 87 
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Design Method 88 

We sought to develop a general approach to design of high affinity binders to 89 

arbitrary protein targets that addresses two major challenges.  First, in the general case, 90 

there are no clear sidechain interactions or secondary structure packing arrangements 91 

that can mediate strong interactions with the target; instead there are a very large 92 

number of individually very weak possible interactions.  Second, the number of ways of 93 

choosing from these numerous weak interactions to incorporate into a single binding 94 

protein is combinatorially large, and any given protein backbone is unlikely to be able to 95 

simultaneously present sidechains that can encompass any preselected subset of these 96 

interactions. To motivate our approach, consider the simple analogy of a very difficult 97 

climbing wall with only a few good footholds or handholds distant from each other.  98 

Previous “hotspot” based approaches correspond to focusing on routes involving these 99 

footholds/handholds, but this greatly limits the possibilities and there may be no way to 100 

connect them into a successful route.  An alternative is to first, identify all possible 101 

handholds and footholds, no matter how poor, second, have thousands of climbers 102 

select subsets of these, and try to climb the wall, third, identify those routes that were 103 

most promising, and fourth, have a second group of climbers explore them in detail. 104 

Following this analogy, we devised a multi-step approach to overcome the above two 105 

challenges by 1) enumerating a large and comprehensive set of disembodied sidechain 106 

interactions with the target surface, 2) identifying from large in silico libraries of protein 107 

backbones those that can host many of these sidechains without clashing with the 108 

target, 3) identifying recurrent backbone motifs in these structures, and 4) generating 109 

and placing against the target a second round of scaffolds containing these interacting 110 
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motifs (Fig. 1a).  Steps 1 and 2 search the space very widely, while steps 3 and 4 111 

intensify search in the most promising regions.  We describe and motivate each step in 112 

the following paragraphs.   113 

 114 

We began by docking disembodied amino acids against the target protein, and 115 

storing the backbone coordinates and target binding energies of the typically billions of 116 

amino acids making favorable hydrogen bonding or non-polar interactions in a 6-117 

dimensional spatial hash table for rapid lookup (Fig. 1a; see methods).  This “rotamer 118 

interaction field” (RIF) enables rapid approximation of the target interaction energy 119 

achievable by a protein scaffold docked against a target based on its backbone 120 

coordinates alone (with no need for time consuming sidechain sampling)--for each dock, 121 

the target interaction energies of each of the matching amino acids in the hash table are 122 

summed.  A related approach was used for small molecule binder design6; since protein 123 

targets are so much bigger, and non-polar interactions are the primary driving force for 124 

protein-protein association, we focused the RIF generation process on non-polar sites in 125 

specific surface regions of interest: for example in the case of inhibitor design, 126 

interaction sites with biological partners. The RIF approach improves upon previous 127 

discrete interaction-sampling approaches5 by reducing algorithmic complexity from O(N) 128 

or O(N2) to O(1) with respect to the number of sidechain-target interactions considered, 129 

allowing for billions, rather than thousands, of potential interfaces to be considered. 130 

 131 

For docking against the rotamer interaction field, it is desirable to have a very 132 

large set of protein scaffold options, as the chance that any one scaffold can house 133 
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many interactions is small. The structure models of these scaffolds must be quite 134 

accurate so that the positioning is correct.  Using fragment assembly7, piecewise 135 

fragment assembly8, and helical extension9, we designed a large set of miniproteins 136 

ranging in length from 50 to 65 amino acids containing larger hydrophobic cores than 137 

previous miniprotein scaffold libraries1, which makes the protein more stable and more 138 

tolerant to introduction of the designed binding surfaces. 84,690 scaffolds spanning 5 139 

different topologies with structural metrics predictive of folding were encoded in large 140 

oligonucleotide arrays and 34,507 were found to be stable using a high-throughput 141 

proteolysis based protein stability assay10. 142 

 143 

We experimented with several approaches for docking these stable scaffolds 144 

against the target structure rotamer interaction field, balancing overall shape 145 

complementarity with maximizing specific rotamer interactions.  The most robust results 146 

were obtained using direct low resolution shape matching11 followed by grid based 147 

refinement of the rigid body orientation in the RIF (RIFDock).  This resulted in better 148 

Rosetta binding energies (ddGs) and packing (contact molecular surface, see below) 149 

after sequence design than shape matching alone with PatchDock  (Fig. 1b red and 150 

green), and more extensive non polar interaction with the target than hierarchical 151 

search without PatchDock shape matching 6 (Extended Data Fig. 1).  152 

 153 

Because of the loss in resolution in the hashing used to build the RIF, and the 154 

necessarily approximate accounting for interactions between sidechains (see methods), 155 

we found that evaluation of the RIF solutions is considerably enhanced by full 156 
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combinatorial optimization using the Rosetta forcefield, allowing the target sidechains to 157 

repack and the scaffold backbone to relax.  Full combinatorial sequence optimization is 158 

quite CPU intensive, however, and to enable rapid screening through millions of 159 

alternative backbone placements, we developed a rapid pre-screening method using 160 

Rosetta to identify promising RIF docks. We found that including only hydrophobic 161 

amino acids, using a reduced set of rotamers than in standard Rosetta design 162 

calculations, and a more rapidly computable energy function sped design more than 10-163 

fold while retaining a strong correlation with results after full sequence design (next 164 

paragraph); this pre-screen (referred to as the “Predictor” below) substantially improved 165 

the binding energies and shape complementarity of the final designs as far more RIF 166 

solutions could be processed (Extended Data Fig. 2). 167 

 168 

We observed that application of standard Rosetta design to the set of filtered 169 

docks in some cases resulted in models with buried unsatisfied polar groups and other 170 

suboptimal properties. To overcome these limitations, we developed a combinatorial 171 

sequence design protocol that maximizes shape and chemical complementarity with the 172 

target while avoiding buried polar atoms. Sequence compatibility with the scaffold 173 

monomer structure was increased using a structure based sequence profile12, the 174 

cross-interface interactions were upweighted during the Monte Carlo-based sequence 175 

design stage to maximize the contacts between the binder and the target 176 

(ProteinProteinInterfaceUpweighter; see Methods), and rotamers containing buried 177 

unsatisfiable polar atoms were eliminated prior to packing and buried unsatisfied polar 178 

atoms penalized by a pair-wise decomposable pseudo-energy term13. This protocol 179 
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yielded amino acid sequences more strongly predicted to fold to the designed structure 180 

(Extended Data Fig. 3a) and to bind the target (Extended Data Fig. 3b) than standard 181 

Rosetta interface design. 182 

 183 

In the course of developing the overall binder design pipeline, we noticed upon 184 

inspection that even designs with favorable Rosetta binding free energies, large 185 

changes in Solvent Accessible Surface Area (SASA) upon binding, and high shape 186 

complementarity (SC) often lacked dense packing and interactions involving several 187 

secondary structural elements. We developed a quantitative measure of packing quality 188 

in closer accord with visual assessment -- the contact molecular surface (see methods) 189 

-- which balances interface complementarity and size in a manner that explicitly 190 

penalizes poor packing.  We used this metric to help select designs at both the rapid 191 

Predictor stage and after full sequence optimization (see Methods).   192 

 193 

The space sampled by the search over structure and sequence space is  194 

enormous: tens of thousands of possible protein backbones × nearly one billion possible 195 

disembodied sidechain interactions per target × 1016 interface sequences per scaffold 196 

placement. Sampling of spaces of this size is necessarily incomplete, and many of the 197 

designs at this stage contained buried unsatisfied polar atoms (only rotamers that 198 

cannot make hydrogen bonds in any context are excluded at the packing stage) and 199 

cavities. To generate improved designs, we intensified the search around the best of the 200 

designed interfaces.  We developed a resampling protocol which extracts all the 201 

secondary structural motifs making good contacts with the target protein from the first 202 
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“broad search” designs, clusters these motifs based on their backbone coordinates and 203 

rigid body placements, and then selects the binding motif in each cluster with the best 204 

per-position weighted Rosetta binding energy; around 2,000 motifs were selected for 205 

each target. These motifs, which are privileged because they contain a much greater 206 

density of favorable side chain interactions with the target than the rest of the designs, 207 

were then used to guide another round of docking and design.  Scaffolds from the 208 

library were superimposed on the privileged motifs, the favorable-interacting motif 209 

residues transferred to the scaffold, and the remainder of the scaffold sequence 210 

optimized to make further interactions with the target, allowing backbone flexibility to 211 

increase shape complementarity with the target (Fig. 1a).  Interface metrics for the 212 

designs based on the resampling protocol were considerably improved relative to those 213 

of the designs from the broad searching stage (Fig. 1b).  The designs with the most 214 

favorable protein folding and protein interface metrics from both the broad searching 215 

and resampling stages were selected for experimental validation.  216 

Experimental testing 217 

Previous protein binder design approaches have been tested on only one or two 218 

targets, which limits assessment of their generality.  To robustly test our new binder 219 

design pipeline, we selected thirteen native proteins of considerable current interest 220 

spanning a wide range of shapes and biological functions.  These proteins fall into two 221 

classes:  first, human cell surface or extracellular proteins involved in signaling, for 222 

which binders could have utility as probes of biological mechanism and potentially as 223 

therapeutics (Tropomyosin receptor kinase A (TrkA)14, Fibroblast growth factor receptor 224 

2 (FGFR2)15, Epidermal growth factor receptor (EGFR)16, Platelet-derived growth factor 225 
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receptor (PDGFR)17, Insulin receptor (InsulinR)18, Insulin-like growth factor 1 receptor 226 

(IGF1R)19, Angiopoietin-1 receptor (Tie2)20, Interleukin-7 receptor alpha (IL-7Rα)21, CD3 227 

delta chain (CD3δ)22, Transforming growth factor beta (TGF-β)23); and second, 228 

pathogen surface proteins for which binding proteins could have therapeutic utility 229 

(Influenza A H3 hemagglutinin (H3)24, VirB8-like protein from Rickettsia typhi (VirB8)25, 230 

and the SARS-CoV-2 coronavirus spike protein)  (Fig. 2a).  For each target, we 231 

selected one or two regions to direct binders against for maximal biological utility and for 232 

potential downstream therapeutic potential.  These regions span a wide range of 233 

surface properties, with diverse shape and chemical characteristics (Fig. 2a and 234 

Extended Data Fig. 4). 235 

 236 

Using the above protocol, we designed 15,000-100,000 binders for each of 237 

thirteen target sites on the twelve native proteins (see Methods; we chose two sites on 238 

the EGF receptor). Synthetic oligonucleotides (230bp) encoding the 50-65 residue 239 

designs were cloned into a yeast surface expression vector, the designs were displayed 240 

on the surface of yeast, and those which bind their target enriched by several rounds of 241 

fluorescence-activated cell sorting using fluorescently labelled target proteins. The 242 

starting and enriched populations were deep sequenced, and the fraction of each 243 

design after each sort was determined by comparing the frequency of the design in the 244 

parent and child pools.  From multiple sorts at different target protein concentrations, we 245 

determined, as a proxy for binding Kd’s, the midpoint concentration (SC50) in the binding 246 

transitions for each design in the library (Extended Data Table 1 and Supplementary 247 

Methods).   248 
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 249 

To assess whether the top enriched designs for each target fold and bind as in 250 

the corresponding computational design models, and to investigate the sequence 251 

dependence of folding and binding, we generated high resolution footprints of the 252 

binding surface by sorting site saturation mutagenesis libraries (SSMs) in which every 253 

residue was substituted with each of the 20 amino acids one at a time.  For the majority, 254 

but not all, enriched designs, substitutions at the binding interface and in the protein 255 

core were less tolerated than substitutions at non-interface surface positions (Fig. 2b, 256 

Extended Data Fig. 20 & Extended Data Fig. 5), and all the cysteines were highly 257 

conserved in designs containing disulfides. The effects of each mutation on both binding 258 

energy and monomer stability were estimated using Rosetta design calculations, and a 259 

reasonable correlation was found between the predicted and experimentally determined 260 

effect of mutations (Extended Data Fig. 6).  In almost all cases, a small number of 261 

substitutions were found to increase apparent binding affinity, and we generated 262 

libraries combining 5-15 of these and sorted for binding under increasingly stringent 263 

(lower target concentrations) conditions. Many of these affinity-enhancing substitutions 264 

were mutations to tyrosine (Extended Data Fig. 7), consistent with the high relative 265 

frequency of tyrosine in natural protein interfaces26. The set of affinity increasing 266 

substitutions provide valuable information for improving the approach as these 267 

substitutions ideally would have been identified in the computational sequence design 268 

calculations (see discussion below). 269 

 270 
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We expressed the highest affinity combinatorially-optimized binders for each 271 

target in E.coli for more detailed structural and functional characterization.  All of the 272 

designs were in the soluble fraction, and could be readily purified by nickel-NTA 273 

chromatography. All had circular dichroism spectra consistent with the design model, 274 

and most (9 out of 13) were stable at 95 °C (Fig. 2d).  The binding affinities for the 275 

targets were assessed by biolayer interferometry, and found to range from 300 pM to 276 

900 nM (Fig. 2c and Extended Data Table 2). The sequence mapping data report on 277 

the residues on the design critical for binding, but only weakly on the region of the target 278 

bound.  We investigated this using a combination of binding competition experiments, 279 

biological assays, and structural characterization of the complexes. For the nine targets 280 

for which these were available, this characterization suggested binding modes 281 

consistent with the design models, as described in the following paragraphs.  282 

Host protein targets involved in signaling 283 

The receptor tyrosine kinases TrkA, FGFR2, PDGFR, EGFR, InsulinR, IGF1R 284 

and Tie2 are key regulators of cellular processes and are involved in the development 285 

and progression of many types of cancer27. We designed binders targeting the native 286 

ligand binding sites for PDGFR, EGFR (on both domain I and domain III, the binders are 287 

referred to as EGFRn_mb and EGFRc_mb respectively), InsulinR, IGF1R and Tie2, and 288 

targeting surface regions proximal to the native ligand binding sites for TrkA and FGFR2  289 

(Fig. 2a and see methods for criteria).  We obtained binders to all eight target sites; the 290 

binding affinities of the optimized designs ranged from ~1nM or better for TrkA and 291 

FGFR2, to 860nM for IGF1R. Competition experiments with nerve growth factor (NGF), 292 

Platelet Derived Growth Factor-BB (PDGF-BB), insulin, insulin growth factor-1 (IGF-1) 293 
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and Angiopoietin 1 (Ang1)  on yeast suggest that the binders for TrkA, PDGFR, InsulinR, 294 

IGF1R and Tie2 bind to the targeted sites (Extended Data Fig. 8), consistent with the 295 

computational design models. The receptor tyrosine kinase binders as monomers are 296 

all expected to be antagonists, and  we tested the effect on signaling through  TrkA, 297 

FGFR2 and EGFR of the cognate binders on cells in culture.  Strong inhibition of 298 

signaling by the native agonists was observed in all three cases (Fig. 3a-c, Extended 299 

Data Fig. 9 and Extended Data Fig. 10). 300 

 301 

Binding of IL-7 to the IL-7α receptor subunit leads to recruitment of the  γc 302 

receptor, forming a tripartite cytokine-receptor complex crucial to several signaling 303 

cascades leading to the development and homeostasis of T and B cells28. We obtained 304 

a picomolar affinity binder for IL-7Rα targeting the IL-7 binding site, and found that it 305 

blocks STAT5 signaling induced by IL-7 (Fig. 3d). We also obtained binders to CD3δ, 306 

one of the subunits of the T-cell receptor, and the signaling molecule TGF-β, which play 307 

critical roles in immune cell development and activation (Fig. 2).  308 

Pathogen target proteins 309 

 Hemagglutinin (HA) is the main target for influenza A virus vaccine and drug 310 

development, and it can be genetically classified into two main subgroups, group 1 and 311 

group 229,30. The HA stem region is an attractive therapeutic epitope, as it is highly 312 

conserved across all the influenza A subtypes and targeting this region can block the 313 

low pH-induced conformational rearrangements associated with membrane fusion, 314 

which is essential for virus infection31,32. Neutralizing antibodies targeting the stem 315 

region of group 2 HA have been identified through screening of large B-cell libraries 316 
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after vaccination or infection that neutralize both group 1 and group 2 influenza A 317 

viruses33,34.  Protein 1,5, peptide35 and small molecule inhibitors36 have been designed to 318 

bind to the stem region of group 1 HA and neutralize the influenza A viruses, but none 319 

recognize the group 2 HA. However, the design of small proteins or peptides that can 320 

bind and neutralize both group 1 HA and group 2 HA has been challenging due to three 321 

differences between the group 1 HA and the group 2 HA: first, the group 2 HA stem 322 

region is more hydrophilic, containing more polar residues, second, in group 2 HA, 323 

Trp21 adopts a configuration roughly perpendicular to the surface of the targeting 324 

groove, which makes the targeted groove much shallower and less hydrophobic, and 325 

third, the group 2 HA is glycosylated at Asn38 with the carbohydrate side chains 326 

covering the hydrophobic groove (Extended Data Fig. 11). We used our new method to 327 

design binders to H3 HA (A/Hong Kong/1/1968), the main pandemic subtype of group 2 328 

influenza virus, and obtained a binder with an affinity of 320 nM to the wild type H3 (Fig 329 

2) and 28nM to the deglycosylated H3 variant (N38D)  (Extended Data Fig. 12a);  the 330 

reduction in affinity is likely due to the entropy loss of the glycan upon binding and/or the 331 

steric clash with the glycan. The binder also binds to H1 HA (A/Puerto Rico/8/1934) 332 

which belongs to the main pandemic subtype of group 1 influenza virus (Extended Data 333 

Fig. 12b); the binding with both H1 and H3 is competed by the stem region binding 334 

neutralizing antibody FI6v333 on the yeast surface (Extended Data Fig. 12c,d), 335 

suggesting that the binder binds the hemagglutinin at the targeted site.  We also 336 

designed binders to the prokaryotic pathogen protein VirB8 which belongs to the type IV 337 

secretion system of Rickettsia typhi, which is the causative agent of murine typhus25. 338 
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We selected the surface region composed of the second and the third helices of VirB8, 339 

and obtained binders with 500 pM affinity (Fig. 2). 340 

 341 

With the outbreak of the SARS-CoV-2 coronavirus pandemic we applied our 342 

method to design miniproteins targeting the receptor binding domain of the SARS-CoV-343 

2 Spike protein near the ACE2 binding site to block receptor engagement. Due to the 344 

pressing need for coronavirus therapeutics, we recently described the results of these 345 

efforts37 ahead of those described in this manuscript;  As in the case of FGFR2, IL-7Rα 346 

and VirB8, the method yielded picomolar binders, which are among the most potent 347 

compounds known to inhibit the virus in cell culture (IC50 0.15ng/ml) and subsequent 348 

animal experiments have shown that they provide potent protection against the virus in 349 

vivo38. The modular nature of the miniprotein binders enables their rapid integration into 350 

designed diagnostic biosensors for both influenza and SARS-CoV-2 binders39. 351 

 352 

The designed binding proteins are all very small proteins (<65 amino acids), and 353 

many are 3-helix bundles. To evaluate their target specificity, we tested the highest 354 

affinity binder to each target for binding to all other targets.  There was very little cross 355 

reactivity (Fig. 4a), likely due to their quite diverse surface shapes and electrostatic 356 

properties (Fig. 4b).  Consistent with previous observations with affibodies40, this 357 

suggests that a wide variety of binding specificities can be encoded in simple helical 358 

bundles;  in our approach, scaffolds are customized for each target, so the specificity 359 

arises both from the set of sidechains at the binding interface, and the overall shape of 360 

the interface itself.  361 
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High-resolution structural validation 362 

High resolution structures are critical for evaluating the accuracy of 363 

computational protein designs. We succeeded in obtaining crystal structures of the 364 

unbound miniprotein binders for FGFR2 and IL-7Rα, as well as the co-crystal structures 365 

of the miniprotein binders of H3, TrkA, FGFR2 and IL-7Rα in complex with their targets 366 

(Extended Data Table 3). The H3 binder binds to the shallow groove of the stem region 367 

of HK68/H3 HA in the crystal structure as designed; the Cα root-mean-square deviation 368 

(rmsd) over the entire miniprotein binder is  1.42 Å using the HA as the alignment 369 

reference (Fig. 5a and Extended Data Fig. 13). The binder makes extensive 370 

hydrophobic interactions with HA and almost all of the designed interface side chain 371 

configurations are recapticulated in the crystal structure (Fig. 5a). There is a clear 372 

reorientation of the oligosaccharide at Asn38 compared with the unbound HK68/H3 373 

structure (Fig. 5a and Extended Data Fig. 11; this has been observed in HK68/H3 374 

structures bound with stem region neutralizing antibodies 33,34), consistent with the 375 

higher binding affinity for a deglycosylated variant (N38D) than for  wild type H3 HA 376 

(A/Hong Kong/1/1968) in BLI assays (Fig. 2 and Extended Data Fig. 12). The crystal 377 

structure of the TrkA binder in complex with TrkA was very close to the design model 378 

(Fig. 5b).  After aligning the crystal structure and design model on TrkA, the Cα rmsd 379 

over the entire miniprotein binder is  2.41 Å, and over the two interfacial binding helices 380 

1.20 Å.  The crystal structures of the FGFR2 binder by itself (Extended Data Fig. 14a) 381 

and in complex with the third Ig-like domain of FGFR4 (Fig. 5c) match the design 382 

models with near atomic accuracy,  with Cα rmds of 0.58 Å for the binder alone and 383 

1.87 Å over the entire complex.  The TrkA binder and the FGFR2 binder bind to the 384 
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curved sheet side of the ligand binding domain of TrkA and FGFR4 with extensive 385 

hydrophobic and polar interactions, and most of the key hydrophobic interactions as 386 

well as the primarily polar interactions in the computational design models are largely 387 

recapitulated in the crystal structures (Fig 5b,c). The binding interface partially overlaps 388 

with the native ligand binding sites of nerve growth factor (NGF) and fibroblast growth 389 

factor (FGF), however, the detailed sidechain interactions are entirely different in the 390 

designed and native complexes (Extended Data Fig. 15a,b). For IL-7Rα, the crystal 391 

structure of the monomer is close to that of the design, with a Cα rmsd of 0.63 Å 392 

(Extended Data Fig. 14b) and the co-crystal structure with IL-7Rα also matches with 393 

the design model closely, with a Cα rmsd of 2.2 Å using IL-7Rα as the reference (Fig 394 

5d). Both the de novo IL-7Rα binder and the native IL-7 use two helices to bind with IL-395 

7Rα, but the binding orientations are totally different (Extended Data Fig. 15c). Further 396 

highlighting the accuracy of the protein interface design method, the cryoEM structures 397 

of the SARS-CoV-2 binders LCB1 and LCB3 in complex with the virus are also nearly 398 

identical to the design models, with Cα rmsd of 1.27 Å and 1.9 Å respectively37 (Fig. 5e). 399 

While we were not able yet to solve structures for the remainder of the designs, the high 400 

resolution sequence footprinting (Fig. 2b, Extended Data Fig. 20 & Extended Data 401 

Table 4) and competition results suggest that the interfaces involve both the designed 402 

residues and the intended regions on the target. The very close agreement between the 403 

experimentally determined structures and the original design models suggests that the 404 

substitutions required to achieve high affinity play relatively subtle roles in tuning 405 

interface energetics; the overall structure of the complex, including the structure of the 406 
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monomer binders and the detailed target binding mode, are determined by the 407 

computational design procedure. 408 

Determinants of design success  409 

For our de novo design strategy to be successful, we must encode in the ~60 410 

residue designed sequences both information on the folded monomer structures, and 411 

on the target binding interfaces: designs which do not fold to the correct structure, or 412 

which fold to the intended structures but do not bind to the target will fail.  To assess the 413 

accuracy with which the monomer structure must be designed, we carried out an 414 

additional calculation and experiment for the IL-7Rα target.  Large numbers of scaffolds 415 

were superimposed onto 11 interface helical binding motifs identified in the first broad 416 

design search, and sequence design was carried out as described above. There was a 417 

strong correlation between the extent of binding and the RMSD to the binding motif 418 

(Extended Data Fig. 16), suggesting that designed backbones must be quite accurate 419 

to achieve binding.  To assess the determinants of binding of the designed interfaces, 420 

assuming that the designs fold to the intended monomer structures, we took advantage 421 

of the large data set (810,000 binder designs and 240,000 single mutants) generated in 422 

this study.  Across all targets, there was a strong correlation between success rate and 423 

the hydrophobicity of the targeted region (Extended Data Fig. 17), and designs 424 

observed experimentally to bind their targets tended to have stronger predicted binding 425 

energy, and larger contact molecular surfaces (Extended Data Fig. 18).   As found 426 

previously for design of protein stability10, iterative design-build-test cycles in which the 427 

design method is updated at each iteration to incorporate feedback from the previous 428 
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design round should lead to systematic improvement in the design methodology and 429 

success rate.  430 

Conclusions 431 

Our success in designing nM affinity binders for 14 target sites demonstrates that 432 

binding proteins can be designed de novo using only information on the structure of the 433 

target protein, without need for prior information on binding hotspots or fragments from 434 

structures of complexes with binding partners.  The success also suggests that our 435 

design pipeline provides a quite general solution to the de novo protein interface design 436 

problem that goes far beyond previously described methods.  However, there is still 437 

considerable room for improvement.  Only a small fraction of designs bind, and in 438 

almost all cases, the best of these require a few additional substitutions to achieve high 439 

affinity binding (Extended Data Table 2).  Furthermore, the design of binders to highly 440 

polar target sites remains a considerable challenge-the sites targeted here all contain at 441 

least four hydrophobic residues. The datasets generated in this work -- both the 442 

information on binders versus non binders, and the feedback on the effects of individual 443 

point mutants on binding -- should help guide the development of methods for designing 444 

high affinity binders directly from the computer with no need for iterative experimental 445 

optimization.  More generally, the de novo binder design method and the large data set 446 

generated here provide a starting point for  investigating the fundamental physical 447 

chemistry of  protein-protein interactions, and for developing and assessing 448 

computational models of protein-protein interactions.  449 

This work is a major step forward towards the longer range goal of direct 450 

computational design of high affinity binders starting from structural information alone.  451 
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We expect the binders created here, and new ones created with the method moving 452 

forward, will find wide utility as signaling pathway antagonists as monomeric proteins 453 

and as tunable agonists when rigidly scaffolded in multimeric formats, and in 454 

diagnostics and therapeutics for pathogenic disease. Unlike antibodies, the designed 455 

proteins can be expressed solubly in E. coli at high levels and are thermostable, and 456 

hence could form the basis for a next generation of lower cost protein therapeutics. 457 

More generally, the ability to rapidly and robustly design high affinity binders to arbitrary 458 

protein targets could transform the many areas of biotechnology and medicine that rely 459 

on affinity reagents. 460 
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Figure 1: Overview of the de novo protein binder design pipeline. a,  Schematic of 512 

our two stage binder design approach. In the global search stage, billions of 513 

disembodied amino acids are docked onto the selected targeting region and the 514 

positioning of the scaffolds is guided by the favorable sidechain interactions. The 515 

interface sequences are then designed to maximize interaction with the target. In the 516 

focused search stage, the interface motifs are extracted, clustered. The privileged 517 

motifs are then selected to guide another round of docking and design. Designs are 518 

then selected for experimental characterization based on computational metrics.  b, 519 

Comparison of sampling efficiency of PatchDock, RifDock, and resampling protocols. 520 

Bar graph shows the distribution over the three approaches of the top 1% of binders 521 

based on Rosetta ddg and contact molecular surface after pooling equal-CPU-time 522 

dock-and-design trajectories for each of the 13 target sites and averaging per-target 523 

distributions (see Methods).  524 

 525 

 526 
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 528 

Figure 2: De novo design of miniprotein binders to 13 target sites. a, Naturally 529 

occurring target protein structures shown in surface representation, with known 530 

interacting partners f in cartoons where available.  Regions targeted for binder design or 531 

in pale yellow or green; the remainder of the target surface is in grey. See (Extended 532 
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Data Figure 4) for the zoomed in views of the selected targeting regions. The PDB ID 533 

codes are 3ZTJ (H3), 2IFG (TrkA), 1DJS (FGFR2), 1MOX (EGFR), 3MJG (PDGFR), 534 

4OGA (InsulinR), 5U8R (IGF1R), 2GY7 (Tie2), 3DI3 (IL-7Rα), 1XIW (CD3δ), 3KFD 535 

(TGF-β) and 4O3V (VirB8).  b, Computational models of designed complexes colored 536 

by site saturation mutagensis results.  Designed binding proteins (cartoons) are colored 537 

by positional Shannon entropy, with blue indicating positions of low entropy (conserved) 538 

and red those of high entropy (not conserved); target surface is in grey and yellow. The 539 

core residues and binding interface residues are more conserved than the non-interface 540 

surface positions, consistent with the computational models.  Full SSM maps over all 541 

positions of all the de novo designs are provided in (Supplementary file/Extended 542 

Data Fig. 18). c, Biolayer interferometry characterization of binding of optimized 543 

designs to the corresponding targets. Two-fold serial dilutions were tested for each 544 

binder and the highest concentration is labeled. For H3, TrkA, FGFR2, EGFR, PDGFR, 545 

IL-7Rα, CD3δ, TGF-β and VirB8, the biotinylated target proteins were loaded  onto the 546 

Streptavidin (SA) biosensors, and incubated with miniprotein binders in solution to 547 

measure association and dissociation. For IGF1R and Tie2, MBP- (maltose binding 548 

protein) tagged miniprotein binders were used as the analytes. For InsulinR, the 549 

miniprotein binder was immobilized onto the Amine Reactive Second-Generation 550 

(AR2G) Biosensors and the insulin receptor was used as the analyte. d, Circular 551 

dichroism spectra at different temperatures (green: 25 °C, red: 95 °C, blue: 95 °C 552 

followed by 25 °C) and (insert) CD signal at 222-nm wavelength as a function of 553 

temperature for the optimized designs. 554 
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 555 

 556 

Figure 3: Inhibition of native signaling pathways by designed miniprotiens. a, 557 

Dose-dependent reduction in (left) pERK signaling, (middle) pAKT signaling and cell 558 

proliferation after 48 hrs (right) of TF-1 cells with increase in TrkA minibinder 559 

concentration. 8.0 ng/ml human beta-NGF was used for competition. Titration curves at 560 

different concentrations of NGF and the effects of the miniprotein binders on cell viability 561 

are in Extended Data Fig. 9.  b, Dose-dependent reduction pERK signaling elicited by 562 

0.75 nM bFGF in HUVECs with increasing FGFR2 minibinder concentration. c, Dose-563 

dependent reduction in (left) pERK signaling, and (right) pAKT signaling elicited by 1nM 564 

EGF in HUVECs with increase in EGFR n-side minibinder concentration. See Extended 565 

Data Fig. 10 and methods for the experimental details. d, Reduction in STAT5 activity 566 

induced by 50 pM of hIL-7 in HEK293T cells in the presence of increased hIL-7Rα 567 

minibinder concentrations.  IC50 was calculated using a four-parameter-logistic 568 
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equation in GraphPad Prism 9 software.569 

 570 

Figure 4: Designed binders have high target specificity. To assess the cross 571 

reactivity of each miniprotein binder with each target protein, The biotinylated target 572 

proteins were loaded onto biolayer interferometry SA sensors, allowed to equilibrate, 573 

and baseline signal set to zero.  The BLI tips were then placed into 100 nM binder 574 

solution for 300 seconds, washed with buffer, and dissociation was monitored for an 575 

additional 600 seconds. Heatmap shows the maximum response signal for each binder-576 

target pair normalized by the maximum response signal of the cognate designed binder-577 

target pair. b, Surface shape and electrostatic potential (generated with the APBS 578 

Electrostatics plugin in Pymol; red positive, blue, negative) of the designed binding 579 

interfaces. 580 
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 581 

Figure 5: High-resolution structures of miniprotein binders in complex with target 582 

proteins are very close to computational design models. (a-d). (left) 583 

Superimposition of computational design model (silver) on experimentally determined 584 

crystal structure. (right) Zoom-in view of designed interface, with interacting side chains 585 

as sticks. a. H3, b. TrkA, c. FGFR2, d. IL-7Rα. e, Superimposition of the computational 586 

design model and refined cryo-EM structures of LCB1 (left) and LCB3 (right) bound to 587 

receptor binding domain of SARS-CoV-2 spike protein (design models are in gray and 588 

cryoEM structures are in pale blue and green). 589 

 590 

 591 

 592 

 593 
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